
Original scientific paper

https://doi.org/10.33180/InfMIDEM2023.203

1

Journal of Microelectronics,
Electronic Components and Materials
Vol. 53, No. 2(2023), XX – XX

An Energy-efficient and Accuracy-adjust-
able bfloat16 Multiplier
Ratko Pilipović1, Patricio Bulić1, Uroš Lotrič1

1Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

Abstract: The approximate multipliers have been extensively used in neural network inference, but due to the relatively large error,
they have yet to be successfully deployed in neural network learning. Recently, the bfloat16 format has emerged as a viable number
representation for neural networks. This paper proposes a novel approximate bfloat16 multiplier with on-the-fly adjustable accuracy
for energy-efficient learning in deep neural networks. The size of the proposed multiplier is only 62% of the size of the exact bfloat16
multiplier. Furthermore, its energy footprint is up to five times smaller than the footprint of the exact bfloat16 multiplier. We demon-
strate the advantages of the proposed multiplier in deep neural network learning, where we successfully train the ResNet-20 net-
work on the CIFAR-10 dataset from scratch.

Keywords: approximate computing; deep neural networks; energy-efficient processing; bfloat16 multiplier

Energijsko učinkovit približni množilnik v zapisu

bfloat16 z nastavljivo natančnostjo
Izvleček: Približni množilniki so se izkazali za zelo primerne pri sklepanju z nevronskimi mrežami, vendar zaradi relativno velike
napake še niso bili uspešno uporabljeni pri učenju globokih nevronskih mrež. Pred kratkim se je za predstavitev realnih števil v ne-
vronskih mrežah začel uveljavljati zapis bfloat16. V članku predlagamo nov približni množilnik v zapisu bfloat16 s sprotno nastavljivo
natančnostjo za energetsko učinkovito učenje v globokih nevronskih mrežah. Velikost predlaganega množilnika je samo 62 % veli-
kosti natančnega množilnika v zapisu bfloat16. Poleg tega je njegov energijski odtis do petkrat manjši od odtisa natančnega mno-
žilnika bfloat16. Uporabnost predlaganega množilnika predstavimo na primeru učenja globokih nevronskih mrež, kjer uspešno na-
učimo mrežo ResNet-20 na naboru podatkov CIFAR-10.

Ključne besede: približno računanje; globoke nevronske mreže; energijsko učinkovito računanje; množilnik v zapisu bfloat16

* Corresponding Author’s e-mail: patricio.bulic@fri.uni-lj.si

1 Introduction

Neural network capability of learning from data and
generalising the gained knowledge makes them a very
popular modelling tool in various application fields. The
popularity growth in the last years can be attributed to
the deep models, which pose considerable require-
ments to the processing hardware. Thus, new hardware
solutions are being developed continuously to keep the
processing hardware on par with the computing de-
mands.

Approximate computing has emerged as a popular
strategy for area- and energy-efficient circuit design,
where the challenge is to achieve the best trade-off be-
tween design efficiency and accuracy. Efficient designs
come at the cost of accuracy reduction and vice versa.
Nevertheless, approximate computing perfectly fits
neural networks, which, to a certain extent, tolerate or

even adapt to an error caused by noisy input data or er-
roneous computation. Widely used approaches in ap-
proximate computing are precision scaling and approx-
imate arithmetic.

In precision scaling [1], we use fewer bits to represent
numeric values rather than executing all the required
mathematical operations with the full representation.
Several standards for the floating-point presentation
recently appeared: IEEE~754-2019 for half-precision [2],
posit format with dynamic range and mantissa [3] and
Google's bfloat16, targeting the machine-learning
workloads [4]. Storing the numeric values with fewer
bits reduces the size of arithmetic circuits and their
complexity. Besides, it saves on-chip memory and re-
duces the amount of data that must be transferred, im-
proving speed.

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

2

Multiplication represents a ubiquitous arithmetic oper-
ation in neural network processing. Moreover, multipli-
ers are complex circuits that importantly affect a pro-
cessing hardware's area and energy footprint. Hence,
the applications can benefit in terms of power and area
consumption by replacing the exact multiplier with an
approximate one. The approximate multiplier design
can originate in the logarithmic approximation of nu-
merical values [5-8] or non-logarithmic approaches, like
discarding some stages in Booth multipliers [9-11]. Alt-
hough most approximate multipliers are designed for
fixed-point arithmetic, many floating-point designs, ca-
pable of presenting numerical values in a wider range,
have appeared lately.

