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Abstract. The paper investigates the issue of stability with respect to external distur-
bances for the global attractor of the wave equation under conditions that do not ensure
the uniqueness of the solution to the initial problem. Under general conditions for non-
linear terms, it is proved that the global attractor of the undisturbed problem is locally
stable in the sense of ISS and has the AG property with respect to disturbances.
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1. Introduction

Properties of global attractors of nonlinear wave equations with dissipation
under different assumptions on the interaction functions have been under inves-
tigation in many papers (see [1, 2] and references therein). With the appearance
of the works [3,4], it became possible to study invariant uniformly attracting sets
of infinite-dimensional dynamical systems without uniqueness of the solution of
the initial problem, considering instead of a classical semigroup its multivalued
counterpart called an m-semiflow. In particular, for the wave equation with non-
smooth nonlinear term f the existence and properties of the global attractor of
the corresponding m-semiflow were investigated in [5].

In the presence of external disturbances, the problem becomes non-autonomous
and its dynamics can be described in terms of uniform attractors of semi-processes
[6–9]. It turned out, that this theory also allows us to solve the problem of es-
timating the deviation of the solution of the disturbed equation from the global
attractor of the undisturbed system. In the case of a trivial attractor consisting
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of a single asymptotically stable equilibrium point, for the simplest partial differ-
ential equation of the reaction-diffusion type, such results first appeared in [10].
The technique of this work was based on the classical ISS approach of Lyapunov
functions [11–13] and could not be applied to systems with non-trivial attractors.
The corresponding technique was developed in the works of [14, 15] and applied
to the wave equation with a smooth interaction function f and disturbances of
the type h(x)d(t) in the work [16]. The extension of this theory to the case of
non-uniqueness of solution of the initial problem was carried out in [17], where
the local ISS property of the attractor was established for the reaction-diffusion
system.

In the present paper, we consider a wave equation with a non-smooth nonlin-
earity f(y) and a g(y)d(t)-type disturbance with a non-smooth function g. Local
ISS and AG stability properties with respect to disturbances are established for
the global attractor of the undisturbed problem (d ≡ 0).

2. Setting of the problem

In a bounded domain Ω ⊂ Rn, n ≥ 1 we consider the following boundary-value
problem{

∂2y(t,x)
∂t2

+ α∂y(t,x)
∂t −4y(t, x) + f(y(t, x)) = g(y(t, x))d(t), t > 0,

y(t, x)|x∈∂Ω = 0,
(2.1)

where α > 0, f, g ∈ C(R) are given, d ∈ L∞(R+) is a disturbance parameter.
We prove (see Lemma 3.1) that under rather general assumptions on f, g

the problem (2.1) is globally resolvable (in weak sense) in the phase space X =
H1

0 (Ω)× L2(Ω). The uniqueness of solutions is not guaranteed.
Let us consider a multi-valued map Sd : R+ ×X 7→ 2X ,

Sd(t, z0) = {z(t) | z =

(
y
yt

)
is a solution of (2.1), z(0) = z0}. (2.2)

For d ≡ 0 (undisturbed problem) the multi-valued map S0 : R+×X 7→ 2X is a
multi-valued semigroup (m-semiflow), which possesses a global attractor Θ ⊂ X,
i.e., there exists a compact set Θ ⊂ X such that

Θ = S0(t,Θ) ∀t ≥ 0,

∀r > 0 sup
‖z0‖≤r

dist(S0(t, z0),Θ)→ 0, t→∞.

Here and after we use denotations:

dist(A,B) = sup
ξ∈A

inf
η∈B
‖ξ − η‖X , ‖A‖Θ = dist(A,Θ).

Thus, in the undisturbed case, all trajectories (2.1) eventually end up in an
arbitrarily small neighborhood of Θ. The paper investigates the issue of estimating
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the deviation of the trajectory of the disturbed problem (2.1) from the set Θ
depending on the value of ‖d‖∞ = ess supt∈(0,+∞) |d(t)|.

This question in terms of Input-to-State Stability (ISS) theory can be solved
by setting the estimate (ISS property): ∀t ≥ 0

‖Sd(t, z0)‖Θ ≤ β(‖z0‖Θ, t) + γ(‖d‖∞). (2.3)

Here γ : [0,+∞) 7→ [0,+∞) is a continuous strictly increasing function with
γ(0) = 0 (γ ∈ K), β : [0,+∞) × [0,+∞) 7→ [0,+∞) is a continuous function,
∀t ≥ 0 β(, t) ∈ K, ∀s ≥ 0 β(s, ) decreases to 0 (β ∈ KL).

