
Essays on asynchronous time series and
related multidimensional data

Filippo Pellegrino
Department of Statistics

London School of Economics and Political Science

A thesis submitted for the degree of Doctor of Philosophy
May 2022





Declaration
I certify that the thesis I have presented for examination for the PhD degree of the London
School of Economics and Political Science is solely my own work other than where I have
clearly indicated that it is the work of others (in which case the extent of any work
carried out jointly by me and any other person is clearly identified in it). The copyright
of this thesis rests with the author. Quotation from it is permitted, provided that full
acknowledgement is made. This thesis may not be reproduced without my prior written
consent. I warrant that this authorisation does not, to the best of my belief, infringe the
rights of any third party.

Statement of co-authored work
I confirm that Chapter 3 was jointly co-authored with Professor Matteo Barigozzi and I
have contributed 80% of this work.



Abstract
This thesis focusses on asynchronous time series and related multidimensional data: time-
dependent measurements with varying publication delays. This class of data exists in a
broad range of fields. In social sciences, most official time series and repeated surveys are
indeed asynchronous in nature since statistical offices need time to collect and aggregate
raw data. In STEM, statistical offices are generally less relevant and most publication
delays are caused by more exotic factors. For instance, with series derived from techno-
logical networks, they are usually generated by a direct reference (digital or textual) of
the past (e.g., publishing pictures of a trip done a week ago that was also photographed
and posted in real time by a friend). As a result, the study of data releases is key for
developing accurate real-time models and finds applications in forecasting, policy and
risk management.
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Preface

This thesis is a collection of three articles focussing on asynchronous time series and
related multidimensional data: time-dependent measurements with varying publication
delays. This class of data exists in a broad range of fields. In social sciences, most official
time series and repeated surveys are indeed asynchronous in nature since statistical offices
need time to collect and aggregate raw data. In STEM, statistical offices are generally
less relevant and most publication delays are caused by more exotic factors. For instance,
with series derived from technological networks, they are usually generated by a direct
reference (digital or textual) of the past (e.g., publishing pictures of a trip done a week ago
that was also photographed and posted in real time by a friend). As a result, the study
of data releases is key for developing accurate real-time models and finds applications in
forecasting, policy and risk management.

The first article approaches the fil rouge of this dissertation by focussing on hyper-
parameter selection for forecasting models based on potentially incomplete time series.
Indeed, hyperparameter selection precedes any analysis and should be properly done to
control, for instance, the tendency of over-fitting in-sample, but performing poorly out-
of-sample. Even though there are methods for selecting hyperparameters for dependent
data problems, they are usually limited in scope by the underlying subsampling methods.
I have proposed to overcome the problem by employing a generalisation of the delete-d
jackknife (Wu, 1986; Shao and Wu, 1989) in which the data removal step is replaced with
a fictitious deletion that consists in imposing (artificial) patterns of missing observations
on the data. This allows to have plain compatibility with time-series problems while
retaining the efficiency of subsampling methods for independent data.

The second article covers a different, but equally fundamental topic: bridging the gap
between traditional forecasting models and machine learning in order to exploit non-linear
dynamics. In particular, it proposes to extend the information set of time-series regres-
sion trees with latent stationary factors extracted via state-space methods. In doing so,
this approach generalises time-series regression trees on two dimensions. First, it allows
to handle predictors that exhibit measurement error, non-stationary trends, seasonality
and/or irregularities such as missing observations. Second, it gives a transparent way
for using domain-specific theory to inform time-series regression trees. As a byproduct,

i



ii

this technique sets the foundations for structuring powerful ensembles. Their real-world
applicability is studied in an empirical application: a set of key macroeconomic indi-
cators is modelled via a state-space representation informed by economic theory and a
latent stationary factor interpretable as the business cycle is then used for predicting
equity volatility. Results show that these factor-augmented tree ensembles outperform
all benchmark methods in most cases of interest.

Finally, the third article focusses on more complex data. In spatio-temporal filtering
and smoothing, the space-related information allows computing predictions that are spe-
cific to each region included in the dataset, for each point in time. For instance, with
a meteorological dataset, it is possible to compute predictions for different cities, condi-
tioning on the surrounding environment, winds and likelihood of a storm moving from
one city to another. This can be done since the space-dimension gives precise ordering
on a map. However, with higher dimensional problems this is not as straightforward.
This paper proposes a solution that involves extracting interpretable dynamic factors
over multiple dimensions and time. Results are specialised to model microeconomic data
on US households jointly with macroeconomic aggregates. This approach allows to gen-
erate localised predictions, counterfactuals and impulse response functions for individual
households, accounting for traditional time-series complexities. The model is also com-
patible with the growing focus of policymakers for real-time economic analysis as it is able
to process observations online, while handling missing values and asynchronous releases.



Notation

This brief description provides a concise reference on the mathematical notation I have
used throughout the thesis. More specialised notation is described directly in the text
when deemed necessary.

asymptotic theory, statistics and probability. The expected value and proba-
bilities are indicated with the symbols E and Pr. M1,M2, . . . denote generic positive and
finite constants (unless otherwise stated).

matrix notation. Matrices, vectors and vector-valued functions are written using bold
symbols (or, bold notation). The (i, j)-th element of a generic matrix A is denoted as
Ai,j. The transpose of A is indicated as A′. The notation A1:i,1:j is used for referring
to the matrix built by taking the first i rows and j columns of A. The (k, k) entry-wise
matrix norm of A is denoted as ∥A∥k,k = (∑i

∑
j |Ai,j|k)1/k, while the Frobenius norm

∥A∥F ≡ ∥A∥2,2. The Euclidean norm of a vector is denoted with standard notation.
The vectorised and half-vectorised versions of A are indicated with vec(A) and vech(A).
vec(A) and vech(A) are column vectors. Finally, the symbol ⊙ is used for denoting the
Hadamard (or element-wise) product.

set notation. The calligraphic alphabet is used for denoting sets only. Standard
notation is used for number sets, intervals and operations.

special symbols. 0j×k and ιj×k denote j × k matrices of zeros and ones. Ik indicates
a k× k identity matrix. I denotes an indicator function equal to one when the condition
in its subscript is verified (zero otherwise).

use of brackets. For grouping, the preferred sequence of brackets in this thesis is
{[()]}. For sets and intervals, I have used {} and [()]. For composite functions I have
denoted in bold the outer parenthesis. For instance, g(f(...)) for some generic functions
f and g.

iii



iv



Acknowledgements

First, I would like to thank Professor Matteo Barigozzi and Dr Kostas Kalogeropoulos.
They have been the very best PhD supervisors one can hope to have. Their sustained
encouragement and suggestions have been instrumental to develop the ideas contained in
this thesis.

I am also grateful to the London School of Economics and Political Science for making
the last few years so pleasant, interesting and rewarding. Special thanks go to staff,
colleagues and friends including Professor Rita Astuti, Dr Yining Chen, Dr Huang Feng,
Gianluca Giudice, Penny Montague, Dr Alice Pignatelli di Cerchiara, Dr Xinghao Qiao,
Dr Yan Qu, Ragvir Sabharwal, Dr Tianlin Xu, Professor Qiwei Yao and Dr Xiaolin Zhu.
Moreover, I am thankful to external academics, co-authors and researchers including Dr
Paolo Andreini, Thomas Hasenzagl, Dr Cosimo Izzo, Dr Chiara Perricone, Dr Giovanni
Ricco and Professor Lucrezia Reichlin for their helpful comments on the first chapter.

Finally, I would like to thank my family and Serena Lariccia to whom I am deeply
indebted for their constant patience, understanding and everlasting support.

v



vi



1 Selecting time-series hyperparameters

with the artificial jackknife

This article proposes a generalisation of the delete-d jackknife to solve hyperparameter
selection problems for time series. I call it artificial delete-d jackknife to stress that this
approach substitutes the classic removal step with a fictitious deletion, wherein observed
datapoints are replaced with artificial missing values. This procedure keeps the data
order intact and allows plain compatibility with time series. This manuscript justifies
the use of this approach asymptotically and shows its finite-sample advantages through
simulation studies. Besides, this article describes its real-world advantages by regulating
high-dimensional forecasting models for foreign exchange rates.

1.1. Introduction
Using large datasets with standard predictive models is not straightforward. There is
often a proliferation of parameters, high estimation uncertainty and the tendency of
over-fitting in-sample, but performing poorly out-of-sample. This so-called curse of di-
mensionality is often handled regularising statistical models with a collection of tuning
parameters. Since the latter are often determined before the estimation process takes
place, they are denoted as hyperparameters. This paper proposes a systematic approach
for selecting them in the case of time-series data.

There is a large number of techniques for high-dimensional prediction problems. Clas-
sical methods include ridge (Hoerl and Kennard, 1970), LASSO (Tibshirani, 1996) and
elastic-net (Zou and Hastie, 2005) regressions. They make the estimation feasible for
linear regressions by penalising the magnitude of the coefficients to downweight the vari-
ables that do not help in predicting. The strength of the penalties is tuned with a vector
of hyperparameters. Regression trees (Morgan and Sonquist, 1963; Breiman et al., 1984;
Quinlan, 1986) are a classical example from the machine learning literature for exploring
high-dimensional datasets. These techniques can handle non-linearities and complex data
generating processes. However, they must be regulated via a range of penalties and stop-
ping rules to perform well out-of-sample. This is again achieved using hyperparameters.

1



2 Selecting time-series hyperparameters with the artificial jackknife

Large datasets are also commonly handled with Bayesian methods. In this literature,
hyperparameters are often necessary to define prior distributions (Gelman et al., 2014)
and obtain parsimonious models with shrinkage techniques similar or equivalent to ridge
and LASSO (Giannone et al., 2017), and the elastic-net (Li and Lin, 2010). Hyper-
parameters are also crucial for low-dimensional problems. For example, hyperparameters
such as the number of lags for autoregressive models are fundamental for structuring
forecasting exercises.

Cross-validation (Stone, 1974) is among the most well-known approaches for selecting
hyperparameters in independent data settings. It is a statistical method to estimate the
expected accuracy of a model on unseen data. Its basic formulation is straightforward:
data is split into complementary partitions, and the resulting subsamples are used for
estimating and validating a predictive method. The performance within the validation
samples is used as an estimate of the prediction error on unseen datapoints and the
hyperparameters are generally selected to minimise this measure.

Cross-validation is challenging for time series since data is ordered and autocorrelated.
Several authors have proposed generalisations to handle these complexities. One of the
first contributions came from Snijders (1988). The latter used insights from Brown et al.
(1975) and Ljung and Söderström (1983) to propose a cross-validatory method based
on realised pseudo out-of-sample errors. Indeed, it suggested to split the observed data
into complementary partitions and then use the first as an estimation sample, and the
remaining observations to measure the realised pseudo out-of-sample error. The hyper-
parameters are selected to minimise this error measure.

While this approach is very intuitive and consistent with the structure of the data,
it is not necessarily robust, since it uses only a single estimation and validation set.
Kunst (2008) proposed overcoming this downside by applying standard pseudo out-of-
sample evaluations to random subsamples. However, the results are relatively difficult
to interpret since the algorithm used for generating these partitions is initialised with
in-sample regression parameters.

Burman et al. (1994) introduced a different way to address this problem: the so-called
h-block cross-validation. This methodology, based on Györfi et al. (1989) and Burman
and Nolan (1992), uses blocking techniques to generate validation samples independent
from the data used for estimation. Indeed, Burman et al. (1994) proposed creating a
set of estimation samples by removing, in turn, each block of dimension 2h + 1 (for
a given h) from the data. h-block cross-validation then uses the median item of this
block as a one-dimensional validation sample. Even though this approach has interesting
properties, keeping a fixed distance between the partitions is costly, given that a large
share of observations is lost in the process. This is especially severe when there are not
so many observations, because the number of validation samples available is small.
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Most recently, Bergmeir et al. (2018) proposed cross-validating autoregressive models
with uncorrelated errors with techniques for i.i.d. data. This approach makes good use
of all available observations, but its properties do not hold for models with correlated
errors and it disregards the order in the data.

Jackknife (Quenouille, 1956; Tukey, 1958) and bootstrap (Efron, 1979a,b, 1981) can
be used as alternative approaches to estimate the prediction error on unseen datapoints
and thus select hyperparameters. These techniques are typically more efficient than cross-
validation (Efron, 1979a; Efron and Gong, 1983) since they measure the accuracy of a
model on the average prediction error committed over a large range of data subsamples.
Bootstrap builds these partitions sampling with replacement from the data. Instead,
jackknife constructs subsamples by removing sets of observations from the observables.
In particular, the delete-d jackknife (Wu, 1986; Shao and Wu, 1989) generates a sequence
of partitions by removing, in turn, all the combinations of d > 0 observations from the
data.

Jackknife and bootstrap require modifications to be compatible with time series, since
the subsampling schemes do not take the data order into account. Kunsch (1989) ex-
tended these methodologies to stationary series. Indeed, building on Carlstein (1986),
Kunsch (1989) proposed developing block-wise subsampling schemes. Let c be an inte-
ger lower or equal to the total number of observed time periods. The block jackknife
generates the partitions by removing or down-weighting, in turn, all the c-dimensional
blocks of consecutive observations from the data. Instead, the block bootstrap draws
with replacement a fixed number of c-dimensional blocks of observations from the data.
Politis and Romano (1992, 1994) developed this technique further proposing the so-called
stationary bootstrap. This approach wraps the data “in a circle”, so that the first obser-
vation follows the last, and generates the bootstrap samples drawing and merging blocks
of random length. Differently than the block bootstrap and its variations, the block
jackknife does not impact the data order when constructing subsamples.

This paper introduces a version of the standard delete-d jackknife compatible with
time series. In this version of the jackknife, the data removal step is replaced with a
fictitious deletion that consists in imposing (artificial) patterns of missing observations
on the data. I call this new approach artificial delete-d jackknife (or artificial jackknife) to
emphasise that d observations are artificially removed from the original data to generate
each subsample. This article proposes using this new methodology to compute a robust
measure of the forecast error (or, artificial jackknife error) as a means for selecting hy-
perparameters. The advantages of this approach depend on the finite-sample properties
of the artificial jackknife. In fact, all errors based on pseudo out-of-sample evaluations
converge in probability to the true error with the same rate (as shown in section 1.B).
However, the artificial jackknife error has a smaller finite-sample variance than the pseudo
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(a) Observed stationary time series. (b) Bootstrap subsamples.

(c) Block jackknife subsamples. (d) Artificial delete-d jackknife subsamples.

Figure 1.1: Subsampling schemes for dependent data. (b) Blocks of random (stationary bootstrap) or
fixed (block bootstrap) length are drawn with replacement from the data. (c) Subsamples are constructed
down-weighting, in turn, all the c-dimensional blocks of consecutive observations from the data. As in
section 1.2.2, the down-weighting scheme is operated by turning blocks of consecutive observations into
missing values. (d) Subsamples are constructed imposing (artificial) patterns of missing data to the
original sample. This is a generalisation of the delete-d jackknife.

out-of-sample error and the block jackknife (for most configurations of c and d). This is
crucial for stability and to select hyperparameters when the number of observations (i.e.,
time periods) is limited.

The artificial delete-d jackknife is compatible with forecasting models able to handle
missing observations. Within the scope of this paper, this is not a strong restriction.
Most predictive problems with missing observations in the measurements can be written
in state-space form and estimated via a large number of methods, as surveyed in Shumway
and Stoffer (2011, ch. 6) and Särkkä (2013, ch. 12).

As an illustration, this article employs the artificial jackknife for tuning vector au-
toregressive moving average (VARMA) models regulated via an elastic-net penalty (Zou
and Hastie, 2005). These models are estimated on a high-dimensional dataset of weekly
exchange rate returns. In order to provide full compatibility with the artificial jackknife,
this article proposes to estimate the VARMAs with an Expectation-Conditional Maximi-
sation (ECM) algorithm (Meng and Rubin, 1993) able to handle incomplete time series.
This estimation method is a secondary contribution of the paper given that, to my best
knowledge, the literature has not proposed a way for handling missing observations in
the measurements with similar settings.1

1The replication code for this empirical application is available on GitHub.

https://github.com/fipelle/replication-pellegrino-2022-hyperparameters
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1.2. Methodology
One of the main objectives of time series is to predict the future. This article aims to
select optimal vectors of hyperparameters consistently with this maxim and thus in a way
that minimises the expected forecast error.

1.2.1. Foundations

This subsection sets out the foundations for the hyperparameter selection process and
delimits the scope of the article to a broad family of forecasting methods that encompasses
common techniques such as ARMA, ADL and VARMA models.2

Assumption 1 (Data). Let n, T ∈ N and nZ ∈ N0. Assume that Yi,t and Zj,t are finite
realisations of some real-valued stochastic processes observed at time periods in the sets
Ti,Tj ⊆ {t : t ∈ Z, 1 ≤ t ≤ T} for i = 1, . . . , n and j = n+ 1, . . . , n+ nZ .

Assumption 2 (Lags). Define q, r ∈ N0 to be such that p := max(q, r) and 0 < p≪ T−1.

Assumption 3 (Predictors). Let Xt := (Y′
t . . .Y′

t−q+1 Z′
t . . .Z′

t−r+1)′ be m × 1 and
defined at any point in time t ∈ Z.

Assumption 4 (Model structure). Finally, assume that

Yt+1 = f(Xt,Ψ) + Vt+1, (1.1)

where f is a finite function, Ψ is a matrix of finite coefficients, Vt+1
i.i.d.∼ (0n×1,Σ) with

Σ being a positive definite matrix3 and E(Vt+1|Xt) = 0, for any integer t.4

Remark. The dependence on the sample size is highlighted in the notation only when
strictly necessary, in order to ease the reading experience. Also, this article uses the same
symbols to indicate the realisations at some integer point in time t and their general value
in the underlying process. This is again for simplifying the notation and it should be clear
from the context whether the manuscript is referring to the first or second category.

Knowing the data generating process in assumption 4, one could use it for obtaining
the most accurate prediction (true forecast) for Yt+1 given Xt at any point in time t.
2Please note that this subsection and section 1.2 in its entirety do not limit the manuscript by looking
at a specific forecasting model. Hence, the theoretical results are widely applicable.

3This part of assumption 4 could be relaxed following an approach similar to the one employed in
Barigozzi and Luciani (2020). However, this is outside the scope of the paper.

4Under assumptions 1–3, Xt is allowed to include Yt, . . . , Yt−q+1 and Vt, . . . , Vt−r+1 (for some 0 ≤ q ≤ p
and 0 ≤ r ≤ p), and more explanatory variables referring up to time t− p + 1.
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Definition 1 (True error). Under a weighted square loss, the expected error associated
with the true forecast is

err :=
n∑

i=1
wi E

[
|Yi,t+1 − fi (Xt,Ψ)|2

]
=

n∑
i=1

wi E(V 2
i,t+1) =

n∑
i=1

wi Σi,i,

with wi ≥ 0 for 1 ≤ i ≤ n. This article refers to err as the true error.

In most practical applications, the data generating process is unknown and forecasters’
objective can be then reduced to approximating the true forecast.

Assumption 5 (Information set). Formally, at any time period p ≤ s ≤ T , forecasters
have an information set I(s) containing the data observed up to that point and their
expectation for Yt+1 conditional on I(s) is

Ŷt+1|s(γ) := E
[
Yt+1|Xt, θ̂s(γ)

]
= g(Xt, θ̂s(γ)),

where g(Xt, θ̂s(γ)) is a finite function whose coefficients θ̂s(γ) are also finite and esti-
mated on the basis of the data in I(s), and given a vector of hyperparameters γ.

Remark. The forecast function is further specified in section 1.2.3 with assumption 8.
Note that forecasters’ may consider different predictors than those in the true forecast
function when constructing their approximation. The article does not explicitly consider
this case to simplify notation, but allowing for it would not change the results.

The predictions generated as in assumption 5 are clearly less accurate than the corre-
sponding true forecasts. However, as shown in the following subsections, empirical error
estimators converge in probability to the true error for a wide class of forecast functions.
Therefore, the use of these approximations can be justified asymptotically.

1.2.2. Error estimators

This subsection expands on these empirical error estimators. It starts by describing the
most well-known, broadens the discussion with the block jackknife and introduces the
artificial delete-d jackknife error.

Before getting into details, I need to define a loss function for measuring the forecast
error at each point in time.

Definition 2 (Loss). Consistently with definition 1, this paper uses

L(Yt+1, Ŷt+1|s(γ)) :=
∑

i∈D(t+1)
wi

[
Yi,t+1 − Ŷi,t+1|s(γ)

]2
,

where D(t+ 1) := {i : 1 ≤ i ≤ n and Yi,t+1 ̸= NA}, NA denotes a generic missing value,
for any p ≤ t ≤ T − 1 and p ≤ s ≤ T .
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The next thing to consider is the conceptual relation between the forecast and its
conditioning set. As a general point, the difficulty in obtaining an accurate Ŷt+1|s(γ)
changes depending on whether I(s) includes information about the future. This is
what leads to the distinction between the two most common categories of forecast error
estimators: in-sample and pseudo out-of-sample.

Definition 3 (In-sample error). The in-sample error

err(γ) := 1
T − p

T∑
t=p+1

L(Yt, Ŷt|T (γ))

is a measure of the average loss between the data and predictions generated conditioning
on the full information set.

Estimating the coefficients once and on the full information set is beneficial for very
short time-series problems, as there may not be enough observations to compute more
sophisticated estimators. However, this approach tends to overstate the forecast accuracy
since the information set is (at least partially) aware of the future. Indeed, in a realistic
environment, forecasters would only have information about the past when computing
their predictions.

Definition 4 (Pseudo out-of-sample error). The pseudo out-of-sample error

êrr(γ) := 1
T − t0

T −1∑
t=t0

L(Yt+1, Ŷt+1|t(γ)),

overcomes this limitation by using forecasts generated on the basis of an expanding and
backward-looking information set, starting from p ≤ t0 ≤ T − 1.

Remark. The pseudo out-of-sample error can be extended to forecast horizons larger
than one, but this is not further explored in the manuscript.5

Unfortunately, the pseudo out-of-sample error can be either over or under confident
depending on the time periods used for estimating and validating the model. This can be
overcome using estimators based on the average of pseudo out-of-sample errors computed
on a series of data subsamples. The article generates these partitions using time-series
generalisations of the jackknife (Quenouille, 1956; Tukey, 1958). The generic jackknife
5When long run predictions are calculated iteratively from the one step ahead forecast, it is not necessary
to generalise definition 4 to handle longer horizons. The latter would need to be modified only in the
case of direct forecast. It is important to stress that when the model is correctly specified, producing
iterative forecasts is more efficient than computing horizon-specific ones. However, the latter are more
robust to misspecification (Marcellino et al., 2006). For simplicity, this paper focusses only on the
one-step ahead forecast, wherein iterative and direct forecasts are identical. Implicitly, this approach is
also consistent with iterative forecast methods targetting longer horizons.
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error in definition 5 is an estimator that can accommodate for different jackknife parti-
tioning algorithms.

Definition 5 (Generic jackknife error). Let J be an indexed family of sets such that
each element contains ordered pairs (i, t) with 1 ≤ i ≤ n and 0 ≤ t ≤ T . The generic
jackknife pseudo out-of-sample error

ẽrr(J,γ) := 1
|J| · (T − t0)

|J|∑
j=1

T −1∑
t=t0

L(Y−j
t+1, Ŷ

−j

t+1|t(γ)),

where Y−j is the n× T matrix such that

Y −j
i,t :=

Yi,t, if (i, t) /∈ Jj,

NA, if (i, t) ∈ Jj,

Ŷ−j

t+1|t(γ) is analogous to Ŷt+1|t(γ), but the autoregressive data component of Xt is now
based on Ŷ−j. As for definition 4, p ≤ t0 ≤ T − 1.

Remark. Allowing the ordered pairs (i, t) to have t = 0, permits to write the pseudo out-
of-sample error as a banal case of jackknife error in which J contains only one element
external to the sample. For instance via J = {(1, 0)}. Indeed, the actual data has
observations referring to the points in time between 1 and T (included). Therefore, any
t = 0 is to be considered external.

The most well-known approach to generate jackknife subsamples for dependent data is
the block jackknife (Kunsch, 1989). This technique partitions the data into block jackknife
samples by removing or down-weighting, in turn, all the unique non-interrupted blocks
of 1 ≤ c ≤ T observations.

Definition 6 (Block jackknife error). This paper denotes the block jackknife error as

ẽrrBJK(c,γ) ≡ ẽrr(B(c),γ), (1.2)

where B(c) is the family of sets

B(c) := {B(1, c), . . . ,B(T − c+ 1, c)}

and

B(j, c) := {(i, t) : 1 ≤ i ≤ n and j ≤ t ≤ j + c− 1}.

Remark. In other words, this article constructs the individual blocks by replacing, in
turn, all the unique non-interrupted blocks of c observations with missing values. This is
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compatible with Kunsch (1989) since imposing blocks of NAs can be interpreted as fully
down-weighting groups of observations. Furthermore, it simplifies the use of the block
jackknife to estimate hyperparameters in forecasting settings. In fact, by processing the
data via filtering and smoothing techniques compatible with missing observations, it is
easier to estimate forecasting models without pre-processing the measurements to remove
breaks introduced in the subsampling process.

The main issue with this estimator is that the number of partitions that can be
generated from the data is generally small. Thus, the overall improvement over the
standard pseudo out-of-sample error is somewhat limited. Also, for those partitions
wherein a huge chunk of observations are removed after t0, dividing for a factor of T − t0
may produce inaccurate estimates of the expected error. This is especially true in small-
sample problems where c is large relative to T − t0. A simple way for reducing this issue
in a finite-sample problem consists in adjusting the ẽrrBJK(c,γ) multiplying it by

T − t0
|B(c)|

|B(c)|∑
j=1

1
|{(i, t) ∈B(j, c) : t > t0}|

.