There have been several attempts to use approximate
integer multipliers in neural network learning [12-14].
The authors of these studies report that the learning
was successful, but they mainly worked with tiny neural
networks. To the best of our knowledge, there has yet
to be a successful attempt to train large-scale neural
networks using approximate multipliers. In neural net-
work learning, we need higher precision arithmetic, so
until now, neural networks have mainly been trained us-
ing the exact floating-point multipliers [3], [15].

Common to most of the existing designs is that their ac-
curacy can be adjusted at the design time. As such, they
can perfectly fit the targeting application but fail for
many others. However, many applications need adjust-
able accuracy during run time. In neural network pro-
cessing, for example, we can use lower accuracy during
the inference phase but need much higher accuracy
during the learning phase. Moreover, some parts of an
application may still require exact multiplication. For
such an application, it would be beneficial to design a
multiplier capable of handling all accuracy require-
ments, thus avoiding putting a plethora of multipliers
on a chip and not exploiting them simultaneously.

Several precision-tuning 32-bit floating-point multipli-
ers for deep neural network processing have recently
been proposed. The work [16] proposes the 32-bit float-
ing-point approximate PAM multiplier with run-time
customisation, which can successfully replace a single-
precision floating-point multiplier in some deep neural
networks and image-processing applications. In [17],
the authors proposed a 32-bit iterative approximate
floating-point multiplier based on two-dimensional
pseudo-Booth encoding. The accuracy of the proposed
multiplier is tuned by three parameters: iteration, en-
coder's radix, and word length after truncation. To our
knowledge, the only state-of-the-art approximate 16-
bit bfloat multiplier is proposed in [15]. This variable-
precision approximate multiplier uses the bfloat16 for-
mat for operand representation and the intermediate
conversion of product exponent to the posit encoding
to control the mantissa multiplication accuracy. All

these multipliers were used only in the inference phase
in deep learning models and in image-processing appli-
cations, where neglectable degradation in accuracy was
observed.

A design that would suit most applications should be
able to multiply with the required accuracy, not exclud-
ing exact computation, and accept a wide range of nu-
meric values. In this paper, we propose an efficient and
accuracy-adjustable approximate 16-bit multiplier for
operands presented in the bfloat16 format, which does
not require any hardware reconfiguration to adapt ac-
curacy and demonstrates its applicability in the neural
network inference and learning phases.

In the remainder of the paper, we first detail the pro-
posed BFILM multiplier design. Section III shows the
hardware characteristics of the design and demon-
strates the BFILM multiplier usability in neural network
inference and learning. Lastly, we conclude the paper
with the main findings.

2 The design of BFILM multiplier

The proposed brain float iterative logarithmic multiplier
(BFILM) operates on numerical values in the bfloat16
format. The advantage of representing the numerical
value 𝑂 in the bfloat16 format is, that it keeps one sign
bit 𝑠(𝑂) and the 8-bit exponent 𝑒(𝑂) equal to the IEEE
754 single-precision floating-point format but shortens
the mantissa 𝑚(𝑂) to 7 bits. Thus, it enables using tiny
numerical values, important in the neural network
learning phase [18] for example. While the multiplier
determines the sign and the exponent exactly, it follows
the idea of the approximate iterative logarithmic multi-
plier to compute the mantissa. The number of steps,
which determine the accuracy of the multiplier, can be
changed on the fly.

Fig. 1 shows the structure of the BFILM multiplier, which
takes operands 𝑂1 and 𝑂2 to compute the approximate
product 𝑃approx . The multiplier consists of a straightfor-

ward circuit for determining the sign of the product and
two loosely connected circuits for determining the
product's exponent and mantissa.

