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Abstract: The approximate multipliers have been extensively used in neural network inference, but due to the relatively large error, 
they have yet to be successfully deployed in neural network learning. Recently, the bfloat16 format has emerged as a viable number 
representation for neural networks. This paper proposes a novel approximate bfloat16 multiplier with on-the-fly adjustable accuracy 
for energy-efficient learning in deep neural networks. The size of the proposed multiplier is only 62% of the size of the exact bfloat16 
multiplier. Furthermore, its energy footprint is up to five times smaller than the footprint of the exact bfloat16 multiplier. We demon-
strate the advantages of the proposed multiplier in deep neural network learning, where we successfully train the ResNet-20 net-
work on the CIFAR-10 dataset from scratch. 
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Energijsko učinkovit približni množilnik v zapisu 

bfloat16 z nastavljivo natančnostjo 
Izvleček: Približni množilniki so se izkazali za zelo primerne pri sklepanju z nevronskimi mrežami, vendar zaradi relativno velike 
napake še niso bili uspešno uporabljeni pri učenju globokih nevronskih mrež. Pred kratkim se je za predstavitev realnih števil v ne-
vronskih mrežah začel uveljavljati zapis bfloat16. V članku predlagamo nov približni množilnik v zapisu bfloat16 s sprotno nastavljivo 
natančnostjo za energetsko učinkovito učenje v globokih nevronskih mrežah. Velikost predlaganega množilnika je samo 62 % veli-
kosti natančnega množilnika v zapisu bfloat16. Poleg tega je njegov energijski odtis do petkrat manjši od odtisa natančnega mno-
žilnika bfloat16. Uporabnost predlaganega množilnika predstavimo na primeru učenja globokih nevronskih mrež, kjer uspešno na-
učimo mrežo ResNet-20 na naboru podatkov CIFAR-10. 

Ključne besede: približno računanje; globoke nevronske mreže; energijsko učinkovito računanje; množilnik v zapisu bfloat16
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1 Introduction

Neural network capability of learning from data and 
generalising the gained knowledge makes them a very 
popular modelling tool in various application fields. The 
popularity growth in the last years can be attributed to 
the deep models, which pose considerable require-
ments to the processing hardware. Thus, new hardware 
solutions are being developed continuously to keep the 
processing hardware on par with the computing de-
mands. 

Approximate computing has emerged as a popular 
strategy for area- and energy-efficient circuit design, 
where the challenge is to achieve the best trade-off be-
tween design efficiency and accuracy. Efficient designs 
come at the cost of accuracy reduction and vice versa. 
Nevertheless, approximate computing perfectly fits 
neural networks, which, to a certain extent, tolerate or 

even adapt to an error caused by noisy input data or er-
roneous computation. Widely used approaches in ap-
proximate computing are precision scaling and approx-
imate arithmetic. 

In precision scaling [1], we use fewer bits to represent 
numeric values rather than executing all the required 
mathematical operations with the full representation. 
Several standards for the floating-point presentation 
recently appeared: IEEE~754-2019 for half-precision [2], 
posit format with dynamic range and mantissa [3] and 
Google's bfloat16, targeting the machine-learning 
workloads [4]. Storing the numeric values with fewer 
bits reduces the size of arithmetic circuits and their 
complexity. Besides, it saves on-chip memory and re-
duces the amount of data that must be transferred, im-
proving speed. 
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Multiplication represents a ubiquitous arithmetic oper-
ation in neural network processing. Moreover, multipli-
ers are complex circuits that importantly affect a pro-
cessing hardware's area and energy footprint. Hence, 
the applications can benefit in terms of power and area 
consumption by replacing the exact multiplier with an 
approximate one. The approximate multiplier design 
can originate in the logarithmic approximation of nu-
merical values [5-8] or non-logarithmic approaches, like 
discarding some stages in Booth multipliers [9-11]. Alt-
hough most approximate multipliers are designed for 
fixed-point arithmetic, many floating-point designs, ca-
pable of presenting numerical values in a wider range, 
have appeared lately. 