However, this is difficult to justify asymptotically.
This paper proposes to surpass these problems using an error estimator based on

a generalisation of delete-d jackknife (Wu, 1986; Shao and Wu, 1989) compatible with
time-series problems: the artificial delete-d jackknife. The classical delete-d jackknife for
i.i.d. data (Wu, 1986; Shao and Wu, 1989) generates subsamples by removing, in turn, all
the combinations of d > 0 observations from the data. This is clearly incompatible with
dependent data, since the autocorrelation structure would break during the subsampling
process. The artificial jackknife overcomes this complexity by generating the partitions
replacing, in turn, all the combinations of d observations with (artificial) missing values.
This allows to handle dependent data, as the resulting partitions keep the original ordering
and the autocorrelation structure is not altered. Moreover, this approach permits to
generate a much larger number of subsamples than block jackknife.6

Definition 7 (Artificial delete-d jackknife error). Let

P := {i ∈ Z : 1 ≤ i ≤ n} × {t ∈ Z : 1 ≤ t ≤ T}

be the set of all data pairs. Hence, define A(d) as a family of sets with cardinality

|A(d)| = (nT )!
d! (nT − d)!

6It is interesting to notice that the block jackknife in equation 1.2 is a special case of the artificial delete-d
jackknife, in which blocks of consecutive datapoints are replaced with missing values.
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such that each element is a d-dimensional combination of P. Next, let

ẽrrAJK(d,γ) ≡ ẽrr(A(d),γ). (1.3)

This is the artificial delete-d jackknife error.

The higher reliability of this error estimator is given by the large number of partitions
that the artificial delete-d jackknife is able to generate and their heterogeneity. This can
be formalised in terms of efficiency as follows.

Assumption 6 (Finite-sample variance). Assume, for simplicity of notation, that the
constituent pseudo out-of-sample errors in definition 5 follow a common finite-sample
distribution with variance σ2(T − t0,γ).

Proposition 1. Under assumption 6, it follows that, in finite-sample problems,

var
[
ẽrrAJK(d,γ)

]
≤ var(êrr(γ)),

var
[
ẽrrBJK(c,γ)

]
≤ var(êrr(γ)).

Proof. The proof is reported in section 1.A.1. □

Remark. Assumption 6 can be released without impacting the structure of the proof.
However, the notation becomes quite convoluted and hard to read.

Section 1.A.2 compares the variance of the block and artificial jackknife errors through
a simulation exercise. This exercise shows that the artificial jackknife outperforms the
block jackknife especially in small-sample problems.

When nT is large and
√
nT < d < nT , the cardinality |A(d)| can be large and it might

not be computationally feasible to calculate equation 1.3 evaluating all combinations.
Following common practice (Efron and Tibshirani, 1994, p. 149), this computational issue
is handled with an approximation. Define Ã(d) ⊂ A(d) as a family of sets constructed
by drawing at random, without replacement, for a sufficiently large number of times from
A(d). Hence, use this newly defined subset to compute ẽrr(Ã(d),γ), an approximation
of the artificial delete-d jackknife error. Clearly, the accuracy of the approximation

ẽrrAJK(d,γ) ≈ ẽrr(Ã(d),γ) (1.4)

depends on how close |Ã(d)| is to |A(d)|.
In most empirical problems, the artificial jackknife will likely be truncated. Thus, this

article proposes a simple heuristics for selecting its number of artificial missing observa-
tions. As detailed in section 1.A and with the simplified notation in assumption 6, the
artificial jackknife error variance depends on two factors: σ2(T − t0,γ) and the hetero-
geneity across jackknife subsamples. The latter is controlled by d and, ceteribus paribus,
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var(ẽrrAJK(d,γ)) is at its minimum when the subsamples are the most diverse. The
exact functional form of this variance is unknown and, in the case of the truncated ar-
tificial jackknife, one would need to choose a value for d that guarantees a large pool of
combinations. Besides, it would be ideal to exclude from Ã(d) the combinations that are
the most similar to the block jackknife. In other words, those where all series are missing
for one or more periods.

Conjecture (Rule of thumb for selecting d). As a result, this paper proposes selecting d
for the truncated artificial jackknife error to be

d̂ = arg max
d

(
nT

d

)
− Id ≥ n

(
nT − n
d− n

)
T −

⌊d/n⌋∑
i=2

(−1)i−1
(
T

i

)(
nT − in
d− in

)
, (1.5)

where

Id≥n

(
nT − n
d− n

)
T +

⌊d/n⌋∑
i=2

(−1)i−1
(
T

i

)(
nT − in
d− in

)
,

is the amount of subsamples with points in time where all series are artificially missing.7

Remark. The maximisation is trivial since the objective function is particularly fast to
compute for each admissible d, that is every integer d ∈ [1, nT ].

1.2.3. Asymptotic properties for estimators based on pseudo
out-of-sample evaluations

This subsection provides the asymptotic justification needed for using the approximation
in assumption 5 to forecast the target data. It starts by describing the underlying as-
sumptions and continues by proving that pseudo out-of-sample evaluations are consistent,
even in the presence of missing observations. The proofs are reported in section 1.B.

Assumption 7 (Absolute summability). For any finite n > 0,

n∑
i=1

wi ≤M1,

n∑
i=1

n∑
j=1
| cov(Vi,t, Vj,t)| ≤M2,

n∑
i=1

n∑
j=1
| cov(V 2

i,t, V
2

j,t)| ≤M3,

where M1,M2,M3 ∈ (0,∞) are non-negative finite constants.
7To further reduce the effect of those combinations where all series are missing in one or more points in
time, the simulation algorithm employed in this article is structured to exclude them from Ã(d).
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Remark. Recall that the elements of w are non-negative. Thus, for any finite n > 0,

n∑
i=1

wi =
n∑

i=1
|wi|

by definition.

Assumption 8 (Mean squared error of the forecast). For any t > 0,

E
(
∥f(Xt,Ψ)− g(Xt, θ̂t(γ))∥2

2

)
≤M4/t,

where M4 ∈ (0,∞) is a positive finite constant.

Remark. Note that

sup
t
∥f(Xt,Ψ)− g(Xt, θ̂t(γ))∥2

2 ≤ sup
t
∥|f(Xt,Ψ)|+ |g(Xt, θ̂t(γ))|∥2

2.

Since under assumptions 4–5 both the true forecast and its approximation are always
finite, the assumption holds within the context of this paper. However, this bound can
be loose as it is a function on the problem at hand and it depends on the true forecast
and all modelling choices.

Assumption 9 (Limiting size of the presample). Assume that

lim
T →∞

t0/T = 0.

Assumption 10 (Limiting number of missing observations). Denote with 0 ≤ tNA <

T − t0 the number of periods between t0 + 1 and T (included) where the data contains
missing observations, and assume that

lim
T →∞

tNA/T = 0.

Remark. Note that assumption 9 serves a crucial purpose: making sure that as T ap-
proaches infinity, the pseudo out-of-sample period increases. Similarly, assumption 10
limits the number of periods with missing observations, as T approaches infinity. This
implies that as T increases the information set expands, because the number of observed
datapoints increases. Without assumption 10, the total number of missing values could
become predominant, relative to the amount of observed datapoints.

Proposition 2. Denote with êrrT (γ) the pseudo out-of-sample error for a dataset with
T periods. Under assumptions 1–5 and assumptions 7–9, and with complete data it holds
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that

lim
T →∞

T

lnT
E
[∣∣∣êrrT (γ)− err

∣∣∣] ≤M1 M4.

This proposition shows that with complete data, pseudo out-of-sample errors are
consistent estimators of the true error. This is a first stepping stone to prove convergence
in probability for the generic jackknife errors. Proposition 3 bridges further the gap by
extending these results to estimators based on potentially incomplete data.

Proposition 3. Under assumptions 1–5 and assumptions 7–10, and with potentially
incomplete data it holds that

lim
T →∞

T

lnT
E
[∣∣∣êrrT (γ)− err

∣∣∣] ≤M1 M4.

Remark. Under assumption 10 the rate of convergence in proposition 2 is preserved with
potentially incomplete data.

The following corollary of proposition 3 extends its conclusions to the generic jackknife
pseudo-out-of-sample error estimators described in section 1.2.2. Clearly, this includes
the artificial delete-d jackknife error.

Corollary 3.1. Let ẽrrT (J,γ) be a generic jackknife pseudo out-of-sample error based
on a dataset with T time periods. Under the assumptions of proposition 3, it holds that

lim
T →∞

T

lnT
E
[∣∣∣ẽrrT (J,γ)− err

∣∣∣] ≤M1 M4.

1.2.4. Hyperparameter selection

Having justified asymptotically the use of the forecasters’ approximation in assumption 5,
this subsection shows how to optimise its accuracy through hyperparameter selection. It
does so by exploring a grid of candidate hyperparameters to find the minimiser for a
pseudo out-of-sample error estimator of choice between those reported in section 1.2.2.8

Prior to entering into details, let me formalise the hyperparameter selection problem
in general terms.

Definition 8 (Search region and optimal hyperparameters). Let H be a compact set of
ordered tuples that defines the region of existence of the vector of hyperparameters of
8This is in line with classical empirical risk minimisation (see, for instance, Elliott and Timmermann,
2016, ch. 3 for a complete survey).
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interest. Hence, the optimal hyperparameters are
γ̂(H) := arg minγ∈H êrr(γ), when using the estimator in definition 4,

γ̃BJK(c,H) := arg minγ∈H ẽrrBJK(c,γ), when using the estimator in definition 6,

γ̃AJK(d,H) := arg minγ∈H ẽrrAJK(d,γ), when using the estimator in definition 7.

The simplest way to explore a region of interest is via a grid search.

Definition 9 (Grid search). Let HGS ⊆H be a finite set of candidate vectors of hyper-
parameters. Grid search considers every candidate in HGS and computes

γ̂(HGS), when using the estimator in definition 4,

γ̃BJK(c,HGS), when using the estimator in definition 6,

γ̃AJK(d,HGS), when using the estimator in definition 7,

via a naive brute-force optimisation.

This approach explores a small to medium finite grid of candidates and evaluates the
relevant error estimator for each one of them. It then returns the candidate vector of
hyperparameters associated to the smaller error. The set HGS is generally constructed to
include combinations of hyperparameters within some predetermined ranges. This can be
done agnostically (e.g., specifying a rule to take candidates lying in some broad range) or
via user expertise (e.g., selecting a few candidates of interest according to a judgmental
component).9 In both cases, there is a strong risk of excluding valid candidates, since it
is unfeasible to explore large search regions by using a brute force approach. A simple
solution for this problem is given by a random search.

Definition 10 (Random search). Define HRS ⊆ H as a set of candidate vectors of
hyperparameters constructed via means of independent and uniform draws without re-
placement from H. A random search considers every candidate in HRS and computes

γ̂(HRS), when using the estimator in definition 4,

γ̃BJK(c,HRS), when using the estimator in definition 6,

γ̃AJK(d,HRS), when using the estimator in definition 7,

with the same approach employed for grid search.

In its most naive implementation, it is a grid search based on a region of interest con-
structed by taking random candidates from H. This operation allows to keep the com-
putational advantages of grid search, while exploring a more heterogeneous section of
9The latter is also called manual search (Bergstra and Bengio, 2012).
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H. This is especially relevant if γ is high-dimensional, since it is difficult to generate a
proper set of candidates on the basis of some deterministic or subjective rule.

This formulation for the random search is rather naive. Nonetheless, Bergstra and
Bengio (2012) showed that it is (at least) as good as more advanced versions of random
search. Further details on these algorithms can be found in Solis and Wets (1981) and
Andradóttir (2015). Random search tends to be less effective for cases where the number
of hyperparameters to tune is very large. For these cases, alternative and more powerful
techniques (e.g., simulated annealing, particle swarm optimization) surveyed in Weise
(2009) could help. However, since they would inevitably increase the computational
burden and the complexity of the hyperparameter optimisation, they are left for future
research.

A final point that should be taken into account is that while definition 8 is intuitive,
it is also prone to errors in some circumstances. Indeed, when the expected error surface
is flat, it is hard to pick one candidate in particular. In these cases, it is often more
sensible to evaluate the whole grid of interest and use the threshold where the surface
starts flattening as optimal hyperparameters.

1.3. Empirical application
This section illustrates the functionality of the artificial delete-d jackknife by tuning the
hyperparameters of penalised VARMAs on weekly exchange rate returns.

The exchange rates complexities serve as a good empirical example to benchmark
different techniques for selecting hyperparameters.10 Starting with the contribution of
Meese and Rogoff (1983), a large body of empirical economic research has found that
forecasting models for exchange rates based on macroeconomic data or informed by eco-
nomic theory are often outperformed by simple univariate techniques and parsimonious
multivariate methods usually difficult to tune.

1.3.1. Penalised VARMA

This subsection describes the case in which forecasters form their predictions using high-
dimensional elastic-net VARMA(q, r) models.11 Clearly, the following assumptions and
definitions affect only the empirical example in section 1.3.

10It is important to remark that this manuscript does not intend to find the best model (among a class
of techniques) for predicting exchange rates, but rather it aims to show that the artificial jackknife is
a valid approach for tuning the models in this example.

11It is important to stress that the VARMA model encompasses common univariate (i.e., AR, MA,
ARIMA) and multivariate (i.e., VAR, VMA, VARIMA) forecasting methods.
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Assumption 11 (VARMA model). Within section 1.3, forecasters form their expecta-
tions assuming that

Yt+1 = Π1Yt + . . .+ ΠqYt−q+1 + Ξ1Vt + . . .+ ΞrVt−r+1 + Vt+1, (1.6)

where Vt+1
w.n.∼ N (0n×1,Σ) with Σ being positive definite, t ∈ Z.12 The autoregressive

and moving average coefficients are n× n matrices for which the VARMA is causal and
invertible (Brockwell et al., 1991, pp. 418-420).

For simplicity of notation, let

Π :=
(
Π1 . . . Πq

)
,

Ξ :=
(
Ξ1 . . . Ξr

)
.

Moreover, consider only parametrisations where min(q, r) = 0.13

Definition 11 (Penalised maximum likelihood estimation). Forecasters use penalised
maximum likelihood estimation to estimate the estimated VARMA coefficients. With
complete data, this implies

θ̂s(γ) := arg max
θ ∈R

L(θ |Y1:s)− P(θ,γ),

where R is the region of interest for the parameters implicitly defined in assumption 11,

L(θ |Y1:s) ≃ −
s

2
ln |Σ| − 1

2
Tr
[

s∑
t=1

Σ−1Vt(θ)Vt(θ)′
]

denotes the log-likelihood of the VARMA model (Lütkepohl, 2005, ch. 11) and P(θ,γ) is
a penalty function, for max(q, r) ≤ s ≤ T .14 By extension, Π, Ξ and Σ are the VARMA
coefficients built from θ.

Performing penalised maximum likelihood with incomplete data is non-trivial. In or-
der to overcome the related complexities, this article uses an Expectation-Conditional
Maximisation (ECM) algorithm (Meng and Rubin, 1993). The details of this iterative
estimation procedure are described in section 1.C.

The penalty function of interest for this empirical application builds on the elastic-net
literature (Zou and Hastie, 2005; Zou and Zhang, 2009).
12The data is assumed to have zero mean and unit standard deviation for simplicity of notation.
13Under assumption 2, max(q, r) > 0. Therefore, letting min(q, r) = 0 does not exclude the white noise

case, since the model could be parametrised to have autoregressive and moving average coefficients
equal to zero. This point is purely to simplify the notation in section 1.C.

14The innovations Vt(θ) ≡ Vt in equation 1.6. This notation is used for stressing its dependence from
the coefficients in θ and obtain a compact formula.
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Definition 12 (Generalised elastic-net penalty). For any p ∈ N, let

Γ(γ, p) := λ


In 0n×n . . . 0n×n

0n×n β · In . . . 0n×n

... . . . . . . ...
0n×n . . . . . . βp−1 · In


where γ := (q r λ α β)′ is a given vector of hyperparameters with λ ≥ 0, 0 ≤ α ≤ 1
and β ≥ 1. Building on that, this manuscript uses the penalty

P(θ,γ) :=


1−α

2

∥∥∥Π Γ(γ, q) 1
2

∥∥∥2

F
+ α

2

∥∥∥Π Γ(γ, q)
∥∥∥

1,1
if q > 0 and r = 0,

1−α
2

∥∥∥Ξ Γ(γ, r) 1
2

∥∥∥2

F
+ α

2

∥∥∥Ξ Γ(γ, r)
∥∥∥

1,1
if q = 0 and r > 0.

(1.7)

Remark. Note that when the penalty is active (i.e., λ > 0), Γ(γ, q) and Γ(γ, r) are
diagonal and positive definite matrices, and thus

P(θ,γ) =


∑n

i=1
∑nq

j=1
1−α

2 Π2
i,j [Γ(γ, q)]j,j + α

2 |Π i,j| [Γ(γ, q)]j,j if q > 0 and r = 0,∑n
i=1

∑nr
j=1

1−α
2 Ξ2

i,j [Γ(γ, r)]j,j + α
2 |Ξ i,j| [Γ(γ, r)]j,j if q = 0 and r > 0.

The penalty P(θ,γ) is a generalisation of the elastic-net that allows to penalise more
autoregressive and moving average coefficients referring to distant points in time. As for
its standard implementation, when α = 1 and α = 0 the function is equivalent to the
LASSO (Tibshirani, 1996) and ridge (Hoerl and Kennard, 1970) penalties. These penal-
ties perform differently depending on the empirical setting in which they are employed,
as extensively described in Zou and Hastie (2005).15 For 0 < α < 1 the model allows for
a sparse model and benefits from the co-movement of correlated predictors. With respect
to the standard elastic-net, the penalty function in equation 1.7 includes β, an additional
hyperparameter. If β > 1, then P(θ,γ) penalises more coefficients referring to distant
points in time.16

1.3.2. Results

The time series for the exchange rates are collected from the Federal Reserve Board H.10
and include regular weekly (Friday, EOP) observations from January 1999 to the end
15LASSO gives a sparse representation of the model and thus a simple regression in few predictors.

Ridge does not select subsets of regressors, but it shrinks all of them jointly. The ability of LASSO in
selecting the same covariates over time is rather poor when some of them are highly correlated.

16This idea is commonly used in time series and a simple parallel can be made by looking at Bayesian
VARs with Minnesota priors (Doan et al., 1984; Litterman, 1986). Indeed, in stationary settings, this
set of priors shrinks the vector autoregression toward a white noise (i.e., it shrinks the coefficients to
zero) and penalises more distant lags. The penalty in equation 1.7 is similar in spirit, but it allows for
a sparse representation of the model and for the use of moving average coefficients.
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(a) Vector autoregression.
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(b) Vector moving average.

Figure 1.2: Expected error for the candidate hyperparameters in H.
Notes: For each model, the first row describes the expected error in absolute terms, while the second one
shows it in relative terms (per subsampling method). The scalar λ β3 denotes the shrinkage associated
to the farthest lag. The block jackknife output is adjusted to reduce the finite-sample methodological
defects as described in section 1.2.2.

of December 2020, for a set of major economies reported in table 1.D.1. This dataset
contains a total of 1,148 weeks and 21,812 observations. These are all the exchange rates
in the Federal Reserve Board H.10 that did not have a fixed or pegged rate with the
dollar in the sample. Moreover, these exchange rates are not taken in levels, but they are
transformed in weekly log-returns instead.

The sample is divided into three blocks: a presample (January 1999 to December
1999), a selection sample (January 2000 to December 2001) and a test sample (January
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2002 to December 2020). The presample is used for computing w and then discarded.
Each entry in this vector is equal to 1 over the variance of the corresponding series in
the presample. This is done to equally weight each series, regardless of its volatility.
Next, the grid of candidate hyperparameters H = Hp ×Hλ ×Hα ×Hβ is explored on
the selection sample following section 1.2.4 to compute the associated expected errors.
This is done settings Hp := {4}, Hλ := [10−2, 2.5], Hα := [0, 1] and Hβ := [1, 2] and
letting the methods based on pseudo out-of-sample criteria defining t0 to be such that
the part of the selection sample used for estimation purposes ends in December 2000.
The set Hp fixes the number of lags to 4: a value considered large enough to forecast
the weekly financial returns.17 The sets referring to the remaining hyperparameters allow
to control the overall shrinkage level and kill superfluous lags, if needed. Finally, the
expected error associated to each hyperparameter is assessed by computing the realised
pseudo out-of-sample error over the test sample, having estimated the relevant model
(i.e., vector autoregression or vector moving average) once on the full selection sample.

Figure 1.2 describes the random search output obtained with the error estimators
described in section 1.2.2.18 The vector autoregression results show a series of important
features. First, it is evident that the expected error decreases when the shrinkage level
increases, no matter the error estimator. Second, the area with the lowest expected error
is where λβ3 ≥ 15. This location seems independent from α and it is again found regard-
less of the error estimator of choice. Third, there are strong differences in the scale of the
expected error obtained via different estimators. Indeed, the artificial jackknife estimates
are the most conservative, since the expected error is higher in scale across all candi-
date hyperparameters. The pseudo out-of-sample gives similar expected errors for any
configuration with λβ3 < 15, but a more pronounced fall before the common flattening.
The block jackknife measures are the least conservative. The picture observed through
the lenses of the vector moving average results is quite different. Indeed, while the ex-
pected error still decreases when the shrinkage level increases, it does so at a different
rate for the case of the artificial jackknife. Indeed, the artificial jackknife expected error
decreases sharply already at λβ3 ≈ 1, whereas it takes about a fivefold figure to start
decreasing when estimated with the pseudo out-of-sample and block jackknife. Further-
more, the artificial jackknife expected error starts flattening at a much smaller shrinkage
level compared to the benchmarks.

These expected errors are then compared with the pseudo out-of-sample error realised
in test sample. Table 1.1 summarises the quality of each selection method for both vector
autoregressions and moving averages. These results show that the artificial jackknife
17Since the vector moving averages in this manuscript are constrained to be invertible, they account for

a higher persistence than the vector autoregressions of the same order. Indeed, any invertible VMA
can be equivalently thought as a VAR(∞).

18Figure 1.D.1 shows the same output using an alternative graphical representation.
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Error estimator Selection RMSE

Vector autoregression Vector moving average

In-sample error 7.28 1.50
Pseudo out-of-sample error 1.00 1.00
Block jackknife, c/T = 0.1 1.68 1.20
Block jackknife, c/T = 0.2 2.47 1.30
Block jackknife, c/T = 0.1 (adjusted) 1.17 1.14
Block jackknife, c/T = 0.2 (adjusted) 1.28 1.20
Artificial delete-d̂ jackknife 0.93 0.89

Table 1.1: Selection relative mean squared error.
Notes: The selection MSE is computed by averaging the squared error between the realised and
expected error associated to each candidate hyperparameter. The realised error is the pseudo
out-of-sample error computed in the test sample. The selection RMSE is rescaled so that values lower
than one indicate a better performance compared to the pseudo-out-of-sample selection.

gives the best estimate of the expected error across all candidate hyperparameters. This is
evident both for vector autoregressions and vector moving averages. A further interesting
result is that the pseudo out-of-sample is better than the block jackknife (both raw and
adjusted). This is likely due to the small number of partitions that the block jackknife
is able to generate in this empirical application. Finally, it follows from table 1.1 and
figure 1.2 that the best configuration for vector moving averages requires a much smaller
shrinkage level compared to vector autoregressions.

1.4. Concluding comments
This article proposes a new approach for selecting hyperparameters in time series denoted
as artificial delete-d jackknife: a generalisation of the delete-d jackknife.

By contrast with existing approaches, the artificial delete-d jackknife can partition de-
pendent data into a large set of unique partitions, even when T is relatively small. These
partitions are used for constructing a robust forecast error estimator, based on pseudo
out-of-sample evaluations. The artificial delete-d jackknife has strong finite-sample ad-
vantages and converges in probability to the true error. Empirical results on weekly
exchange rate returns are also promising.

While the theory developed in this paper is based on a weighted mean square loss,
the artificial jackknife error could be extended to other loss functions for prediction and
classification problems. Also, it could be expanded to compute the uncertainty around
sample statistics in time series. These and a few other points are not fully developed in
this article and they are left for future research.



Appendix

1.A. Finite sample results

1.A.1. Proposition 1

proof of proposition 1. Let

êrr−j(γ) := 1
T − t0

T −1∑
t=t0

L(Y−j
t+1, Ŷ

−j

t+1|t(γ)),

for any j = 1, . . . , |J|. Hence,

ẽrr(J,γ) = 1
|J| · (T − t0)

|J|∑
j=1

T −1∑
t=t0

L(Y−j
t+1, Ŷ

−j

t+1|t(γ)) = 1
|J|

|J|∑
j=1

êrr−j(γ).

It follows that

var(ẽrr(J,γ))

= 1
|J|2

var
 |J|∑

j=1
êrr−j(γ)


= 1
|J|2

|J|∑
i=1

|J|∑
j=1

cov
[
êrr−i(γ), êrr−j(γ)

]

= 1
|J|2


|J|∑
i=1

var
[
êrr−i(γ)

]
+

|J|∑
i=1

|J|∑
j=1
j ̸=i

cov
[
êrr−i(γ), êrr−j(γ)

] .

Under assumption 6,

var(ẽrr(J,γ)) = σ2(T − t0,γ)
|J|

+ 1
|J|2

|J|∑
i=1

|J|∑
j=1
j ̸=i

cov
[
êrr−i(γ), êrr−j(γ)

]
.

For any J with cardinality equal to one, including the pseudo out-of-sample error (cf.