2.1 The exponent circuitry

The exponent circuity in Fig. 1 incorporates two adders.
We must add both operands' exponents to get the
product's exponent. However, the bfloat16 format uses
the offset-binary representation of the exponent, with
the zero offset being 127. To correctly code the
product's exponent, we need an additional adder to
subtract the offset. The logic connected to the carry in-
put 𝑐in of the first adder covers the situations when the
product's exponent must be normalised due to the large

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

3

approximate product 𝑃a obtained from the mantissa
multiplier.

2.2 The mantissa circuitry

The mantissa circuitry in Fig. 1 comprises the mantissa
multiplier and the mantissa normalizer. The mantissa
stores only the fractional bits, to which we must pre-
pend the leading one to get an 8-bit fixed point un-
signed number at the input to the mantissa multiplier.
The multiplication results in a product, given in 16-bit
unsigned fixed-point format with two integer bits and
14 fractional bits, of which we take only the nine most
significant bits to the output 𝑃a of the mantissa multi-

plier. We form the product's mantissa m(𝑃approx) re-

garding the integer part of the output 𝑃𝑎. When it is
greater than one with 𝑃a[8] set, we normalise the result
by shifting the radix point one place to the left. To do so,

Figure 1: The circuitry of the 16-bit bfloat multiplier.

we increment the product's exponent and take the mid-
dle seven bits 𝑃a[7: 1]. In all other cases, normalisation
is unnecessary, and the product's mantissa equals the
seven least significant bits 𝑃a[6: 0].

An important component of the BFILM multiplier is the
approximate mantissa multiplier that relies on the iter-
ative logarithmic multiplier (ILM) [7]. Suppose we have
two non-negative 8-bit operands 𝑥 and 𝑦, expressed as

the sum of the leading bit and the residuum, 𝑥 = 2𝑘𝑥 +

𝑟𝑥 and 𝑦 = 2𝑘𝑦 + 𝑟𝑦, which multiply to the product

𝑝 = 𝑥𝑦 = 𝑥(2𝑘𝑦 + 𝑟𝑦) = 𝑥2𝑘𝑦 + 𝑥𝑟𝑦

 = 𝑥2𝑘𝑦 + 2𝑘𝑥𝑟𝑦 + 𝑟𝑥𝑟𝑦 . (1)

By summing up the first-order Taylor expansions of

 log2 𝑥 = 𝑘𝑥 + log2(1 + 𝑟𝑥2−𝑘𝑥)
 = 𝑘𝑥 + ln(1 + 𝑟𝑥2−𝑘𝑥) log2 e

 ≈ 𝑘𝑥 + 𝑟𝑥2−𝑘𝑥 log2 e (2)

and log2 𝑦 ≈ 𝑘𝑦 + 𝑟𝑦2−𝑘𝑦 log2 e, we get the approxi-

mation

log2 𝑝 ≈ (3)

 ≈ (𝑘𝑥 + 𝑘𝑦) + 2−(𝑘𝑥+𝑘𝑦)(𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥) log2 e

 ≈ (𝑘𝑥 + 𝑘𝑦) + log2[1 + 2−(𝑘𝑥+𝑘𝑦)(𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥)] .

By taking the antilogarithm of log2 𝑝 approximation, we
obtain an approximate product

𝑝a = 2(𝑘𝑥+𝑘𝑦)[1 + 2−(𝑘𝑥+𝑘𝑦)(𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥)]

 = 2(𝑘𝑥+𝑘𝑦) + 𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥

 = (2𝑘𝑥 + 𝑟𝑥)2𝑘𝑦 + 𝑟𝑦2𝑘𝑥

 = 𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥 , (4)

which equals equation (1) with the last term omitted.
Thus, computing the product approximation 𝑝𝑎 re-
quires only two shifts and an addition, completely
avoiding multiplication of the term 𝑟𝑥𝑟𝑦.

Figure 2: The circuitry of the ILM core.

The ILM core circuitry in Fig. 2 computes the approxi-
mate product and both residua. The leading one detec-

tors extract the leading one bits 2𝑘𝑥 and 2𝑘𝑦 and their
characteristic numbers 𝑘𝑥 and 𝑘𝑦 from operands 𝑥 and

𝑦. We need both leading one bit to compute the residua
and the characteristic numbers to do the required shifts
of the operand 𝑥 and the residuum 𝑟𝑦. The truncated

barrel shifters output only the nine most significant bits
required in further processing, thus importantly reduc-
ing their size and the size of the adder.

