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Abstract
Audio-visual speech recognition (AVSR) research
has gained a great success recently by improv-
ing the noise-robustness of audio-only automatic
speech recognition (ASR) with noise-invariant vi-
sual information. However, most existing AVSR
approaches simply fuse the audio and visual fea-
tures by concatenation, without explicit interac-
tions to capture the deep correlations between
them, which results in sub-optimal multimodal
representations for downstream speech recognition
task. In this paper, we propose a cross-modal global
interaction and local alignment (GILA) approach
for AVSR, which captures the deep audio-visual
(A-V) correlations from both global and local per-
spectives. Specifically, we design a global interac-
tion model to capture the A-V complementary rela-
tionship on modality level, as well as a local align-
ment approach to model the A-V temporal consis-
tency on frame level. Such a holistic view of cross-
modal correlations enable better multimodal repre-
sentations for AVSR. Experiments on public bench-
marks LRS3 and LRS2 show that our GILA outper-
forms the supervised learning state-of-the-art1.

1 Introduction
With recent advancement of deep learning techniques, au-
tomatic speech recognition (ASR) has achieved quite good
performance [Graves, 2012; Vaswani et al., 2017; Chen et
al., 2022b]. However, ASR systems are usually vulnerable
to noise and would degrade significantly under noisy condi-
tions [Sumby and Pollack, 1954]. To improve their perfor-
mance under various scenarios, recent works on noise-robust
speech recognition have made some progress [Wang et al.,
2020; Chen et al., 2022a; Hu et al., 2022b; Zhu et al., 2023b].

A currently popular research direction on robustness com-
bines audio (A) and visual (V) features to benefit from the
noise-invariant lip movement information. With use of two
modalities, audio-visual speech recognition (AVSR) systems
move one step closer to how human perceives speech [Sumby
and Pollack, 1954] and achieve better performance in many

1Code is available at https://github.com/YUCHEN005/GILA.

application scenarios [Biswas et al., 2016; Koguchi et al.,
2018]. Thanks to recent advance of neural network, AVSR
has achieved a remarkable success [Afouras et al., 2018a;
Makino et al., 2019; Ma et al., 2021; Pan et al., 2022;
Chen et al., 2022c; Shi et al., 2022b; Hsu and Shi, 2022;
Zhu et al., 2023c]. However, most existing AVSR works
simply employ feature concatenation for audio-visual (A-V)
fusion, without explicit interactions to capture deep correla-
tions between them [Raij et al., 2000]: 1) From global per-
spective, they may not capture the complementary relation-
ship between A-V modalities. Such relationship means when
one modality is missing or corrupted, the other modality can
supply valid information for downstream task [Wang et al.,
2022]. Failure to capture it would make the system confused
about the significance of each modality and thus degrade the
performance [Hori et al., 2017; Tao and Busso, 2018]. 2)
From local perspective, they may ignore the temporal align-
ment between A-V frames, which could be a problem due to
the ambiguity of homophenes [Kim et al., 2022] where same
lip shape could produce different sounds. Such misalignment
between lip and audio sequences would increase the difficulty
of efficient multimodal fusion and affect final performance
[Tsai et al., 2019; Lv et al., 2021].

To capture the global complementary relationship between
different modalities, cross-attention has been widely investi-
gated in recent multimodal studies to learn the inter-modal
correspondence [Lee et al., 2020; Li et al., 2021; Goncalves
and Busso, 2022; Mercea et al., 2022]. Despite the effec-
tiveness, it fails to simultaneously preserve the intra-modal
correspondence that could adaptively select the information
of each individual modality for the inter-modal correspon-
dence modeling [Wang et al., 2022], which thus results in
sub-optimal complementary relationship between modalities.

From the local perspective, contrastive learning has been
popular for cross-modal temporal alignment to model the
frame-level consistency [Korbar et al., 2018; Morgado et al.,
2021; Hu et al., 2022a; Yang et al., 2022], but they seem
to only align the multimodal features within same model
layer, ignoring the alignment across different layers. Since
different-layer features contain semantic representations of
different granularities [Gu et al., 2021], we argue that the
alignment between them could capture extra contextual in-
formation to improve the modeled temporal consistency.

In this paper, we propose a cross-modal global interaction
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and local alignment (GILA) approach to effectively capture
the deep audio-visual correlations from both global and lo-
cal perspectives. Specifically, we propose an attention-based
global interaction (GI) model to capture the A-V complemen-
tary relationship on modality level. On top of the vanilla
cross-attention, we propose a novel iterative refinement mod-
ule to jointly model the A-V inter- and intra-modal correspon-
dence. It could adaptively leverage the information within
each individual modality to capture the inter-modal corre-
spondence, which thus results in better complementary re-
lationship between A-V modalities. With global knowledge
of A-V correlations, the system may still be less aware of
the local details. To this end, we further design a cross-
modal local alignment (LA) approach via contrastive learn-
ing to model the A-V temporal consistency on frame level.
Based on the vanilla within-layer alignment, we propose a
novel cross-layer contrastive learning approach to align A-V
features across different GI model layers. Such design could
capture extra contextual information between the different-
granularity semantic representations, which enables more in-
formative temporal consistency between A-V frames. As a
result, our proposed GILA can capture deep holistic correla-
tions between A-V features and finally generate better multi-
modal representations for downstream recognition task.

To the best of our knowledge, this is the first AVSR work
to model deep A-V correlations from both global and local
perspectives. Our main contributions are summarized as:

• We present GILA, a novel approach to capture deep
audio-visual correlations for AVSR task, from both
global and local perspectives.