21
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definition 5 remark),

var(ẽrr(J,γ)) = σ2(T − t0,γ).

Instead, for J with a larger cardinality and heterogeneous partitions, the var(ẽrr(J,γ))
is lower or equal to σ2(T −t0,γ). Among others, this is the case of the block and artificial
delete-d jackknife errors. Hence,

var
[
ẽrrAJK(d,γ)

]
≤ var(êrr(γ)),

var
[
ẽrrBJK(c,γ)

]
≤ var(êrr(γ)).

□

1.A.2. Simulation results

Determining which one between the block and artificial jackknife error estimators has the
smaller variance is a little more complicated, since it requires to study the covariances.

Note that

1
|J|2

|J|∑
i=1

|J|∑
j=1
j ̸=i

cov
[
êrr−i(γ), êrr−j(γ)

]

is inversely proportional to the heterogeneity across subsamples. One way to measure
it is through the expected value of the Jaccard similarity coefficient (denoted as sim) of
a pair of subsamples S1 and S2 selected at random among those in the family of sets
J. The lower it is, the more diverse the partitions. Formally, the expected value of this
Jaccard index is denoted as E[sim(S1,S2)]. Besides, for all partitioning methods in which
the elements of J have the same cardinality,

E
[
sim(S1,S2)

]
= E

[
|S1 ∩S2|
|S1 ∪S2|

]
=

|S1|∑
k=0

k

2|S1| − k
Pr(|S1 ∩S2| = k).

In the case of the artificial delete-d jackknife, the random subsamples are selected from
those in A(d), they are dependent on d and such that |S1(d)| = |S2(d)| = d. Therefore,

E
[
sim(S1(d),S2(d))

]
=

d−1∑
k=1

k

2d− k

(
d
k

)(
nT −d
d−k

)
(

nT
d

) .

With the block jackknife, the random subsamples are selected from those in B(c), they
are dependent on c and such that |S1(c)| = |S2(c)| = c. In this case, the partitions are
non-interrupted blocks of consecutive observations. Considering each i-th subsample as
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a different case and employing the law of total probability allows to determine that

Pr(|S1(c) ∩S2(c)| = k) = 1
(T − c+ 1)2

T −c+1∑
i=1

(IT −c+1−i≥c−k + Ii−1≥c−k) ,

for 1 ≤ k < c. Hence, the expected Jaccard index for the block jackknife is

E
[
sim(S1(c),S2(c))

]
= 1

(T − c+ 1)2

c−1∑
k=1

T −c+1∑
i=1

k

2c− k
(IT −c+1−i≥c−k + Ii−1≥c−k) .

These expectations are compared within deterministic computer simulations to un-
derstand whether the artificial jackknife produces more heterogeneous partitions than the
block jackknife. In order to put d and c onto the same scale, the former is set to be equal
to nc in this simulation exercise.19
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Figure 1.A.1: Difference between the expected Jaccard similarity associated to the block and artificial
jackknifes for a broad set of configurations.
Notes: A positive difference indicates a configuration in which the artificial jackknife outperforms the
block version. The n-axis ranges from 5 to 50 with a step size of 5. The T -axis ranges from 50 to 500
with a step size of 50. Hence, the surface comprises 100 points.

Results in figure 1.A.1 show that the artificial jackknife significantly outperforms the
block jackknife especially in small samples. However, its relative advantage decreases
as the sample size increases. This is consistent for different c and compatible with the
asymptotic results in section 1.B.

19Indeed, these versions of the jackknife place the same number of artificial missing observations when
d = nc, since c refers to a number of time periods.
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1.B. Asymptotic results

1.B.1. Proposition 2

Recall that with complete data

êrrT (γ) = + 1
T − t0

T −1∑
t=t0

n∑
i=1

wi V
2

i,t+1 (1.8)

+ 1
T − t0

T −1∑
t=t0

n∑
i=1

wi

[
fi(Xt,Ψ)− gi(Xt, θ̂t(γ))

]2
+ 2
T − t0

T −1∑
t=t0

n∑
i=1

wi Vi,t+1
[
fi(Xt,Ψ)− gi(Xt, θ̂t(γ))

]
,

where fi(Xt,Ψ) ≡ [f(Xt,Ψ)]i, gi(Xt, θ̂t(γ)) ≡
[
g(Xt, θ̂t(γ))

]
i

for i = 1, . . . , n and any
integer point in time t. The proof of proposition 2 relies on the following three lemmas,
and it is reported hereinafter. Each term on the RHS of equation 1.8 is linked to one of
these lemmas.

Lemma 1. Under assumptions 1–5, assumption 7, assumption 9 and with complete data,
it holds that

lim
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∣∣∣∣∣∣ 1
T − t0

T −1∑
t=t0

n∑
i=1

wi V
2

i,t+1 − err

∣∣∣∣∣∣
2
 ≤M2

1 M3.

proof. Recall that the vector of weights w is made of n given non-negative finite scalars,
Vt+1

i.i.d.∼ (0n×1,Σ), the model parameters are finite, Σ is a positive definite matrix and
err = ∑n

i=1 wi Σi,i. Using the bias-variance decomposition
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can be written in the equivalent form
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The bias is equal to zero since
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The variance is

var

 1
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Given that Vt+1 is i.i.d.
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Since all weights are non-negative and under assumption 7,
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Hence, under assumption 9,
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□

Lemma 2. Under assumptions 1–5, assumptions 7–9 and with complete data
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proof. Note that, since all weights are non-negative,
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Under assumptions 7–8,
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it follows that
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Therefore, under assumption 9, it holds that
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□

Lemma 3. Under assumptions 1–5, assumptions 7–9 and with complete data
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proof. Since all weights are non-negative, it follows from the Cauchy-Schwarz inequality
that
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Under assumptions 7–8,
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Thus,
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□
proof of proposition 2. From equation 1.8 it follows that
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By lemmas 1–3 the second term has the slowest rate of convergence.
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Therefore, under assumption 9, it holds that

lim
T →∞

T

lnT
E
[∣∣∣êrrT (γ)− err

∣∣∣] ≤M1 M4.

□

1.B.2. Proposition 3

Recall that with potentially incomplete data

êrrT (γ) = + 1
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T −1∑
t=t0

∑
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wi V
2

i,t+1 (1.9)

+ 1
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]
.

Lemma 4 analyses the first term of equation 1.9. This is then used for structuring the
proof of proposition 3 (reported hereinafter).

Lemma 4. Under assumptions 1–5, assumption 7, assumptions 9–10 and with potentially
incomplete data, it holds that
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proof. Similarly to lemma 1, using the bias-variance decomposition,
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T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1 −
n∑

i=1
wi Σi,i

∣∣∣∣∣∣
2


can be re-written in the equivalent form
bias

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1

2

+ var

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1

 .
Consider that

1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1 = 1
T − t0

T −1∑
t=t0

I|D(t+1)|=n

n∑
i=1

wi V
2

i,t+1 + I|D(t+1)|̸=n

∑
i∈D(t+1)

wi V
2

i,t+1

 .
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It follows that the bias is

bias

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1


= T − t0 − tNA

T − t0

n∑
i=1

wi Σi,i + 1
T − t0

T −1∑
t=t0

I|D(t+1)|̸=n

∑
i∈D(t+1)

wi Σi,i −
n∑

i=1
wi Σi,i

≤ 1− t0/T − tNA/T

1− t0/T

n∑
i=1

wi Σi,i + tNA/T

1− t0/T
M5 −

n∑
i=1

wi Σi,i,

where

M5 := sup
t

I|D(t+1)|̸=n

∑
i∈D(t+1)

wi Σi,i


and thus 0 ≤ M5 <

∑n
i=1 wi Σi,i. Furthermore, following an approach analogous to

lemma 1 (but allowing for potentially incomplete data), it holds that

var

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1

 =

+ 1
(T − t0)2

T −1∑
t=t0

I|D(t+1)|=n

n∑
i=1

n∑
j=1

wi wj cov
(
V 2

i,t+1, V
2

j,t+1

)

+ 1
(T − t0)2

T −1∑
t=t0

I|D(t+1)|̸=n

∑
i∈D(t+1)

∑
j∈D(t+1)

wi wj cov
(
V 2

i,t+1, V
2

j,t+1

)
.

Under assumption 7,

var

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1


≤ (T − t0 − tNA) (M2

1 M3)
(T − t0)2 + tNA M

2
1 M6

(T − t0)2

≤ (1− t0/T − tNA/T ) (M2
1 M3)

T (1− t0/T )2 + (tNA/T ) (M2
1 M6)

T (1− t0/T )2 ,

where

M6 := sup
t

I|D(t+1)|̸=n

∑
i∈D(t+1)

∑
j∈D(t+1)

| cov(V 2
i,t+1, V

2
j,t+1)|


and thus 0 ≤M6 < M3.
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Under assumptions 9–10,

lim
T →∞

bias

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1

 = 0,

lim
T →∞

T var

 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1

 ≤M2
1 M3.

As a result,

lim
T →∞

T E


∣∣∣∣∣∣ 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1 − err

∣∣∣∣∣∣
2
 ≤M2

1 M3.

□

Remark (Upper bounds in lemma 4). Defining M5 and M6 to be equal to ∑n
i=1 wi Σi,i

and M3 would give loose upper bounds for the bias and variance. This would mask the
relevancy of assumption 10, and it would not be ideal especially for the case in which tNA

is large and all series are always jointly missing.

proof of proposition 3. In the presence of potentially incomplete data,

E
[∣∣∣êrrT (γ)− err

∣∣∣] ≤+ E

∣∣∣∣∣ 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1 −
n∑

i=1
wi Σi,i

∣∣∣∣∣


+ E


∣∣∣∣∣ 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi

[
fi(Xt,Ψ)− gi(Xt, θ̂t(γ))

]2∣∣∣∣∣


+ E


∣∣∣∣∣ 2
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi Vi,t+1
[
fi(Xt,Ψ)− gi(Xt, θ̂t(γ))

]∣∣∣∣∣
 .

Note that

E
[∣∣∣êrrT (γ)− err

∣∣∣] ≤+ E

∣∣∣∣∣ 1
T − t0

T −1∑
t=t0

∑
i∈D(t+1)

wi V
2

i,t+1 −
n∑

i=1
wi Σi,i

∣∣∣∣∣


+ E


∣∣∣∣∣ 1
T − t0

T −1∑
t=t0

n∑
i=1

wi

[
fi(Xt,Ψ)− gi(Xt, θ̂t(γ))

]2∣∣∣∣∣


+ 2
T − t0

T −1∑
t=t0

n∑
i=1

wi E
[
|Vi,t+1 | |fi(Xt,Ψ)− gi(Xt, θ̂t(γ))|

]
.

By lemmas 2–4 the second term has the slowest rate of convergence. Thus, under as-



1.C Estimation of penalised VARMA models for incomplete data 31

sumptions 9–10,

lim
T →∞

T

lnT
E
[∣∣∣êrrT (γ)− err

∣∣∣] ≤M1 M4.

even with potentially incomplete data. □
proof of corollary 3.1. It follows from the argument in section 1.A that ẽrrT (J,γ)
is the average of a number of i.d. pseudo out-of-sample errors. Trivially, this implies that
proposition 3 is also valid for this case. □

1.C. Estimation of penalised VARMA models for in-
complete data

Traditional estimation methods for VARMA(q, r) models are unable to handle incom-
plete time series. This is especially problematic for the scope of the manuscript since
the artificial jackknife introduces missing values into the data. This appendix proposes
overcoming the issue with an ECM algorithm (Meng and Rubin, 1993).

1.C.1. State-space representation

The ECM algorithm developed in this appendix is structured similarly to the EM algo-
rithm in Shumway and Stoffer (1982) and Watson and Engle (1983), and thus starting
from a model representation in state-space form.

Definition 13 (State-space). Recall that min(q, r) = 0 and max(q, r) ≥ 1, and let
m := nq + nr + n Iq=0. The representation chosen for the VARMA(q, r) is such that, for
any integer t,

Yt = BXt + ϵt, (1.10)

Xt = CXt−1 + DṼt, (1.11)

where Xt denotes a vector of m latent states, ϵt
w.n.∼ N (0n×1,R), Ṽt

w.n.∼ N (0n×1, Σ̃),

B :=
(

In B ∗

)
,

R := ε · In,

D :=

 In

0m−n×n

 ,
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ε is a small positive real number and Σ̃ is a n× n positive definite covariance matrix.20

The structure of B ∗ and C is described in definitions 14–15, differentiating between the
VAR and VMA cases. It follows from these definitions that Vt ≈ Ṽt and Σ ≈ Σ̃. The
precision of these approximations is inversely proportional to ε.

Definition 14 (Direct state-space representation: VAR). If q > 0 and r = 0,

B ∗ := 0n×m−n

C :=



Π̃1 Π̃2 . . . Π̃q−1 Π̃q

In 0n×n . . . . . . 0n×n

0n×n
. . . . . . ... ...

... . . . . . . ... ...
0n×n . . . . . . In 0n×n


,

where Π̃i denotes a n × n matrix, for any integer 1 ≤ i ≤ q. With this representation,
the vectors of latent states can be partitioned as

Xt =
(
Ỹ′

t . . . Ỹ′
t−q+1

)′
,

where Yt ≈ Ỹt. The precision of this approximation is inversely proportional to ε.

Definition 15 (Direct state-space representation: VMA). If q = 0 and r > 0,

B ∗ :=
(

Ξ̃1 . . . Ξ̃r

)

C :=



0n×n 0n×n . . . 0n×n 0n×n

In 0n×n . . . . . . 0n×n

0n×n
. . . . . . ... ...

... . . . . . . ... ...
0n×n . . . . . . In 0n×n


,

where Ξ̃i denotes a n × n matrix, for any integer 1 ≤ i ≤ r. With this representation,
the vectors of latent states can be partitioned as

Xt =
(
Ṽ′

t . . . Ṽ′
t−r

)′
.

Assumption 12 (Initial conditions). Consistently with assumption 1, it is assumed that
the first observation for the measurements refers to t = 1. Therefore, the state-space
20In the empirical implementation reported in this manuscript ε = 10−4.
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representation is initialised such that X0
w.n.∼ N(µ0,Ω0), where µ0 and Ω0 denote a

generic m× 1 vector and a m×m positive definite covariance matrix.

Assumption 13 (Causality and invertibility of the state-space model). In all cases, the
state-space parameters are assumed to be such that the model is causal and invertible.
The region in which the parameters must lie is indicated with R (as in section 1.3.1).

Example 1 (Vector autoregression of order 2). For this example, let q = 2 and r = 0.
Under definition 14, the state-space representation in equations 1.10–1.11 becomes

Yt =
(
In 0n×n

) Ỹt

Ỹt−1

+ ϵt,

 Ỹt

Ỹt−1

 =

Π̃1 Π̃2

In 0n×n

Ỹt−1

Ỹt−2

+

 In

0n×n

 Ṽt.

Example 2 (Vector moving average of order 2). For this example, let q = 0 and r = 2.
Under definition 15, the state-space representation in equations 1.10–1.11 becomes

Yt =
(
In Ξ̃1 Ξ̃2

)
Ṽt

Ṽt−1

Ṽt−2

+ ϵt,


Ṽt

Ṽt−1

Ṽt−2

 =


0n×n 0n×n 0n×n

In×n 0n×n 0n×n

0n×n In 0n×n




Ṽt−1

Ṽt−2

Ṽt−3

+


In

0n×n

0n×n

 Ṽt.

1.C.2. The Expectation-Conditional Maximisation algorithm

The ECM algorithm builds on the penalised maximum likelihood problem described
in definition 11 and proposes an iterative estimation method compatible with missing
observations.

Let

ϑ :=
(
vec(B)′ vech(R)′ vec(C)′ vech(Σ̃)′ vec(µ0)′ vech(Ω0)′

)′
.

Assumption 14. Assume that the ECM algorithm is initialised as in section 1.C.3 and
denote with ϑ̂

0
s(γ) the corresponding initial vector of VARMA coefficients.

The ECM algorithm proceeds from the initial value assigned under assumption 14 and
repeats the process described in definition 16 until it converges.

Assumption 15 (Convergence). The ECM algorithm is said to be converged when the
conditions described in algorithm 1 are reached.
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Definition 16 (Estimation routine). At any iteration k + 1 > 0, the ECM algorithm
computes the vector of coefficients

ϑ̂
k+1
s (γ) := arg max

ϑ ∈R

E
[
L(ϑ |Y1:s,X1:s) |Y(s), ϑ̂

k

s(γ)
]
− E

[
P(ϑ,γ) |Y(s), ϑ̂

k

s(γ)
]
,

where Y(s) is the information set available at time t = s,

L(ϑ |Y1:s,X1:s) ≃−
1
2

ln |Ω0| −
1
2

Tr
[
Ω0

−1(X0 − µ0)(X0 − µ0)′
]

− s

2
ln |Σ̃| − 1

2
Tr
[ s∑

t=1
Σ̃−1(X1:n,t −C ∗Xt−1)(X1:n,t −C ∗Xt−1)′

]

− s

2
ln |R| − 1

2
Tr
[ s∑

t=1
R−1(Yt −BXt)(Yt −BXt)′

]
,

C ∗ ≡ C 1:n,1:m and the underlined coefficients denote the state-space parameters within
ϑ. The function L(ϑ |Y1:s,X1:s) is known as complete-data (i.e., as if the states were
known and the data was fully observed) log-likelihood.21 Finally,

P(ϑ,γ) :=


1−α

2

∥∥∥C ∗ Γ(γ, q) 1
2

∥∥∥2

F
+ α

2

∥∥∥C ∗ Γ(γ, q)
∥∥∥

1,1
if q > 0 and r = 0,

1−α
2

∥∥∥B ∗ Γ(γ, r) 1
2

∥∥∥2

F
+ α

2

∥∥∥B ∗ Γ(γ, r)
∥∥∥

1,1
if q = 0 and r > 0.

This function is a compact version of the elastic-net penalty in equation 1.7 for the
state-space representations illustrated in this appendix.

Every ϑ̂
k+1
s (γ) is estimated via the so-called E-step and CM-step. The E-step cor-

responds to the operation of computing the complete-data penalised log-likelihood ex-
pectation, conditional on the parameters estimated at the k-th iteration and Y(s). The
CM-step estimates ϑ̂

k+1
s (γ) to conditionally maximise the resulting expected penalised

log-likelihood.
In order to formalise the E-step for the complete-data log-likelihood, it is convenient

to clarify which measurements are observed at each point in time.

Definition 17 (Observed measurements). Let

T :=
n⋃

i=1
Ti,

T(s) := {t : t ∈ T, 1 ≤ t ≤ s},

describe two sets representing the points in time (either over the full sample or up to
21Direct maximisation of the complete-data log-likelihood is not feasible since there are missing obser-

vations in the measurements.
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time s) in which at least one measurement is observed, for 1 ≤ s ≤ T . Thus, let

Yobs
t :=

(
Yi,t

)
i∈D(t)

Bobs
t := AtB

be the vector of observed measurements at time t and the corresponding |D(t)| × m

matrix of coefficients, for t ∈ T. Every At is indeed a selection matrix constituted by
ones and zeros that permits to retrieve the appropriate rows of B for every t ∈ T.

Building on Shumway and Stoffer (1982) and Watson and Engle (1983), it is also handy
to formalise the E-step by using the Kalman smoother output described in definition 18.
Indeed, lemmas 5–6 build on that to compute a series of conditional expectations. Finally,
proposition 4 uses these results to design the E-step for the complete-data log-likelihood.

Definition 18 (Kalman smoother output). The Kalman smoother output used for for-
malising the E-step is

X̂t := E
[
Xt |Y(s), ϑ̂

k

s(γ)
]
,

P̂t,t−j := Cov
[
Xt,Xt−j |Y(s), ϑ̂

k

s(γ)
]
,

for any k ≥ 0, 0 ≤ j ≤ t and t ≥ 0. Let also P̂t ≡ P̂t,t.

Remark. These estimates can be computed using a range of different recursions. This
article follows the approach in Durbin and Koopman (2012) for X̂t and P̂t, and the one
in Watson and Engle (1983) for P̂t,t−1.

Lemma 5. Building on definition 18, it follows that

E
[
XtX′

t−j |Y(s), ϑ̂
k

s(γ)
]

= X̂tX̂
′
t−j + P̂t,t−j,

for any k ≥ 0, 0 ≤ j ≤ t and t ≥ 0.

proof. Note that Xt = X̂t + (Xt − X̂t). Thus,

E
[
XtX′

t−j |Y(s), ϑ̂
k

s(γ)
]

= E
{

Xt

[
X̂t−j + (Xt−j − X̂t−j)

]′ ∣∣∣Y(s), ϑ̂
k

s(γ)
}

= E
[
XtX̂

′
t−j

∣∣∣Y(s), ϑ̂
k

s(γ)
]

+ E
[
XtX′

t−j

∣∣∣Y(s), ϑ̂
k

s(γ)
]
− E

[
XtX̂

′
t−j

∣∣∣Y(s), ϑ̂
k

s(γ)
]
.

Since

E
[
XtX̂

′
t−j

∣∣∣Y(s), ϑ̂
k

s(γ)
]

= E
[
Xt

∣∣∣Y(s), ϑ̂
k

s(γ)
]
E
[
Xt−j

∣∣∣Y(s), ϑ̂
k

s(γ)
]′

= X̂tX̂
′
t−j,
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it holds that

E
[
XtX′

t−j |Y(s), ϑ̂
k

s(γ)
]

= X̂tX̂
′
t−j + P̂t,t−j.

□

Lemma 6. Building on definition 13 and definition 18, it follows that

E
[
Xi1:i2,tX′

i3:i4,t−j |Y(s), ϑ̂
k

s(γ)
]

=
[
X̂tX̂

′
t−j + P̂t,t−j

]
i1:i2,i3:i4

,

for any k ≥ 0, 1 ≤ i1 ≤ i2 ≤ m, 1 ≤ i3 ≤ i4 ≤ m and 0 ≤ j ≤ t.

proof. Note that

Xi1:i2,tX′
i3:i4,t−j =

[
XtX′

t−j

]
i1:i2,i3:i4

.

It then follows from the same logic employed in the proof of lemma 5 that

E
[
Xi1:i2,tX′

i3:i4,t−j |Y(s), ϑ̂
k

s(γ)
]

=
[
X̂tX̂

′
t−j + P̂t,t−j

]
i1:i2,i3:i4

.

□

Proposition 4. Let

Le

[
ϑ |Y(s), ϑ̂

k

s(γ)
]
≡ E

[
L(ϑ |Y1:s,X1:s) |Y(s), ϑ̂

k

s(γ)
]
.

Building on definition 13 and definition 18, it follows that

Le

[
ϑ |Y(s), ϑ̂

k

s(γ)
]
≃− 1

2
ln |Ω0| −

1
2

Tr
[
Ω0

−1(Ê− X̂0µ0
′ − µ0X̂

′
0 + µ0 µ0

′)
]

− s

2
ln |Σ̃| − 1

2
Tr
[
Σ̃−1(F̂s − ĜsC′

∗ −C ∗Ĝ
′
s + C ∗ĤsC′

∗)
]

− 1
2ε

Tr

 ∑
t∈T(s)

[(
Yobs

t −Bobs
t X̂t

) (
Yobs

t −Bobs
t X̂t

)′
+ Bobs

t P̂t Bobs′

t

] ,
where

Ê := E
[
X0X′

0 |Y(s), ϑ̂
k

s(γ)
]

= X̂0X̂
′
0 + P̂0,

F̂s :=
s∑

t=1
E
[
X1:n,tX′

1:n,t |Y(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
X̂tX̂

′
t + P̂t

)
1:n,1:n

,

Ĝs :=
s∑

t=1
E
[
X1:n,tX′

t−1 |Y(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
X̂tX̂

′
t−1 + P̂t,t−1

)
1:n,1:m

,

Ĥs :=
s∑

t=1
E
[
Xt−1X′

t−1 |Y(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
X̂t−1X̂

′
t−1 + P̂t−1

)
.
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proof. Note that

−s
2

ln |R| − 1
2

Tr
[ s∑

t=1
R−1(Yt −BXt)(Yt −BXt)′

]
≃ − 1

2ε
Tr
[ s∑

t=1
(Yt −BXt)(Yt −BXt)′

]
,

since the covariance matrix R = ε · In. Thus, the complete-data log-likelihood

L(ϑ |Y1:s,X1:s) ≃−
1
2

ln |Ω0| −
1
2

Tr
[
Ω0

−1(X0X′
0 −X0µ0

′ − µ0X′
0 + µ0 µ0

′)
]

(1.12)

− s

2
ln |Σ̃| − 1

2
Tr
[ s∑

t=1
Σ̃−1(X1:n,tX′

1:n,t −X1:n,tX′
t−1C′

∗)
]

− 1
2

Tr
[ s∑

t=1
Σ̃−1(−C ∗Xt−1X′

1:n,t + C ∗Xt−1X′
t−1C′

∗)
]

− 1
2ε

Tr
[ s∑

t=1
(Yt −BXt)(Yt −BXt)′

]
.

It follows from definition 18 and lemma 5 that the expectation of the terms in the first
row of equation 1.12, conditional on the information set Y(s) and ϑ̂

k

s(γ), is

−1
2

ln |Ω0| −
1
2

Tr
[
Ω0

−1(Ê− X̂0µ0
′ − µ0X̂

′
0 + µ0 µ0

′)
]
.

The following terms are a bit harder to handle. It follows from lemma 6 that

E
[
X1:n,tX′

1:n,t |Y(s), ϑ̂
k

s(γ)
]

=
(
X̂tX̂

′
t + P̂t

)
1:n,1:n

,

E
[
X1:n,tX′

t−1 |Y(s), ϑ̂
k

s(γ)
]

=
(
X̂tX̂

′
t−1 + P̂t,t−1

)
1:n,1:m

.