There have been several attempts to use approximate 
integer multipliers in neural network learning [12-14]. 
The authors of these studies report that the learning 
was successful, but they mainly worked with tiny neural 
networks. To the best of our knowledge, there has yet 
to be a successful attempt to train large-scale neural 
networks using approximate multipliers. In neural net-
work learning, we need higher precision arithmetic, so 
until now, neural networks have mainly been trained us-
ing the exact floating-point multipliers [3], [15]. 

Common to most of the existing designs is that their ac-
curacy can be adjusted at the design time. As such, they 
can perfectly fit the targeting application but fail for 
many others. However, many applications need adjust-
able accuracy during run time. In neural network pro-
cessing, for example, we can use lower accuracy during 
the inference phase but need much higher accuracy 
during the learning phase. Moreover, some parts of an 
application may still require exact multiplication. For 
such an application, it would be beneficial to design a 
multiplier capable of handling all accuracy require-
ments, thus avoiding putting a plethora of multipliers 
on a chip and not exploiting them simultaneously. 

Several precision-tuning 32-bit floating-point multipli-
ers for deep neural network processing have recently 
been proposed. The work [16] proposes the 32-bit float-
ing-point approximate PAM multiplier with run-time 
customisation, which can successfully replace a single-
precision floating-point multiplier in some deep neural 
networks and image-processing applications.  In [17], 
the authors proposed a 32-bit iterative approximate 
floating-point multiplier based on two-dimensional 
pseudo-Booth encoding. The accuracy of the proposed 
multiplier is tuned by three parameters: iteration, en-
coder's radix, and word length after truncation. To our 
knowledge, the only state-of-the-art approximate 16-
bit bfloat multiplier is proposed in [15]. This variable-
precision approximate multiplier uses the bfloat16 for-
mat for operand representation and the intermediate 
conversion of product exponent to the posit encoding 
to control the mantissa multiplication accuracy. All 

these multipliers were used only in the inference phase 
in deep learning models and in image-processing appli-
cations, where neglectable degradation in accuracy was 
observed. 

A design that would suit most applications should be 
able to multiply with the required accuracy, not exclud-
ing exact computation, and accept a wide range of nu-
meric values. In this paper, we propose an efficient and 
accuracy-adjustable approximate 16-bit multiplier for 
operands presented in the bfloat16 format, which does 
not require any hardware reconfiguration to adapt ac-
curacy and demonstrates its applicability in the neural 
network inference and learning phases. 

In the remainder of the paper, we first detail the pro-
posed BFILM multiplier design. Section III shows the 
hardware characteristics of the design and demon-
strates the BFILM multiplier usability in neural network 
inference and learning. Lastly, we conclude the paper 
with the main findings. 

2 The design of BFILM multiplier 

The proposed brain float iterative logarithmic multiplier 
(BFILM) operates on numerical values in the bfloat16 
format. The advantage of representing the numerical 
value 𝑂 in the bfloat16 format is, that it keeps one sign 
bit 𝑠(𝑂) and the 8-bit exponent 𝑒(𝑂) equal to the IEEE 
754 single-precision floating-point format but shortens 
the mantissa 𝑚(𝑂) to 7 bits. Thus, it enables using tiny 
numerical values, important in the neural network 
learning phase [18] for example. While the multiplier 
determines the sign and the exponent exactly, it follows 
the idea of the approximate iterative logarithmic multi-
plier to compute the mantissa. The number of steps, 
which determine the accuracy of the multiplier, can be 
changed on the fly.  

Fig. 1 shows the structure of the BFILM multiplier, which 
takes operands 𝑂1 and 𝑂2 to compute the approximate 
product 𝑃approx . The multiplier consists of a straightfor-

ward circuit for determining the sign of the product and 
two loosely connected circuits for determining the 
product's exponent and mantissa. 

2.1 The exponent circuitry 

The exponent circuity in Fig. 1 incorporates two adders. 
We must add both operands' exponents to get the 
product's exponent. However, the bfloat16 format uses 
the offset-binary representation of the exponent, with 
the zero offset being 127. To correctly code the 
product's exponent, we need an additional adder to 
subtract the offset. The logic connected to the carry in-
put 𝑐in  of the first adder covers the situations when the 
product's exponent must be normalised due to the large 
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approximate product 𝑃a obtained from the mantissa 
multiplier. 