• We propose a cross-modal global interaction (GI) model
to capture A-V complementary relationship on modal-
ity level, as well as a local alignment (LA) approach to
model the A-V temporal consistency on frame level.

• Experimental results on two public benchmarks demon-
strate the effectiveness of our GILA against the state-of-
the-art (SOTA) supervised learning baseline, with up to
16.2% relative WER improvement.

2 Related Work
Audio-Visual Speech Recognition. Most existing AVSR
works focus on novel architectures and supervised learn-
ing methods, investigating how to effectively model and
fuse the audio-visual modalities. TM-seq2seq [Afouras et
al., 2018a] proposes a Transformer-based [Vaswani et al.,
2017] AVSR system with sequence-to-sequence loss. Hyb-
RNN [Petridis et al., 2018] proposes a RNN-based AVSR
system with hybrid seq2seq/CTC loss [Watanabe et al.,
2017]. RNN-T [Makino et al., 2019] employs recurrent
neural network transducer [Graves, 2012] for AVSR task.
EG-seq2seq [Xu et al., 2020] builds a joint audio enhance-
ment and multimodal speech recognition system based on
RNN. LF-MMI TDNN [Yu et al., 2020] proposes a joint
audio-visual speech separation and recognition system based
on TDNN. Hyb-Conformer [Ma et al., 2021] proposes a
Conformer-based [Gulati et al., 2020] AVSR system with
hybrid seq2seq/CTC loss, where the audio-visual streams

are encoded separately and then concatenated for decod-
ing, which has achieved the supervised learning SOTA on
both LRS3 and LRS2 datasets. MoCo+wav2vec [Pan et al.,
2022] employs self-supervised pre-trained audio/visual front-
ends to improve AVSR performance, which has achieved the
SOTA on LRS2 dataset. However, these studies simply con-
catenate the audio and visual features for multimodal fusion,
without explicit interactions to capture their deep correla-
tions. Recently proposed AV-HuBERT [Shi et al., 2022a;
Shi et al., 2022b] employs self-supervised learning to capture
contextual correlations between audio-visual features, and the
latest u-HuBERT [Hsu and Shi, 2022] extends it to a unified
framework of multimodal and unimodal pre-training, which
has achieved the SOTA on LRS3 dataset. However, they re-
quire a large amount of unlabeled data and computing re-
sources. In this work, we propose a novel supervised learning
approach called GILA to efficiently capture deep A-V corre-
lations from both global and local perspectives.
Cross-Modal Modality-Level Interaction. Attention meth-
ods have been widely investigated to interact between differ-
ent modalities to capture their complementary relationship, in
various multimodal applications such as A-V emotion recog-
nition [Goncalves and Busso, 2022], A-V action localiza-
tion [Lee et al., 2020], etc. Recent works employ cross-
attention to enable extracted features of different modalities
to attend to each other [Lee et al., 2020; Li et al., 2021;
Goncalves and Busso, 2022; Mercea et al., 2022], which
is found effective to capture the inter-modal correspondence
and significantly improves the system performance. How-
ever, they may not simultaneously preserve the intra-modal
correspondence that could adaptively select the unimodal in-
formation for inter-modal correspondence modeling [Wang
et al., 2022]. To this end, we propose a novel iterative re-
finement module to jointly model the inter- and intra-modal
correspondence, where the key idea is introducing a bottle-
neck feature to recurrently collect multimodal information.
Cross-Modal Frame-Level Alignment. Cross-modal align-
ment aims to model the temporal consistency between se-
quences of different modalities, and alleviate the frame-level
misalignment problem in some scenarios [Tsai et al., 2019;
Lv et al., 2021; Kim et al., 2022]. This is typically done
by contrastive learning where the correspondence between
positive pairs is trained to be stronger than those of nega-
tive pairs [Chopra et al., 2005]. Recently, contrastive learn-
ing is popular for cross-modal temporal alignment, which
has achieved significant improvement on various tasks [Ko-
rbar et al., 2018; Hadji et al., 2021; Morgado et al., 2021;
Yang et al., 2022]. However, they seem to only align fea-
tures of multiple modalities within same model layer, ignor-
ing the alignment across different layers that could learn extra
contextual information between different-granularity seman-
tic representations. In this work, we propose a cross-layer
contrastive learning approach for holistic A-V alignments.

3 Methodology
In this part, we first introduce the overall architecture of pro-
posed GILA in Section 3.1. Then, we describe its two main
components, i.e., the cross-modal global interaction model in
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Figure 1: Block diagrams of proposed GILA: (a) Overall architecture, (b) Global Interaction (GI) model, (c) Iterative Refinement module.
The LASR denotes speech recognition loss, and LLA denotes local alignment loss.

Section 3.2 and local alignment approach in Section 3.3. Fi-
nally, we explain the training objective in Section 3.4.

3.1 Overall Architecture
As illustrated in Figure 1(a), the proposed GILA system con-
sists of front-end module, fusion module and recognition
module. We first introduce a front-end module to pre-process
the synchronized audio-video input streams, which employs
a linear projection layer for audio front-end and a modified
ResNet-18 [Shi et al., 2022a] for visual front-end. We also
concatenate the processed A-V features to build a bottleneck
feature XBN to collect multimodal information. Then, we
propose a fusion module for audio-visual fusion. Specifically,
we propose a global interaction model and a local alignment
approach to capture deep A-V correlations. The resulted au-
dio, visual and bottleneck features are then concatenated to
generate the multimodal feature XMM . Finally, we intro-
duce a Transformer-based recognition module to encode the
multimodal feature and predict the output tokens. The over-
all training objective consists of the speech recognition loss
LASR and the local alignment loss LLA.