Building on that, it holds that the expectation of the terms in the second and third row
of equation 1.12, conditional on the information set Y(s) and ϑ̂

k

s(γ), is

− s

2
ln |Σ̃| − 1

2
Tr
[
Σ̃−1(F̂s − ĜsC′

∗ −C ∗Ĝ
′
s + C ∗ĤsC′

∗)
]
.

Finally, it follows directly from Shumway and Stoffer (1982, Section 3) that

− 1
2ε

Tr
{
E
[ s∑

t=1
(Yt −BXt)(Yt −BXt)′ |Y(s), ϑ̂

k

s(γ)
]}

≃ − 1
2ε

Tr

 ∑
t∈T(s)

[(
Yobs

t −Bobs
t X̂t

) (
Yobs

t −Bobs
t X̂t

)′
+ Bobs

t P̂t Bobs′

t

] .
□

Lemma 7. Building on definition 13 and definitions 16–18, it follows that

E
[
P(ϑ,γ) |Y(s), ϑ̂

k

s(γ)
]

= P(ϑ,γ).
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proof. A formal proof is not reported since it is immediate. Indeed, the penalty func-
tion in this ECM algorithm depends on the current coefficients (i.e., C ∗ or B ∗) and
hyperparameters only. □

Proposition 4 and lemma 7 give the structure of the expected penalised log-likelihood

Me

[
ϑ,γ |Y(s), ϑ̂

k

s(γ)
]

:= Le

[
ϑ |Y(s), ϑ̂

k

s(γ)
]
− P(ϑ,γ). (1.13)

The CM-step conditionally maximises Me

[
ϑ,γ |Y(s), ϑ̂

k

s(γ)
]

to estimate the state-space
coefficients. Lemmas 8–11 detail the estimation procedure. For internal consistency, the
estimated coefficients are denoted with the same naming used in definitions 14–15, a
“‘hat”’ symbol on top, an s in the subscript to highlight the sample size and a superscript
denoting the reference to the ECM iteration.

Lemma 8. Building on definition 13 and definitions 16–18, it follows that the ECM
estimators at a generic iteration k + 1 > 0 for µ0 and Ω0 are

µ̂k+1
0,s (γ) = X̂0,

Ω̂k+1
0,s (γ) = P̂0.

proof. The derivative of equation 1.13 with respect to µ0 is

∂Me

[
ϑ,γ |Y(s), ϑ̂

k

s(γ)
]

∂µ0
= −1

2
Ω0

−1
(
−2X̂0 + 2µ0

)
.

It follows that the maximiser for the expected penalised log-likelihood is

µ̂k+1
0,s (γ) = X̂0.

The derivative of equation 1.13 with respect to Ω0 and fixing µ0 = µ̂k+1
0,s (γ) is

− 1
2

Ω0
−1 + 1

2
Ω0

−1
[
Ê− X̂0µ̂

k+1′

0,s (γ)− µ̂k+1
0,s (γ)X̂′

0 + µ̂k+1
0,s (γ) µ̂k+1′

0,s (γ)
]

Ω0
−1,

or,

− 1
2

Ω0
−1 + 1

2
Ω0

−1
[
Ê− X̂0X̂

′
0 − X̂0X̂

′
0 + X̂0 X̂′

0

]
Ω0

−1.

Thus, due to the structure of Ê,

Ω̂k+1
0,s (γ) = P̂0.

□
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Lemma 9. Partition the output of the following Cartesian as

{1, 2, . . . , n} × {1, 2, . . . ,m} =
{
E(i, j), (i, j), E′′(i, j)

}
,

and let

F(i, j) :=
{
E(i, j), E′′(i, j)

}
,

for any integer 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let also S(a, b) := sign(a) max(|a|−b, 0) be the
soft-thresholding operator, for any a, b ∈ R. Building on definition 13 and definitions 16–
18, it follows that, if q > 0 and r = 0, the ECM estimators at a generic iteration k+1 > 0
for C is such that

Ĉk+1
∗,s (γ) =


Ĉk+1

1,1,s(γ) . . . Ĉk+1
1,m,s(γ)

... . . . ...
Ĉk+1

n,1,s(γ) . . . Ĉk+1
n,m,s(γ),


where

Ĉk+1
i,j,s (γ) =

S
[∑n

l1=1
ˆ̃Σk−1

i,l1,s(γ) Ĝl1,j,s −
∑

(l1,l2)∈F(i,j)
ˆ̃Σk−1

i,l1,s(γ) Ĉk+I(l1,l2)∈E(i,j)
l1,l2,s (γ) Ĥl2,j,s,

α
2 Γj,j (γ, q)

]
ˆ̃Σk−1

i,i,s(γ) Ĥj,j,s + (1− α) Γj,j (γ, q)

for any integer 1 ≤ i ≤ n and 1 ≤ j ≤ m, and the remaining entries are constant and
specified according to the prescriptions in definition 14. If q = 0 and r > 0, it follows
from definition 15 that Ĉk+1

∗,s (γ) = 0n×m.

proof. This proof starts with the case in which q > 0 and r = 0. Given that the
absolute value function in the penalty is not differentiable at zero, this part of the ECM
algorithm estimates the free entries of C one-by-one starting from the C1,1, in a column-
major order and conditioning on a series of coefficients estimated in previous rounds of
the same algorithm. Namely, it estimates every Ci,j by fixing Σ̃ = ˆ̃Σ

k

s(γ) and any other
free entry of C to the latest estimate available, with 1 ≤ i ≤ n and 1 ≤ j ≤ m.22 In
other words, the derivative of equation 1.13 with respect to Ci,j is taken having fixed the
parameters as described in the last sentence. If C i,j ̸= 0, this is

+
n∑

l1=1

ˆ̃Σk−1

i,l1,s(γ) Ĝl1,j,s − ˆ̃Σk−1

i,i,s(γ)C i,jĤj,j,s −
∑

(l1,l2)∈F(i,j)

ˆ̃Σk−1

i,l1,s(γ) Ĉk+I(l1,l2)∈E(i,j)
l1,l2,s (γ) Ĥl2,j,s

− (1− α)C i,j Γj,j (γ, q)− α

2
Γj,j (γ, q) sign(C i,j).

22This approach is similar, in spirit, to Friedman et al. (2010).
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It follows that

Ĉk+1
i,j,s (γ) =

S
[∑n

l1=1
ˆ̃Σk−1

i,l1,s(γ) Ĝl1,j,s −
∑

(l1,l2)∈F(i,j)
ˆ̃Σk−1

i,l1,s(γ) Ĉk+I(l1,l2)∈E(i,j)
l1,l2,s (γ) Ĥl2,j,s,

α
2 Γj,j (γ, q)

]
ˆ̃Σk−1

i,i,s(γ) Ĥj,j,s + (1− α) Γj,j (γ, q)
.

When q = 0 and r > 0 the coefficients of interest for this proof are not free parameters
and fixed to zero as described in definition 15. □

Lemma 10. Building on definition 13 and definitions 16–18, it follows that the ECM
estimators at a generic iteration k + 1 > 0 for Σ̃ is

ˆ̃Σ
k+1

s (γ) = 1
s

[
F̂s − ĜsĈ

k+1′

∗,s (γ)− Ĉk+1
∗,s (γ) Ĝ′

s + Ĉk+1
∗,s (γ) Ĥs Ĉk+1′

∗,s (γ)
]
.

proof. The derivative of equation 1.13 with respect to Σ̃ and fixing C ∗ = Ĉk+1
∗,s is

−s
2

Σ̃−1 + 1
2

Σ̃−1
[
F̂s − ĜsĈ

k+1′

∗,s (γ)− Ĉk+1
∗,s (γ) Ĝ′

s + Ĉk+1
∗,s (γ) Ĥs Ĉk+1′

∗,s (γ)
]

Σ̃−1
.

It follows that

ˆ̃Σ
k+1

s (γ) = 1
s

[
F̂s − ĜsĈ

k+1′

∗,s (γ)− Ĉk+1
∗,s (γ) Ĝ′

s + Ĉk+1
∗,s (γ) Ĥs Ĉk+1′

∗,s (γ)
]
.

□

Remark (Vector moving average case). When q = 0 and r > 0, Ĉk+1
∗,s (γ) = 0n×m. Thus,

it follows that ˆ̃Σ
k+1

s (γ) = 1
s

F̂s.

Lemma 11. Let

M̂s :=
∑

t∈T(s)
A′

tYobs
t X̂′

t,

N̂t := A′
tAt,

Ôt := X̂tX̂
′
t + P̂t.

Building on definition 13 and definitions 16–18, it follows that, if q = 0 and r > 0, the
ECM estimators at a generic iteration k + 1 > 0 for B is such that

B̂k+1
∗,s (γ) =


B̂k+1

1,1,s(γ) . . . B̂k+1
1,nr,s(γ)

... . . . ...
B̂k+1

n,1,s(γ) . . . B̂k+1
n,nr,s(γ),
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where

B̂k+1
i,j,s (γ) =

S
[
M̂i,j,s −

∑
t∈T(s)

∑
(l1,l2)∈F(i,j) N̂i,l1,t B̂

k+I(l1,l2)∈E(i,j)
l1,l2,s (γ) Ôl2,j,t,

α
2 εΓj−n,j−n (γ, r)

]
∑

t∈T(s) N̂i,i,t Ôj,j,t + (1− α) εΓj−n,j−n (γ, r)

for any integer 1 ≤ i ≤ n and n + 1 ≤ j ≤ m, and the remaining entries are constant
and specified according to the prescriptions in definition 15. If q > 0 and r = 0, it follows
from definition 14 that B̂k+1

∗,s (γ) = 0n×m−n.

proof. This proof starts with the case in which q = 0 and r > 0. Note that

∑
t∈T(s)

[(
Yobs

t −Bobs
t X̂t

) (
Yobs

t −Bobs
t X̂t

)′
+ Bobs

t P̂t Bobs′

t

]

=
∑

t∈T(s)

[(
Yobs

t −AtBX̂t

) (
Yobs

t −AtBX̂t

)′
+ AtBP̂tB′A′

t

]

=
∑

t∈T(s)

[
Yobs

t Yobs′

t −Yobs
t X̂′

tB′A′
t −AtBX̂tYobs′

t + AtB
(
X̂tX̂

′
t + P̂t

)
B′A′

t

]
.

Since the absolute value function in the penalty is not differentiable at zero, this part of
the ECM algorithm estimates the free entries of B one-by-one starting from the B1,n+1,
in a column-major order and conditioning on a series of coefficients estimated in previous
rounds of the same algorithm. Indeed, as in lemma 9, the derivative of equation 1.13
with respect to Bi,j is taken having fixed any other free entry of B to the latest estimate
available, for 1 ≤ i ≤ n and n+ 1 ≤ j ≤ m. If B i,j ̸= 0, this is

+ ε−1M̂i,j,s −B i,j

∑
t∈T(s)

ε−1N̂i,i,t Ôj,j,t −
∑

t∈T(s)

∑
(l1,l2)∈F(i,j)

ε−1N̂i,l1,t B̂
k+I(l1,l2)∈E(i,j)
l1,l2,s (γ) Ôl2,j,t

− (1− α)B i,j Γj−n,j−n (γ, r)− α

2
Γj−n,j−n (γ, r) sign(B i,j).

It follows that

B̂k+1
i,j,s (γ) =

S
[
M̂i,j,s −

∑
t∈T(s)

∑
(l1,l2)∈F(i,j) N̂i,l1,t B̂

k+I(l1,l2)∈E(i,j)
l1,l2,s (γ) Ôl2,j,t,

α
2 εΓj−n,j−n (γ, r)

]
∑

t∈T(s) N̂i,i,t Ôj,j,t + (1− α) εΓj−n,j−n (γ, r)
.

When q > 0 and r = 0 the coefficients of interest for this proof are not free parameters
and fixed to zero as described in definition 14. □

1.C.3. Initialisation of the ECM algorithm

In small-data settings, the ECM algorithm is initialised interpolating missing observations
(if any) with sample average of the observed datapoints. If q > 0 and r = 0, the model
is initialised via OLS (in small data settings) or ridge (in high-dimensional settings). If
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q = 0 and r > 0, an estimate of the VMA innovations is computed by taking the sample
residuals of a VAR with ⌊

√
T ⌋ lags. Indeed, these residuals can be interpreted as those

of a truncated VAR(∞) resulting from an invertible VMA. The VMA coefficients are
then initialised regressing the data on the estimated residuals (either with OLS or ridge,
depending on the problem dimensionality).

In both cases, the approach in section 1.C.4 is used for making sure that the estimated
coefficients are within the feasible region R.

1.C.4. Enforcing causality and invertibility

The ECM algorithm makes sure that the autoregressive and moving average coefficients
are causal and invertible. If, at any iteration k + 1 > 1, the matrix of autoregressive
coefficients ˆ̃Π

k+1

s (γ) needs to be adjusted, it is replaced by the causal

η k+1 ˆ̃Π
k+1

s (γ) + (1− η k+1) ˆ̃Π
k

s(γ)

associated to the largest feasible η k+1 ∈ {0, 0.1, 0.2, . . . 0.9}. An analogous procedure is
followed to adjust ˆ̃Ξ

k+1

s (γ) when necessary. This approach can be thought as a slowing
mechanism that restricted the CM-step to the feasible region R.
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1.C.5. Estimation algorithm summary

Algorithm 1: VARMA with elastic-net penalty

Initialization
The ECM algorithm is initialised as described in section 1.C.3.

Estimation
for k ← 1 to max_iter do

for j ← 1 to m do
Run the Kalman filter and smoother using ϑ̂

k−1
s (γ);

if converged then
Store the parameters and stop the loop.

end
Estimate µ̂k

s,0(γ) and Ω̂k

s,0(γ) as in lemma 8;

Estimate Ĉk

s(γ), ˆ̃Σ
k

s(γ) and B̂k

s(γ) as in lemmas 9–11;
Build ϑ̂

k

s(γ);
end

end

Notes

• The results are computed fixing max_iter to 1000. This is a conservative number, since the
algorithm generally requires substantially less iterations to converge.

• The ECM algorithm is considered to be converged when the estimated coefficients (all relevant
parameters in lemmas 9–11) do not significantly change in two subsequent iterations. This is
done by computing the absolute relative change per parameters and comparing at the same time
the median and 95th quantile respectively with a fixed tolerance of 10−3 and 10−2. Intuitively,
when the coefficients do not change much, the expected log-likelihood and the parameters in
lemma 8 should also be stable.

• The scalar ε is summed to the denominator of each relative change in order to ensure numerical
stability.

The replication code for this paper is available on GitHub.

https://github.com/fipelle/replication-pellegrino-2022-hyperparameters
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1.D. Tables and charts

Mnemonic Description Transformation

australia Foreign exchange rate: Australia / USA Week-on-week (log-returns)
brazil Foreign exchange rate: Brazil / USA Week-on-week (log-returns)
canada Foreign exchange rate: Canada / USA Week-on-week (log-returns)
denmark Foreign exchange rate: Denmark / USA Week-on-week (log-returns)
ea Foreign exchange rate: EA / USA Week-on-week (log-returns)
india Foreign exchange rate: India / USA Week-on-week (log-returns)
japan Foreign exchange rate: Japan / USA Week-on-week (log-returns)
mexico Foreign exchange rate: Mexico / USA Week-on-week (log-returns)
new_zealand Foreign exchange rate: New Zealand / USA Week-on-week (log-returns)
norway Foreign exchange rate: Norway / USA Week-on-week (log-returns)
singapore Foreign exchange rate: Singapore / USA Week-on-week (log-returns)
south_africa Foreign exchange rate: South Africa / USA Week-on-week (log-returns)
south_korea Foreign exchange rate: South Korea / USA Week-on-week (log-returns)
sweden Foreign exchange rate: Sweden / USA Week-on-week (log-returns)
switzerland Foreign exchange rate: Switzerland / USA Week-on-week (log-returns)
taiwan Foreign exchange rate: Taiwan / USA Week-on-week (log-returns)
thailand Foreign exchange rate: Thailand / USA Week-on-week (log-returns)
uk Foreign exchange rate: UK / USA Week-on-week (log-returns)

Table 1.D.1: Foreign exchange rates used for the empirical application in section 1.3.
Notes: The time series are collected from the Federal Reserve Board H.10 and include regular weekly
(Friday, EOP) observations from January 1999 to the end of December 2020. This dataset contains a
total of 1,148 weeks and 21,812 observations.
Source: Federal Reserve Board.
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Figure 1.D.1: Expected error for the candidate hyperparameters in H.
Notes: Alternative graphical representation for the VAR (first row) and VMA (second row) selection.
The colormap highlights the relative scale of the expected error for each subsampling method. The
scalar λ β3 denotes the shrinkage associated to the farthest lag. The block jackknife output is adjusted
to reduce the finite-sample methodological defects as described in section 1.2.2.



2 Factor-augmented tree ensembles

This manuscript proposes to extend the information set of time-series regression trees
with latent stationary factors extracted via state-space methods. In doing so, this ap-
proach generalises time-series regression trees on two dimensions. First, it allows to han-
dle predictors that exhibit measurement error, non-stationary trends, seasonality and/or
irregularities such as missing observations. Second, it gives a transparent way for us-
ing domain-specific theory to inform time-series regression trees. As a byproduct, this
technique sets the foundations for structuring powerful ensembles. Their real-world ap-
plicability is studied under the lenses of empirical macro-finance.

2.1. Introduction
In time series, the simplicity of regression trees (Morgan and Sonquist, 1963; Breiman
et al., 1984; Quinlan, 1986) comes at a cost: irregularities, complicated periodic patterns
and non-stationary trends cannot be explicitly modelled, and this is unfortunate given
that many real-world examples are subject to them.

Following, in spirit, Harvey et al. (1998), this paper proposes to pre-process prob-
lematic predictors using state-space representations general enough to deal with all these
complexities at once. This operation can be thought as an automated feature engineering
process that extracts stationary patterns hidden across multiple predictors, while han-
dling problematic data characteristics. Besides, when the state-space representation is
compatible with domain-specific theory, this becomes a transparent way for extracting
signals with structural interpretation. The stationary common components recovered
from the data, referred hereinbelow as stationary dynamic factors, are then employed as
regular predictors for standard time-series regression trees. This manuscript calls them
factor-augmented regression trees to stress their dependence on latent components.

For this article, I have built on a broad body of theoretical research on time series.
Indeed, factor models originated in psychometrics (Lawley and Maxwell, 1962) as a di-
mensionality reduction technique. They were later generalised to take into account the
autocorrelation structure of time series with the work of Geweke (1977) on dynamic factor
models. Over time, these methodologies have been further developed within the state-

45
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space literature pioneered by Harvey (1985) to be compatible with data exhibiting pe-
culiar patterns (e.g., non-stationary trends, seasonality, missing observations). Relevant
developments include Forni et al. (2000, 2005, 2009), Forni and Lippi (2001), Bernanke
et al. (2005), Doz et al. (2012), Barigozzi and Luciani (2020), Li et al. (2020).

Factor-augmented regression trees are also strongly motivated by empirical results in
economics and finance. Recent literature on semi-structural models, including Hasenzagl
et al. (2022a,b), proposed to enrich statistical trend-cycle decompositions by using a
minimal set of economic-driven restrictions. The main advantage of these semi-structural
models is that they are able to extract unobserved cyclical and persistent components
with economic interpretation, while allowing the data to speak. However, it is often
hard to determine reasonable restrictions for most high-dimensional problems. Indeed,
in macroeconomics and finance, theory is unclear on the exact dynamics of classical
aggregate variables (e.g., stock market indices) and disaggregated indicators (e.g., single
shares). Also, the literature is not mature enough to understand the precise drivers
of new data (e.g., Google searches). Factor-augmented regression trees can be seen as a
bridge between the output of small-dimensional semi-structural models (i.e., interpretable
cyclical unobserved components) and time series that are not entirely understood from
the theoretical standpoint and/or exhibit non-linear dynamics.

As for standard regression trees, the factor-augmented version can suffer from over-
fitting. Tree ensembles are an efficient way to reduce it without having to use complex
vectors of hyperparameters. In order to do that, these methods generally fit a series
of regression trees on a range of data subsamples and return aggregate forecasts. This
article constructs the ensembles following Breiman (1996). These factor-augmented en-
sembles are similar to the rotation forest proposed in Rodriguez et al. (2006) and Pardo
et al. (2013), but they take into account the autocorrelation structure in the data when
estimating the factors and have the higher flexibility embedded in state-space modelling.

Their real-world applicability is studied under the lenses of empirical macro-finance.
In particular, this article extracts a measure of the business cycle similar to the one em-
ployed in Hasenzagl et al. (2022a,b) and structure factor-augmented ensembles to target
US equity volatility. Empirical results are encouraging and show that the forecasting ac-
curacy of factor-augmented ensembles is notably higher compared to naive benchmarks
and regular tree ensembles.

2.2. Methodology

2.2.1. Regression trees

This subsection describes the population model implied by standard regression trees and
their most common estimation method (Breiman et al., 1984).
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Assumption 16 (Data). Let T ∈ N and n ∈ N0. Assume that Yt and Zj,t are finite
realisations of some real-valued mean-stationary stochastic processes observed at the
time periods t = 1, . . . , T and with j = 1, . . . , n.

Assumption 17 (Predictors of standard regression trees). Let Xt := (Yt Z1,t . . . Zn,t)′

be m× 1 dimensional and defined for any point in time t ∈ Z.

Remark. Throughout the manuscript, the dependency on n and T is highlighted only
when strictly necessary to ease the reading experience. Furthermore, specific realisations
at some integer point in time t and their general value in the underlying stochastic
processes are denoted with the same symbols. However, it should be clear from the
context whether the manuscript is referring to the first or second category.

This article describes the regression trees as non-linear forecasting models for Yt based
on the information included in Xt−1, . . . ,Xt−p, for some number of lags p ∈ N.1

Assumption 18 (Lags). Let 0 < p≪ T − 1.

Assumption 19 (Regression tree model). In a regression tree setting,

Yt =
|F|∑
i=1

biI {(Xt−1 . . . Xt−p) ∈ Fi}+ ϵt,

whereas F is an indexed family of disjoint sets of matrices, every bi is a finite constant,
ϵt

i.i.d.∼ (0, σ2) with σ > 0 and finite, for any integer t and i = 1, . . . , |F|. Besides,
regression trees assume that

E(Yt|Xt−1, . . . ,Xt−p,b, σ,F) =
|F|∑
i=1

biI {(Xt−1 . . . Xt−p) ∈ Fi} ,

for any integer t.

Regression trees estimate b, σ and F recursively partitioning the predictor space
to find the best fit. There are several modelling choices to take when performing this
operation. This article follows common practice by focussing on binary partitions and
using the CART algorithm (Breiman et al., 1984). At its first iteration, this estimation
method looks for the best possible way to split the predictor space into two regions.
This assessment is performed fitting a constant model in each region and minimising the
mean square forecast error. Moreover, the splits are computed by inspecting, in turn,
each covariate separately. The algorithm iteratively repeats the same operation for each
of the resulting regions until some stopping criteria is reached. This manuscript uses
DecisionTree.jl to implement it and refers to the estimated parameters with θ̂(γ) where
γ is a vector of hyperparameters.
1Without loss of generality, this manuscript focusses on one-step ahead forecasts. Long-run predictions
can be generated by computing direct forecasts in the same spirit of Marcellino et al. (2006).

https://github.com/JuliaAI/DecisionTree.jl


48 Factor-augmented tree ensembles

2.2.2. Factor-augmented regression trees

This subsection introduces the factor-augmented regression trees: a version of the model
in section 2.2.1 able to handle predictors with irregularities such as structural breaks and
missing observations, intricate periodic patterns and non-stationary trends. In order to
deal with these complexities, this subsection introduces a series of changes to the model
and estimation algorithm.

Factor-augmented regression trees allow for these complexities in the data redefining
Zt and Xt as detailed in assumptions 20–22.

Assumption 20 (State-space representation: data). Assume that Zi,t is finite reali-
sations of some real-valued stochastic process observed at the time periods in the set
Ti ⊆ {t : t ∈ Z, 1 ≤ t ≤ T} for every i = 1, . . . , n.

Assumption 21 (State-space representation: structure). Let Zt be a n× 1 real random
vector that allows the state-space representation

Zi,t = gi,t(Φt, ξi,t),

Φt = ht(Φt−1, ζt),

where gi,t and ht are continuous and differentiable functions, Φt denotes a vector of q > 0
latent states, ξt

i.i.d.∼ (0n×1,Rt) and ζt
i.i.d.∼ (0q×1,Qt), for any integer t and i = 1, . . . , n.

Also, it is assumed that every Φt includes a q̄ × 1 vector of stationary common factors
ϕt, with 0 < q̄ ≪ n and q ≥ q̄. Since the observations start from the time period t = 1,
it is further assumed that Φ1 = h0(ζ0). This allows the evaluation of the state-space
representation with the observed data.

Remark (Non-stationarity). Differently than with assumptions 16–17, assumption 20
does not assume that the underlying stochastic process is stationary. As a result, as-
sumption 21 is compatible with non-stationary trends and co-integrated relationships.

Assumption 22 (Predictors of factor-augmented trees). Factor-augmented regression
trees include the stationary common factors in the predictors (as is, transformed in a way
that does not alter data ordering and preserves stationarity, or both). Formally, this is
achieved including these common components in the predictor matrix Xt jointly with Yt

and updating m accordingly.

