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Plant root proliferation in nitrogen-rich patches

confers competitive advantage

David Robinson1*, Angela Hodge2, Bryan S. Gri¤ths1 and Alastair H. Fitter2

1Cellular and Environmental Physiology Department, Scottish Crop Research Institute, Dundee DD2 5DA, UK
(d.robinson@scri.sari.ac.uk)
2Department of Biology, University of York, POBox 373,YorkYO10 5YW, UK

Plants respond to environmental heterogeneity, particularly below ground, where spectacular root prolif-
erations in nutrient-rich patches may occur. Such `foraging' responses apparently maximize nutrient
uptake and are now prominent in plant ecological theory. Proliferations in nitrogen-rich patches are di¤-
cult to explain adaptively, however. The high mobility of soil nitrate should limit the contribution of
proliferation to N capture. Many experiments on isolated plants show only a weak relation between
proliferation and N uptake.We show that N capture is associated strongly with proliferation during inter-
speci¢c competition for ¢nite, locally available, mixed N sources, precisely the conditions under which N
becomes available to plants on generally infertile soils. This explains why N-induced root proliferation is
an important resource-capture mechanism in N-limited plant communities and suggests that increasing

proliferation by crop breeding or genetic manipulation will have a limited impact on N capture by well-
fertilized monocultures.

Keywords: morphological plasticity; nutrient patch; nutrient uptake; plant competition;
root proliferation

1. INTRODUCTION

All soils are naturally heterogeneous and, consequently,
nutrients are made available to plants in spatial patches

and temporal pulses (Fitter 1994). This heterogeneity is
determined by the distribution of soil organic matter
(Van Noordwijk et al. 1993; Stark 1994) and the rate of its
microbial decomposition (vanVuuren et al. 1996; Stark &
Hart 1997; Hodge et al. 1998). In agricultural soils, this
inherent patchiness is increased by granular fertilizers (at
a ¢ne scale) and fertilizer bands (at a coarser scale).
Plants can respond to such heterogeneity by localized
proliferation of roots, a presumed `foraging' response
allowing absorbing surfaces to be located preferentially in
nutrient-rich patches where nutrient capture will be
greatest. Such responses are taxonomically widespread

(Robinson 1994; Robinson & van Vuuren 1998) and
prominent in current plant ecological theory (Hutchings
& de Kroon 1994; Robinson 1994; Casper & Jackson
1997; Grime et al. 1997). The recent discovery, in Arabi-
dopsis of a gene, ANR1 (Zhang & Forde 1998), which
controls lateral root growth and is rapidly and speci¢cally
induced by nitrate (NO3

ÿ) in N-starved plants, shows
that the response has a genetic basis and opens the possi-
bility of genetically manipulating crops to maximize the
proliferation response and NO3

ÿ uptake capacity.
This response will be genuinely adaptive, however,

only if it does increase nutrient uptake relative to that of
an unresponsive plant, and this depends on the mobility
and degree of bu¡ering of nutrient ions in soil (Nye &

Tinker 1977, p. 82). Large proliferative responses to phos-
phate patches (e.g. Drew & Saker 1978) are easy to
explain by their e¡ects on phosphorus (P) capture: phos-
phate is poorly mobile and well-bu¡ered in soil, and most

P acquired by a plant originates in soil less than 1mm
from the surface of a root or mycorrhizal hypha (Nye &
Tinker 1977, p. 145). If roots (or associated hyphae) are,
on average, greater than 2mm apart, some soil will
remain unexploited unless proliferation increases root
length per unit soil volume (i.e. root-length density, Lv).