3.2 Cross-Modal Global Interaction (GI)
As shown in Figure 1(b), we propose a cross-modal global
interaction model to capture the complementary relationship
between A-V modalities. Specifically, we first introduce
cross-attention to interact audio-visual features to capture
inter-modal correspondence. On top of that, we further pro-
pose a novel iterative refinement (IR) module to jointly model
the inter- and intra-modal correspondence, aiming to better
capture the complementary relationship on modality level.
Cross-Attention aims to capture the A-V inter-modal cor-
respondence. As illustrated in Figure 1(b), the input audio-
visual features of i-th GI model layer (i.e., Xi−1

A , Xi−1
V , i ∈

{1, 2, 3}) are first sent into two separate self-attention mod-
ules [Vaswani et al., 2017] for modeling, which generates two
intermediate features, F i

A and F i
V :

F i
A = LN(Xi−1

A +MHA(Xi−1
A , Xi−1

A , Xi−1
A )),

F i
V = LN(Xi−1

V +MHA(Xi−1
V , Xi−1

V , Xi−1
V )),

(1)

where “LN” denotes layer normalization [Ba et al.,
2016], “MHA” denotes multi-head scaled dot-product atten-
tion [Vaswani et al., 2017].

Then, we introduce cross-attention to enable audio-visual
features to attend to each other for complementation, in order
to capture the inter-modal correspondence:

Hi
A = LN(F i

A +MHA(F i
A, F

i
V , F

i
V )),

Hi
V = LN(F i

V +MHA(F i
V , F

i
A, F

i
A)),

(2)

After that, we utilize position-wise feed-forward network
(FFN) [Vaswani et al., 2017] to generate outputs:

Xi
A = LN(Hi

A + FFN(Hi
A),

Xi
V = LN(Hi

V + FFN(Hi
V ),

(3)

where FFN consists of two linear layers with a ReLU [Glorot
et al., 2011] activation in between.
Iterative Refinement (IR) aims to jointly model the A-V
inter- and intra-modal correspondence, where the bottleneck
feature plays a key role. As shown in Figure 1(c), the input
bottleneck feature Xi−1

BN first attends to the A/V feature from
cross-attention (i.e., Xi

A, Xi
V ) respectively, followed by con-

volution to generate two residual features Ri
A and Ri

V :

Ri
A = Conv(Attention(Xi−1

BN , X
i
A, X

i
A)),

Ri
V = Conv(Attention(Xi−1

BN , X
i
V , X

i
V )),

(4)
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Figure 2: Block diagrams of proposed cross-modal local alignment approach: (a) Overview, (b) Within-Layer (WL) contrastive learning, (c)
Cross-Layer (CL) contrastive learning.

where “Conv” denotes a 1 × 1 convolution layer followed
by batch normalization (BN) [Ioffe and Szegedy, 2015] and
parametric ReLU (PReLU) activation.

The attention blocks aim to build interactions between in-
dividual audio/visual feature and the bottleneck feature that
contains multimodal information. Therefore, the individ-
ual A/V modality can not only attend to the other modal-
ity, but also attend to itself simultaneously. As a result, we
can jointly model the inter- and intra-modal correspondence,
which helps extract the useful information in A/V modality.

Finally, we add the two generated residual features to input
bottleneck feature, in order to refine more informative multi-
modal representations:

Xi
BN = LN(Xi−1

BN +Ri
A +Ri

V ), (5)

With increasing multimodal information in the bottleneck
feature, the IR module in next GI model layer can better cap-
ture the A-V correspondences by Equation 4, and so on. Such
refining mechanism enables IR module to effectively model
the inter- and intra-modal correspondence.

3.3 Cross-Modal Local Alignment (LA)
In order to learn more local details of A-V correlations, we
further propose a cross-modal local alignment approach to
model the temporal consistency between A-V frames, as pre-
sented in Figure 2. Specifically, we first introduce within-
layer contrastive learning to align the A-V features within
same GI model layer. Based on that, we propose a novel
cross-layer contrastive learning method for A-V alignment
across different GI model layers, aiming to learn more in-
formative A-V temporal consistency on frame level.
Within-Layer (WL) Contrastive Learning aims to align
the A-V features within same GI model layer. As illus-
trated by Figure 2(a)(b), we select the i-th layer’s interme-
diate features F i

A and F i
V for alignment. Denote that F i

A =
{F i

At
|Tt=1}, F i

V = {F i
Vt
|Tt=1}, i ∈ {1, 2, 3}, T is number of

frames. Given each audio frame F i
At

, the model needs to

identify its corresponding visual frame F i
Vt

from the entire
visual sequence, and vice versa. In this sense, the A-V se-
quences can get well aligned to each other.
The within-layer contrastive loss is defined as:

La2v(F i
A, F

i
V ) = −

T∑
t=1

log
exp( 〈F i

At
, F i

Vt
〉/τ )∑T

n=1 exp( 〈F i
At
, F i

Vn
〉/τ )

,

Lv2a(F i
V , F

i
A) = −

T∑
t=1

log
exp( 〈F i

Vt
, F i

At
〉/τ )∑T

n=1 exp( 〈F i
Vt
, F i

An
〉/τ )

,

Li
WL =

[
La2v(F i

A, F
i
V ) + Lv2a(F i

V , F
i
A)
]
/2,

(6)

where 〈 ·, · 〉 denotes cosine similarity, τ is temperature pa-
rameter. The two alignment directions (i.e., a2v, v2a) are
averaged to obtain the final WL contrastive loss.
Cross-Layer (CL) Contrastive Learning aims to align the
A-V features across different GI model layers. As presented
in Figure 2(a)(c), we select the j-th layer’s output audio fea-
ture Xj

A and k-th layer’s output visual feature Xk
V for align-

ment, where j, k ∈ {0, 1, 2, 3}, j 6= k. Particularly, in this
work we select (j, k) ∈ {(0, 3), (3, 0)} to align the input and
output A-V features of entire GI model, where more selec-
tions are discussed in ablation study (See Section 4.3).