The relative error of the product (𝑝 − 𝑝𝑎)/𝑝 = 𝑟𝑥𝑟𝑦/𝑝

can be as high as 25 %. To reduce it, we can iteratively
repeat the above procedure by multiplying residua 𝑟𝑥
and 𝑟𝑦 and adding the result to the current approxima-

tion. The procedure can be repeated until at least one
residuum becomes zero, thus achieving an error as
small as necessary.

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

4

The mantissa multiplier shown in Fig. 3 comprises the
ILM core, two multiplexers, and an accumulator to iter-
atively refine the approximate mantissa product 𝑃𝑎. In
the initial ILM step (𝐼 = 1), the multiplexers pass the
operands 𝑋 and 𝑌 to the ILM core, while in the next ILM
steps (𝐼 > 1), the multiplexers feed the ILM core with
residua 𝑟𝑥 and 𝑟𝑦 from the previous ILM step. The accu-

mulator keeps the approximation of the mantissa prod-
uct, which is in each ILM step increased by the value 𝑝𝑎.
To comply with the circuitry presented in Fig. 1, the ac-
cumulator needs to keep only the nine most significant
bits.

Figure 3: The circuitry of the approximate mantissa
multiplier.

At this point, we would like to emphasize that the pro-
posed multiplier does not require any hardware recon-
figuration if we want to perform more than one ILM
step. For example, when more ILM steps are required,
we only need to feed the residua 𝑟𝑥 and 𝑟𝑦 (Fig. 2) back

to the input of the ILM core as presented in Fig. 3. In this
case, the multiplexers choose what goes to the ILM
core: the new operands, 𝑋 and 𝑌, or the residua from
the previous iteration, 𝑟𝑥 and 𝑟𝑦. In the actual implemen-

tation, of course, we must add registers at the input of
multiplexers, but these are not shown for simplicity.

3 Results

3.1 Hardware performance

We implement the multipliers in Verilog and synthesise
them to the SkyWater PDK 130 cell library using Open-
Lane [19-21]. The library consists of a 130 nm technol-
ogy with an operating voltage of 1.8 V, and five metal
layers [22-23]. The timing constraints, used for all eval-
uated designs, specify clock-related parameters, which
affect synthesis and timing analysis. We set a clock sig-
nal with a period of 10 ns, hence not violating a critical
path. To evaluate the power, we use timing with a 100
MHz virtual clock (by definition, a virtual clock is a clock

that has no real source in the design and is commonly
used to specify delay constraints during static timing
analysis), load capacitance equal to 33.442 fF (PDK de-
fault) and supply voltage equal to 1.8 V.

We analysed the hardware performance of the BFILM
multiplier in terms of power, area, delay, and power-de-
lay-product (PDP) and compare it with the exact
bfloat16 multiplier. Table 1 shows that the BFILM mul-
tiplier outperforms the exact multiplier in all hardware
metrics; its energy consumption estimated through
PDP is even more than five times smaller.

Table 1: The synthesis results for the examined multi-
pliers.

Multiplier Delay
[ns]

Power
[𝑢𝑊]

Area
[𝑢𝑚2]

PDP
[fJ]

exact bfloat16 2.89 869 6120 2590

BFILM 1.67 298 3796 498

Table 2 compares hardware characteristics of the state-
of-the-art variable-accuracy bfloat16 multipliers. The
results are given as relative values to the standard refer-
ence implementations of the exact bfloat16 multiplier.
The BFILM multiplier, with its very slim design, outper-
forms the recently proposed BFLP16-prop multiplier
[15] in all aspects.

Table 2: Comparison of the bfloat16 multipliers regard-
ing hardware gains relative to the exact bfloat16 multi-

plier.