Remark (Information set). Factor-augmented regression trees extend the information set
of a tree autoregression for Yt with stationary common factors, while discarding idiosyn-
cratic noise in the predictors and non-stationary trends, and handling data irregularities.
The simplest case is when the predictor matrix is extended to include these stationary
factors as they come out from the state-space. Formally, this is achieved by letting
Xt := (Yt ϕt) be a m× 1 vector of time series, with m := 1 + q̄.
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The structure of the model is exactly as described in section 2.2.1, but uses the
newly defined predictor matrix and value for m. However, the estimation process is
different and structured as a two-step method. In the first step, the state space in
assumption 21 is estimated with any algorithm compatible with the data complexities
described above, including, but not limited to, the EM (Dempster et al., 1977; Rubin
and Thayer, 1982; Shumway and Stoffer, 1982; Watson and Engle, 1983; Bańbura and
Modugno, 2014; Barigozzi and Luciani, 2020), ECM (Meng and Rubin, 1993; Pellegrino,
2023a) and ECME algorithms (Liu and Rubin, 1994).2 In the second and final step, the
predictor matrix is formed on the basis of the estimated states and the regression tree is
trained with CART.

It is worth stressing that the main difference between factor-augmented regression
trees and the individual base learners of rotation forests lies in the technique used for
reducing the dimensionality of the data. Instead of using Principal Component Analysis,
factor-augmented regression tree models use a state-space. In doing so, this approach
explicitly models the temporal factors dynamics3, permits to pinpoint specific unobserved
components and allows for data that exhibits peculiar patterns such as non-stationary
trends.4 Example 3 describes a correlated empirical problem, in which the state-space
is used for extracting a factor compatible with structural economic interpretation. This
helps stressing further the empirical motivation underlying these techniques.

Example 3 (Financial returns and the business cycle). Finding empirical relationships
between financial and macroeconomic data is difficult given their complex dynamics. Aca-
demic insights indicate that financial returns are linked to macroeconomic fundamentals
in an undefined non-linear fashion (e.g., in periods of high economic uncertainty, they
react differently to new information with respect to normal times).

Theoretically, a simple way to exploit this behaviour in forecasting would be running
a non-linear predictive regression using the lagged business cycle as predictor and some
function of a financial return of interest as a response. However, this is easier said than
done since the business cycle itself is an unobserved variable that reflects the cyclical
co-movement between a series of non-stationary economic indicators (e.g., output, em-
ployment and inflation). Also, the non-linear links have an unclear form, and thus it is
hard to model them in a parametric way.

Factor-augmented regression trees represent a simple approach to the problem, com-
2Bayesian techniques surveyed, for instance, in Särkkä (2013) can also be used. In that case, ϕt would
be a point estimate (e.g., mean or median) of the stationary dynamic factors distribution at time t.

3This is fundamentally the same difference between traditional and dynamic factor models (see, for
example, Barigozzi and Luciani, 2020, for a comparison between these approaches).

4Factor-augmented regression trees could be extended to use selected idiosyncratic periodic patterns as
additional predictors. This could be done by redefining ϕ into a vector of “selected cycles”, both common
and idiosyncratic. However, this would increase the computational burden and, without limitations,
the risk of generating spurious splits.



50 Factor-augmented tree ensembles

patible with its complexities. The state-space in assumption 21 can be thought as a way
for extracting the business cycle from a set of predictors, and the regression tree as a
model that does not require an a-priori parametrisation of the non-linear link between
macroeconomic and financial data.

Remark. Example 3 is discussed in section 2.3 with greater detail. While the emphasis
in this article is given to economic and financial data, similar time-series models are
applicable in other fields including geography, meteorology and engineering. Examples
can be found in Harvey (1990).

2.2.3. Tree ensembles

Tree ensembles are methods that combine multiple regression trees, in order to produce
more efficient predictions than the individual base learners (i.e., the trees themselves).

For simplicity of illustration, this article focusses on ensemble averaging and, in par-
ticular, on bootstrap aggregating or bagging (Breiman, 1996).5 This method obtains
the increase in efficiency estimating a large number of regression trees on random data
subsamples and combining their predictions taking a sample average. Intuitively, this
reduces over-fitting since the base learners are not trained on the original data, but on
random subsamples generated from it. The more heterogeneous and numerous the sub-
samples the better in terms of efficiency.6

This article follows common practice and uses the bootstrap version proposed in
Efron and Gong (1983, section 7) to generate the subsamples. This approach considers
each covariate-response pair as a single datapoint and constructs data subsamples via
independent bootstrap (Efron, 1979a,b, 1981). In other words, it resamples covariate-
response pairs from the original data to generate the subsamples. In particular, in the
case of the factor-augmented trees this is done focussing on the factor-response pairs.

2.3. Results

2.3.1. Data

This section develops further the narrative in example 3 and illustrates how factor-
augmented tree ensembles are an effective technique for empirical macro-finance.

The problem at hand consists in forecasting US equity volatility7 for the financial
indices in table 2.3.1 as a function of its own past and a dynamic factor identifying the
5That being said, factor-augmented trees could be used for structuring more complex tree ensembles.
6This can be formally established following an approach equivalent to Hastie et al. (2009, section 15.2).
7Measured in terms of squared returns.
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Mnemonic Description Transformation Source

TCU Capacity utilization: total index Levels FRB
INDPRO Industrial production: total index Levels FRB
RPCE Real personal consumption expendit. Levels BEA
PAYEMS Total nonfarm employment Levels BLS
EMRATIO Employment-population ratio Levels BLS
UNRATE Unemployment rate Levels BLS
WTISPLC Spot crude oil price (WTI) YoY returns FRBSL
CPIAUCNS CPI: all items YoY returns BLS
CPILFENS CPI: all items excl. food and energy YoY returns BLS

WILL5000IND Wilshire 5000 TMI MoM returns (squared) WA
WILLLRGCAP Wilshire US Large-Cap TMI MoM returns (squared) WA
WILLLRGCAPVAL Wilshire US Large-Cap Value TMI MoM returns (squared) WA
WILLLRGCAPGR Wilshire US Large-Cap Growth TMI MoM returns (squared) WA
WILLMIDCAP Wilshire US Mid-Cap TMI MoM returns (squared) WA
WILLMIDCAPVAL Wilshire US Mid-Cap Value TMI MoM returns (squared) WA
WILLMIDCAPGR Wilshire US Mid-Cap Growth TMI MoM returns (squared) WA
WILLSMLCAP Wilshire US Small-Cap TMI MoM returns (squared) WA
WILLSMLCAPVAL Wilshire US Small-Cap Value TMI MoM returns (squared) WA
WILLSMLCAPGR Wilshire US Small-Cap Growth TMI MoM returns (squared) WA

Table 2.3.1: Monthly macro-financial indicators. The macroeconomic data is sampled from January
1984 to December 2020 and downloaded in a real-time fashion from the Archival Federal Reserve
Economic Data (ALFRED) database. The financial indicators are sampled from January 1984 to
January 2021 and downloaded from the Federal Reserve Economic Data (FRED) database.
Notes: Table 2.B.1 provides a glossary for the acronyms.

state of the economy, in a real-time fashion. In order to estimate the state of the econ-
omy, this section uses a state-space representation similar, in spirit, to the one proposed
in Hasenzagl et al. (2022a,b). This modelling choice implies that each macroeconomic in-
dicator in table 2.3.1 is considered as the sum of non-stationary trends and causal cycles,
one of which can be interpreted as the US business cycle. The trends account for the
persistence in the data and provide a view on a series of structural components such as
the natural rate of unemployment and trend inflation. By linking together key variables
such as the real personal consumption expenditures, unemployment rate and inflation
through the business cycle, the model is compatible with economic relationships such as
the Phillips curve and the Okun’s law (interpreting consumption as a proxy for GDP).
A complex lag structure in the coefficients associated with the business cycle allows to
take into account frictions in the economy (for instance, in the labour market). Finally,
the idiosyncratic cycles account for autocorrelation in the error terms (if any). This is all
formalised in assumption 23.

Assumption 23 (State-space representation: trend-cycle model). For any integer t, let
Zt represent the macroeconomic indicators in table 2.3.1 (first block of series reported in
the table, in the same order) referring to time t. Let also the data in Zt be standardised
such that each i-th series is divided for a given scaling factor ηi, for i = 1, . . . , n with
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n = 9. Hence, assume that


Z1,t

Z2,t

Z3,t

Z4,t

Z5,t

Z6,t

Z7,t

Z8,t

Z9,t



=



τ1,t

τ2,t

τ3,t

τ4,t

τ5,t

τ6,t

τ7,t

τ8,t

η8
τ8,t

η9



+



1
Υ1,1 + Υ1,2L+ . . .+ Υ1,pL

p−1

Υ2,1 + Υ2,2L+ . . .+ Υ2,pL
p−1

Υ3,1 + Υ3,2L+ . . .+ Υ3,pL
p−1

Υ4,1 + Υ4,2L+ . . .+ Υ4,pL
p−1

Υ5,1 + Υ5,2L+ . . .+ Υ5,pL
p−1

Υ6,1 + Υ6,2L+ . . .+ Υ6,pL
p−1

Υ7,1 + Υ7,2L+ . . .+ Υ7,pL
p−1

Υ8,1 + Υ8,2L+ . . .+ Υ8,pL
p−1



ψ1,t +



ψ2,t

ψ3,t

ψ4,t

ψ5,t

ψ6,t

ψ7,t

ψ8,t

ψ9,t

ψ10,t



+ ξt

where ψ1,t is a causal AR(p) cycle; τ1,t, . . . , τ8,t are second-order smooth trends (Kita-
gawa and Gersch, 1996, section 8.1); ψ2,t, . . . , ψ10,t are causal AR(1) idiosyncratic noises;
ξt

w.n.∼ N (09×1, ε · I9) for a small positive ε, similarly to Bańbura and Modugno (2014).8

Hereinafter, the number of lags p is assumed being equal to 12 (months).

Remark (Business cycle). ψ1,t represents the business cycle at time t.

Remark (Trend inflation). Headline and core inflation share a common trend.

The dynamics for the latent states and the estimation method for this trend-cycle model
are further detailed in section 2.A. The estimation process uses an elastic-net penalty
analogous to the one in Pellegrino (2023a). Post estimation, the standardisation is re-
moved to attribute the original scaling. In doing so, the scaling factors associated with
trend inflation are also removed. Hence, headline and core inflation have the exact same
trend once the standardisation is lifted.

Figure 2.3.1 shows an in-sample snapshot of the economy captured by this trend-
cycle decomposition. This is obtained by estimating the model with monthly data from
January 1984 to January 2020. The top subplot compares the macroeconomic data in
levels with the estimated trends, while the bottom subplot decomposes the cycles into
common and idiosyncratic fluctuations. These results indicate a strong heterogeneity in
the data. Nonetheless, they also show that the business cycle is synchronised with the
NBER’s recession dates and able to explain most of the cyclical fluctuations. This is in
line with the results in Hasenzagl et al. (2022a,b).

2.3.2. Empirical settings for the tree ensembles

The factor-augmented ensembles considered for this empirical problem extend the infor-
mation set of traditional autoregression trees by including an estimate of the US business
8In this empirical example, ε = 10−4.
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(b) Historical decomposition of the cycles.

Figure 2.3.1: In-sample output of the trend-cycle decomposition.
Notes: The model is estimated with monthly data from January 1984 to December 2020 (full dataset
as at 28th February 2020).

cycle. The latter is used both in levels and via a selected range of transformations.
Formally, in order to compute a prediction referring to a generic time t + 1, the factor-
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augmented ensembles use a vector of predictors containing the target values referring to
time t, . . . , t− 11 and the augmentation



ψ̂1,t+11|t
...

ψ̂1,t−11|t

ψ̂1,t+11|t − ψ̂1,t+10|t
...

ψ̂1,t−10|t − ψ̂1,t−11|t

ψ̂1,t+11|t − ψ̂1,t|t
...

ψ̂1,t+2|t − ψ̂1,t|t

ψ̂1,t|t − ψ̂1,t−2|t
...

ψ̂1,t|t − ψ̂1,t−11|t



,

where ψ̂1,t+j|t denotes the estimate of the business cycle for a generic period t + j com-
puted with the information set available at time t. While the first block in the factor
augmentation gives a direct view on the business cycle levels, the following ones are useful
for computing splits directly on its turning points and making a better use of the data.

Each ensemble is regulated via a vector of hyperparameters that includes those
specifics to the elastic-net penalty of the state-space model (section 2.A) and the minimum
number of observations per leaf. These tuning parameters are determined on a sample
going from January 1984 to the end of January 2005. The ALFRED data vintage used for
structuring the macroeconomic selection sample includes the information was available
right before the end of January 2005. Since this article uses a two-step method, hyper-
parameters are selected first for the trend-cycle model and then for the factor-augmented
ensembles. The trend-cycle model is tuned as illustrated in section 2.A.5. Next, the min-
imum number of observations per leaf of each ensemble is determined with a pseudo out-
of-sample criterion and a grid search on the equally spaced HRT := {0.01, 10, 15, . . . , 0.5}
with |HRT | = 25.9 The minimum number of observations per leaf is expressed in percent-
age terms with respect to the number of time periods available. Both steps use the first
half of the selection sample for the estimation and the second half to validate the results.
9This difference in the selection method is determined by the higher computational complexity required
to estimate and forecast with factor-augmented tree ensembles.
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2.3.3. Model evaluation

Having selected the hyperparameters, these factor-augmented tree ensembles are then
estimated, in turn, for each target on the full selection sample. Next, they are tested in
pseudo out-of-sample on the remaining observations. This operation is performed within
an online framework in which the macroeconomic data is downloaded in the form of real-
time vintages from the Archival Federal Reserve Economic Data (ALFRED) database.10

This ensures that models do not “cheat” by looking forward in time. The models are
re-estimated every time a new ALFRED vintage is released.

Target Pre COVID-19 Post COVID-19

Autoregressive Augmented Autoregressive Augmented

WILL5000IND 0.760 0.739 0.754 0.739
WILLLRGCAP 0.768 0.745 0.756 0.738
WILLLRGCAPVAL 0.770 0.765 0.779 0.773
WILLLRGCAPGR 0.765 0.702 0.729 0.689
WILLMIDCAP 0.783 0.758 0.815 0.803
WILLMIDCAPVAL 0.784 0.763 0.863 0.859
WILLMIDCAPGR 0.835 0.720 0.799 0.732
WILLSMLCAP 0.750 0.704 0.788 0.767
WILLSMLCAPVAL 0.757 0.753 0.816 0.822
WILLSMLCAPGR 1.132 0.683 1.007 0.713

Table 2.3.2: Mean squared error relative to a forecast constant at zero. Values lower than 1 denote
cases where this naive benchmark was outperformed by alternative forecasting models.
Notes: The mean squared errors are computed using a one-month ahead forecast horizon, in real-time,
over the target observations spanning from February 2005 to January 2021. The columns marked as
“Autoregressive” refer to ensembles whose predictors are the lags of the target variable. The columns
marked as “Augmented” refer to the factor-augmented ensembles in section 2.3. The Pre COVID-19
period uses the ALFRED vintages up to the 28th February 2020 release (included) and the
corresponding Wilshire data.

Table 2.3.2 summarises the pseudo out-of-sample results in the form of mean squared
error relative to a forecast constant at zero, a simple naive benchmark. The baseline
ensembles do not use the factor-augmentation described above. The output shows that
the business cycle is helpful in forecasting even in the post COVID-19 period. In order
to better understand the predictability drivers, this section uses figure 2.3.2 and the
additional figures in section 2.B. These charts compare the factor-augmented ensembles
estimated pre and post COVID-19 (i.e., estimating it first with data as at 28th February
2020 and then with the latest vintage available) by looking at the bagging importance
weights: the number of times, in percentage points, that a predictor is selected to create a
split in the underlying factor-augmented regression trees. Essentially, an internal ranking
of the predictors. Figure 2.3.2 reports the total importance of the lagged target and
factor augmentation. Mid to small cap shares are usually more vulnerable than blue
chips to changes in economic conditions. Indeed, a broad range of papers such as Gertler
10The macroeconomic test sample includes 861 vintages and a minimum of 2277 observations per vintage.
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Figure 2.3.2: Importance weights pre and post COVID-19.
Notes: The “Autoregressive” and “Augmentation” bars reflect the cumulative weights for the lagged
target and transformed business cycle. Pre COVID-19 weights are computed using the macroeconomic
series available on the 28th February 2020 on ALFRED and the corresponding Wilshire data.

and Gilchrist (1994) and Bernanke et al. (1996) argue that small firms do not have a
broad range of financing options and mostly use intermediaries to access credit. This
leaves them more at risk during a downturn when banks become more selective with
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respect to credit extensions. Therefore, it is not surprising that the factor augmentation
is especially crucial for the Wilshire indices referring to these market capitalisations. In
addition, figure 2.3.2 highlights how the factor augmentation is even more relevant post
COVID-19, a period of unprecedented high volatility and uncertainty. The additional
charts in section 2.B highlight a high heterogeneity across targets.

2.4. Concluding remarks
This manuscript proposes a two-step method for handling predictors that exhibit mea-
surement error, non-stationary trends, seasonality and/or irregularities such as missing
observations within standard time-series regression trees. This approach can be intu-
itively thought as an automated feature engineering process that extracts a series of
stationary and common patterns hidden in the predictors, while discarding troublesome
characteristics. Given that this technique builds on a state-space model, the process can
be easily enriched with domain-specific theory.

Section 2.3 shows promising results for empirical macro-finance problems based on
bootstrap aggregating. Indeed, it proposes to use these ensembles for studying unclear
non-linear links between the US business cycle and equity volatility within a forecast-
ing setting. These factor-augmented ensembles outperform both naive benchmarks and
standard bagging for all targets, both pre and post COVID-19. The models are further
studied under the lenses of importance weights: an automated and internal ranking of
the predictors. This shows that the augmentation is crucial and especially relevant for
predicting volatility of mid to small cap equity indices. This is consistent with the liter-
ature that considers smaller companies as particularly vulnerable to negative changes in
the business cycle due to their limited financing options.

Factor-augmented trees can be easily used for building more sophisticated ensembles
or to study other problems: for instance to model the yield curve with a framework
compatible with unspecified non-linearities.
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Appendix

2.A. Business cycle estimation

2.A.1. Trend-cycle model

Re-write the model in assumption 23 in the state-space form

Zt = BΦt + ξt,

Φt = CΦt−1 + Dζt.

The measurement coefficient matrix is sparse and the non-zero entries are such that

B :=



1 · · · · · · · · . . . · 1 · · · · · · · · 1 · . . . ·
· 1 · · · · · · · . . . · · 1 · · · · · · · Υ̃1,1 Υ̃1,2 . . . Υ̃1,p

· · 1 · · · · · · . . . · · · 1 · · · · · · Υ̃2,1 Υ̃2,2 . . . Υ̃2,p

· · · 1 · · · · · . . . · · · · 1 · · · · · Υ̃3,1 Υ̃3,2 . . . Υ̃3,p

· · · · 1 · · · · . . . · · · · · 1 · · · · Υ̃4,1 Υ̃4,2 . . . Υ̃4,p

· · · · · 1 · · · . . . · · · · · · 1 · · · Υ̃5,1 Υ̃5,2 . . . Υ̃5,p

· · · · · · 1 · · . . . · · · · · · · 1 · · Υ̃6,1 Υ̃6,2 . . . Υ̃6,p

· · · · · · · 1
η8
· . . . · · · · · · · · 1 · Υ̃7,1 Υ̃7,2 . . . Υ̃7,p

· · · · · · · 1
η9
· . . . · · · · · · · · · 1 Υ̃8,1 Υ̃8,2 . . . Υ̃8,p



,

︸ ︷︷ ︸
9×8

︸ ︷︷ ︸
9×8

︸ ︷︷ ︸
9×9

︸ ︷︷ ︸
9×p

where Υ̃ is a 8 × p matrix of finite real parameters and Υ̃i,j ≈ Υi,j, for any i = 1, . . . , 8
and j = 1, . . . , p.11 The transition matrices are also sparse and the non-zero entries are
11This numerical approximation is governed by ε in assumption 23.
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such that

C :=



1 · · 1 · · · · · · · · · ·

· . . . · · . . . · · · · · · · · ·
· · 1 · · 1 · · · · · · · ·
· · · 1 · · · · · · · · · ·

· · · · . . . · · · · · · · · ·
· · · · · 1 · · · · · · · ·
· · · · · · π1 · · · · · · ·

· · · · · · · . . . · · · · · ·
· · · · · · · · πn · · · · ·
· · · · · · · · · πn+1 πn+2 . . . πn+p−1 πn+p

· · · · · · · · · 1 · . . . · ·

· · · · · · · · · · 1 . . . ... ...
· · · · · · · · · ... . . . . . . ... ...
· · · · · · · · · · . . . . . . 1 ·



,

︸ ︷︷ ︸
q×8

︸ ︷︷ ︸
q×8

︸ ︷︷ ︸
q×9

︸ ︷︷ ︸
q×p

D :=



· · · · · · ·
· · · · · · ·
· · · · · · ·
1 · · · · · ·

· . . . · · · · ·
· · 1 · · · ·
· · · 1 · · ·

· · · · . . . · ·
· · · · · 1 ·
· · · · · · 1
· · · · · · ·



,

︸ ︷︷ ︸
q×8

︸ ︷︷ ︸
q×9

︸︷︷︸
q×1

where π is a n + p × 1 vector of finite real parameters and q = 25 + p. The innovation
in the transition equation ζt

w.n∼ N (0r×1,Σ) with Σ being a r × r positive definite real
diagonal matrix and r = 18. This representation implies that

Φt :=
(
τ1,t . . . τ8,t δ1,t . . . δ8,t ψ2,t ψ3,t . . . ψ10,t ψ1,t ψ1,t−1 . . . ψ1,t−p+1

)′
.︸ ︷︷ ︸

8×1
︸ ︷︷ ︸

8×1
︸ ︷︷ ︸

9×1
︸ ︷︷ ︸

p×1
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The initial conditions for the states are such that Φ0
w.n.∼ N(µ0,Ω0), where µ0 and Ω0

denote a q × 1 real vector and a q × q positive definite real covariance matrix. The
matrix Ω0 is sparse and the entries that can differ from zero are those with coordinates
(i, j) ∈ {(i, j) : i = j and 1 ≤ i ≤ 25} ∪ {(i, j) : 25 < i ≤ q and 25 < j ≤ q}.

Remark. The empirical application assumes that Σ is diagonal. This implies an exact
factor model (i.e., no cross-sectional dependence in the idiosyncratic components) and,
in doing so, it simplifies the narrative. However, this assumption may be too restrictive
for more general problems. For similar problems, the assumptions could be relaxed and
the ECM algorithm described in this appendix could be presented as a penalised quasi
maximum likelihood estimation method building on the theoretical results in Barigozzi
and Luciani (2020).

2.A.2. The Expectation-Conditional Maximisation algorithm

Denote the model free parameters with

ϑ :=
(

µ′
0 vech(Ω0)′ vec(Υ̃)′ π′ Σ1,1 Σ2,2 . . . Σr,r

)′
.

The ECM algorithm estimates these coefficients by repeating the optimisation process
illustrated in definition 19 until convergence.

Definition 19 (ECM estimation routine). At any k+1 > 1 iteration, the ECM algorithm
computes the vector of coefficients

ϑ̂
k+1
s (γ) := arg max

ϑ ∈R

E
[
L(ϑ |Z1:s,Φ1:s) |Z(s), ϑ̂

k

s(γ)
]
− E

[
P(ϑ,γ) |Z(s), ϑ̂

k

s(γ)
]
,

where R denotes the region in which the AR cycles (common and idiosyncratic) are
causal, Z(s) is the information set available at time s,

L(ϑ |Z1:s,Φ1:s) ≃−
1
2

ln |Ω0| −
1
2

Tr
[
Ω0

−1(Φ0 − µ0)(Φ0 − µ0)′
]

(2.1)

− s

2
ln |Σ| − 1

2
Tr
[ s∑

t=1
Σ−1(Φ∗,t −C ∗Φt−1)(Φ∗,t −C ∗Φt−1)′

]

− s

2
ln |R| − 1

2
Tr
[ s∑

t=1
R−1(Zt −BΦt)(Zt −BΦt)′

]
,

Φ∗,t ≡ D′Φt, C ∗ ≡ D′C, and the underlined matrices denote the state-space coefficients
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implied by ϑ. Besides,

P(ϑ,γ) := +1− α
2

(∥∥∥π 1:n Γ(γ, 1)
1
2
∥∥∥2

F
+
∥∥∥π′

n+1:n+p Γ(γ, 1)
1
2
∥∥∥2

F
+
∥∥∥Υ̃ Γ(γ, p)

1
2
∥∥∥2

F

)
+α

2

(∥∥∥π 1:n Γ(γ, 1)
∥∥∥

1,1
+
∥∥∥π′

n+1:n+p Γ(γ, 1)
∥∥∥

1,1
+
∥∥∥Υ̃ Γ(γ, p)

∥∥∥
1,1

)

where, for any l ∈ N,

Γ(γ, l) := λ


1 0 . . . 0
0 β . . . 0
... . . . . . . ...
0 . . . . . . βl−1

 ,

λ ≥ 0, 0 ≤ α ≤ 1 and β ≥ 1 are hyperparameters included in γ. The state-space
coefficients for the first iteration are initialised as in section 2.A.3.

Remark (Objective functions). The function in equation 2.1 is the so-called complete-
data (i.e., fully observed data and known latent states) log-likelihood, while P(ϑ,γ)
represents the generalised elastic-net penalty used in Pellegrino (2023a).

Remark (Underlined coefficients). Some of the underlined state-space coefficients are
partially or fully fixed in accordance with the structure in section 2.A.1. For instance,
D = D since D does not contain free parameters.

Assumption 24 (Convergence). The ECM algorithm is said to be converged when the
criteria in section 2.A.6 are met.