The main results of this work are a local variant of (2.3) (local ISS) (see
Theorem 4.1) and Asymptotic Gain (AG) property: ∀z0 ∈ X

lim
t→∞
‖Sd(t, z0)‖Θ ≤ γ(‖d‖∞). (2.4)

3. Existence, a priori estimates, and regularity of solutions.

Assume that there exist positive constants m, c1, c2, c3, c4 such that ∀s ∈ R

|f(s)| ≤ c1(1 + |s|
n
n−2 ), (3.1)

F (s) ≥ −as2 − c2, f(s)s− F (s) + as2 ≥ −c3, (3.2)

|g(s)| ≤ c4, (3.3)

where a < λ1
2 , λ1 is the first eigenvalue of −4 in H1

0 (Ω), F (s) :=
´ s

0 f(t) dt.

Remark 3.1. In all further arguments in the case n = 2 we can assume that in (3.1)
f has arbitrary power growth because of embedding H1

0 (Ω) ⊂ Lp(Ω), ∀ p ≥ 1,
and in the case n = 1 assumption (3.1) is not needed because of embedding
H1

0 (Ω) ⊂ C(Ω).

A solution of (2.1) we will understand in a weak sense, i.e.,

a pair of functions z() =

(
y()
yt()

)
∈ L∞(0, T ;X) is called a solution of (2.1) on

(0, T ) if ∀ψ ∈ H1
0 (Ω), ∀η ∈ C∞0 (0, T ) the following equality holds

−
ˆ T

0
(yt, ψ)ηt +

ˆ T

0

(
α(yt, ψ) + (y, ψ)H1

0
+ (f(y), ψ)− (g(y), ψ)d(t)

)
η = 0,

(3.4)
where by ‖‖ and (, ) we denote the norm and scalar product in L2(Ω).

If z ∈ L∞loc(R+;X) satisfies (3.4) ∀T > 0, then z is called a global solution (a
solution for short) of (2.1).

Lemma 3.1. Under assumptions (3.1)-(3.3) ∀z0 ∈ X, ∀d ∈ L2
loc(R+) there exists

at least one solution of (2.1) with z|t=0 = z0.
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Proof. First, it should be noted that due to embedding H1
0 (Ω) ⊂ L

2n
n−2 (Ω), n ≥ 3,

from conditions (3.1), (3.3) we deduce that for y ∈ L∞(0, T ;H1
0 (Ω))

f(y) ∈ L2(0, T ;L2(Ω)), g(y)d(t) ∈ L2(0, T ;L2(Ω)).

So, results of [1] allow us to claim that for every solution of (2.1) and ∀T > 0

z =

(
y
yt

)
∈ C([0, T ];X).

In particular, the initial condition z|t=0 = z0 makes sense.
We prove an existence of solution of (2.1) by Galerkin method [1]. Let z0 =(

y0

y1

)
∈ X,T > 0 be given. For every m ≥ 1 we consider an approximation

function

ym(t) =
m∑
i=1

gim(t)ωi,

where {ωi}i≥1 are eigenfunctions of −4 in H1
0 (Ω), and {gim()} are solutions of

ODE system

d2

dt2
(ym, ωj) + α

d

dt
(ym, ωj) + (ym, ωj)H1

0

+ (f(ym), ωj)− (g(ym), ωj)d(t) = 0, j = 1,m (3.5)

ym|t=0 = ym(0)→ y0 in H1
0 (Ω), y′m|t=0 = y′m(0)→ y1 in L2(Ω).