Multiplier Delay
[%]

Power
[%]

Area
[%]

PDP
[%]

exact bfloat16 100 100 100 100

BFLP16-prop [15] 104 58 81 59

BFILM 58 33 62 19

Since the BFILM multiplier does not require reconfigu-
ration or additional hardware for more accurate pro-
cessing, the multiplier's size (area) and power are pre-
served for an arbitrary number of the ILM steps. Of
course, with the additional ILM steps, it is necessary to
observe that residua 𝑟𝑥 and 𝑟𝑦 must be multiplied once

or twice and added to the final product. Therefore, in
this case, the processing time required to calculate the
product increases linearly with the number of the ILM
steps and thus does also the energy consumption. We
assess different configurations of the BFILM multiplier
in terms of delay, energy consumption (PDP) and the
mean relative error distance (MRED), and present them
in Table 3. For easier comparison, the delay and energy
consumption are given relative to the values of the ex-
act bfloat16 multiplier.

The proposed multiplier with two or three ILM steps has
a lower energy consumption than the exact bfloat16

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

5

multiplier and the BFLP16-prop multiplier [15]. Moreo-
ver, the BFILM multiplier with two ILM steps is not much
slower than the state-of-the-art BFLP16-prop multiplier
[15]. However, the BFILM multiplier with only one ILM
step has a rather large error, which with two ILM steps
comes close to the BFLP16-prop multiplier's MRED, and
then drops by order of magnitude with each additional
ILM step.

Table 3: Comparison of delay, PDP, and the MRED er-
ror for the different number of ILM steps in the BFILM

multiplier.

Multiplier Delay
[%]

PDP
[%]

MRED
[10−3]

exact bfloat16 100 100 0

BFLP16-prop [15] 104 59 3.50

BFILM, 1 ILM step 58 19 91.21

BFILM, 2 ILM steps 115 38 9.08

BFILM, 3 ILM steps 173 58 0.86

These results suggest that the BFILM multiplier should
fit well with error-resilient applications where low-en-
ergy consumption is an important goal and where most
of the time the BFILM multiplier with a small number of
ILM steps could be used. An important feature of the
BFILM multiplier is that we can control the product ac-
curacy by adjusting the number of ILM steps without
hardware modification, ultimately leading even to re-
moving the exact multiplier from the circuitry.

3.2 Impact on neural network learning

Convolutional neural networks achieve remarkable per-
formance in visual recognition tasks [24]. However, the
learning and inference of convolutional neural networks
are computationally demanding tasks that involve
many multiplications. Nevertheless, convolutional neu-
ral networks are error-tolerant models, making them
perfect candidates for employing approximate multipli-
ers. Therefore, we assess the influence of the proposed
multiplier on the performance of the inference and
learning phases.

To evaluate the BFILM multiplier, we select the ResNet-
20 convolutional neural network [25-26] and the CIFAR-
10 dataset [27]. We change the number representation
in the ResNet-20 convolutional neural network from the
single-precision floating-point format to the bfloat16
format. In the experiments, we use the Caffe framework
[28], where we replace the calls to the cuBLAS multipli-
cation routines with the calls to our own GPU kernels,
which emulate the proposed BFILM multiplier.

The neural network learns using the predetermined
split of the dataset to train and test sets [27]. Before
learning, we preprocess the images by subtracting their

mean value. Besides, we quantify the ResNet-20 single-
precision floating-point weights to the bfloat16 format
representation by simply discarding the last 16 bits of
the floating-point mantissa. In the learning phase, we
optimize the multinomial logistic loss function [29] with
the Nesterov momentum algorithm [30]. The learning
starts with randomly initialised weights. In all experi-
ments, we train the network for 64000 epochs.

In the first experiment, we evaluate the influence of the
proposed multiplier on the ResNet-20 classification ac-
curacy. As the BFILM multiplier is configurable in terms
of the number of steps affecting the multiplication er-
ror, we test several BFILM configurations. In the tested
configurations, BFILM-1-1, BFILM-1-2, BFILM-2-2 and
BFILM-2-3, the first number denotes the number of ILM
steps in the inference phase, while the second number
denotes the number of ILM steps used in the learning
phase.

Table 4 shows the classification accuracy of the CIFAR-
10 dataset. For each configuration, we list the average
value and standard deviation over five runs. Significant
multiplication error of BFILM-1-1 leads to low classifica-
tion accuracy. Increasing the number of the ILM steps in
the inference and learning phase improves classification
accuracy. For example, with BFILM-2-2 and BFILM-2-3,
the classification accuracy is almost the same as with
the exact bfloat16 multiplier.