In contrast, NO3
ÿ di¡uses in soil some three or four

orders of magnitude faster than phosphate. Roots 1cm
apart will probably compete for NO3

ÿ after ca. 1 day (Nye
& Tinker 1977, p. 225). To absorb all NO3

ÿ from a patch,
roots should not have to proliferate as much as in a phos-
phate patch, yet they do (Drew et al. 1973; Drew & Saker

1978; Hutchings & de Kroon 1994; Robinson 1996).
Equally puzzling is that roots may proliferate in an N-
rich patch after most of that N has been taken up (van
Vuuren et al. 1996). These observations are inconsistent
with the idea that the proliferation response to N patches
is àdaptive' for N capture (Jackson & Caldwell 1996;
Leyser & Fitter 1998), prompting the question `Why do
plants bother?' (Robinson 1996).

One possible answer is that the response to N evolved in
N-poor environments in which N-rich patches occur unpre-
dictably from localized inputs of decomposable organic

matter, e.g. dung or detritus, and in which plants were
likely to compete for that N. We do not know how root
proliferation in£uences competitive N capture from patches
(Casper & Jackson 1997; Schwinning & Weiner 1998)
because previous studies have involved isolated plants or
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monocultures of similar individuals supplied continually
with Nat near-constant concentrations (Robinson1994).

Here we test the hypothesis that root proliferation in a
decomposing organic patch will increase N capture when
species with contrasting proliferation responses compete
for that N.We show experimentally that N capture by two
grass species is associated strongly with proliferation
during interspeci¢c competition for ¢nite, locally avail-
able, mixed N sources. We also show, using a simulation
model, that the weak association between proliferation and
Nuptake found in monocultures has a theoretical basis.

2. METHODS

(a) Experimental

Two grass species, Lolium perenne L. (perennial rye-grass) and

Poa pratensis L. (smooth meadow-grass), potential competitors in

pastures and di¡ering in their capacities to proliferate roots in

N-rich patches when grown in isolation (Hodge et al. 1998), were

grown together in an N-poor medium containing a 15N-labelled

patch of organic matter. N from this patch was gradually made

available to the plants via microbial mineralization of the

organic N, and its capture by the plants was determined from

isotopic analysis of sequentially harvested plants.

Seeds were supplied by Johnson Seeds, Lincolnshire, UK.

Plants were grown in an N-poor soil : sand mix in 40 cm�

28 cm�0.3 cm Perspex microcosm units (¢gure 1) in which
15N-labelled organic matter was con¢ned to part of the rooting

zone. The organic matter (dried, chopped shoot material of

L. perenne grown hydroponically on a 15N-labelled N source:

van Vuuren et al. 1996; Hodge et al. 1998, 1999) contained

1.6% N (28.2 atom% 15N) with a C:N mass ratio of 31:1.

A 7.5 cm�2.0 cm�0.3 cm band of this material was placed

12 cm below the surface of the soil^sand mix. Control

`patches' consisting of soil^sand mix were created in other-

wise identical units. Monoculture controls were not used

because responses to N-rich patches by isolated plants have

already been demonstrated (Hodge et al. 1998).

Each unit contained one plant of L. perenne and one of

P. pratensis. Day 0 of the experiment was designated as

that when roots of both species were allowed access to

the patch by removing Perspex strips which, until

then, had isolated the patches from the rooting zone

for 18 days. Units were maintained in a ConvironTM model E15

controlled-environment cabinet (Conviron, Winnipeg, Canada),

where £uorescent tubes and incandescent bulbs provided a

photon £ux density of ca. 450 mmolmÿ2 sÿ1 at plant height.

Relative humidity was set at 80% with a 16 h, 25 8C day and

8 h, 15 8C night. Four experimental units were harvested on 0, 7,

14, 21, 28, 35, 42, 49 and 56 days. Four control units were

harvested on 0, 14, 28, 42 and 56 days.

At harvest, the root systems were separated by careful

manual dissection (possible because of the near two-dimensional

geometry of the microcosm units) and their lengths within and

outwith the patches measured (MagiscanTM (Joyce-Loebl)

Image Analysis System, program FIBRE v. 4.4). Roots and

shoots were oven-dried at 60 8C, weighed, and subsamples

analysed for total N and 15N by continuous-£ow isotope ratio

mass spectrometry (Tracermass, Europa Scienti¢c, Crewe, UK).