Due to Carathéodory′s theorem we have a solution of (3.5) on [0, Tm]. Let us
derive a priori estimates which would imply that Tm = T . For this purpose, we
introduce a function

Ym(t) =
1

2
‖y′m(t)‖2 +

1

2
‖ym(t)‖2H1

0
+ (F (ym(t)), 1) + δ(y′m(t), ym(t)),

where δ ∈ (0, α) we will choose later.
Due to (3.5) we get:

dYm
dt

= −(α− δ)‖y′m(t)‖2 − δ‖ym(t)‖2H1
0
− αδ(y′m, ym)

− δ(f(ym), ym) + (y′m, g(ym))d(t)− δ(ym, g(ym))d(t)

= −δYm(t) +

(
−α+

3δ

2

)
‖y′m(t)‖2 − δ

2
‖ym(t)‖2H1

0

+ δ ((F (ym), 1)− (f(ym), ym))− αδ(y′m, ym) + δ2(y′m, ym)

+ (y′m, g(ym))d(t)− δ(ym, g(ym))d(t)

≤ −δYm(t) +

(
−α+

3δ

2

)
‖y′m(t)‖2 − δ

2
‖ym(t)‖2H1

0

+ δm‖ym‖2 − δc3 − δ(α− δ)(y′m, ym)

+ (y′m, g(ym))d(t)− δ(ym, g(ym))d(t).
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Taking into account the Poincaré inequality ‖ym‖2H1
0
≥ λ1‖ym‖2 and assump-

tion
λ1 − 2a > 0,

we derive that for sufficiently small δ ∈ (0, α) there exists a constant c5 > 0 such
that

d

dt
Ym(t) ≤ −δYm(t) + c5(1 + ‖d‖2). (3.6)

Using estimate (3.6) and assumption (3.2) we get

1

2
‖y′m‖2 +

(
1

2
− a

λ1

)
‖ym‖2H1

0
+ δ(y′m, ym)− c2|Ω|

≤
(

1

2
‖y′m(0)‖2 +

1

2
‖ym(0)‖2H1

0
+ (F (ym(0)), 1)

)
e−δt

+ δ(y′m(0), ym(0))e−δt + c5

(
1

α
+

ˆ t

0
‖d(s)‖2e−δ(t−s) ds

)
.

Thus, there exists a constant c6 > 0 such that for sufficiently small δ > 0 and
for every m ≥ 1 the following estimate holds:

‖y′m(t)‖2 + ‖ym(t)‖2H1
0
≤ c6

(
(‖y′m(0)‖2 + ‖ym(0)‖2H1

0

+ ‖ym(t)‖
2n−2
n−2

H1
0

)e−δt + 1 +

ˆ t

0
‖d(s)‖2e−δ(t−s) ds

)
. (3.7)

This estimate allows us to claim that solutions ym exist on [0, T ] and for some

function z =

(
y
yt

)
∈ L∞(0, T ;X) up to subsequence

ym → y weak-* in L∞(0, T ;H1
0 (Ω)),

y′m → yt weak-* in L∞(0, T ;L2(Ω)). (3.8)

So, due to the Compactness Lemma [18]

ym → y in L2(0, T ;L2(Ω)) and almost everywhere (a.e.) on (0, T )× Ω. (3.9)

Then
f(ym)→ f(y), g(ym)→ g(y) weakly in L2(0, T ;L2(Ω)). (3.10)

Passing to the limit in (3.5), we get that the function z =

(
y
yt

)
satisfies (3.4)

with z(0) = z0. Therefore, z is the required solution of (2.1), and estimate (3.7)
takes place. Lemma is proved.

Remark 3.2. Since for the solution z =

(
y
yt

)
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f(y), g(y)d(t) ∈ L2(0, T ;L2(Ω)),

then from [1] it follows that functions

t 7→ ‖yt(t)‖2 + ‖y(t)‖2H1
0
, t 7→ (F (y(t)), 1) , t 7→ (yt(t), y(t))

are absolutely continuous. Therefore, for the function

Y (t) =
1

2
‖yt(t)‖2 +

1

2
‖y(t)‖2H1

0
+ (F (y(t)), 1) + δ(yt(t), y(t))

we can repeat all arguments (3.6), (3.7) and obtain that every solution of (2.1)
satisfies (3.7).

Moreover, if d ∈ L∞(R+), then from (3.7) we deduce that every solution of

(2.1) z =

(
y
yt

)
satisfies the following estimate: ∀t ≥ 0

‖yt(t)‖2 + ‖y(t)‖2H1
0
≤ c6

(
(‖yt(0)‖2 + ‖y(0)‖2H1

0

+ ‖y(0)‖
2n−2
n−2

H1
0

)e−δt + 1 +
1

δ
‖d‖2∞

)
. (3.11)

Remark 3.3. For n = 1, 2 in estimates (3.7), (3.11) the term with degree 2n−2
n−2 is

absent.