2.2 The mantissa circuitry 

The mantissa circuitry in Fig. 1 comprises the mantissa 
multiplier and the mantissa normalizer. The mantissa 
stores only the fractional bits, to which we must pre-
pend the leading one to get an 8-bit fixed point un-
signed number at the input to the mantissa multiplier. 
The multiplication results in a product, given in 16-bit 
unsigned fixed-point format with two integer bits and 
14 fractional bits, of which we take only the nine most 
significant bits to the output 𝑃a of the mantissa multi-

plier. We form the product's mantissa m(𝑃approx) re-

garding the integer part of the output 𝑃𝑎. When it is 
greater than one with 𝑃a[8] set, we normalise the result 
by shifting the radix point one place to the left. To do so,  

 

Figure 1: The circuitry of the 16-bit bfloat multiplier. 

we increment the product's exponent and take the mid-
dle seven bits 𝑃a[7: 1]. In all other cases, normalisation 
is unnecessary, and the product's mantissa equals the 
seven least significant bits 𝑃a[6: 0].  

An important component of the BFILM multiplier is the 
approximate mantissa multiplier that relies on the iter-
ative logarithmic multiplier (ILM) [7]. Suppose we have 
two non-negative 8-bit operands 𝑥 and 𝑦, expressed as 

the sum of the leading bit and the residuum, 𝑥 = 2𝑘𝑥 +

𝑟𝑥  and 𝑦 = 2𝑘𝑦 + 𝑟𝑦, which multiply to the product 

𝑝 =  𝑥𝑦 =  𝑥(2𝑘𝑦 + 𝑟𝑦) = 𝑥2𝑘𝑦 + 𝑥𝑟𝑦  

                                 =  𝑥2𝑘𝑦 + 2𝑘𝑥𝑟𝑦 + 𝑟𝑥𝑟𝑦  . (1) 

By summing up the first-order Taylor expansions of 

 log2 𝑥 = 𝑘𝑥 + log2(1 + 𝑟𝑥2−𝑘𝑥) 
                                = 𝑘𝑥 + ln(1 + 𝑟𝑥2−𝑘𝑥) log2 e 

             ≈ 𝑘𝑥 + 𝑟𝑥2−𝑘𝑥 log2 e (2) 

and log2 𝑦 ≈ 𝑘𝑦 + 𝑟𝑦2−𝑘𝑦 log2 e, we get the approxi-

mation 

log2 𝑝 ≈      (3) 

 ≈ (𝑘𝑥 + 𝑘𝑦) + 2−(𝑘𝑥+𝑘𝑦)(𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥) log2 e 

 ≈ (𝑘𝑥 + 𝑘𝑦) + log2[1 +  2−(𝑘𝑥+𝑘𝑦)(𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥)]   .         

By taking the antilogarithm of log2 𝑝 approximation, we 
obtain an approximate product 

𝑝a = 2(𝑘𝑥+𝑘𝑦)[1 +  2−(𝑘𝑥+𝑘𝑦)(𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥)] 

      = 2(𝑘𝑥+𝑘𝑦) + 𝑟𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥  

      = (2𝑘𝑥 + 𝑟𝑥)2𝑘𝑦 + 𝑟𝑦2𝑘𝑥  

             = 𝑥2𝑘𝑦 + 𝑟𝑦2𝑘𝑥      ,                              (4) 

which equals equation (1) with the last term omitted. 
Thus, computing the product approximation 𝑝𝑎  re-
quires only two shifts and an addition, completely 
avoiding multiplication of the term 𝑟𝑥𝑟𝑦. 

 

Figure 2: The circuitry of the ILM core. 