Denote that Xj
A = {Xj

At
|Tt=1}, Xk

V = {Xk
Vt
|Tt=1}, where

T is number of frames. First, we randomly sample T ′ A-V
frame pairs from them for alignment, as a dropout to prevent
over-fitting. Therefore, we can write the sampled frames as
{(Xj

At
, Xk

Vt
)|t ∈ I}, where I ⊂ {1, 2, ..., T}, |I| = T ′.

Then, we introduce vector-quantization (VQ) [Baevski et
al., 2019; Hu et al., 2023b] to discretize the sampled audio-
visual frames to a finite set of representations, which results in
quantized targets to enable more effective contrastive learn-
ing, especially between different-layer features that usually
locate in distant domains [Baevski et al., 2020]:

Zj
At

= VQ(Xj
At
), Zk

Vt
= VQ(Xk

Vt
), t ∈ I, (7)



Finally, we calculate cross-layer contrastive loss to align
the audio/visual frames to the quantized visual/audio repre-
sentations respectively, similar to WL contrastive loss:

La2v(Xj
A, Z

k
V ) = −

∑
t∈I

log
exp( 〈Xj

At
, Zk

Vt
〉/τ )∑

n∈It exp( 〈X
j
At
, Zk

Vn
〉/τ )

,

Lv2a(Xk
V , Z

j
A) = −

∑
t∈I

log
exp( 〈Xk

Vt
, Zj

At
〉/τ )∑

n∈It exp( 〈X
k
Vt
, Zj

An
〉/τ )

,

Lj,k
CL =

[
La2v(Xj

A, Z
k
V ) + Lv2a(Xk

V , Z
j
A)
]
/2,

(8)

where It contains the index t and another 100 randomly-
selected indexes from I , for positive and negative samples
respectively [Baevski et al., 2020]. The two alignment direc-
tions are averaged to obtain the final CL contrastive loss.

3.4 Training Objective
We first calculate cross-entropy based sequence-to-sequence
loss [Watanabe et al., 2017] for speech recognition, as in-
dicated by LASR in Figure 1(a). Then, we build the local
alignment loss LLA from WL and CL contrastive learning:

LLA =

M∑
i

λiWL · Li
WL +

N∑
(j,k)

λj,kCL · L
j,k
CL (9)

where M = {1, 2, 3}, N = {(0, 3), (3, 0)}, λiWL and λj,kCL
are weighting parameters for different training objectives.

We combine them to form the final training objective and
train the entire GILA system in an end-to-end manner:

LGILA = LASR + LLA (10)

4 Experiments
4.1 Experimental Setup
Datasets. We conduct experiments on two large-scale pub-
licly available datasets, LRS3 [Afouras et al., 2018b] and
LRS2 [Chung et al., 2017]. LRS3 dataset collects 433 hours
of transcribed English videos from TED and TEDx talks.
LRS2 dataset contains 224 hours of video speech from BBC
programs. More details are in Appendix A.1.
Baselines. We employ AV-HuBERT2 [Shi et al., 2022a]
as our baseline, but for fair comparison we discard the
pre-training stage. To evaluate our GILA, we select some
popular AVSR methods for comparison: TM-seq2seq, TM-
CTC, Hyb-RNN, EG-seq2seq, RNN-T, LF-MMI TDNN,
Hyb-Conformer, MoCo+wav2vec, AV-HuBERT (LARGE),
u-HuBERT (LARGE), which are introduced in Section 2.
Implementation Details. For model configurations, our
baseline follows AV-HuBERT LARGE [Shi et al., 2022a]
with 24 Transformer encoder layers and 9 decoder layers.
For fair comparison, we build the GILA with 3 GI model
layers, 12 Transformer encoder layers and 9 decoder lay-
ers. All other model configurations are same as AV-HuBERT
LARGE. The number of parameters in our baseline and GILA
are 476M and 465M respectively. We also use Conformer as
our backbone, with the convolution kernel size of 31.

Method Backbone LM WER(%)
Clean Noisy

TM-seq2seq [2018a] Transformer 3 7.2 -
EG-seq2seq [2020] RNN - 6.8 -

RNN-T [2019] RNN - 4.5 -
Hyb-Conformer [2021] Conformer 3 2.3* -
AV-HuBERT [2022a] Transformer - 1.4** 5.8**

u-HuBERT [2022] Transformer - 1.2** -

GILA (ours)

Baseline

Transformer -

3.75 17.22
+ GI 3.29 15.06

+ LA 2.88 13.35
+ DA 2.61 11.14

Baseline

Conformer -

2.64 11.89
+ GI 2.31 10.34

+ LA 2.04 8.97
+ DA 1.96 7.03

Table 1: WER (%) of GILA and prior works on LRS3 banchmark.
“GI” denotes global interaction model, “LA” denotes local align-
ment approach, “DA” denotes data augmentation. “LM” denotes
language model rescoring. * denotes using hybrid seq2seq/CTC
loss for training, external LM rescoring for inference and extra
data to pre-train the audio/visual front-ends. ** denotes using self-
supervised pre-training with extra unlabeled data (> 1,700 hours).