Lemma 3.2. Let {zn =

(
y
ynt

)
} be solutions of (2.1) on (0, T ) with disturbances

{dn} ⊂ L2(0, T ), initial conditions {z0
n} ⊂ X, and tn → t0. If

z0
n → z0 weakly in X, dn → d weakly in L2(0, T ), (3.12)

then there exists a solution of (2.1) z =

(
y
yt

)
on (0, T ) such that z(0) = z0 and

up to subsequence
zn(tn)→ z(t0) weakly in X. (3.13)

If convergence in (3.12) is strong, then

zn(tn)→ z(t0) in X.

Proof. Assume that (3.12) are fulfilled. Using estimate (3.7) and the Compactness
Lemma we can repeat arguments (3.9) and claim that zn converges to z in the
sense of (3.8), (3.9). Moreover,

yn(tn)→ y(t0) in L2(Ω), ynt(tn)→ yt(t0) in H−1(Ω). (3.14)

Due to (3.9) and Lebesgue′s dominated convergence theorem we get

(g(yn), ψ)→ (g(y), ψ) in L2(0, T ). (3.15)
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So, we can pass to the limit in (3.4) and obtain that z =

(
y
yt

)
is a solution of

(2.1), z(0) = z0.
Estimate (3.7), convergence (3.14) and compact embedding H1

0 (Ω) ⊂ L2(Ω)
guarantee that (3.13) is fulfilled.

Let convergence in (3.12) be strong. Taking into account Remark 3.2, for the
absolutely continuous function

Vn(t) =
1

2
‖ynt(t)‖2 +

1

2
‖yn(t)‖2H1

0
+ (F (yn(t)), 1)

we have the following equality: for almost all t ∈ (0, T )

d

dt
Vn(t) = −α‖ynt(t)‖2 + (g(yn(t)), ynt(t)) dn(t).

So, for all t ∈ [0, T ], in particular, for t = tn, we deduce:

1

2

(
‖ynt(tn)‖2 + ‖yn(tn)‖2H1

0

)
+ α

ˆ tn

0
‖ynt(s)‖2 ds

= Vn(0)− (F (yn(tn)), 1) +

ˆ tn

0
(g(yn(s)), ynt(s)) dn(s) ds. (3.16)

Let us justify the limit transition in the right-hand part of (3.16). It is clear
that Vn(0)→ V (0). Due to (3.14)

F (yn(tn, x))→ F (y(t0, x)) for a.a. x ∈ Ω.

Additionally, due to the compact embedding H1
0 (Ω) ⊂ L

2n−2
n−2 (Ω) we have

yn(tn)→ y(t0) in L
2n−2
n−2 (Ω).

Since from (3.1) we get the estimate

|F (s)| ≤ c7

(
1 + |s|

2n−2
n−2

)
,

so due to Lebesgue′s dominated convergence theorem

(F (yn(tn)), 1)→ (F (y(t0)), 1) . (3.17)

From the same reasons

g(yn)→ g(y) in L2(0, T ;L2(Ω)).

Thus, from (3.8) and strong convergence dn → d in L2(0, T ) we derive:
ˆ T

0
(g(yn(τ)), ynt(τ)) dn(τ) dτ →

ˆ T

0
(g(y(τ)), yt(τ)) d(τ) dτ. (3.18)
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Estimate (3.7) implies
ˆ tn

t0

| (g(yn(s)), ynt(s)) dn(s)| ds ≤ c
ˆ tn

t0

|dn(s)| ds→ 0 as n→∞.

Therefore, from (3.18) we can justify the limit transition in the last term of
equality (3.16). Then (3.16) yields

1

2
lim
n→∞

(
‖ynt(tn)‖2 + ‖yn(tn)‖2H1

0

)
+ α

ˆ t0

0
‖yt(s)‖2 ds

≤ V (0)− (F (y(t0)), 1) +

ˆ t0

0
(g(y(s)), yt(s)) d(s) ds

=
1

2

(
‖yt(t0)‖2 + ‖y(t0)‖2H1

0

)
+ α

ˆ t0

0
‖yt(s)‖2 ds. (3.19)

From (3.19) we deduce that limn→∞ ‖zn(tn)‖X ≤ ‖z(t0)‖X , which means that
zn(tn) converges to z(t0) strongly in X. Lemma is proved.