Data were analysed using anova (Genstat v. 5 release 3.2;

Genstat 5 Committee 1993) and stepwise regressions (Hunt &

Parsons 1974).

(b) Theoretical

The interrelationships among N uptake, inorganic N concen-

trations and Lv during N uptake by two species, X and Y,

during competition for a common N supply were explored using

a simple model

dUX

dt
�

dUnX

dt
�
dUaX

dt
� �n

dCn

dt
� �a

dCa

dt

� �

dLvX

dt
,

dUY

dt
�

dUnY

dt
�
dUaY

dt
� �n

dCn

dt
� �a

dCa

dt

� �

dLvY

dt
,

(1)

where t is time (in days), UX and UY are the uptakes per unit

soil volume (mg cmÿ3) by X and Yof NO3
ÿ (subscript `n') plus

NH4
� (subscript à'; `NH4

� ' in this model includes low molecular

weight organic-N compounds, e.g. amino acids of similar di¡u-

sivity to NH4
� ions: Jones et al. 1994), Cn and Ca are, respec-

tively, soil NO3
ÿ and NH4

� concentrations (mg cmÿ3), and �n
and �a are coe¤cients (cm2 dÿ1) expressing the rates at which

roots absorb NO3
ÿ and NH4

� from soil. � is equivalent to the

term `2��a ' in Nye & Tinker's (1977, p. 215) notation, where � is

the `root absorbing power' (cmdÿ1) and a is the mean root

radius (cm). � is assumed constant and the same for X and Y,

but di¡erent for NO3
ÿ and NH4

�, re£ecting the relative
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Figure 1. Microcosm unit in which the roots of Lolium perenne
and Poa pratensis exploited a common N-rich patch of 15N-

labelled organic matter. Shaded areas are Perspex barriers to

root growth.



di¡usivities of these ions in soil. Typically, �a is one-tenth of �n

(Clarke & Barley 1968).

In equation (1), Cn and Ca are common to X and Y, which,

therefore, compete for the same supply of N. Current uptake by

both species then in£uences future values of Cn and Ca

UX(t) � UnX(t)�UaX(t) � ��nCn(t)� �aCa(t)�LvX(t),

UY(t) � UnY(t)�UaY(t) � ��nCn(t)� �aCa(t)�LvY(t),
(2)

Cn(t � 1) � Cn(t)ÿ �UnX(t)�UnY(t)�,

Ca(t � 1) � Ca(t)ÿ �UaX(t)�UaY(t)�,
(3)

Lv is also time dependent (see below). For simplicity, we assume

no additions of NO3
ÿ or NH4

� to the soil once uptake starts,

nor any N removal from soil other than uptake (i.e. zero N

mineralization or immobilization).

3. RESULTS

Proliferations of L. perenne roots in the N-rich patch
exceeded those of P. pratensis (¢gure 2). After 56 days,

L. perenne roots in the patch were packed twice as densely
as those of P. pratensis. In both species, an increase in Lv

in the patch was associated with a proportional increase
in N uptake from the patch, throughout the experiment.
The zero-intercept regression of N uptake from the patch
(U, mg per plant) on root-length density in the patch (Lv,
cm cmÿ3) was U�0.90Lv (R

2�0.951) for all data (regres-
sions for L. perenne and P. pratensis separately were not
signi¢cantly di¡erent from this common relation).

L. perenne captured progressively larger fractions of the
patch N (¢gure 3): for every mg captured by P. pratensis,
L. perenne captured 1.8 mg (linear regression of patch N
uptake (mg) by L. perenne ( y) on that by P. pratensis (x):
y�1.81xÿ3.91, R2�0.949). Patch N uptake by L. perenne
exceeded that by P. pratensis at 28 days, the same time as
the rate of increase in Lv by L. perenne became signi¢-
cantly faster than that by P. pratensis (¢gure 2). There
were no signi¢cant interspeci¢c di¡erences in the rates of
N uptake per unit root length (Hodge et al. 1999).