Table 4: Performance of the ResNet-20 convolutional
neural network on the CIFAR-10 dataset using bfloat16

multipliers.

Multiplier Test set classification accuracy [%]

exact bfloat16 91.50 ± 0.10

BFILM-1-1 86.32 ± 1.26

BFILM-1-2 90.98 ± 0.15

BFILM-2-2 91.30 ± 0.30

BFILM-2-3 91.40 ± 0.20

Also, we can see from the results for BFILM-1-1 and
BFILM-1-2 that increasing the number of the ILM steps
in the learning phase positively affects classification
performance. On the other hand, a further increase in
the number of steps in the inference phase from BFILM-
1-2 to BFILM-2-2 has much less impact. Moreover, ac-
cording to Table 3, BFILM-1-2 has a very small energy
footprint and thus could be sufficient for neural network
inference and learning.

The second experiment highlights the advantage of the
on-the-fly accuracy adaptation of the BFILM multiplier,
which can help in faster and more energy-efficient neu-
ral network learning. The idea is to start with one ILM
step in the inference and learning phase to save energy

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

6

and later, when model performance improves, increase
the number of the ILM steps to further refine the result.

Fig. 4 shows the outcome of the learning process on the
training and testing set for five separate runs, each with
randomly initialised neural network weights. For the
loss (red) and the accuracy (green), we show the span of
obtained values and the curve averaged over all runs.
We see that with the BFILM-1-1 configuration, the
model improves rapidly and reaches a classification ac-
curacy of more than 60 % in only 10000 epochs. At this
point, we use an additional ILM step in the learning
phase (BFILM-1-2) to improve the model's convergence
and achieve more than 99.4 % of the accuracy of the ex-
act bfloat16 multiplier. However, if the accuracy still
needs to be increased for some applications, we can en-
hance the model by training it with additional ILM steps.

Figure 4: Varying configuration of BFILM during the
learning phase.

4 Conclusion

In this paper, we proposed a novel approximate
bfloat16 multiplier with adjustable accuracy, which can
be achieved without any hardware reconfiguration. In-
stead, the proposed BFILM multiplier iteratively uses an
approximate logarithmic multiplier core to reduce the
error. This way, we avoid using additional error refine-
ment circuits, keeping the design small and energy effi-
cient. The primary purpose of the proposed design is to
use it in deep neural network processing in the inference
and learning phases. We apply the BFILM multiplier in
the ResNet-20 convolutional neural network to classify
the CIFAR-10 dataset. We demonstrate the impact of
various BFILM configurations on the neural network
learning process and classification accuracy. The results

show that we can easily adjust the multiplier's accuracy
according to the application's requirements. The main
advantage of the on-the-fly adaptation of the BFILM
multiplier comes to expression during the learning
phase. The results prove that we can start with one ILM
step in the inference and learning phase to save energy
and later, when model performance improves, increase
the number of the ILM steps to refine the result further.
In future work, we aim to develop an algorithm that
could optimize the learning process in terms of speed
and efficiency by automatically adapting the ILM steps
to the BFILM multiplier when needed.

5 Acknowledgments

This research was supported by Slovenian Research
Agency under Grants P2-0359 (National research pro-
gram Pervasive computing), P2-0241 (Synergy of the
technological systems and processes) and by Slovenian
Research Agency and Ministry of Civil Affairs, Bosnia
and Herzegovina, under Grant BI-BA/21-23-033 (Bilat-
eral Collaboration Project).

6 Conflict of Interest

The authors declare no conflict of interest.

The funders had no role in the design of the study; in the
collection, analyses, or interpretation of data; in the
writing of the manuscript; nor in the decision to publish
the results.

7 References

[1] G. Armeniakos, G. Zervakis, D. Soudris, and J.
Henkel, ‘‘Hardware approximate techniques for
deep neural network accelerators: A survey,’’ ACM
Comput. Surv., mar 2022.
https://doi.org/10.1145/3527156.