4. Local ISS property for the attractor.

We consider the undisturbed problem{
∂2y(t,x)
∂t2

+ α∂y(t,x)
∂t −4y(t, x) + f(y(t, x)) = 0, t > 0, x ∈ Ω,

y(t, x)|x∈∂Ω = 0.
(4.1)

Under assumptions (3.1), (3.2) it is known [5], that the m-semiflow

S0(t, z0) = {z(t) | z =

(
y
yt

)
is a solution of (4.1), z(0) = z0} (4.2)

possesses global attractor Θ in the phase space X = H1
0 (Ω)× L2(Ω).

Lemma 3.2 and estimate (3.11) guarantee the following properties of S0:

∀tn → t0 ≥ 0, ∀zn0 → z0, ∀ξn ∈ S0(tn, z
n
0 )

up to subsequence ξn → ξ0 ∈ S0(t0, z0), (4.3)

∀r > 0 the set {S0(t, z0) | t ≥ 0, ‖z0‖X ≤ r} is bounded in X. (4.4)

Properties (4.3), (4.4) imply stability of Θ in the following sense [17]:

∃β ∈ KL ∀z0 ∈ X, ∀t ≥ 0 ‖S0(t, z0)‖Θ ≤ β(‖z0‖Θ, t). (4.5)

Let us consider the family of maps {Sd}d∈U defined in (2.2). Here U = L∞(R+)
describes the set of disturbances in (2.1).
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In addition to conditions (3.1)-(3.3), we will make an additional assumption:

f ∈ C1(R) and ∃c8 > 0 ∀s ∈ R |f ′(s)| ≤ c8(1 + |s|r), r < n

n− 2
. (4.6)

It is known [6], that assumption (4.6) ensures the uniqueness of solution in (4.1),
i.e., the map S0 defined by (4.2) is single-valued and generates a classical semi-
group. It should be noted that the function g can be non-smooth, so we cannot
expect uniqueness for the disturbed problem (2.1).

Theorem 4.1. Assume that conditions (3.1)-(3.3), (4.6) are fulfilled. Then the
family

{Sd}d∈U , U = L∞(R+)

possesses local ISS property for the global attractor Θ, i.e.,

∃r > 0, ∃β ∈ KL, ∃γ ∈ K such that

∀‖z0‖Θ ≤ r, ∀‖d‖∞ ≤ r, ∀t ≥ 0

‖Sd(t, z0)‖Θ ≤ β(‖z0‖Θ, t) + γ(‖d‖∞). (4.7)

Proof. According to [17], it is enough to verify the following properties:

∀r > 0 the set {Sd(t, z0) | t ≥ 0, ‖d‖∞ ≤ r, ‖z0‖X ≤ r} is bounded in X, (4.8)

∀r > 0 ∃c(r) > 0 ∀‖z(1)
0 ‖X ≤ r, ‖z

(2)
0 ‖X ≤ r, ∀t ≥ 0

‖S0(t, z
(1)
0 )− S0(t, z

(2)
0 )‖X ≤ ec(r)t‖z(1)

0 − z
(2)
0 ‖X , (4.9)

∃ κ ∈ K, ∃ η : R2
+ 7→ R+ such that ∀r > 0

lim
t→0+

η(r, t)

t
<∞ and ∀t ≥ 0, ∀‖z0‖X ≤ r, ∀‖d‖∞ ≤ r

dist(Sd(t, z0), S0(t, z0)) ≤ η(r, t)κ(‖d‖∞). (4.10)

Property (4.8) is a consequence of estimate (3.11). Property (4.9) can be derived
from the following arguments [16]: for ‖y1‖H1

0
≤ r, ‖y2‖H1

0
≤ r from (4.6),

Hölder′s inequality and embedding H1
0 (Ω) ⊂ L

2n
n−2 (Ω) we get

ˆ
Ω
|f(y1)− f(y2)|2 dx ≤

c

(
1 + ‖y1‖

n
n−2

L
2n
n−2

+ ‖y2‖
n
n−2

L
2n
n−2

)
‖y1 − y2‖2

L
2n
n−2
≤ c(r)‖y1 − y2‖2H1

0
. (4.11)