Method Backbone LM WER(%)
Clean Noisy

TM-seq2seq [2018a] Transformer 3 8.5 -
TM-CTC [2018a] Transformer 3 8.2 -
Hyb-RNN [2018] RNN 3 7.0 -

LF-MMI TDNN [2020] TDNN 3 5.9 -
Hyb-Conformer [2021] Conformer 3 3.7* -
MoCo+wav2vec [2022] Transformer - 2.6** -

GILA (ours)

Baseline

Transformer -

5.79 25.52
+ GI 4.98 21.91

+ LA 4.31 18.84
+ DA 4.02 15.70

Baseline

Conformer -

4.09 17.83
+ GI 3.54 15.41

+ LA 3.17 13.75
+ DA 3.10 11.24

Table 2: WER (%) of our GILA and prior works on the LRS2 bench-
mark. * denotes the same as that in Table 1. ** denotes using self-
supervised pre-trained audio/visual front-ends.

The system inputs are log filterbank features for audio
stream and lip regions-of-interest (ROIs) for video stream.
To sample A-V frame pairs in CL contrastive learning, we
first sample starting indexes from (X0

A, X
3
V ) with probability

of 0.4 and from (X3
A, X

0
V ) with 0.45 respectively, and then

cut out 10 consecutive frames after each sampled index. To
calculate contrastive loss, we use the same VQ module in
wav2vec2.0 [Baevski et al., 2020], and set the temperature
parameter τ to 0.1. We further use data augmentation to im-
prove noise robustness, where we add MUSAN noise [Sny-
der et al., 2015] following prior work [Shi et al., 2022b],
and report WER results on both clean and noisy test sets.
The weighting parameters λiWL(i ∈ {1, 2, 3})/λ

0,3
CL/λ

3,0
CL are

set to 0.001/0.08/0.01 respectively. All hyper-parameters are
tuned on validation set. Our training follows the finetun-

2https://github.com/facebookresearch/av hubert

https://github.com/facebookresearch/av_hubert


Method Backbone WER(%)
Clean Noisy

Baseline

Transformer-LARGE

3.75 17.22
+ cross-attention 3.50 15.90
+ IR module 3.61 16.48
+ both (GI) 3.29 15.06

Baseline

Conformer-LARGE

2.64 11.89
+ cross-attention 2.45 10.94
+ IR module 2.53 11.41
+ both (GI) 2.31 10.34

Table 3: Effect of global interaction (GI) model and its two sub-
modules on LRS3 benchmark. “+ cross-attention” denotes using
cross-attention module separately, “+ IR module” denotes using it-
erative refinement module separately, where the self-attention and
FFN modules in GI model are always maintained.

ing configurations in [Shi et al., 2022a] and takes ∼ 1.3
days on 4 V100-32GB GPUs, which is much more efficient
than AV-HuBERT pre-training (∼ 15.6 days on 64 V100-
GPUs). More details of baselines, data augmentation, model
and training configurations are presented in Appendix A.

4.2 Main Results
Results on LRS3. Table 1 compares the performance of our
proposed GILA with existing methods on LRS3 benchmark.
Under clean test set, our best model outperforms the super-
vised learning SOTA by 14.8% relatively (2.3%→1.96%),
while without the CTC training loss, external LM rescor-
ing and extra A/V front-end pre-training that their method
uses. Moreover, the proposed GILA has also achieved signif-
icant WER improvements over our baseline (3.75%→2.61%,
2.64%→1.96%). Specifically, its two main components, i.e.,
GI model and LA method, both contribute a lot to the im-
provements, and the data augmentation also yields better re-
sults. We can also observe similar improvements on noisy
test set. In addition, the Conformer backbone significantly
outperforms Transformer (2.61%→1.96%).
Results on LRS2. Table 2 compares the performance of our
GILA with existing AVSR methods on LRS2 benchmark.
Under clean test set, our best model achieves 16.2% rela-
tive WER improvement over the supervised learning SOTA
(3.7%→3.10%). Moreover, the GILA has also achieved
significant improvements over our baseline (5.79%→4.02%,
4.09%→3.10%), where the GI model, LA method and data
augmentation all yield positive contributions.

Therefore, our GILA has achieved new supervised learn-
ing SOTA on both LRS3 and LRS2 benchmarks, with up
to 16.2% relative WER improvement over the best baseline.
It also moves closer to the self-supervised learning SOTA
(1.96% vs. 1.2%, 3.10% vs. 2.6%) while costs no unlabeled
data and much less computing resources (See Section 4.1).

4.3 Ablation Study
Effect of Global Interaction Model. Table 3 summarizes
the effect of proposed GI model and its two sub-modules,
i.e., cross-attention and IR modules. We first observe that us-
ing cross-attention to capture inter-modal correspondence can
improve the WER results (3.75%→3.50%, 2.64%→2.45%).