Using experimental data for Lv as inputs (¢gure 2),
the explicitly competitive model predicted the observed
pattern of N uptake by L. perenne and P. pratensis
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Figure 2. Mean (+s.e.) root-length densities (Lv) of Lolium
perenne (¢lled squares) and Poa pratensis (open squares) in the

N-rich patch. The curves are stepwise quadratic regressions

(Hunt & Parsons 1974) of Lv on time (t, days), from which

absolute growth rates of Lv were derived (inset). For

L. perenne, Lv�exp(ÿ2.42+0.209tÿ0.0016t2); for P. pratensis,
Lv�exp(ÿ2.52+0.20tÿ0.0017t2).

Figure 3. Patch N uptake by Lolium perenne compared with

that by Poa pratensis. Symbols are measured means (+s.e.).

The data are described by the quadratic equation

y�10.9� 1.23x� 0.0018x2 (R2�0.958; curve not shown). The

solid curve shows N uptake by these species simulated by

equations (1)^(3). The simulation is described by the

quadratic y � ÿ0.659� 1.31x� 0.0012x2 (R2�1.0). The Lv(t)
functions in ¢gure 2 generated Lv values as model inputs;

initial values of Cn�Ca�90 mg cmÿ3 and a constant �n of

0.002 cm2 dÿ1 and �a of 0.0002 cm
2 dÿ1 were assumed (Clarke

& Barley 1968). The broken line indicates equal N capture by

the two species.



(¢gure 3). There was no statistical di¡erence between the
measured and simulated Nuptakes by L. perenne (p�0.80).

4. DISCUSSION

Figure 3 is, to our knowledge, the ¢rst experimental
demonstration of an advantage (for N capture), which

can be gained from a superior root proliferation in N-rich
patches in otherwise N-de¢cient soil. Yet, how can this
advantage be explained, given the arguments above that
proliferation should make little di¡erence to the exploita-
tion of soil N? Our answer is threefold. First, the N patch
was organic rather than inorganic, as occurs in natural
soils. The roots of L. perenne and P. pratensis were, there-
fore, supplied with both NO3

ÿ- and NH4
�-N mineralized

from the organic N by microbes. NH4
� is less mobile in

the soil than NO3
ÿ, by about an order of magnitude

(Clarke & Barley 1968). In theory, increases in Lv should
increase signi¢cantly the capture of the less mobile

NH4
�-N and low molecular weight organic-N molecules

such as amino acids. The latter are also decomposition
products and di¡use in soil approximately as fast as
NH4

� (Jones et al. 1994) and may be absorbed by roots,
especially if mycorrhizal (Na« sholm et al. 1997). Further,
NH4

� is the ¢rst inorganic product of organic-N decom-
position; NO3

ÿ is produced later, from NH4
�. A plant

that could `intercept' NH4
� at its point of production in

the decomposition pathway would be advantaged
compared with a competitor able to exploit only NO3

ÿ

(Kronzucker et al. 1997). It would also be able to compete

e¡ectively with soil microbes which themselves use NH4
�

as an N source (Jackson et al. 1989).
Second, the chemical composition of the patch, and the

microbial milieu in which it decomposed, were such that
available N concentrations in the patch were maintained
above zero throughout (Hodge et al. 1999). Changes in
Lv, therefore, exerted a continual in£uence on N uptake
from the patch, but did not exhaust the patch's available
N (cf. vanVuuren et al. 1996).