The ILM core circuitry in Fig. 2 computes the approxi-
mate product and both residua. The leading one detec-

tors extract the leading one bits 2𝑘𝑥  and 2𝑘𝑦  and their 
characteristic numbers 𝑘𝑥 and 𝑘𝑦  from operands 𝑥 and 

𝑦. We need both leading one bit to compute the residua 
and the characteristic numbers to do the required shifts 
of the operand 𝑥 and the residuum 𝑟𝑦. The truncated 

barrel shifters output only the nine most significant bits 
required in further processing, thus importantly reduc-
ing their size and the size of the adder. 

The relative error of the product (𝑝 − 𝑝𝑎)/𝑝 = 𝑟𝑥𝑟𝑦/𝑝 

can be as high as 25 %. To reduce it, we can iteratively 
repeat the above procedure by multiplying residua 𝑟𝑥  
and 𝑟𝑦  and adding the result to the current approxima-

tion. The procedure can be repeated until at least one 
residuum becomes zero, thus achieving an error as 
small as necessary. 
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The mantissa multiplier shown in Fig. 3 comprises the 
ILM core, two multiplexers, and an accumulator to iter-
atively refine the approximate mantissa product 𝑃𝑎. In 
the initial ILM step (𝐼 = 1), the multiplexers pass the 
operands 𝑋 and 𝑌 to the ILM core, while in the next ILM 
steps (𝐼 > 1), the multiplexers feed the ILM core with 
residua 𝑟𝑥  and 𝑟𝑦  from the previous ILM step. The accu-

mulator keeps the approximation of the mantissa prod-
uct, which is in each ILM step increased by the value  𝑝𝑎. 
To comply with the circuitry presented in Fig. 1, the ac-
cumulator needs to keep only the nine most significant 
bits. 

 

Figure 3: The circuitry of the approximate mantissa 
multiplier. 

At this point, we would like to emphasize that the pro-
posed multiplier does not require any hardware recon-
figuration if we want to perform more than one ILM 
step. For example, when more ILM steps are required, 
we only need to feed the residua 𝑟𝑥  and 𝑟𝑦  (Fig. 2) back 

to the input of the ILM core as presented in Fig. 3. In this 
case, the multiplexers choose what goes to the ILM 
core: the new operands, 𝑋 and 𝑌, or the residua from 
the previous iteration, 𝑟𝑥  and 𝑟𝑦. In the actual implemen-

tation, of course, we must add registers at the input of 
multiplexers, but these are not shown for simplicity. 

 

3 Results 

3.1 Hardware performance 

We implement the multipliers in Verilog and synthesise 
them to the SkyWater PDK 130 cell library using Open-
Lane [19-21]. The library consists of a 130 nm technol-
ogy with an operating voltage of 1.8 V, and five metal 
layers [22-23]. The timing constraints, used for all eval-
uated designs, specify clock-related parameters, which 
affect synthesis and timing analysis. We set a clock sig-
nal with a period of 10 ns, hence not violating a critical 
path. To evaluate the power, we use timing with a 100 
MHz virtual clock (by definition, a virtual clock is a clock 

that has no real source in the design and is commonly 
used to specify delay constraints during static timing 
analysis), load capacitance equal to 33.442 fF (PDK de-
fault) and supply voltage equal to 1.8 V.  

We analysed the hardware performance of the BFILM 
multiplier in terms of power, area, delay, and power-de-
lay-product (PDP) and compare it with the exact 
bfloat16 multiplier. Table 1 shows that the BFILM mul-
tiplier outperforms the exact multiplier in all hardware 
metrics; its energy consumption estimated through 
PDP is even more than five times smaller. 

Table 1: The synthesis results for the examined multi-
pliers. 

Multiplier Delay 
[ns] 

Power 
[𝑢𝑊] 

Area 
[𝑢𝑚2] 

PDP 
[fJ] 

exact bfloat16 2.89 869 6120 2590 

BFILM 1.67 298 3796 498 

 

Table 2 compares hardware characteristics of the state-
of-the-art variable-accuracy bfloat16 multipliers. The 
results are given as relative values to the standard refer-
ence implementations of the exact bfloat16 multiplier. 
The BFILM multiplier, with its very slim design, outper-
forms the recently proposed BFLP16-prop multiplier 
[15] in all aspects. 