Let z(1) =

(
y(1)

y
(1)
t

)
, z(2) =

(
y(2)

y
(2)
t

)
be solutions of (4.1), and ‖z(1)(0)‖X ≤

r, ‖z(2)(0)‖X ≤ r. Then from (4.11) for the function ω(t) = y(1)(t) − y(2)(t), we
deduce:

1

2

d

dt

(
‖ωt‖2 + ‖ω‖2H1

0

)
+ α‖ωt‖2 ≤ c

1
2 (r)‖ω‖H1

0
‖ωt‖,
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d

dt

(
‖ωt‖2 + ‖ω‖2H1

0

)
≤ c

1
2 (r)

(
‖ωt‖2 + ‖ω‖2H1

0

)
.

After applying Grönwall′s lemma we obtain (4.9).

For proving (4.10) we consider arbitrary solution z(1) =

(
y(1)

y
(1)
t

)
of (2.1) with

disturbance d, ‖d‖∞ ≤ r and initial data z0. Let z(2) =

(
y(2)

y
(2)
t

)
be a unique

solution of (4.1) with initial data z0, ‖z0‖X ≤ r. Then for the function ω(t) =
y(1)(t)− y(2)(t) we have the following estimate: for a.a. t ∈ (0, T )

d

dt

(
‖ωt‖2 + ‖ω‖2H1

0

)
≤ c

1
2 (r)

(
‖ωt‖2 + ‖ω‖2H1

0

)
+ c4|Ω|

1
2 ‖d‖∞ sup

t∈[0,T ]

(
‖ωt‖+ ‖ω‖H1

0

)
. (4.12)

Integrating over [0, t], we get: ∀ t ∈ (0, T )

‖ωt(t)‖2 + ‖ω(t)‖2H1
0
≤ c

1
2 (r)

ˆ t

0

(
‖ωt(s)‖2 + ‖ω(s)‖2H1

0

)
ds

+ c4T |Ω|
1
2 ‖d‖∞ sup

t∈[0,T ]

(
‖ωt‖+ ‖ω‖H1

0

)
. (4.13)

After applying Grönwall′s lemma from (4.13) we derive the existence of c >
0, η(r) > 0 such that

sup
t∈[0,T ]

‖z(1)(t)− z(2)(t)‖X ≤ c‖d‖∞Teη(r)T .

So, we have (4.10). Theorem is proved.

5. AG property for the attractor.

In this part of the work we show that under assumptions (3.1)-(3.3) for suf-
ficiently wide class of disturbances U1 ⊂ L∞(R+) the global attractor Θ of the
m-semiflow S0 is globally stable in the AG sense, i.e., robust estimate (2.4) takes
place.

Assume that the set of disturbances U1 consists of all functions d ∈ L∞(R+)
with

sup
t≥0

ˆ t+1

t
|d(s+ τ)− d(s)|2 ds ≤ ψ(|l|), (5.1)

where ψ may depend on d and ψ(p)→ 0, p→ 0+.
Property (5.1) is true for absolutely continuous functions d ∈ L∞(R+) with

d′ ∈ L∞(R+).
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It is clear that the set U1 is translation-invariant, i.e.,

∀d() ∈ U1, ∀h ≥ 0 d(+h) ∈ U1.

Moreover, it is known [6] that for every d ∈ U1 the set

Σ(d) := clL2
loc
{d(+h) | h ≥ 0}

is a translation-invariant compact subset of L2
loc(R+), d ∈ Σ(d), Σ(0) = {0} i

∀σ ∈ Σ(d)

sup
t≥0

ˆ t+1

t
|σ(s)|2 ds ≤ sup

t≥0

ˆ t+1

t
|d(s)|2 ds ≤ ‖d‖2∞. (5.2)

Theorem 5.1. Assume that conditions (3.1)-(3.3), (5.1) are fulfilled. Then the
family {Sd}d∈U1 possesses AG property for the global attractor Θ, i.e.,

∃γ ∈ K ∀d ∈ U1, ∀z0 ∈ X

lim
t→∞
‖Sd(t, z0)‖Θ ≤ γ(‖d‖∞). (5.3)