Third, the faster increase in Lv by L. perenne exerted a
continual in£uence on its own N uptake and on that of

P. pratensis, i.e. there was interspeci¢c competition for
patch N. When plants capture N from a common supply,
their capacity to attain root-length densities allowing
maximum access to that supply is just one facet of
resource acquisition: the speed at which they do this is
also important. Other things being equal, the plant with
the larger Lv in an N-rich patch at a given time (i.e.
that with the fastest root proliferation) will capture more
N from that patch (Nye & Tinker 1977, p. 281), provided
that N is available to be taken up and is not replaced
immediately by N mineralization (when competition for

the N would be impossible). The agreement (¢gure 3)
between our data and the model predictions in which
inter-root competition for N was made explicit is strong
evidence that L. perenne and P. pratensis did compete for
patch N in the experiment.

For monocultures, the model predicts (¢gure 4) only
small interspeci¢c di¡erences in N uptake before the N
supply becomes exhausted (which did not occur in our
experiment). Should N exhaustion occur, the model
predicts no ultimate interspeci¢c di¡erence in N uptake
by monocultures irrespective of their capacities to prolif-

erate roots. This agrees with experiments (Fransen et al.
1998; Hodge et al. 1998) and theory (Robinson 1996).
Slow root growth and weak proliferation do not,
apparently, impede eventual N capture by plants in
monocultures. In contrast, the model predicts a large
di¡erence in ultimate N capture by competitors di¡ering
in their capacities to proliferate roots. It seems that inter-
speci¢c competition for N drives a `wedge' between
species, progressively increasing N capture by the
stronger root proliferator at the expense of the weaker, an
e¡ect absent from monocultures.

We conclude that the constraints that may have led to
the widespread evolution (Robinson 1994; Robinson &
van Vuuren 1998) of strong root proliferation in N-rich
patches are interspeci¢c competition for N and ¢nite,
local availabilities of mixed N sources. If either constraint
is removed, the possible ecological and evolutionary
advantages of root proliferation in response to N become
obscured. This emphasizes the importance of environ-
mental heterogeneity and plant phenotype in determining
the outcome of interspeci¢c competition (Tilman 1988,
pp. 311^314; Huston & DeAngelis 1994), and that the

functional signi¢cance of a particular phenotype (such as
root proliferation) is highly context-dependent and
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Figure 4. Simulations (equations (1)^(3)) of the e¡ects of

an interspeci¢c di¡erence in Lv on N uptake (mg per plant)

by two species in monoculture (two plants of the same species

growing together; ¢ne curves), or in competition (one plant

of each species growing together; bold curves), when N supply

becomes exhausted (Cn�Ca�0). The Lv(t) functions in
¢gure 2 generated Lv values as model inputs, and the same

values were used whether the plants were in competition or

monoculture. Those for L. perenne produced the upper two

simulations; those for P. pratensis the lower two. For
illustration, 100 mg NO3

ÿ- and 100 mg NH4
�-N were assumed

available to each pair of plants, giving initial values of

Cn�Ca�11 mg cmÿ3 in a 9 cm3 patch; �n and �a values of,

respectively, 0.1 and 0.01 cm2 dÿ1 were used to simulate

exhaustion of NO3
ÿ and NH4

� in560 days.



cannot necessarily be inferred from measurements made
on isolated plants (Nye & Tinker 1977, pp. 281^282;
McGraw & Chapin 1989).

Our ¢ndings imply that attempts to increase the
morphological plasticity of crop root systems by genetic
manipulation are unlikely to signi¢cantly increase N
capture if those crops are grown as NO3

ÿ-fertilized mono-

cultures (cf. ¢gure 4). In contrast, interspeci¢c di¡erences
in root-system plasticity may be important determinants
of superior N captureöand eventual dominanceöby
certain individuals in mixed cropping systems and natural,
N-limited communities. This would agree with
observations (Tilman 1989; Tilman et al. 1996) that soil
NO3

ÿ concentrations are least under the most diverse
plant communities, i.e. where the opportunities for inter-
speci¢c competition for mineralized Nare greatest.
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