Table 2: Comparison of the bfloat16 multipliers regard-
ing hardware gains relative to the exact bfloat16 multi-

plier. 

Multiplier Delay 
[%] 

Power 
[%] 

Area 
[%] 

PDP 
[%] 

exact bfloat16 100 100 100 100 

BFLP16-prop [15] 104 58 81 59 

BFILM 58 33 62 19 

 

Since the BFILM multiplier does not require reconfigu-
ration or additional hardware for more accurate pro-
cessing, the multiplier's size (area) and power are pre-
served for an arbitrary number of the ILM steps. Of 
course, with the additional ILM steps, it is necessary to 
observe that residua 𝑟𝑥  and 𝑟𝑦  must be multiplied once 

or twice and added to the final product. Therefore, in 
this case, the processing time required to calculate the 
product increases linearly with the number of the ILM 
steps and thus does also the energy consumption. We 
assess different configurations of the BFILM multiplier 
in terms of delay, energy consumption (PDP) and the 
mean relative error distance (MRED), and present them 
in Table 3. For easier comparison, the delay and energy 
consumption are given relative to the values of the ex-
act bfloat16 multiplier. 

The proposed multiplier with two or three ILM steps has 
a lower energy consumption than the exact bfloat16 
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multiplier and the BFLP16-prop multiplier [15]. Moreo-
ver, the BFILM multiplier with two ILM steps is not much 
slower than the state-of-the-art BFLP16-prop multiplier 
[15]. However, the BFILM multiplier with only one ILM 
step has a rather large error, which with two ILM steps 
comes close to the BFLP16-prop multiplier's MRED, and 
then drops by order of magnitude with each additional 
ILM step. 

Table 3: Comparison of delay, PDP, and the MRED er-
ror for the different number of ILM steps in the BFILM 

multiplier. 

Multiplier Delay 
[%] 

PDP 
[%] 

MRED 
[10−3] 

exact bfloat16 100 100    0 

BFLP16-prop [15] 104 59 3.50 

BFILM, 1 ILM step 58 19 91.21 

BFILM, 2 ILM steps 115 38 9.08 

BFILM, 3 ILM steps 173 58 0.86 

 

These results suggest that the BFILM multiplier should 
fit well with error-resilient applications where low-en-
ergy consumption is an important goal and where most 
of the time the BFILM multiplier with a small number of 
ILM steps could be used. An important feature of the 
BFILM multiplier is that we can control the product ac-
curacy by adjusting the number of ILM steps without 
hardware modification, ultimately leading even to re-
moving the exact multiplier from the circuitry. 

3.2 Impact on neural network learning 

Convolutional neural networks achieve remarkable per-
formance in visual recognition tasks [24]. However, the 
learning and inference of convolutional neural networks 
are computationally demanding tasks that involve 
many multiplications. Nevertheless, convolutional neu-
ral networks are error-tolerant models, making them 
perfect candidates for employing approximate multipli-
ers. Therefore, we assess the influence of the proposed 
multiplier on the performance of the inference and 
learning phases. 

To evaluate the BFILM multiplier, we select the ResNet-
20 convolutional neural network [25-26] and the CIFAR-
10 dataset [27]. We change the number representation 
in the ResNet-20 convolutional neural network from the 
single-precision floating-point format to the bfloat16 
format. In the experiments, we use the Caffe framework 
[28], where we replace the calls to the cuBLAS multipli-
cation routines with the calls to our own GPU kernels, 
which emulate the proposed BFILM multiplier. 

The neural network learns using the predetermined 
split of the dataset to train and test sets [27]. Before 
learning, we preprocess the images by subtracting their 

mean value. Besides, we quantify the ResNet-20 single-
precision floating-point weights to the bfloat16 format 
representation by simply discarding the last 16 bits of 
the floating-point mantissa. In the learning phase, we 
optimize the multinomial logistic loss function [29] with 
the Nesterov momentum algorithm [30]. The learning 
starts with randomly initialised weights. In all experi-
ments, we train the network for 64000 epochs. 