The optimisation in definition 19 is performed in two steps. The first one (E-step)
involves the computation of the expectations in equation 2.1. The second step (CM-step)
conditionally maximises the resulting expected penalised log-likelihood with respect to
the free parameters.

It is convenient to write down the E-step on the basis of the output of a Kalman
smoother compatible with incomplete time series, as in Shumway and Stoffer (1982) and
Watson and Engle (1983). The required output is introduced in definition 20 and used
in proposition 5 to compute the expected log-likelihood.

Definition 20 (Kalman smoother output). The hereinbefore mentioned Kalman smoother
output is

Φ̂t := E
[
Φt |Z(s), ϑ̂

k

s(γ)
]
,

P̂t,t−j := Cov
[
Φt,Φt−j |Z(s), ϑ̂

k

s(γ)
]
,

for any k ≥ 0, 0 ≤ j ≤ t and t ≥ 0. Let also P̂t ≡ P̂t,t.
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Remark. These estimates are computed as in Pellegrino (2023a).

Furthermore, definition 21 is useful to formalise which measurements are observed at
every single point in time.

Definition 21 (Observed measurements). Let

T :=
n⋃

i=1
Ti,

T(s) := {t : t ∈ T, 1 ≤ t ≤ s},

describe two sets representing the points in time (either over the full sample or up to
time s) in which we observe at least one measurement, for 1 ≤ s ≤ T . Let also

Vt := {i : t ∈ Ti, 1 ≤ i ≤ n},

for 1 ≤ t ≤ T . Thus, let

Zobs
t :=

(
Zi,t

)
i∈Vt

Bobs
t := AtB

be the vector of observed measurements at time t and the corresponding |Vt| × q matrix
of coefficients, for any t ∈ T. Every At is indeed a selection matrix constituted by ones
and zeros that permits to retrieve the appropriate rows of B for every t ∈ T.

Proposition 5. Let

Le

[
ϑ |Z(s), ϑ̂

k

s(γ)
]
≡ E

[
L(ϑ |Z1:s,Φ1:s) |Z(s), ϑ̂

k

s(γ)
]
.

Building on definition 20, it follows that

Le

[
ϑ |Z(s), ϑ̂

k

s(γ)
]
≃− 1

2
ln |Ω0| −

1
2

Tr
[
Ω0

−1(Ê− Φ̂0µ0
′ − µ0Φ̂

′
0 + µ0 µ0

′)
]

− s

2
ln |Σ| − 1

2
Tr
[
Σ−1(F̂s − ĜsC′

∗ −C ∗Ĝ
′
s + C ∗ĤsC′

∗)
]

− 1
2ε

Tr

 ∑
t∈T(s)

[(
Zobs

t −Bobs
t Φ̂t

) (
Zobs

t −Bobs
t Φ̂t

)′
+ Bobs

t P̂t Bobs′

t

] ,
where

Ê := E
[
Φ0Φ′

0 |Z(s), ϑ̂
k

s(γ)
]

= Φ̂0Φ̂
′
0 + P̂0,

F̂s :=
s∑

t=1
E
[
Φ∗,tΦ′

∗,t |Z(s), ϑ̂
k

s(γ)
]

=
s∑

t=1
D′
(
Φ̂tΦ̂

′
t + P̂t

)
D,
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Ĝs :=
s∑

t=1
E
[
Φ∗,tΦ′

t−1 |Z(s), ϑ̂
k

s(γ)
]

=
s∑

t=1
D′
(
Φ̂tΦ̂

′
t−1 + P̂t,t−1

)
,

Ĥs :=
s∑

t=1
E
[
Φt−1Φ′

t−1 |Z(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
Φ̂t−1Φ̂

′
t−1 + P̂t−1

)
.

proof. The proof is analogous to the one in Pellegrino (2023a, Proposition 4). □

Remark. D = D plays the role of a selection matrix. In particular premultiplying by
D′ allows to select rows and postmultiplying by D columns.

Lemma 12. The conditional expectation for the penalty in definition 19 is

E
[
P(ϑ,γ) |Z(s), ϑ̂

k

s(γ)
]

= P(ϑ,γ).

proof. A formal proof is not reported since it is immediate. Indeed, the penalty function
in this ECM algorithm depends only on the current vector of coefficients and hyperpa-
rameters. □

The CM-step conditionally maximises the expected penalised log-likelihood

Me

[
ϑ,γ |Z(s), ϑ̂

k

s(γ)
]

:= Le

[
ϑ |Z(s), ϑ̂

k

s(γ)
]
− P(ϑ,γ) (2.2)

to estimate the state-space parameters. The estimated coefficients are denoted with an
“hat” symbol. Besides, an s subscript is used for highlighting the sample size and a
superscript for denoting the ECM iteration.

Lemma 13. The ECM estimator at a generic iteration k + 1 > 0 for µ0 is

µ̂k+1
0,s (γ) = Φ̂0

and the estimator for Ω0 is a sparse covariance matrix whose non-zero entries are[
Ω̂k+1

0,s (γ)
]

i,j
=
[
P̂0

]
i,j
,

for (i, j) ∈ {(i, j) : i = j and 1 ≤ i ≤ 25} ∪ {(i, j) : 25 < i ≤ q and 25 < j ≤ q}.

proof. The derivative of equation 2.2 with respect to µ0 is

∂Me

[
ϑ,γ |Z(s), ϑ̂

k

s(γ)
]

∂µ0
= −1

2
Ω0

−1
(
−2Φ̂0 + 2µ0

)
.

It follows that the maximiser for the expected penalised log-likelihood is

µ̂k+1
0,s (γ) = Φ̂0.
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The derivative of equation 2.2 with respect to Ω0 and fixing µ0 = µ̂k+1
0,s (γ) is

− 1
2

Ω0
−1 + 1

2
Ω0

−1
[
Ê− Φ̂0Φ̂

′
0

]
Ω0

−1 = −1
2

Ω0
−1 + 1

2
Ω0

−1P̂0 Ω0
−1.

as also shown in Pellegrino (2023a). Given the assumptions in section 2.A.1 on the
structure of Ω0, it follows that Ω̂k+1

0,s (γ) is a sparse matrix whose non-zero entries are
[
Ω̂k+1

0,s (γ)
]

i,j
=
[
P̂0

]
i,j
,

for (i, j) ∈ {(i, j) : i = j and 1 ≤ i ≤ 25} ∪ {(i, j) : 25 < i ≤ q and 25 < j ≤ q}. □

Definition 22. Let Γ̃(γ) be a diagonal q×q matrix whose non-zero entries are such that

Γ̃(γ) :=


· · ·
· λ I9 ·
· · Γ(γ, p)

 .

Lemma 14. The ECM estimator at a generic iteration k + 1 > 0 for C is such that

Ĉk+1
i,j,s (γ) =

S
[
Σ̂k−1

i,i,s(γ)
(
Ĝi,j,s −

∑q
l=1, l ̸=j Ĉ

k+Il<j

i,l,s (γ) Ĥl,j,s

)
, α

2 Γ̃j,j (γ)
]

Σ̂k−1
i,i,s(γ) Ĥj,j,s + (1− α) Γ̃j,j (γ)

,

for any (i, j) ∈ {(i, j) : i = j and 17 ≤ i ≤ 25} ∪ {(i, j) : i = 26 and 26 ≤ j ≤ q}, and
constant to the values in section 2.A.1 for the remaining entries.

proof. Given that the absolute value function in the penalty is not differentiable at zero,
this part of the ECM algorithm estimates, in turn, the free entries of C (i.e., π1, . . . , πn+p)
while fixing Σ = Σ̂k

s(γ) and any other free entry of C to their latest estimate. For any
C i,j ̸= 0 corresponding to a free parameter, the derivative of equation 2.2 with respect
to C i,j having fixed the coefficients as described in the previous sentence is

+ Σ̂k−1

i,i,s(γ)

Ĝi,j,s − C i,jĤj,j,s −
q∑

l=1
l ̸=j

Ĉ
k+Il<j

i,l,s (γ) Ĥl,j,s

− (1− α) Γ̃j,j (γ)C i,j −
α

2
Γ̃j,j (γ) sign(C i,j),

since Σ̂k

s(γ) is diagonal. It follows that

Ĉk+1
i,j,s (γ) =

S
[
Σ̂k−1

i,i,s(γ)
(
Ĝi,j,s −

∑q
l=1, l ̸=j Ĉ

k+Il<j

i,l,s (γ) Ĥl,j,s

)
, α

2 Γ̃j,j (γ)
]

Σ̂k−1
i,i,s(γ) Ĥj,j,s + (1− α) Γ̃j,j (γ)

,

for any (i, j) ∈ {(i, j) : i = j and 17 ≤ i ≤ 25} ∪ {(i, j) : i = 26 and 26 ≤ j ≤ q}, and
constant to the values in section 2.A.1 for the remaining entries. □
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Lemma 15. The ECM estimator at a generic iteration k + 1 > 0 for Σ is such that

Σ̂k+1
i,i,s (γ) = 1

s

[
F̂s − ĜsĈ

k+1′

s (γ)− Ĉk+1
s (γ) Ĝ′

s + Ĉk+1
s (γ) ĤsĈ

k+1′

s (γ)
]

i,i

for i = 1, . . . , r and zero for the remaining entries.

proof. The proof is equivalent to the one reported in Pellegrino (2023a, Lemma 10).
However, in this manuscript, Σ̂k+1

s (γ) is diagonal as indicated in section 2.A.1. □

Lemma 16. Let

M̂s :=
∑

t∈T(s)
A′

tZobs
t Φ̂′

t,

N̂t := A′
tAt,

Ôt := Φ̂tΦ̂
′
t + P̂t.

The ECM estimator at a generic iteration k + 1 > 0 for B is such that

B̂k+1
i,j,s (γ) =

S
[
M̂i,j,s −

∑
t∈T(s) N̂i,i,t

∑q
l=1,l ̸=j B̂

k+Il<j

i,l,s (γ) Ôl,j,t,
α
2 ε Γ̃j,j (γ)

]
∑

t∈T(s) N̂i,i,tÔj,j,t + (1− α) ε Γ̃j,j (γ)
,

for any (i, j) ∈ {(i, j) : 2 ≤ i ≤ n and 26 ≤ j ≤ q}, and constant to the values in
section 2.A.1 for the remaining entries.

proof. Note that

∑
t∈T(s)

[(
Zobs

t −Bobs
t Φ̂t

) (
Zobs

t −Bobs
t Φ̂t

)′
+ Bobs

t P̂t Bobs′

t

]

=
∑

t∈T(s)

[(
Zobs

t −AtBΦ̂t

) (
Zobs

t −AtBΦ̂t

)′
+ AtBP̂tB′A′

t

]

=
∑

t∈T(s)

[
Zobs

t Zobs′

t − Zobs
t Φ̂′

tB′A′
t −AtBΦ̂tZobs′

t + AtB
(
Φ̂tΦ̂

′
t + P̂t

)
B′A′

t

]
.

Note also that all N̂t are diagonal. Indeed, at any point in time t when all series are
observed At = N̂t = In. Besides, at any other t ∈ T(s),

N̂i,i,t =

1 if the i-th series is observed at time t,

0 otherwise,

for i = 1, . . . , n. Given that the absolute value function in the penalty is not differentiable
at zero, this part of the ECM algorithm estimates, in turn, the free entries of B (i.e.,
Υ̃1,1, . . . , Υ̃1,p, . . . , Υ̃8,p) while fixing any other free entry of B to their latest estimate.
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For any B i,j ̸= 0 corresponding to a free parameter, the derivative of equation 2.2 with
respect to B i,j having fixed the coefficients as described in the previous sentence is

+ ε−1

M̂i,j,s −
∑

t∈T(s)
N̂i,i,t

q∑
l=1
l ̸=j

B̂
k+Il<j

i,l,s (γ) Ôl,j,t

−B i,j

ε−1 ∑
t∈T(s)

N̂i,i,tÔj,j,t + (1− α) Γ̃j,j(γ)



− α

2
Γ̃j,j(γ) sign(B i,j),

since all N̂t are diagonal. It follows that

B̂k+1
i,j,s (γ) =

S
[
M̂i,j,s −

∑
t∈T(s) N̂i,i,t

∑q
l=1,l ̸=j B̂

k+Il<j

i,l,s (γ) Ôl,j,t,
α
2 ε Γ̃j,j (γ)

]
∑

t∈T(s) N̂i,i,tÔj,j,t + (1− α) ε Γ̃j,j (γ)
,

for any (i, j) ∈ {(i, j) : 2 ≤ i ≤ n and 26 ≤ j ≤ q}, and constant to the values in
section 2.A.1 for the remaining entries. □

2.A.3. Initialisation of the Expectation-Maximisation algorithm

The first step in the initialisation involves computing a first approximation for the trends.
This is achieved via univariate trend-cycle decompositions. In the case of headline and
core inflation, the initialisation of the trend involves a further operation. Trend inflation is
initialised by taking the mean between the persistent components estimated for headline
and core inflation, appropriately rescaled by η8 and η9. The variances of the innovations
are calculated on the double differenced initial trends.

The second step involves the initialisation of the cycles, which is performed on the
de-trended data. The business cycle is approximated by the first principal component of
the de-trended data and a series of ridge regressions is used for computing the coefficients
of the cycles. The restrictions described in section 2.A.1 are enforced on each regression.
The variances of the innovations are computed on the sample residuals.

2.A.4. Enforcing causality during the estimation

The ECM algorithm used in this manuscript ensures that the AR states (i.e., the common
cycle and idiosyncratic noise components) are causal at every iteration. This is achieved
with the approach proposed in Pellegrino (2023a, Section C.4) for vector autoregressions.

2.A.5. Hyperparameter selection

The hyperparameters are selected using the artificial jackknife selection method proposed
in Pellegrino (2023a). In the empirical application in section 2.3, the grid of candidate
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hyperparameters H = Hp ×Hλ ×Hα ×Hβ is such that Hp := {12}, Hλ := [10−2, 2.5],
Hα := [0, 1] and Hβ := [1, 1.2]. The selection process returns the specification with
the lowest expected forecast error for headline inflation, following a rational similar to
Jarocinski and Lenza (2015).12

2.A.6. Estimation algorithm

Algorithm 2: ECM algorithm for the trend-cycle decomposition

Initialization
The ECM algorithm is initialised as described in section 2.A.3.

Estimation
for k ← 1 to max_iter do

for j ← 1 to m do
Run the Kalman filter and smoother using ϑ̂

k−1
s (γ);

if converged then
Store the parameters and stop the loop.

end
Estimate µ̂k

s,0(γ) and Ω̂k

s,0(γ) as in lemma 13;
Estimate Ĉk

s(γ), Σ̂k

s(γ) and B̂k

s(γ) as in lemmas 14–16;
Build ϑ̂

k

s(γ);
end

end

Notes

• The results are computed fixing max_iter to 1000. This is a conservative number, since the
algorithm generally requires substantially less iterations to converge.

• The ECM algorithm is considered to be converged when the estimated coefficients (all relevant
parameters in lemmas 14–16) do not significantly change in two subsequent iterations. This is
done by computing the absolute relative change per parameters and comparing at the same time
the median and 95th quantile respectively with a fixed tolerance of 10−3 and 10−2. Intuitively,
when the coefficients do not change much, the expected log-likelihood and the parameters in
lemma 13 should also be stable.

• The scalar ε is summed to the denominator of each relative change in order to ensure numerical
stability.

The replication code for this paper is available on GitHub.

12The weights in Pellegrino (2023a) are set to be equal to zero for all variables with the exception of
headline inflation which has weight equal to one.

https://github.com/fipelle/replication-pellegrino-2022-ensembles
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2.B. Additional charts and tables

Acronym Description

BEA Bureau of Economic Analysis
BLS Bureau of Labor Statistics
CPI Consumer Price Index
FRB Federal Reserve Board
FRBSL Federal Reserve Bank of St. Louis
TMI Total Market Index
WA Wilshire Associates

Table 2.B.1: Glossary for the acronyms in table 2.3.1.
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Figure 2.B.1: Importance weights pre COVID-19: top 10 predictors.
Notes: Pre COVID-19 weights are computed using the macroeconomic series available on the 28th
February 2020 on ALFRED and the corresponding Wilshire data.
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Figure 2.B.2: Importance weights post COVID-19: top 10 predictors.
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3 Multidimensional dynamic factor

models

This paper generalises dynamic factor models for multidimensional dependent data. In
doing so, it develops an interpretable technique to study complex information sources
ranging from repeated surveys with a varying number of respondents to panels of satellite
images. We specialise our results to model microeconomic data on US households jointly
with macroeconomic aggregates. This results in a powerful tool able to generate localised
predictions, counterfactuals and impulse response functions for individual households,
accounting for traditional time-series complexities depicted in the state-space literature.
The model is also compatible with the growing focus of policymakers for real-time economic
analysis as it is able to process observations online, while handling missing values and
asynchronous data releases.

3.1. Introduction
Nowadays, it is easy to find datasets with millions of observations and measurements
taken over a broad range of time periods. However, complexity increases with the number
of dimensions considered per period and, thus, not all datasets are created equal.

Tabular datasets are often easier to model than more abstract cases, including time
series of satellite images and texts. This reduced complexity inspired the development
of interpretable models with straightforward policy applications. For instance, tabu-
lar multivariate time series are commonly studied via impulse response functions and
conditional forecasts to determine appropriate fiscal and monetary policy actions. Un-
structured datasets have been mostly studied through less explainable models and, as a
result, they are not as used for policy. This is a pity, given that they could be handy for
a broad range of applications, including studying poverty through satellite images and
predicting volatility from market-risk reports, as surveyed in Mullainathan and Spiess
(2017). Agreeing with similar considerations, we propose a framework compatible with
multidimensional dependent data that retains the explainability of traditional statistical
models.

Our approach suggests to reshape multidimensional data into a tabular multivariate
73
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time series with a peculiar vectorisation that accounts for temporal variations in the
sample size and composition. Once the transformation is completed, we propose to
model the resulting data on the basis of state-space methods (e.g., Harvey, 1990) and
reduce the magnitude of the problem by extracting unobserved common components
across multiple dimensions and time. In doing so, we manage to obtain an explainable
technique flexible enough for handling complex datasets and capable of being linked with
domain-specific concepts through identification schemes such as those in Bai and Wang
(2015). This dimensionality reduction technique can be interpreted as a generalisation
of the one employed by dynamic factor models. As such, the origins of our methodology
are rooted in psychometrics (Lawley and Maxwell, 1962) and time-series econometrics
(Geweke, 1977; Forni et al., 2000, 2005, 2009; Forni and Lippi, 2001; Bernanke et al., 2005;
Doz et al., 2012; Barigozzi and Luciani, 2020). In light of that, we call it multidimensional
dynamic factor model.

We specialise our manuscript for analysing microeconomic data on households and
macroeconomic time series jointly. This problem is indeed multidimensional since, at
each point in time t, we observe a survey containing Nt households with K characteristics
of interest. Our modelling choice is compatible with economic theory and flexible enough
to describe the characteristics of different groups of households, thus helping measuring
income inequality.

Our use of repeated microeconomic surveys is different from traditional approaches:
we neither pretreat the time-series cross-sectional data by transforming it into aggregate
indices, nor model it via cross-sectional regressions with a linear trend predictor. Instead,
it shares similarities with the approach in Liu and Plagborg-Møller (2021). We both use
macroeconomic aggregates, households data and state-space modelling. However, we
model everything in one step and within a single state space, while they use a two-step
method in which the latent components are extracted from macroeconomic aggregates
only. This allows us to have a system able to handle microeconomic complexities such as
the temporal dynamics of each household. As a result, we make a better use of the data
and model serial correlation in household income across groups of demographics. Besides,
using cyclical and non-stationary latent components we distinguish between transitory
and persistent determinants of household income. We are not aware of other papers
handling similar complexities at once and refer to the introduction of Liu and Plagborg-
Møller (2021) for an in-depth survey of correlated articles.

Our empirical analysis is based on a large dataset containing macroeconomic aggre-
gates from the Archival Federal Reserve Economic Data (ALFRED) and households in-
formation collected in the Consumer Expenditure (CE) Public Use Microdata (PUMD).
Our empirical results highlight differences in household income among distinct demo-
graphics. In particular, we find that our MDFM is able to capture persistent parts of
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income linked with education and ethnicity. Besides, we show that our model is able to
track the demographics surveyed in the CE PUMD before its official publication date,
thus extending the findings in Giannone et al. (2008) and the scope of nowcasting to
microeconomic problems.

3.2. Methodology

3.2.1. Data processing

This subsection illustrates our approach to process multidimensional multivariate depen-
dent data.

Assumption 25 (Data). Let Ht ∈ RNt×K be a data matrix with Nt > 0 and K > 0,
and denote with ht the NtK × 1 vectorisation of Ht, for every point in time t. Besides,
assume that Ht is a finite realisation of some stochastic process observed at any point in
time t ∈ T ⊆ {1, . . . , T} where T ≥ 1.

Remark. In our notation, Nt denotes the number of subjects at each point in time. It
is important to stress that we talk about “subjects” figuratively. Indeed, our definition
is not restricted to individuals, but extends to any abstract thing with a data structure
compatible with assumption 25.

Example 4 (Time-series cross sections). In the case of time-series cross-sectional data

Ht =


H1,1,t . . . H1,K,t

... . . . ...
HNt,1,t . . . HNt,K,t


represents a cross section referring to time t and

ht =
(
H1,1,t . . . H1,K,t . . . HNt,1,t . . . HNt,K,t

)′
,

where Nt > 0 is the number of cross-sectional observations for time t and K is the total
number of covariates. In social sciences, similar datasets generally represent complex
surveys with a varying number of respondents. However, Ht could also represent more
exotic data. For instance, the RGB representation of a satellite image taken at time t
with Nt pixels.

Example 5 (Time series). The banal case in which Ht ∈ RNt gives a time series dataset.
Indeed, Ht = (H1,t . . . , HNt,t)′ for any t ∈ T. The value taken by Nt over all t ∈ T

controls whether this dataset represents a univariate or a multivariate time series, and if
it is fully observed.
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With empirical problems involving this data structure, new (old) subjects can be
added (removed) over time. This implies that the same subject can be observed in
our dataset at different positions across multiple points in time. We account for this
complexity by associating a subject-characteristic identifier to each entry of ht, for every
point in time t ∈ T in which at least one characteristic is observed.

Definition 23 (Identifiers). In order to allow for this complexity, we let

St := {f(i, t) : 1 ≤ i ≤ NtK},

for any t ∈ T. The function f : N×N→ N is a convenient way for categorising different
subjects. Indeed, we structure it to be equal to one when evaluated at (1, 1) and to have
an incremental value for any pair referring to a new feature of the same subject, or to a
new subject. This implies that f(i1, t1) = f(i2, t2) if and only if (i1, t1) and (i2, t2) refer
to the same subject-characteristic pair. Hence, we let

S :=
⋃

t∈T

St

be the set of all (observed) subject-characteristic pairs. For simplicity, we let N := |S|
K

be
the number of unique subjects.

Remark. Under assumption 25, a minimum of one subject is observed across the whole
sample and thus N > 0. Besides, note that N is a natural number by construction.

Finally, we build on definition 23 and reshape the data into a multivariate time series.

Definition 24. Indeed, we let Yt := Wt ht to be a NK × 1 vector of time series where
Wt is a NK ×NtK matrix such that

Wi,j,t =

1, if f(j, t) = i and i ∈ St,

0, otherwise,

for any t ∈ T, 1 ≤ i ≤ NK and 1 ≤ j ≤ NtK. In order to have a record of the
non-missing entries of each i-th subject-characteristic pair, we also let Ti ⊆ T to be the
set of points in time in which it is observed. Interestingly, T = ⋃N

i=1 Ti.

Remark. Note that by taking track of the observed datapoints via the Ti sets, we can
distinguish between real zeros and missing values. Indeed, we do so in the estimation
method described below. Moreover, due to assumption 25, all Ti referring to a single
subject are identical (i.e., when we observe a subject we measure all of its characteristics).
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3.2.2. Multidimensional dynamic factor models

This subsection formalises our approach for modelling generic multidimensional multivari-
ate data via dynamic factor models. This methodology is then specialised in section 3.2.3
focussing on economics.

A multidimensional dynamic factor model (MDFM) is a decomposition of the data
class described in section 3.2.1 into mutually orthogonal common and idiosyncratic com-
ponents at all leads and lags.

Assumption 26 (Generic MDFM). Going forward, we assume that the model for any
Yt is the multidimensional dynamic factor model

Yt = B(L)Φt + et, et
w.n.∼ N(0NK×1,R),

Φt = C(L)Φt−1 + Dut, ut
w.n.∼ N(0r×1,Σ),

where Φt denotes a vector of latent components (stationary and/or non-stationary) and
for some positive definite covariance matrices R and Σ. The vector Φt is q-dimensional
with 1 ≤ q ≪ NK, linked to the measurements via the matrix B(L) and with dynamics
determined by C(L). Besides, D is q × r with 1 ≤ r ≤ q.

Remark. In this article, the common components are not restricted to be stationary.

This model is extremely general and requires a set of restrictions in the parameters
to be uniquely identified. This problem is analogous to the one observed with generic
dynamic factor models (which are a particular case of MDFM) and it can be handled
with the approaches proposed in Bai and Ng (2013) and Bai and Wang (2015). However,
if the empirical problem at hand requires the extraction of multiple factors from datasets
with subjects observed once or very few times over the full sample, it becomes hard to do.
In those cases, it is often convenient to construct the dataset using both time series and
multidimensional data. In doing so, a minimal number of subjects (i.e., the number of
time series) is observed for most/all points in time and can be used for defining more solid
identifying restrictions. Section 3.2.3 follows this approach for proposing a specialised
model for economic data.