V-
V

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

A-
A

A-
V

Baseline + cross-attention + IR module + both (GI)

Figure 3: Cosine similarity matrix (after softmax) between audio-
visual (row 1), audio-audio (row 2) and visual-visual (row 3) se-
quence embeddings in GI model. The column 1-4 denotes base-
line, baseline + cross-attention, baseline + IR module, baseline +
both (GI), respectively. In row 1, horizontal axis denotes visual se-
quences in a batch and vertical axis denotes the audio sequences,
which are selected from LRS3 test set. Sequence embedding is ob-
tained by temporal pooling on the output audio/visual sequences,
i.e., X3

A, X
3
V .

Further improvements can be achieved by adding IR module
to jointly model the inter- and intra-modal correspondence
(3.50%→3.29%, 2.45%→2.31%), where using it separately
can also improve. Similar improvements can be observed on
the noisy test set. Therefore, these results verify the effective-
ness of our proposed GI model.
Visualizations of Inter- and Intra-Modal Correspondence.
Figure 3 visualizes the captured inter- and intra-modal corre-
spondence by our GI model, using similarity matrixes where
the diagonal elements denote cosine similarity between true
A-V, A-A or V-V pairs. We first observe chaotic mappings
between A-V embeddings in baseline from Figure 3(a). After
introducing cross-attention to interact A-V features, we can
capture some inter-modal correspondence between true A-V
pairs, i.e., (b) vs. (a). However, it fails to capture the A/V
intra-modal correspondence, i.e., (f) vs. (e), (j) vs. (i). Thus,
we further propose an iterative refinement module to jointly
model the inter- and intra-modal correspondence, which im-
proves significantly as indicated by the clearer diagonals in
column 4. As a result, our GI model can effectively capture
both inter- and intra-modal correspondence.

We further investigate the relationship between these two
correspondences. When compared to baseline, using cross-
attention can learn better inter-modal correspondence, i.e.,
(b) vs. (a), while using it on top of IR module achieves
significantly more improvements, i.e., (d) vs. (c). Sim-
ilar phenomenon can be observed on WER results in Ta-
ble 3. It indicates that the proposed IR could be beneficial
to cross-attention, where its captured intra-modal correspon-
dence could help to model the inter-modal correspondence,
thus results in better A-V complementary relationship.



Method Backbone WER(%)
Clean Noisy

GI model

Transformer-LARGE

3.29 15.06
+ WL contrastive learning 3.03 13.92
+ CL contrastive learning 3.11 14.36
+ both (LA) 2.88 13.35

GI model

Conformer-LARGE

2.31 10.34
+ WL contrastive learning 2.13 9.53
+ CL contrastive learning 2.18 9.70
+ both (LA) 2.04 8.97

Table 4: Effect of local alignment (LA) approach and its two com-
ponents on LRS3 benchmark.

WER(%) X0
V X1

V X2
V X3

V

X0
A - 2.12 2.11 2.07

X1
A 2.12 - 2.12 2.09

X2
A 2.09 2.10 - 2.11

X3
A 2.06 2.08 2.10 -

Table 5: Effect of cross-layer contrastive learning. We select dif-
ferent A-V feature pairs (Xj

A, X
k
V ) for cross-layer alignment. The

baseline we use in this study is GI model with WL contrastive learn-
ing (2.13% WER in Table 4).

Effect of Local Alignment Approach. Table 4 summarizes
the effect of proposed LA method and its two components,
i.e., within-layer and cross-layer contrastive learning. We
first introduce WL contrastive learning for audio-visual align-
ment within same GI model layer, which can improve the
WER performance (3.29%→3.03%, 2.31%→2.13%). Fur-
ther improvements can be achieved by adding CL contrastive
learning to align the A-V features across different layers
(3.03%→2.88%, 2.13%→2.04%), where using it separately
can also improve. Similar improvements can be observed on
noisy test set. Therefore, these results validate the effective-
ness of our proposed LA method.
Effect of Cross-Layer Contrastive Learning. Table 5 fur-
ther analyzes the effect of cross-layer contrastive learning,
where we report WER results of alignment between differ-
ent A-V feature pairs (Xj

A, X
k
V ). We observe that the more

layers our A-V alignment across (i.e., larger |j − k|), the bet-
ter performance we can achieve, where the best two results
(2.07%, 2.06%) are achieved by aligning the input and out-
put A-V features of entire GI model. After combining them,
we can achieve even better WER result, as indicated in Ta-
ble 4 (2.04%). The reason could be that, the higher-layer fea-
tures contain semantic representations of larger granularity,
or larger receptive field. Therefore, the A-V alignment across
more layers also means across larger granularity gap, which
could learn richer cross-modal contextual information and re-
sults in more informative A-V temporal consistency.
Visualizations of Audio-Visual Temporal Consistency.
Figure 4 visualizes the A-V temporal consistency modeled by
within-layer and cross-layer contrastive learning, using atten-
tion map where the diagonal elements indicate the attention
weights between corresponding A-V frames. We first observe
misalignment between A-V sequences in GI model, such as
the one-to-many lip-audio mappings shown in Figure 4(a).

A3
-V

3
A0

-V
3

A3
-V

0

GI model + WL + CL + both (LA)

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: Attention weight map between different audio-visual se-
quences with LA method: row 1: (X3

A, X
3
V ), row 2: (X0

A, X
3
V ),

row 3: (X3
A, X

0
V ). The column 1-4 denotes GI model, GI + WL

contrastive learning, GI + CL contrastive learning, GI + both (LA),
respectively. The x-axis denotes visual frames in an utterance and
y-axis denotes the audio frames in utterance, which is selected from
LRS3 test set.