Proof. As ∀t ≥ 0, ∀d ∈ U1, ∀σ ∈ Σ(d) due to (5.2)
ˆ t

0
|σ(s)|2e−σ(t−s) ds ≤ 1

σ
‖d‖2∞, (5.4)

so from (3.7) we derive: ∃c > 0 ∀r > 0 ∃T (r) ∀t ≥ T (r), ∀‖z0‖X ≤ r and
for arbitrary solution z() of (2.1) with z(0) = z0 and disturbance σ ∈ Σ(d) the
following estimate holds

‖z(t)‖X ≤ c(1 + ‖d‖∞). (5.5)

Taking into account dissipative property (5.5), compactness of Σ(d), estimate
(5.2), and abstract results from [16], we conclude that for proving robust estimate
(5.3) it is sufficient to verify the following properties:

σn → σ in L2
loc(R+), zn0 → z0 in X, ξn ∈ Sσn(t, zn0 ), ξn → ξ in X ⇒

⇒ ξ ∈ Sσ(t, z0), (5.6)

{σn} ⊂ Σ(d), d ∈ U1 (or σn ∈ Σ(dn), ‖dn‖∞ → 0), zn0 → z0 weakly in X, tn ↗∞,

ξn ∈ Sσn(tn, z
n
0 )⇒ {ξn} is precompact in X. (5.7)

Property (5.6) is a direct consequence of Lemma 3.2.
Let us prove (5.7). We put ξn = zn(tn), where zn() is a solution of (2.1) with

d = σn, zn(0) = zn0 .
From estimates (3.7),(5.2) and assumption (5.7) we derive that the sequence

{ξn} is bounded in X. So, up to subsequence

ξn → ξ weakly in X. (5.8)
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We can extract a subsequence such that ∀M ≥ 1

zn(tn −M)→ ξM weakly in X.

Moreover, ∀t ≥ 0 for sufficiently large n we have from the cocycle property:

zn(tn −M + t) ∈ Sσn(+tn−M)(t, 0, zn(tn −M)).

Let us put σ̄n(t) := σn(t+ tn−M). Assumption (5.7) allows us to claim that for
some σ̄ we have that

σ̄n → σ̄ in L2
loc(R+). (5.9)

Therefore, from Lemma 3.2 for z̄n(t) = zn(t+ tn −M) we have that ∀t ≥ 0

z̄n(t)→ z̄(t) weakly in X,

z̄(t) ∈ Sσ̄(t, 0, ξM ).

In particular,
z̄n(M) = ξn → z̄(M) = ξ weakly in X.

It is known [5] that every solution z() of (2.1) with disturbance d() satisfies the
equality

d

dt
I(z(t)) + αI(z(t)) = Hd(t, z(t)), (5.10)

where

I(z) =
1

2
‖yt‖2 +

1

2
‖y‖2H1

0
+ (F (y), 1) +

α

2
(yt, y),

Hd(t, z) = α(F (y(t)), 1)− α

2
(f(y(t)), y(t))

+
α

2
(g(y(t)), y(t))d(t) + (g(y(t)), yt(t))d(t).

We write (5.10) for z̄n and after integrating over [0,M ] we get:

I(ξn) = I(zn(tn −M))e−αM +

ˆ M

0
eα(p−M)Hσ̄n(p, z̄n(p)) dp. (5.11)

Applying to {z̄n} arguments (3.17),(3.18), and taking into account strong conver-
gence (5.9), we deduce that ∀M ≥ 0

ˆ M

0
eα(p−M)Hσ̄n(p, z̄n(p)) dp→

ˆ M

0
eα(p−M)Hσ̄(p, z̄(p)) dp as n→∞.

From estimate (3.7) ∃c > 0 ∀t ≥ 0, ∀n ≥ 1

|I(zn(t))| ≤ c, (5.12)

where c does not depend on M .
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Then from (5.11), (5.12) we conclude that

lim
n→∞

I(ξn) ≤ ce−αM +

ˆ M

0
e−α(p−M)Hσ̄(z̄(p)) dp

= ce−αM + I(ξ)− I(ξM )e−αM ≤ 2ce−αM + I(ξ).

Thus,

lim
n→∞

1

2
‖ξn‖2X ≤ 2ce−αM +

1

2
‖ξ‖2X .

Passing to the limit as M →∞, we get

lim
n→∞

‖ξn‖X ≤ ‖ξ‖X .

Combining this inequality with weak convergence (5.8), we obtain that the se-
quence {ξn} is precompact in X. Theorem is proved.
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