In the first experiment, we evaluate the influence of the 
proposed multiplier on the ResNet-20 classification ac-
curacy. As the BFILM multiplier is configurable in terms 
of the number of steps affecting the multiplication er-
ror, we test several BFILM configurations. In the tested 
configurations, BFILM-1-1, BFILM-1-2, BFILM-2-2 and 
BFILM-2-3, the first number denotes the number of ILM 
steps in the inference phase, while the second number 
denotes the number of ILM steps used in the learning 
phase. 

Table 4 shows the classification accuracy of the CIFAR-
10 dataset. For each configuration, we list the average 
value and standard deviation over five runs. Significant 
multiplication error of BFILM-1-1 leads to low classifica-
tion accuracy. Increasing the number of the ILM steps in 
the inference and learning phase improves classification 
accuracy. For example, with BFILM-2-2 and BFILM-2-3, 
the classification accuracy is almost the same as with 
the exact bfloat16 multiplier. 

Table 4: Performance of the ResNet-20 convolutional 
neural network on the CIFAR-10 dataset using bfloat16 

multipliers. 

Multiplier Test set classification accuracy [%] 

exact bfloat16 91.50 ± 0.10 

BFILM-1-1 86.32 ± 1.26 

BFILM-1-2 90.98 ± 0.15 

BFILM-2-2 91.30 ± 0.30 

BFILM-2-3 91.40 ± 0.20 

 

Also, we can see from the results for BFILM-1-1 and 
BFILM-1-2 that increasing the number of the ILM steps 
in the learning phase positively affects classification 
performance. On the other hand, a further increase in 
the number of steps in the inference phase from BFILM-
1-2 to BFILM-2-2 has much less impact. Moreover, ac-
cording to Table 3, BFILM-1-2 has a very small energy 
footprint and thus could be sufficient for neural network 
inference and learning. 

The second experiment highlights the advantage of the 
on-the-fly accuracy adaptation of the BFILM multiplier, 
which can help in faster and more energy-efficient neu-
ral network learning. The idea is to start with one ILM 
step in the inference and learning phase to save energy 
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and later, when model performance improves, increase 
the number of the ILM steps to further refine the result. 

Fig. 4 shows the outcome of the learning process on the 
training and testing set for five separate runs, each with 
randomly initialised neural network weights. For the 
loss (red) and the accuracy (green), we show the span of 
obtained values and the curve averaged over all runs. 
We see that with the BFILM-1-1 configuration, the 
model improves rapidly and reaches a classification ac-
curacy of more than 60 % in only 10000 epochs. At this 
point, we use an additional ILM step in the learning 
phase (BFILM-1-2) to improve the model's convergence 
and achieve more than 99.4 % of the accuracy of the ex-
act bfloat16 multiplier. However, if the accuracy still 
needs to be increased for some applications, we can en-
hance the model by training it with additional ILM steps. 

 

Figure 4: Varying configuration of BFILM during the 
learning phase. 

 

4 Conclusion 

In this paper, we proposed a novel approximate 
bfloat16 multiplier with adjustable accuracy, which can 
be achieved without any hardware reconfiguration. In-
stead, the proposed BFILM multiplier iteratively uses an 
approximate logarithmic multiplier core to reduce the 
error. This way, we avoid using additional error refine-
ment circuits, keeping the design small and energy effi-
cient. The primary purpose of the proposed design is to 
use it in deep neural network processing in the inference 
and learning phases. We apply the BFILM multiplier in 
the ResNet-20 convolutional neural network to classify 
the CIFAR-10 dataset. We demonstrate the impact of 
various BFILM configurations on the neural network 
learning process and classification accuracy. The results 

show that we can easily adjust the multiplier's accuracy 
according to the application's requirements. The main 
advantage of the on-the-fly adaptation of the BFILM 
multiplier comes to expression during the learning 
phase. The results prove that we can start with one ILM 
step in the inference and learning phase to save energy 
and later, when model performance improves, increase 
the number of the ILM steps to refine the result further. 
In future work, we aim to develop an algorithm that 
could optimize the learning process in terms of speed 
and efficiency by automatically adapting the ILM steps 
to the BFILM multiplier when needed. 
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