As for the case of standard dynamic factor models, the MDFM can be estimated
with an EM (Dempster et al., 1977; Rubin and Thayer, 1982; Shumway and Stoffer,
1982; Watson and Engle, 1983; Bańbura and Modugno, 2014; Barigozzi and Luciani,
2020), ECM (Meng and Rubin, 1993; Pellegrino, 2023a,b) or ECME algorithm (Liu and
Rubin, 1994), as well as with Bayesian methods (Särkkä, 2013). These techniques allow
to have missing observations in the measurements, which are often found in the class of
multidimensional data described in this manuscript.
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3.2.3. A microfounded dynamic factor model

We specialise our approach to model microeconomic data jointly with macroeconomic ag-
gregates. This subsection introduces our empirical research question and the economics-
informed restrictions we employ for identifying the MDFM.

We propose to use a MDFM for understanding the effect of expansions and recessions
on individual US households. In particular, we aim to do so studying the sensitivity of
their real income per head to changes in the business cycle (BC), while taking into account
the differences that exist across demographic groups (both temporary and persistent).
This is an important question for politicians and central bankers. Indeed, an accurate
answer would allow to systematically target fiscal and monetary policies for addressing
the needs of specific demographic groups.

We collect data on US households from the Consumer Expenditure (CE) Public Use
Microdata (PUMD). This is a vast dataset containing information on consumers and
their household, including demographic characteristics, income and expenditure figures.
The data is collected by the Census Bureau for the Bureau of Labor Statistics in the
Interview Survey and Diary Survey. We focus on the first – which is the one describing
major and/or recurring items – to gather information on quarterly income before tax and
descriptive characteristics at the household level.1

In particular, we use the FMLI and ITBI files published from 1990 to 2020 for con-
structing a quarterly dataset containing demographic and nominal income data.2 We
exclude the subset of households that has not provided enough information to be cate-
gorised under one or more of the demographic characteristics in table 3.2.1, those whose
attributes changed over time and the consumer units that have not provided any informa-
tion on their income at all.3 Moreover, we focus on prime working age urban consumer
units (i.e., 25 to 54 years). The resulting dataset comprises a total of approximately
87,000 households.

Definition 25 (Groups). Define G as the Cartesian product of the household attributes
on education and ethnicity in table 3.2.1: a set with cardinality four such that each
member is a unique combination of characteristics that identifies a specific demographic
group. For simplicity, we refer to these groups in the order: (0, 0), (0, 1), (1, 0), (1,
1) whereas zero and one refers to the values taken by the binary variables EDUC_HH
and WHITE_HH. Finally, we also let ω ≡ ω(G) be the vector of integers denoting the
number of households per group observed across all periods.
1Note that the BLS refers to households as consumer units (CUs). We use them as synonyms.
2We have decided to start from the 1990 file since the ITBI data was not available from 1981 to 1989.
Note that the 1990 file also includes data referring to 1989 (from October).

3We do not exclude households whose income changed over time or with an incomplete income record,
as long as we have at least one observation.
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Description Mnemonic Categorical File

Census region REGION Y FMLI
College educated household EDUC_HH Y FMLI
Family size FAM_SIZE N FMLI
Family type FAM_TYPE Y FMLI
Prime working age PRIME_AGE Y FMLI
Real household income per head (before tax) INCOME N FMLI and ITBI
Urban consumers BLS_URBN Y FMLI
White household WHITE_HH Y FMLI

Table 3.2.1: Consumer Expenditure (CE) Public Use Microdata (PUMD) selection. The data is
extracted from the FMLI and ITBI files published from 1990 to 2020. We deflate the nominal income
per head data in the ITBI using the PCE price index in table 3.2.2. Further details on the data
construction are reported in section 3.A.
Source: Census Bureau for the Bureau of Labor Statistics, Bureau of Economic Analysis.

In addition to the microeconomic data, we also use macroeconomic aggregates. We
first transform the nominal income figures obtained from the CE PUMD into real terms
deflating them with the headline PCE price index – keeping them at household level.
Next, we merge the resulting real income figures with the macro dataset in table 3.2.2.
In order to perform these operations correctly, we download the macroeconomic series
from the Archival Federal Reserve Economic Data (ALFRED) database and use the
vintage released right after the 2020 CE PUMD Interview Survey’s publication date.

Definition 26 (Empirical data). We then arrange the data to match the structure in
definition 24 and let

Yt =
(
X′

t Z′
1,t . . . Z′

4,t

)′
,

where Xt denotes the vector of macroeconomic aggregates and each Zi,t represents the
vector of real income per head for all households in group 1 ≤ i ≤ 4.

Remark. Note that every Zi,t is ωi × 1 dimensional. Since the CE PUMD is structured
to survey the same household for a maximum of 4 quarters, the Zi,t vectors are sparse.
Besides, the missing observations in Yt are handled as in definition 24. Finally, recall
that this application focusses on the four demographic groups indicated in definition 25.

For simplicity, the macroeconomic aggregates are used in the same order reported in
table 3.2.2. Any within-group ordering for the households is equivalent for our MDFM.
We collect them in ascending order, on the basis of the official NEWID identifier available
in Consumer Expenditure Public Use Microdata.4

Having shaped the data in the form prescribed in section 3.2.1 we are now ready
to specialise the MDFM for this household problem. Similarly to recent work on semi-
4Note that the last digit of the NEWID refers to the interview number and the previous ones identify the
consumer units. As a result, we have not considered the last digit of NEWID to identify the households
and determine the within-group ordering.
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Description Mnemonic Source

Real gross domestic product GDPC1 BEA
Real personal consumption expenditures PCECC96 BEA
Real gross private domestic investment GPDIC1 BEA
Total nonfarm employment PAYEMS BLS
Employment-population ratio EMRATIO BLS
Unemployment rate UNRATE BLS
Spot crude oil price (WTI) WTISPLC FRBSL
Headline PCE PCEPI BEA

Table 3.2.2: Macroeconomic aggregates. The dataset is quarterly and includes all observations
available in the vintage released right after the 2020 CE PUMD Interview Survey’s publication date,
starting from October 1989 (to be aligned with the 1990 ITBI). All series are downloaded and used in
levels, except for the prices which are transformed in quarterly year-on-year percentage changes.
Source: Archival Federal Reserve Economic Data (ALFRED) database.

structural models including Hasenzagl et al. (2022a,b) and the empirical application in
Pellegrino (2023b), we identify the model via economics-informed restrictions in order to
extract interpretable unobserved components.

Assumption 27. Formally, we let


X1,t

X2,t

...
X8,t

Z1,t

Z2,t

Z3,t

Z4,t



=



τ1,t

τ2,t

...
τ8,t

τ9,t ιω1

τ10,t ιω2

(τ9,t + τ11,t) ιω3

(τ10,t + τ11,t) ιω4



+



1∑p
i=1 Λ1,iL

i−1

...∑p
i=1 Λ7,iL

i−1∑p
i=1 Λ8,i ιω1L

i−1∑p
i=1 Λ9,i ιω2L

i−1∑p
i=1 Λ10,i ιω3L

i−1∑p
i=1 Λ11,i ιω4L

i−1



ψt +



ξ1,t

ξ2,t

...
ξ8,t

ξ9,t

ξ10,t

ξ11,t

ξ12,t



+ et

where ψt is a causal AR(p) cycle denoting the business cycle; the τ denote smooth trends
of order two modelled as in Kitagawa and Gersch (1996, ch. 8); ξ1,t, . . . , ξ8+|G|,t are causal
AR(1) latent components representing idiosyncratic noise; ι denotes a vector of ones
with length indicated in the subscript. Hereinafter, the number of lags p is assumed
being equal to 4 (quarters).

Remark (Trends). Recall that a generic smooth trend τ modelled as in Kitagawa and
Gersch (1996, ch. 8) is of order k if (1 − L)k τ is a white noise. Besides, note that the
income figures share common trends. In particular: τ 9 models the persistent part of
income for not college educated, not white households; τ 10 models the persistent part
of income for not college educated, white households; τ 11 models the persistent offset of
college educated households.

Remark (CE PUMD data). Assumption 27 implies that each household is modelled as
a function of its own group and the dedicated parameters. In other words, all members
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of the i-th group are modelled via the same set of coefficients and latent factors, for every
1 ≤ i ≤ 4. While the generic structure proposed in assumption 26 could allow for a more
disaggregate model, we do not have enough observations in the CE PUMD to do it. That
being said, the model in assumption 27 has quite a few advantages compared to these
granular theoretical alternatives. Most importantly, it is less subject to idiosyncratic
noise and due to the dimensionality reduction into group factors it is easier to interpret.

The dynamics for the latent factors and the estimation method proposed for this
model are illustrated in section 3.B. The estimation is based on penalised quasi maxi-
mum likelihood estimation (PQMLE) and built on an ECM algorithm similar to the one
employed in Pellegrino (2023b).

3.3. Empirical results

3.3.1. Pre COVID-19 output

We start analysing the results focussing on the pre COVID-19 period (1989 to 2019) and
using a model estimated with the same cutoff.

Figure 3.3.1 reports the macroeconomic aggregates and their trends. The model uses
them for describing the slow-moving and persistent component typical of economic time
series. The difference between data and trend is the cycle. In the case of real GDP and
unemployment rate, their trends are unobserved quantities of economic interest: the so-
called potential output and non-accelerating inflation rate of unemployment (NAIRU).
The Congressional Budget Office (CBO) publishes their own estimates for these objects
which we use to benchmark ours. It is evident from figure 3.3.1 that there are strong
differences only in the case of potential output. Indeed, our calculations imply a causal
cycle with mean zero, whereas the CBO estimates a negative cycle for most periods. This
is consistent with trend-cycle decompositions based purely on macroeconomic aggregates.
Economic implications of this difference in view on potential output are discussed in
Hasenzagl et al. (2022a,b).

Figure 3.3.2 shows similar results for the income figures extracted from the CE PUMD.
The main difference is that each subplot represents a group of households, not a single
aggregate indicator. The demographic information is presented graphically through the
following summary statistics: average, 25% and 75% quantiles. The trends do not refer to
any specific household, but rather on the whole group. From a distributional standpoint,
figure 3.3.2 shows four important points: most households have below-average income;
a few individuals have disproportionate high revenues compared to the rest of their own
demographic; white households are usually higher earners; college education increases
the average income level. Our trend structure, further remarked after assumption 27, is
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Figure 3.3.1: Macroeconomic data and trends.
Notes: The model is estimated with quarterly data from October 1989 to December 2019. The con-
gressional budget office estimates are aligned with the ALFRED vintage in table 3.2.2.
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Figure 3.3.2: Microeconomic data and trends.
Notes: The model is estimated with quarterly data from October 1989 to December 2019.

flexible enough to accommodate for these features. Indeed, figure 3.3.2 show that white
and college educated households have persistently higher trends.

Figure 3.3.3 breaks down the cycles to highlight commonalities and idiosyncrasies.
The former are modelled through the business cycle and explain most of the cyclical
fluctuations across macroeconomic aggregates and demographic groups. Idiosyncratic
fluctuations, on the other hand, depict unique movements in specific macroeconomic
indicators or groups. These are most prevalent for microeconomic data. Indeed, while
the effect of the business cycle is comparable across demographics, each group exhibits
distinct idiosyncratic patterns. Figure 3.C.1 builds on this further reporting the core
drivers of the demographic groups: the sum between their trends and business cycles.
Stripping out the idiosyncratic cycle helps visualising the crucial parts of real household
income. Indeed, the resulting series is less impacted by outliers and noise.
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Figure 3.3.3: Historical decomposition of the cycles.
Notes: The model is estimated with quarterly data from October 1989 to December 2019.

3.3.2. COVID-19 dataflow

We now focus on the dataflow from January 2020 to March 2021 for studying the impact
of COVID-19 on our estimates for the demographic groups. Throughout this subsection,
we keep using the coefficients estimated with data from 1989 to 2019 to avoid altering
the business cycle periodicity with a non traditional recession.

Before getting into the results, it is important to mention that the CE PUMD files
are released in one block for the whole year and with a large delay from their reference
period. Indeed, it is usually possible to access data in the Interview Survey only after
3 months from the end of its reference year. For instance, the 2020 CE PUMD was
released at the end of March 2021. However, extending our information set with more
timely macroeconomic data we can compute early estimates.

We process the hereinbefore mentioned dataflow in a pseudo real-time fashion and
generate early estimates for the microeconomic data at each release. In particular, we
produce backcasts and nowcasts: forecasts referring to the previous and current reference
quarters (Giannone et al., 2008). Given that the CE PUMD data is released one go,
we keep backcasting previous quarters until the publication date. Figure 3.3.4 reports
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Figure 3.3.4: COVID-19 period dataflow.
Notes: The model is estimated with quarterly data from October 1989 to December 2019. The dataflow
contains macroeconomic releases from January 2020 to March 2021. The x-axis reports release dates.

the results for each demographic of interest and, for simplicity, denotes backcasts and
nowcasts as “early estimates”. Overall, these predictions fluctuate closely to the ex-post
group averages. This happens almost immediately and, thus, the expanding macroeco-
nomic information set does not have a strong impact. The early estimates for the second
quarter are the most distant from the ex-post group averages. This is not surprising since
the strongest effect of COVID-19 on economic data was measured in that quarter. We
can also see that sentiment (and expectations) became increasingly negative since after
March, when the World Health Organization (WHO) declared COVID-19 a pandemic.
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3.4. Concluding remarks
This article proposes to generalise Dynamic Factor Models to multidimensional data. The
resulting framework is flexible enough to accommodate complex datasets ranging from
surveys with varying number of respondents to time series of satellite images. However,
it retains the interpretability typical of traditional factor models.

We specialise our approach to model macroeconomic aggregates jointly with microeco-
nomic data on household income. In this analysis, we study the effect of college education
and ethnicity on the household income levels. In doing so, we find that our model is ca-
pable of recognising differences among demographics consistent with well-known stylised
facts. Indeed, it finds that college education has a positive and persistent effect on house-
hold income and that white consumer units usually have higher earnings. We also explore
the cyclical fluctuations in the data and highlight the heterogeneity among demographics.

Finally, realising that CE PUMD files are released with a large delay from their
reference period, we show how to track them in real time focussing on the macroeconomic
dataflow between January 2020 and March 2021. This is in line with the nowcasting
literature (Giannone et al., 2008) and, to the best of our knowledge, the first attempt to
perform a similar exercise on microeconomic data.
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Appendix

3.A. CE PUMD
The demographic characteristics in table 3.2.1 are constructed at the household level.
The following paragraphs give further details on each variable.

• Census region: Census Bureau classification for US regions (1 Northeast, 2 Midwest,
3 South, 4 West). We use it for excluding CUs that moved across the US during
the sampling period.

• College educated households: describes the highest level of education of the reference
person and spouse (if any). It is a dummy variable equal to 1 for CUs in which the
highest education level is, at least, at an undergraduate level and 0 otherwise.

• Family size: Number of family members. We use it for computing real household
income per head (before tax).

• Family type: Family categorisation. We use it for determine whether we there is a
spouse to consider when constructing the other variables in this appendix.

• Prime working age: dummy variable equal to 1 for CUs with average age between
25 and 55 years (excluded) and 0 otherwise. The average age is computed by taking
the sample mean between the age of the reference person and spouse (if any). We
use it for excluding non prime working age households.

• Urban consumers: dummy variable equal to 1 for urban CUs and 0 otherwise. We
use it for excluding rural CUs.

• White household: dummy variable equal to 1 for white CUs and 0 otherwise.

The nominal income per head (before tax) is computed by constructing total nom-
inal income from the ITBI files and dividing it for the number of CUs members in the
FMLI files. The identifiers or Universal Classification Code (UCC) for each single income
component used for computing this total are summarised in table 3.A.1.

87
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Releases Universal Classification Codes (UCCs)

1990 to 2003
900000, 900010, 900020, 900030, 900040, 900080, 900050, 900060,
900070, 900100, 900110, 900090, 900120, 900150, 900131, 900132,

800700I, 800710I, 900140

2004 to 2012
900000, 900010, 900020, 900030, 900040, 900080, 900050, 900060,
900070, 900100, 900110, 900090, 900120, 900150, 900131, 900132,

800700, 800710, 900140

2013 to 2020 900000, 900160, 900030, 900170, 900180, 900190, 900200,
900090, 900120, 900150, 900210, 800700, 800710, 900140

Table 3.A.1: Universal Classification Codes (UCCs) used for computing nominal income.
Source: Census Bureau for the Bureau of Labor Statistics.
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3.B. ECM algorithm
This appendix develops an ECM algorithm (Meng and Rubin, 1993) to estimate the
MDFM in section 3.2.3. The design builds on Pellegrino (2023a, Appendix C) and Pel-
legrino (2023b, Appendix A). This manuscript uses the “hat” symbol to denote the esti-
mated coefficients, an s subscript to indicate the sample size and a k superscript for the
ECM iteration.

3.B.1. State-space representation

Recall that

Yt = B(L)Φt + et, et
w.n.∼ N(0NK×1,R),

Φt = C(L)Φt−1 + Dut, ut
w.n.∼ N(0r×1,Σ).

The matrices C(L) and D are sparse and their non-zero entries are such that

C(L) =



2I7+|G| · · · · · · · · −I7+|G|

· π1 · · · · · · · ·

· · . . . · · · · · · ·
· · · π8+|G| · · · · · ·
· · · · π8+|G|+1 π8+|G|+2 . . . π8+|G|+p−1 π8+|G|+p ·
· · · · 1 · · · · ·
· · · · · 1 · · · ·

· · · · · · . . . · · ·
· · · · · · · 1 · ·

I7+|G| · · · · · · · · ·


︸ ︷︷ ︸
q×7+|G|

︸ ︷︷ ︸
q×8+|G|

︸ ︷︷ ︸
q×p

︸ ︷︷ ︸
q×7+|G|

and

D =


I7+|G| · ·
· I8+|G| ·
· · 1
· · ·


︸ ︷︷ ︸
q×7+|G|

︸ ︷︷ ︸
q×8+|G|

︸ ︷︷ ︸
q×1

where π is a 8+ |G|+p×1 vector of finite real parameters which ensures that the cyclical
components are causal. Due to the structure of C and D, it follows that r = 16 + 2|G|
and q = 22 + 3|G| + p. The measurement coefficient matrix B(L) is also sparse and its
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non-zero entries are

1 · · · · · · 1 · · · · · · 1 · . . . · ·
· 1 · · · · · · 1 · · · · · Λ1,1 Λ1,2 . . . Λ1,p ·

· ·
. . . · · · · · ·

. . . · · · ·
...

...
...

... ·
· · · 1 · · · · · · 1 · · · Λ7,1 Λ7,2 . . . Λ7,p ·
· · · · 1 · · · · · · 1 · · Λ8,1 ιω1 Λ8,2 ιω1 . . . Λ8,p ιω1 ·

· · · · ·
. . . · · · · · ·

. . . ·
...

...
...

... ·
· · · · · · 1 · · · · · · 1 Λ7+|G|,1 ιω|G| Λ7+|G|,2 ιω|G| . . . Λ7+|G|,p ιω|G| ·


.

︸ ︷︷ ︸
NK×7+|G|

︸ ︷︷ ︸
NK×8+|G|

︸ ︷︷ ︸
NK×p

︸ ︷︷ ︸
NK×7+|G|

As a result,

Φt :=
(
τ1,t . . . τ7+|G|,t ξ1,t . . . ξ8+|G|,t ψt ψt−1 . . . ψt−p+1 τ1,t−1 . . . τ7+|G|,t−1

)′
.︸ ︷︷ ︸

7+|G|×1
︸ ︷︷ ︸

8+|G|×1
︸ ︷︷ ︸

p×1
︸ ︷︷ ︸

7+|G|×1

Assumption 28 (Initial conditions). Given that we observe data at time t = 1, we
further assume that Φ0

w.n.∼ N(µ0,Ω0) for some finite vector of real parameters µ0 and a
positive definite covariance matrix Ω0. The latter is assumed to be sparse and such that
the only entries allowed to differ from zero are those denoting the initial auto-covariances
of each state.

Remark (Non-zero entries of Ω0). In other words, the entries of Ω0 that are allowed to
differ from zero are those with coordinates (i, j) in the union of the following sets:

• {(i, j) : i = j and 1 ≤ i < r};

• {(i, j) : r ≤ i < r + p and r ≤ j < r + p}.

3.B.2. Estimation

This manuscript builds on the theoretical results in Barigozzi and Luciani (2020) and
estimates the model via quasi penalised maximum likelihood estimation (PQMLE) by
considering Σ as a diagonal matrix and R = ε INK for a small positive ε.5 Formally, this
implies that the free parameters to estimate are

ϑ :=
(

µ′
0 vech(Ω0)′ vec(Λ)′ π′ Σ1,1 Σ2,2 . . . Σr,r

)′
.

The estimation is performed with an ECM algorithm: an optimisation method that
repeats the operations in definition 27 until it reaches convergence.
5We set ε = 10−2.
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Definition 27 (ECM estimation routine). At any k+1 > 1 iteration, the ECM algorithm
computes the vector of coefficients

ϑ̂
k+1
s (γ) := arg max

ϑ ∈R

E
[
L(ϑ |Y1:s,Φ1:s) |Y(s), ϑ̂

k

s(γ)
]
− E

[
P(ϑ,γ) |Y(s), ϑ̂

k

s(γ)
]
,

where R denotes the region in which the AR cycles (common and idiosyncratic) are
causal, Y(s) is the information set available at time s,

L(ϑ |Y1:s,Φ1:s) ≃−
1
2

ln |Ω0| −
1
2

Tr
[
Ω0

−1(Φ0 − µ0)(Φ0 − µ0)′
]

(3.1)

− s

2
ln |Σ| − 1

2
Tr
[ s∑

t=1
Σ−1(Φ1:r,t −C ∗Φt−1)(Φ1:r,t −C ∗Φt−1)′

]

− s

2
ln |R| − 1

2
Tr
[ s∑

t=1
R−1(Yt −BΦt)(Yt −BΦt)′

]
,

C ∗ ≡ C 1:r,1:q and the underlined coefficients denote the parameters implied by ϑ. The
function in equation 3.1 is the so-called complete-data (i.e., fully observed data and known
latent states) log-likelihood. Besides,

P(ϑ,γ) := +1− α
2

(∥∥∥π 1:8+|G| Γ(γ, 1)
1
2
∥∥∥2

F
+
∥∥∥π′

8+|G|+1:8+|G|+p Γ(γ, p)
1
2
∥∥∥2

F
+
∥∥∥Λ Γ(γ, p)

1
2
∥∥∥2

F

)
+α

2

(∥∥∥π 1:8+|G| Γ(γ, 1)
∥∥∥

1,1
+
∥∥∥π′

8+|G|+1:8+|G|+p Γ(γ, p)
∥∥∥

1,1
+
∥∥∥Λ Γ(γ, p)

∥∥∥
1,1

)

is a version of the elastic-net penalty in Pellegrino (2023a) in which, for any l ∈ N,

Γ(γ, l) := ρ


1 0 . . . 0
0 β . . . 0
... . . . . . . ...
0 . . . . . . βl−1

 ,

ρ ≥ 0, 0 ≤ α ≤ 1 and β ≥ 1 are hyperparameters included in γ. The state-space
coefficients for the first iteration are initialised as in section 3.B.3.

Assumption 29 (Convergence). The ECM algorithm is considered to be converged when
the estimated coefficients do not significantly change in two subsequent iterations. This
is done by computing the absolute relative change per parameters and comparing at
the same time the median and 95th quantile with a fixed tolerance of 10−3 and 10−2

respectively.

The operation in definition 27 is performed in two steps: the so-called E-step and
CM-step. The E-step computes the expectations in definition 27, while the CM-step
conditionally maximises them with respect to the free parameters.
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We write down the E-step on the basis of the output of a Kalman smoother compatible
with incomplete data, as originally proposed in Shumway and Stoffer (1982) and Watson
and Engle (1983). For that, we use the notation in definition 28.

Definition 28 (Kalman smoother output). The hereinbefore mentioned Kalman smoother
output is

Φ̂t := E
[
Φt |Y(s), ϑ̂

k

s(γ)
]
,

P̂t,t−j := Cov
[
Φt,Φt−j |Y(s), ϑ̂

k

s(γ)
]
,

for any k ≥ 0, 0 ≤ j ≤ t and t ≥ 0. Let also P̂t ≡ P̂t,t.

Remark. These estimates are computed as in Pellegrino (2023a).

We also use the notation in definition 29 to further deal with missing observations.

Definition 29 (Observed measurements). Recall that T = ⋃N
i=1 Ti and let

T(s) := {t : t ∈ T, 1 ≤ t ≤ s},

for 1 ≤ s ≤ T . Let also

Dt := {i : t ∈ Ti, 1 ≤ i ≤ NK},

for 1 ≤ t ≤ T . Finally, let

Yobs
t :=

(
Yi,t

)
i∈Dt

Bobs
t := AtB

be the |Dt|× 1 vector of observed measurements at time t and the corresponding |Dt|× q
matrix of coefficients, for any t ∈ T. Every At is indeed a selection matrix constituted
by ones and zeros that permits to retrieve the appropriate rows of B for every t ∈ T.