Our proposed WL contrastive learning can help model the
temporal consistency between A-V sequences, as indicated
by the clearer diagonal in (b). Similar improvements can be
observed on cross-layer temporal consistency, i.e., (f)/(j) vs.
(e)/(i), while we also observe some vertical and horizontal
stripes near the diagonal, which indicate the granularity gap
between different-layer features.

Then in the proposed CL contrastive learning that consists
of two alignment directions (See Equation 8), the low-layer
features first learn rich A-V contextual correlations from the
high-layer features that with large receptive field, which al-
leviates the granularity gap between them, i.e., (g)/(k) vs.
(e)/(i), (h)/(l) vs. (f)/(j). Meanwhile, the high-layer features
can learn clearer A-V contextual mappings by aligned to the
low-layer features that with small granularity, as indicated by
the brighter diagonals in Figure 4 (column 3 vs. column 1,
column 4 vs. column 2). As a result, the proposed cross-layer
alignment can capture rich cross-modal contextual informa-
tion to learn better A-V temporal consistency.

5 Conclusion
In this paper, we propose a cross-modal global interaction
and local alignment (GILA) approach for audio-visual speech
recognition, in order to capture the deep audio-visual corre-
lations from both global and local perspectives. In particular,
we first propose a global interaction model to capture the A-V
complementary relationship on modality level. Furthermore,
we design a cross-modal local alignment approach to model
the A-V temporal consistency on frame level. Such a holis-
tic view of cross-modal correlations enable better multimodal
representations for AVSR. Experimental results on two pub-
lic benchmarks demonstrate that our approach has achieved
the state-of-the-art in supervised learning methods.
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Method Backbone # Params.(M)

Baseline Transformer-LARGE 476
Conformer-LARGE 587

GILA (ours) Transformer-LARGE 465
Conformer-LARGE 529

Table 6: Number of parameters in different configurations.
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A Experimental Details
A.1 Datasets
LRS33 [Afouras et al., 2018b] is currently the largest public
sentence-level lip reading dataset, which contains over 400
hours of English video extracted from TED and TEDx talks
on YouTube. The training data is divided into two parts: pre-
train (403 hours) and trainval (30 hours), and both of them are
transcribed at sentence level. The pretrain part differs from
trainval in that the duration of its video clips are at a much
wider range. Since there is no official development set pro-
vided, we randomly select 1,200 samples from trainval as val-
idation set (∼ 1 hour) for early stopping and hyper-parameter
tuning. In addition, it provides a standard test set (0.9 hours)
for evaluation.
LRS24 [Chung et al., 2017] is a large-scale publicly available
labeled audio-visual (A-V) datasets, which consists of 224
hours of video clips from BBC programs. The training data is
divided into three parts: pretrain (195 hours), train (28 hours)
and val (0.6 hours), which are all transcribed at sentence level.
An official test set (0.5 hours) is provided for evaluation use.
The dataset is very challenging as there are large variations in
head pose, lighting conditions and genres.

A.2 Data Preprocessing
The data preprocessing for above two datasets follows the
LRS3 preprocessing steps in prior work5 [Shi et al., 2022a].
For the audio stream, we extract the 26-dimensional log filter-
bank feature at a stride of 10 ms from input raw waveform.
For the video clips, we detect the 68 facial keypoints using
dlib toolkit [King, 2009] and align the image frame to a refer-
ence face frame via affine transformation. Then, we convert
the image frame to gray-scale and crop a 96×96 region-of-
interest (ROI) centered on the detected mouth. During train-
ing, we randomly crop a 88×88 region from the whole ROI
and flip it horizontally with a probability of 0.5. At inference
time, the 88×88 ROI is center cropped without horizontal
flipping. To synchronize these two modalities, we stack each
4 neighboring acoustic frames to match the image frames that
are sampled at 25Hz.

3https://www.robots.ox.ac.uk/∼vgg/data/lip reading/lrs3.html
4https://www.robots.ox.ac.uk/∼vgg/data/lip reading/lrs2.html
5https://github.com/facebookresearch/av hubert/tree/main/

avhubert/preparation
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Figure 5: Block diagram of data augmentation.

A.3 Model Configurations

Front-end. We use one linear projection layer followed by
layer normalization [Ba et al., 2016] as the audio front-end.
For video front-end, we adopt the modified ResNet-18 from
prior work [Shi et al., 2022a], where the first convolutional
layer is replaced by a 3D convolutional layer with kernel size
of 5×7×7. The visual feature is squeezed into an 1D tensor
by spatial average pooling in the end.
GILA Architecture. Our baseline is borrowed from AV-
HuBERT model [Shi et al., 2022a], which contains 24 Trans-
former encoder layers and 9 Transformer decoder layers. To
maintain similar model size, our proposed GILA contains
3 GI model layers, 12 Transformer encoder layers and 9
Transformer decoder layers. The embedding dimension/feed-
forward dimension/attention heads in each Transformer layer
are set to 1024/4096/16 respectively, where we use a dropout
for each self-attention block at rate of 0.1. In addition to
Transformer, we also employ Conformer [Gulati et al., 2020]
as our backbone, where we set the depth-wise convolution
kernel size to 31. The Conformer-based GI model consists
of FFN, self-attention, cross-attention, convolution module
and FFN in sequential. To save model size and prevent over-
fitting in Conformer backbone, we set the inner dimension of
convolution module to 128 and the feed-forward dimension
to 3072. Number of parameters in all configurations are pre-
sented in Table 6.