[2] "IEEE standard for floating-point arithmetic,""
2019, IEEE Std 754-2019 (Revision of IEEE 754-
2008).

[3] R. Murillo, A. A. Del Barrio Garcia, G. Botella, M. S.
Kim, H. Kim, and N. Bagherzadeh, "Plam: a posit
logarithm-approximate multiplier," IEEE
Transactions on Emerging Topics in Computing, pp.
1–1, 2021.

[4] H. Kim, ‘‘A low-cost compensated approximate
multiplier for bfloat16 data processing on
convolutional neural network inference,’’ ETRI
Journal, vol. 43, no. 4, pp. 684–693, 2021.
https://onlinelibrary.wiley.com/doi/abs/10.4218/et
rij.2020-0370.

[5] J. N. Mitchell, ‘‘Computer multiplication and
division using binary logarithms,’’ IRE Transactions

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

7

on Electronic Computers, vol. EC-11, no. 4, pp. 512–
517, Aug. 1962.

[6] V. Mahalingam and N. Ranganathan, ‘‘Improving
accuracy in mitchell’s logarithmic multiplication
using operand decomposition,’’ IEEE Transactions
on Computers, vol. 55, no. 12, pp. 1523–1535, Dec.
2006. doi: 10.1109/TC.2006.198.

[7] Z. Babić, A. Avramović, and P. Bulić, ‘‘An iterative
logarithmic multiplier,’’ Microprocessors and
Microsystems, vol. 35, no. 1, pp. 23–33, 2011.
https://doi.org/10.1016/j.micpro.2010.07.001.

[8] M. S. Kim, A. A. D. Barrio, L. T. Oliveira, R.
Hermida, and N. Bagherzadeh, ‘‘Efficient
Mitchell’s approximate log multipliers for
convolutional neural networks,’’ IEEE Transactions
on Computers, vol. 68, no. 5, pp. 660–675, Dec.
2019. doi: 10.1109/TC.2018.2880742.

[9] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi,
‘‘Approximate hybrid high radix encoding for
energy-efficient inexact multipliers,’’ IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 3, pp. 421–430, Nov. 2018.
doi: 10.1109/TVLSI.2017.2767858.

[10] H. Waris, C. Wang, and W. Liu, ‘‘Hybrid low radix
encoding-based approximate Booth multipliers,’’
IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 12, pp. 3367–3371, Feb.
2020. doi: 10.1109/TCSII.2020.2975094.

[11] H. Waris, C. Wang, W. Liu, J. Han, and F. Lombardi,
‘‘Hybrid partial product-based high-performance
approximate recursive multipliers,’’ IEEE
Transactions on Emerging Topics in Computing, vol.
10, no. 1, pp. 507–513, 2022. doi:
10.1109/TETC.2020.3013977.

[12] U. Lotrič and P. Bulić, ‘‘ ,’’ Neurocomputing, vol. 96,
pp. 57–65, 2012, adaptive and Natural Computing
Algorithms.
https://doi.org/10.1016/j.neucom.2011.09.039.

[13] T. Y. Cheng, Y. Masuda, J. Chen, J. Yu, and M.
Hashimoto, ‘‘Logarithm-approximate floating-
point multiplier is applicable to power-efficient
neural network training,’’ Integration, vol. 74, pp.
19–31, 2020.
https://doi.org/10.1016/j.vlsi.2020.05.002.

[14] R. Pilipović, V. Risojević, J. Božič, P. Bulić, and U.
Lotrič, ‘‘An approximate GEMM unit for energy-
efficient object detection,’’ Sensors, vol. 21, no. 12,
2021. https://doi.org/10.3390/s21124195

[15] H. Zhang and S. B. Ko, ‘‘Variable-precision
approximate floating-point multiplier for efficient
deep learning computation,’’ IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 69, pp.
2503–2507, 5 2022. doi:
10.1109/TCSII.2022.3161005.

[16] C. Chen, W. Qian, M. Imani, X. Yin, and C. Zhuo,
‘‘PAM: A piecewise-linearly-approximated
floating-point multiplier with unbiasedness and
configurability,’’ IEEE Transactions on Computers,
vol. 71, pp. 2473–2486, 10 2022. doi:
10.1109/TC.2021.3131850.