Moreover, in order to simplify the notation, we let

Le

[
ϑ |Y(s), ϑ̂

k

s(γ)
]
≡ E

[
L(ϑ |Y1:s,Φ1:s) |Y(s), ϑ̂

k

s(γ)
]

for 1 ≤ s ≤ T .
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It then follows directly from Pellegrino (2023b, Proposition 1) that

Le

[
ϑ |Y(s), ϑ̂

k

s(γ)
]
≃− 1

2
ln |Ω0| −

1
2

Tr
[
Ω0

−1
(
Φ̂0Φ̂

′
0 + P̂0 − Φ̂0µ0

′ − µ0Φ̂
′
0 + µ0 µ0

′
)]

− s

2
ln |Σ| − 1

2
Tr
[
Σ−1

(
Ê(1)

s − Ê(2)
s C′

∗ −C ∗Ê
(2)′

s + C ∗Ê
(3)
s C′

∗

)]

− 1
2ε

Tr

 ∑
t∈T(s)

[(
Yobs

t −Bobs
t Φ̂t

)(
Yobs

t −Bobs
t Φ̂t

)′
+ Bobs

t P̂t Bobs′

t

] ,
where

Ê(1)
s :=

s∑
t=1

E
[
Φ1:r,tΦ′

1:r,t |Y(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
Φ̂tΦ̂

′
t + P̂t

)
1:r,1:r

,

Ê(2)
s :=

s∑
t=1

E
[
Φ1:r,tΦ′

t−1 |Y(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
Φ̂tΦ̂

′
t−1 + P̂t,t−1

)
1:r,1:q

,

Ê(3)
s :=

s∑
t=1

E
[
Φt−1Φ′

t−1 |Y(s), ϑ̂
k

s(γ)
]

=
s∑

t=1

(
Φ̂t−1Φ̂

′
t−1 + P̂t−1

)
,

for 1 ≤ s ≤ T . Furthermore, it follows from Pellegrino (2023b, Lemma 1) that

E
[
P(ϑ,γ) |Y(s), ϑ̂

k

s(γ)
]

= P(ϑ,γ).

The CM-step conditionally maximises the expected penalised log-likelihood

Me

[
ϑ,γ |Y(s), ϑ̂

k

s(γ)
]

:= Le

[
ϑ |Y(s), ϑ̂

k

s(γ)
]
− P(ϑ,γ) (3.2)

with respect to the free parameters.
The CM-steps for all free parameters of the transition equation are reported in Pel-

legrino (2023b, Lemmas 2 – 4). For clarity, we recall just the lemmas’ statements in
lemmas 17–19 with the adequate minimal notational changes.

Lemma 17. The ECM estimator at a generic iteration k + 1 > 0 for µ0 is

µ̂k+1
0,s (γ) = Φ̂0

and the estimator for Ω0, denoted with Ω̂k+1
0,s (γ), is a sparse covariance matrix whose

entries allowed to differ from zero are[
Ω̂k+1

0,s (γ)
]

i,j
=
[
P̂0

]
i,j
,

and the coordinates (i, j) are those described in assumption 28.

Lemma 18. Note that Γ(γ, 1) = ρ and let Γ̃(γ) be a q× q sparse matrix whose non-zero
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elements are

Γ̃(γ) :=


· · · ·
· ρ I8+|G| · ·
· · Γ(γ, p) ·
· · · ·

 .

Moreover, let

UC := {1, . . . , r} × {1, . . . , q},

Uπ := {(i, j) : i = j and 7 + |G| < i < r} ∪ {(i, j) : i = r and r ≤ j < r + p},

wherein the latter can be partitioned as {C(i, j), (i, j),C′′(i, j)} for any (i, j) ∈ Uπ. Hence,
the ECM estimator at a generic iteration k + 1 > 0 for C is such that

Ĉk+1
i,j,s (γ) =

S
[
Σ̂k−1

i,i,s(γ) Ê(2)
i,j,s −

∑
(l1,l2)∈UC

(l1,l2) ̸=(i,j)
Σ̂k−1

i,l1,s(γ) Ĉk+I(l1,l2)∈C(i,j)
l1,l2,s (γ) Ê(3)

l2,j,s,
α
2 Γ̃j,j (γ)

]
Σ̂k−1

i,i,s(γ) Ê(3)
j,j,s + (1− α) Γ̃j,j (γ)

,

for any (i, j) ∈ Uπ and constant to the values in section 3.B.1 for the remaining entries,
and with S being the soft-thresholding operator.

Lemma 19. The ECM estimator at a generic iteration k + 1 > 0 for Σ is such that

Σ̂k+1
i,i,s (γ) = 1

s

[
Ê(1)

s − Ê(2)
s Ĉk+1′

s (γ)− Ĉk+1
s (γ) Ê(2)′

s + Ĉk+1
s (γ) Ê(3)

s Ĉk+1′

s (γ)
]

i,i

for i = 1, . . . , r and zero for the remaining entries.

The CM-step for the free parameters of the measurement equation requires an ad-hoc
approach due to the implicit equality constraints for the households described in sec-
tion 3.2.3 – i.e., all households within a given group have the same factor loadings. While
linear constraints have been handled before in EM-like algorithms for time-series models
(for instance, in order to apply mixed frequency aggregation constrains in now-casting
problems as in Bańbura and Modugno, 2014), our problem is a bit more complicated.
Indeed, it is not advised to estimate an unconstrained version of the model and apply the
restrictions ex-post, since each consumer unit is observed for very short periods of time.
Hence, we handle this CM-step as the constrained optimisation problem in proposition 6.6

6We do not need to use Lagrangian multipliers, given that the constraints can be implemented by directly
plugging them into the expected log-likelihood via B as described in section 3.B.1.
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Proposition 6. Let

Ät := A′
tAt,

F̂t := Φ̂tΦ̂
′
t + P̂t,

Ĝs :=
∑

t∈T(s)
A′

tYobs
t Φ̂′

t,

and

Б̂i,j,s :=
ω‡

i∑
k=ω†

i

Ĝk,j,s,

Лi,j,t :=
ω‡

i∑
k=ω†

i

Äk,j,t,

Шi,j,t :=
ω‡

i∑
k=ω†

i

ω‡
j∑

l=ω†
j

Äk,l,t,

where ω†
i := 9 +∑

1≤j<i−7 ωj and ω‡
i := 8 +∑

1≤j≤i−7 ωj, for i = 8, . . . , 7 + |G|. Let also

UΛ := {1, . . . , 7 + |G|} × {0, . . . , p− 1}.

It follows that, when the penalty is not active and at a generic k+ 1 iteration of the ECM
algorithm, the factor loadings

Λ̂QMLE, k+1
i,j+1 = 1∑

t∈T(s) F̂j+r,j+r,t Äi+1,i+1,t

Ĝi+1,j+r,s −
∑

t∈T(s)

[
NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Äi+1,l1,t

+ F̂j+r,r,t Ä1,i+1,t +
∑

(l1,l2)∈UΛ
(l1,l2 )̸=(i,j)

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1

(
Il1≤7 Äl1+1,i+1,t + Il1>7 Лl1,i+1,t

)]
for i = 1, . . . , 7, and

Λ̂QMLE, k+1
i,j+1 = 1∑

t∈T(s) F̂j+r,j+r,t Шi,i,t

Б̂i,j+r,s −
∑

t∈T(s)

[
NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Лi,l1,t

+ F̂r,j+r,t Лi,1,t +
∑

(l1,l2)∈UΛ
(l1,l2) ̸=(i,j)

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1

(
Il1≤7 Лi,l1+1,t + Il1>7 Шl1,i,t

)]
for i = 8, . . . , 7 + |G| where Λ̂⋄

l1,l2+1 is the most up-to-date estimate for Λl1,l2+1 available
when computing Λ̂k+1

i,j+1, for j = 0, . . . , p− 1. More generally, it follows that, at a generic
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k + 1 iteration of the ECM algorithm, the factor loadings

Λ̂k+1
i,j+1(γ) =



S
[

Λ̂QMLE, k+1
i,j+1

∑
t∈T(s) F̂j+r,j+r,t Äi+1,i+1,t , εα

2 Γj+1,j+1(γ,p)
]

ε(1−α)Γj+1,j+1(γ,p) +
∑

t∈T(s) F̂j+r,j+r,t Äi+1,i+1,t
, 1 ≤ i ≤ 7,

S
[

Λ̂QMLE, k+1
i,j+1

∑
t∈T(s) F̂j+r,j+r,t Шi,i,t , εα

2 Γj+1,j+1(γ,p)
]

ε(1−α)Γj+1,j+1(γ,p) +
∑

t∈T(s) F̂j+r,j+r,t Шi,i,t
, 8 ≤ i ≤ 7 + |G|,

for j = 0, . . . , p− 1.

proof. We develop the proof in three steps. Step (i) derives the part of the expected
log-likelihood that depends on the factor loadings. Step (ii) solves the maximisation
problem assuming that the penalty is not active (i.e., ρ = 0). This leads to a CM-step
similar to the M-step usually employed in non-regularised EM-algorithms for dynamic
factor models such as Bańbura and Modugno (2014). Step (iii) builds on that to write
down the formula for the final estimator.

(i) Note that, for the linearity of the trace,

Tr

 ∑
t∈T(s)

[(
Yobs

t −Bobs
t Φ̂t

) (
Yobs

t −Bobs
t Φ̂t

)′
+ Bobs

t P̂t Bobs′

t

]
=

∑
t∈T(s)

Tr
[(

Yobs
t −Bobs

t Φ̂t

) (
Yobs

t −Bobs
t Φ̂t

)′
+ Bobs

t P̂t Bobs′

t

]
.

The part of this trace that depends on the measurement coefficients is

∑
t∈T(s)

Tr
(
Bobs

t F̂t Bobs′

t −Bobs
t Φ̂t Yobs′

t −Yobs
t Φ̂′

t Bobs′

t

)
=

∑
t∈T(s)

Tr
(
AtB F̂t B′A′

t −AtB Φ̂t Yobs′

t −Yobs
t Φ̂′

t B′A′
t

)
=

∑
t∈T(s)

Tr
(
AtB F̂t B′A′

t −B Φ̂t Yobs′

t At −A′
t Yobs

t Φ̂′
t B′

)
=

∑
t∈T(s)

Tr
(
B F̂t B′ Ät

)
− Tr

(
B Ĝ′

s

)
− Tr

(
Ĝs B′

)
=

∑
t∈T(s)

Tr
(
B F̂t B′ Ät

)
− 2 Tr

(
B Ĝ′

s

)
.

In order to write down the CM-step for the factor loadings, we develop these traces as
functions of Λ.7 We start with the simpler trace. Under the identification restrictions
7Indeed, these are the only free parameters in B.
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and constraints in section 3.2.3,

Tr
(
B Ĝ′

s

)
=

NK∑
i=1

q∑
j=1

B i,j Ĝi,j,s

=
NK∑
i=1

r−1∑
j=1

B i,j Ĝi,j,s +
NK∑
i=1

q∑
j=r

B i,j Ĝi,j,s

=
NK∑
i=1

r−1∑
j=1

B i,j Ĝi,j,s +
8∑

i=1

q∑
j=r

B i,j Ĝi,j,s +
NK∑
i=9

q∑
j=r

B i,j Ĝi,j,s

=
NK∑
i=1

r−1∑
j=1

B i,j Ĝi,j,s +
8∑

i=1

r+p−1∑
j=r

B i,j Ĝi,j,s +
NK∑
i=9

r+p−1∑
j=r

B i,j Ĝi,j,s

=
NK∑
i=1

r−1∑
j=1

B i,j Ĝi,j,s +
8∑

i=1

p−1∑
j=0

B i,j+r Ĝi,j+r,s +
NK∑
i=9

p−1∑
j=0

B i,j+r Ĝi,j+r,s

=
NK∑
i=1

r−1∑
j=1

B i,j Ĝi,j,s + Ĝ1,r,s +
7∑

i=1

p−1∑
j=0

Λ i,j+1 Ĝi+1,j+r,s +
7+|G|∑
i=8

p−1∑
j=0

Λ i,j+1Б̂i,j+r,s.

Thus,

Tr
(
B Ĝ′

s

)
∝

7∑
i=1

p−1∑
j=0

Λ i,j+1 Ĝi+1,j+r,s +
7+|G|∑
i=8

p−1∑
j=0

Λ i,j+1Б̂i,j+r,s. (3.3)

Next, we focus on the most complicated component of the expected log-likelihood. Since
Ät and F̂t are symmetric,

Tr
(
B F̂t B′ Ät

)
=

NK∑
i=1

q∑
j=1

q∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

=
NK∑
i=1

r−1∑
j=1

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t +
NK∑
i=1

q∑
j=r

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

+
NK∑
i=1

r−1∑
j=1

q∑
k=r

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t +
NK∑
i=1

q∑
j=r

q∑
k=r

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

=
NK∑
i=1

r−1∑
j=1

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t + 2
NK∑
i=1

q∑
j=r

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

+
NK∑
i=1

q∑
j=r

q∑
k=r

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t.
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Thus, the only part of the latter trace that depends on the factor loadings is

NK∑
i=1

q∑
j=r

q∑
k=r

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t + 2
NK∑
i=1

q∑
j=r

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t. (3.4)

The first term of equation 3.4 is

NK∑
i=1

q∑
j=r

q∑
k=r

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

=
8∑

i=1

q∑
j=r

q∑
k=r

8∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t +
NK∑
i=9

q∑
j=r

q∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t

+
8∑

i=1

q∑
j=r

q∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t +
NK∑
i=9

q∑
j=r

q∑
k=r

8∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

=
8∑

i=1

q∑
j=r

q∑
k=r

8∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t +
NK∑
i=9

q∑
j=r

q∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t

+ 2
8∑

i=1

q∑
j=r

q∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t.

Under the identification restrictions and constraints in section 3.2.3,

8∑
i=1

q∑
j=r

q∑
k=r

8∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

= F̂r,r,t Ä1,1,t + 2
8∑

i=2

q∑
j=r

B i,j F̂j,r,t Ä1,i,t +
8∑

i=2

q∑
j=r

q∑
k=r

8∑
l=2

B i,j F̂j,k,t B l,k Äl,i,t

= F̂r,r,t Ä1,1,t + 2
8∑

i=2

r+p−1∑
j=r

B i,j F̂j,r,t Ä1,i,t +
8∑

i=2

r+p−1∑
j=r

r+p−1∑
k=r

8∑
l=2

B i,j F̂j,k,t B l,k Äl,i,t

= F̂r,r,t Ä1,1,t + 2
8∑

i=2

p−1∑
j=0

B i,j+r F̂j+r,r,t Ä1,i,t +
8∑

i=2

p−1∑
j=0

p−1∑
k=0

8∑
l=2

B i,j+r F̂j+r,k+r,t B l,k+r Äl,i,t

= F̂r,r,t Ä1,1,t + 2
7∑

i=1

p−1∑
j=0

Λ i,j+1 F̂j+r,r,t Ä1,i+1,t +
7∑

i=1

p−1∑
j=0

p−1∑
k=0

7∑
l=1

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Äl+1,i+1,t.
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Also,

NK∑
i=9

q∑
j=r

q∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t

=
NK∑
i=9

r+p−1∑
j=r

r+p−1∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t

=
NK∑
i=9

p−1∑
j=0

p−1∑
k=0

NK∑
l=9

B i,j+r F̂j+r,k+r,t B l,k+r Äl,i,t

=
7+|G|∑
i=8

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Шl,i,t.

Moreover,

8∑
i=1

q∑
j=r

q∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t

=
8∑

i=1

r+p−1∑
j=r

r+p−1∑
k=r

NK∑
l=9

B i,j F̂j,k,t B l,k Äl,i,t

=
8∑

i=1

p−1∑
j=0

p−1∑
k=0

NK∑
l=9

B i,j+r F̂j+r,k+r,t B l,k+r Äl,i,t

=
p−1∑
k=0

NK∑
l=9

F̂r,k+r,t B l,k+r Äl,1,t +
8∑

i=2

p−1∑
j=0

p−1∑
k=0

NK∑
l=9

B i,j+r F̂j+r,k+r,t B l,k+r Äl,i,t

=
NK∑
i=9

p−1∑
j=0

F̂r,j+r,t B i,j+r Äi,1,t +
8∑

i=2

p−1∑
j=0

p−1∑
k=0

NK∑
l=9

B i,j+r F̂j+r,k+r,t B l,k+r Äl,i,t

=
7+|G|∑
i=8

p−1∑
j=0

F̂r,j+r,t Λ i,j+1 Лi,1,t +
7∑

i=1

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Лl,i+1,t.

Thus, the first term of equation 3.4 is proportional to

2
7∑

i=1

p−1∑
j=0

Λ i,j+1 F̂j+r,r,t Ä1,i+1,t +
7∑

i=1

p−1∑
j=0

p−1∑
k=0

7∑
l=1

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Äl+1,i+1,t (3.5)

+
7+|G|∑
i=8

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Шl,i,t + 2
7+|G|∑
i=8

p−1∑
j=0

F̂r,j+r,t Λ i,j+1 Лi,1,t

+ 2
7∑

i=1

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Лl,i+1,t.
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Finally, the second term of equation 3.4 is

2
NK∑
i=1

q∑
j=r

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

= 2
NK∑
i=1

r+p−1∑
j=r

r−1∑
k=1

NK∑
l=1

B i,j F̂j,k,t B l,k Äl,i,t

= 2
NK∑
i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äl,i,t

= 2
NK∑
i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äi,l,t

= 2
8∑

i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äi,l,t + 2
NK∑
i=9

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äi,l,t,

where

8∑
i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äi,l,t

=
r−1∑
k=1

NK∑
l=1

F̂r,k,t B l,k Ä1,l,t +
8∑

i=2

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äi,l,t

=
r−1∑
k=1

NK∑
l=1

F̂r,k,t B l,k Ä1,l,t +
7∑

i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Äi+1,l,t

and

NK∑
i=9

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

B i,j+r F̂j+r,k,t B l,k Äi,l,t =
7+|G|∑
i=8

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Лi,l,t.

Hence, the second term of equation 3.4 is proportional to

2
7∑

i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Äi+1,l,t + 2
7+|G|∑
i=8

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Лi,l,t.

(3.6)
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Combining equations 3.4–3.6, it follows that

Tr
(
B F̂t B′ Ät

)
(3.7)

∝ 2
7∑

i=1

p−1∑
j=0

Λ i,j+1 F̂j+r,r,t Ä1,i+1,t +
7∑

i=1

p−1∑
j=0

p−1∑
k=0

7∑
l=1

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Äl+1,i+1,t

+ 2
7+|G|∑
i=8

p−1∑
j=0

F̂r,j+r,t Λ i,j+1 Лi,1,t +
7+|G|∑
i=8

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Шl,i,t

+ 2
7∑

i=1

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Äi+1,l,t + 2
7+|G|∑
i=8

p−1∑
j=0

r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Лi,l,t

+ 2
7∑

i=1

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Лl,i+1,t.

Finally, it follows from equation 3.3 and equation 3.7 that

∑
t∈T(s)

Tr
(
B F̂t B′ Ät

)
− 2 Tr

(
B Ĝ′

s

)
(3.8)

∝
∑

t∈T(s)

7∑
i=1

p−1∑
j=0

(
2Λ i,j+1 F̂j+r,r,t Ä1,i+1,t +

p−1∑
k=0

7∑
l=1

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Äl+1,i+1,t

+ 2
r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Äi+1,l,t

)
− 2

7∑
i=1

p−1∑
j=0

Λ i,j+1 Ĝi+1,j+r,s

+
∑

t∈T(s)

7+|G|∑
i=8

p−1∑
j=0

(
2F̂r,j+r,t Λ i,j+1 Лi,1,t +

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Шl,i,t

+ 2
r−1∑
k=1

NK∑
l=1

Λ i,j+1 F̂j+r,k,t B l,k Лi,l,t

)
− 2

7+|G|∑
i=8

p−1∑
j=0

Λ i,j+1Б̂i,j+r,s

+ 2
∑

t∈T(s)

7∑
i=1

p−1∑
j=0

p−1∑
k=0

7+|G|∑
l=8

Λ i,j+1 F̂j+r,k+r,t Λ l,k+1 Лl,i+1,t.

We have rearranged the terms in equation 3.8 so that the first two rows refer to the factor
loadings of the macroeconomic indicators, the third and fourth row refer to the ones of
the households and the last row to both of them.

(ii) When the penalty is not active, the CM-step is computed from equation 3.8 since

∂Me

[
ϑ,γ |Y(s), ϑ̂

k

s(γ)
]

∂Λ = − 1
2ε
∂
[∑

t∈T(s) Tr
(
B F̂t B′ Ät

)
− 2 Tr

(
B Ĝ′

s

)]
∂Λ .

We structure the CM-step by following analogous steps to those in Pellegrino (2023b).
Indeed, we estimate Λ one entry at the time, starting from the Λ1,1 and in column-major
order. In other words, the derivative of equation 3.8 with respect to Λi,j+1 is taken having
fixed the other factors loadings to their latest estimate, for any i = 1, . . . , 7 + |G| and
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j = 0, . . . , p − 1. Formally, at a generic k + 1 iteration of the ECM algorithm, this
derivative is equal to

Ĝi+1,j+r,s

ε
− 1
ε

∑
t∈T(s)

( NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Äi+1,l1,t + F̂j+r,r,t Ä1,i+1,t + Λ i,j+1F̂j+r,j+r,t Äi+1,i+1,t

+
∑

(l1,l2)∈UΛ
(l1,l2 )̸=(i,j)

l1≤7

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1 Äl1+1,i+1,t +

∑
(l1,l2)∈UΛ

(l1,l2 )̸=(i,j)
l1>7

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1 Лl1,i+1,t

)

when computed with respect to any factor loading associated to the macroeconomic
aggregates, and

Б̂i,j+r,s

ε
− 1
ε

∑
t∈T(s)

( NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Лi,l1,t + F̂r,j+r,t Лi,1,t + Λ i,j+1 F̂j+r,j+r,t Шi,i,t

+
∑

(l1,l2)∈UΛ
(l1,l2 )̸=(i,j)

l1≤7

Λ̂⋄
l1,l2+1 F̂l2+r,j+r,t Лi,l1+1,t +

∑
(l1,l2)∈UΛ

(l1,l2) ̸=(i,j)
l1>7

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1 Шl1,i,t

)

when computed with respect to any factor loading associated to the households data.
These derivatives can be equivalently written in the compact forms

Ĝi+1,j+r,s

ε
− 1
ε

∑
t∈T(s)

[ NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Äi+1,l1,t + F̂j+r,r,t Ä1,i+1,t + Λ i,j+1F̂j+r,j+r,t Äi+1,i+1,t

+
∑

(l1,l2)∈UΛ
(l1,l2 )̸=(i,j)

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1

(
Il1≤7 Äl1+1,i+1,t + Il1>7 Лl1,i+1,t

)]

and

Б̂i,j+r,s

ε
− 1
ε

∑
t∈T(s)

[ NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Лi,l1,t + F̂r,j+r,t Лi,1,t + Λ i,j+1 F̂j+r,j+r,t Шi,i,t

+
∑

(l1,l2)∈UΛ
(l1,l2 )̸=(i,j)

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1

(
Il1≤7 Лi,l1+1,t + Il1>7 Шl1,i,t

)]

respectively. It follows that, when the penalty is not active and at a generic k+1 iteration
of the ECM algorithm,

Λ̂QMLE, k+1
i,j+1 = 1∑

t∈T(s) F̂j+r,j+r,t Äi+1,i+1,t

Ĝi+1,j+r,s −
∑

t∈T(s)

[
NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Äi+1,l1,t

+ F̂j+r,r,t Ä1,i+1,t +
∑

(l1,l2)∈UΛ
(l1,l2 )̸=(i,j)

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1

(
Il1≤7 Äl1+1,i+1,t + Il1>7 Лl1,i+1,t

)]
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for i = 1, . . . , 7, and

Λ̂QMLE, k+1
i,j+1 = 1∑

t∈T(s) F̂j+r,j+r,t Шi,i,t

Б̂i,j+r,s −
∑

t∈T(s)

[
NK∑
l1=1

r−1∑
l2=1

F̂j+r,l2,t B l1,l2 Лi,l1,t

+ F̂r,j+r,t Лi,1,t +
∑

(l1,l2)∈UΛ
(l1,l2) ̸=(i,j)

F̂j+r,l2+r,t Λ̂⋄
l1,l2+1

(
Il1≤7 Лi,l1+1,t + Il1>7 Шl1,i,t

)]
for i = 8, . . . , 7 + |G|.

(iii) It follows directly from the results in step (i) and step (ii), and the proof of
Pellegrino (2023b, Lemma 5) that, at a generic k + 1 iteration of the ECM algorithm,

Λ̂k+1
i,j+1(γ) =



S
[

Λ̂QMLE, k+1
i,j+1

∑
t∈T(s) F̂j+r,j+r,t Äi+1,i+1,t , εα

2 Γj+1,j+1(γ,p)
]

ε(1−α)Γj+1,j+1(γ,p) +
∑

t∈T(s) F̂j+r,j+r,t Äi+1,i+1,t
, if 1 ≤ i ≤ 7,

S
[

Λ̂QMLE, k+1
i,j+1

∑
t∈T(s) F̂j+r,j+r,t Шi,i,t , εα

2 Γj+1,j+1(γ,p)
]

ε(1−α)Γj+1,j+1(γ,p) +
∑

t∈T(s) F̂j+r,j+r,t Шi,i,t
, if 8 ≤ i ≤ 7 + |G|,

for j = 0, . . . , p− 1. □

3.B.3. Initialisation

First, we compute group averages for the microeconomic data. Then we apply the pro-
cedure described in Pellegrino (2023b, section A.3.) on both the macroeconomic indices
and group averages. For simplicity, we set λ = 2.573, α = 0.667 and β = 1.326. These
are the optimal values in Pellegrino (2023b) converted for quarterly frequency data.

3.B.4. Enforcing causality during the estimation

We enforce causality during the estimation following Pellegrino (2023b, section A.4.).
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3.C. Additional charts
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Figure 3.C.1: Core driver of RIPH computed as the sum of trend and business cycle.
Notes: The model is estimated with quarterly data from October 1989 to December 2019.
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