A.4 Noise and Data Augmentation

We use many noise categories for noise and data augmen-
tation. We first select the noise categories of “natural”,
“music” and “babble” from MUSAN noise dataset [Sny-
der et al., 2015], and then extract some overlapping
“speech” noise samples from LRS3 dataset. All categories
are divided into training, validation and test partitions, fol-
lowing the prior work [Shi et al., 2022b].

We define two augmentation techniques in this work, i.e.,
noise augmentation and data augmentation. For noise aug-
mentation, we randomly select one noise category and sam-
ple a noise clip from its training partition. Then, we randomly
mix the sampled noise with input clean audio, at 0dB SNR
with a probability of 0.25. Based on that, for data augmenta-
tion we feed both the clean and noise-augmented audios into
GILA for system training, where they are paired with same
corresponding video input, as shown in Figure 5. These two
data flows (i.e., clean and noisy) share the GILA model pa-
rameters, which results in two training objectives from Equa-
tion 10 in the main paper, LC

GILA and LN
GILA. Finally, these

https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html
https://github.com/facebookresearch/av_hubert/tree/main/avhubert/preparation
https://github.com/facebookresearch/av_hubert/tree/main/avhubert/preparation


two losses are weight summed for multi-task learning:

Lfinal = λC · LC
GILA + (1− λC) · LN

GILA (11)

where the weighting parameter λC is set to 0.6. The entire
system is trained in an end-to-end manner. We use noise aug-
mentation technique everywhere without specified, otherwise
we use the data augmentation technique.

At inference time, we evaluate our model on clean and
noisy test sets respectively. Specifically, the model perfor-
mance on each noise type is evaluated separately, where the
testing noise clips are added at five different SNR levels:
{−10,−5, 0, 5, 10}dB. At last, the testing results on differ-
ent noise types and SNR levels will be averaged to obtain the
final noisy WER result.

A.5 Training and Inference
Training. We follow the sequence-to-sequence (S2S) fine-
tuning configurations of AV-HuBERT [Shi et al., 2022b] to
train our systems. We use Transformer decoder to decode the
encoded features into unigram-based subword units [Kudo,
2018], where the vocabulary size is set to 1000. The
entire system is trained for 60K steps using Adam opti-
mizer [Kingma and Ba, 2014], where the learning rate is
warmed up to a peak of 0.001 for the first 20K updates and
then linearly decayed. The training process takes ∼ 1.3 days
on 4 NVIDIA-V100-32GB GPUs, which is much more ef-
ficient than AV-HuBERT pre-training (∼ 15.6 days on 64
V100-GPUs).
Inference. No language model is used during inference. We
employ beam search for decoding, where the beam width and
length penalty are set to 50 and 1 respectively. All hyper-
parameters in our systems are tuned on validation set.

A.6 Baselines
In this section, we describe the baselines for comparison.

• TM-seq2seq [Afouras et al., 2018a]: TM-seq2seq pro-
poses a Transformer-based [Vaswani et al., 2017] AVSR
system to model the A-V features separately and then
attentively fuse them for decoding, and uses sequence-
to-sequence loss [Watanabe et al., 2017] as training cri-
terion.

• TM-CTC [Afouras et al., 2018a]: TM-CTC shares
the same architecture with TM-seq2seq, but uses CTC
loss [Graves et al., 2006] as training criterion.

• Hyb-RNN [Petridis et al., 2018]: Hyb-RNN proposes
a RNN-based AVSR model with hybrid seq2seq/CTC
loss [Watanabe et al., 2017], where the A-V features are
encoded separately and then concatenated for decoding.

• RNN-T [Makino et al., 2019]: RNN-T adopts the pop-
ular recurrent neural network transducer [Graves, 2012;
Liu et al., 2021] for AVSR task, where the audio and
visual features are concatenated before fed into the en-
coder.

• EG-seq2seq [Xu et al., 2020]: EG-seq2seq builds a joint
audio enhancement [Zhu et al., 2022; Zhu et al., 2023a;
Chen et al., 2023a; Chen et al., 2023b; Hu et al., 2023a]
and multimodal speech recognition system based on

the element-wise attention gated recurrent unit (EleAtt-
GRU) [Zhang et al., 2019], where the A-V features are
concatenated before decoding.

• LF-MMI TDNN [Yu et al., 2020]: LF-MMI TDNN
proposes a joint audio-visual speech separation and
recognition system [Hu et al., 2023c] based on time-
delay neural network (TDNN), where the A-V features
are concatenated before fed into the recognition net-
work.

• Hyb-Conformer [Ma et al., 2021]: Hyb-Conformer
proposes a Conformer-based [Gulati et al., 2020] AVSR
system with hybrid seq2seq/CTC loss, where the A-V
input streams are first encoded separately and then con-
catenated for decoding.

• MoCo+wav2vec [Pan et al., 2022]: MoCo+wav2vec
employs self-supervised pre-trained audio and visual
front-ends, i.e., wav2vec 2.0 [Baevski et al., 2020] and
MoCo v2 [Chen et al., 2020], to generate better audio-
visual features for fusion and decoding.

• AV-HuBERT [Shi et al., 2022a; Shi et al., 2022b]: AV-
HuBERT employs self-supervised learning to capture
deep A-V contextual information, where the A-V fea-
tures are masked and concatenated before fed into Trans-
former encoder to calculate masked-prediction loss for
pre-training, and seq2seq loss is used for finetuning.

• u-HuBERT [Hsu and Shi, 2022]: u-HuBERT extends
the AV-HuBERT to a unified framework of audio-visual
and audio-only pre-training.
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