[17] A. Towhidy, R. Omidi, and K. Mohammadi, ‘‘On
the design of iterative approximate floating-point
multipliers,’’ IEEE Transactions on Computers,
2022. doi: 10.1109/TC.2022.3216465.

[18] A. Y. Romanov, A. L. Stempkovsky, I. V.
Lariushkin, G. E. Novoselov, R. A. Solovyev, V. A.
Starykh, I. I. Romanova, D. V. Telpukhov, and I. A.
Mkrtchan, ‘‘Analysis of posit and bfloat arithmetic
of real numbers for machine learning,’’ IEEE
Access, vol. 9, pp. 82 318–82 324, 2021. doi:
10.1109/ACCESS.2021.3086669.

[19] A. A. Ghazy and M. Shalan, ‘‘OpenLANE: The
Open-Source Digital ASIC Implementation Flow,’’
in 2020 Workshop on Open-Source EDA
Technology (WOSET), 2020, last accessed 27
September 2022 .Available: https://woset-
workshop.github.io/PDFs/2020/a21.pdf

[20] OpenLane, ‘‘Openlane EDA Toolset.’’ 2022, last
accessed 27 September 2022. Available:
https://github.com/The-OpenROAD-
Project/OpenLane

[21] M. Chupilko, A. Kamkin, and S. Smolov, ‘‘Survey of
open-source flows for digital hardware design,’’ in
2021 Ivannikov Memorial Workshop (IVMEM),
2021, pp. 11–16.

[22] T. Edwards, ‘‘Google/SkyWater and the Promise of
the Open PDK,’’ in 2020 Workshop on Open-
Source EDA Technology (WOSET), 2020, last
accessed 27 September 2022. Available:
https://woset-
workshop.github.io/PDFs/2020/a03.pdf

[23] ‘‘Google SkyWater Open Source PDK.’’ 2022, last
accessed 27 September 2022. Available:
https://github.com/google/skywater-pdk

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
‘‘Imagenet classification with deep convolutional
neural networks,’’ in Advances in Neural
Information Processing Systems, F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds., vol.
25. Lake Tahoe, NV, USA: Curran Associates, Inc.,
Dec. 2012, pp. 1097–1105.

[25] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual
learning for image recognition,’’ in 2016 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[26] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for
accelerating very deep neural networks,’’ in 2017

R. Pilipović et al.; Informacije MIDEM, Vol. 53, No. 2(2023), XX – XX

8

IEEE International Conference on Computer Vision
(ICCV), Oct. 2017, pp. 1398–1406.

[27] A. Krizhevsky, ‘‘Learning multiple layers of
features from tiny images,’’ University of Toronto,
Toronto, Tech. Rep., Apr. 2009.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J.
Long, R. Girshick, S. Guadarrama, and T. Darrell,
‘‘Caffe: Convolutional architecture for fast feature
embedding,’’ in Proceedings of the 22nd ACM
International Conference on Multimedia, ser. MM
’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 675–678.
Available:
https://doi.org/10.1145/2647868.2654889

[29] J. S. Long and J. Freese, Regression Models for
Categorical Dependent Variables using Stata, 3rd
Edition. StataCorp LP, 2014. Available:
https://www.stata.com/bookstore/regression-
models-categorical-dependent-variables

[30] I. Sutskever, J. Martens, G. Dahl, and G. Hinton,
‘‘On the importance of initialization and
momentum in deep learning,’’ in Proceedings of
the 30th International Conference on Machine
Learning, ser. Proceedings of Machine Learning
Research, S. Dasgupta and D. McAllester, Eds.,
vol. 28, no. 3. Atlanta, Georgia, USA: PMLR, 17–19
Jun 2013, pp. 1139–1147. Available:
https://proceedings.mlr.press/v28/sutskever13.ht
ml 6 VOLUME 11, 2023

Copyright © 20xx by the Authors.
This is an open access article dis-
tributed under the Creative Com-

mons Attribution (CC BY) License (https://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, pro-
vided the original work is properly cited.

Arrived: 22.06.2023

Accepted: 21.07.2023

