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Tumor Necrosis Factor-alpha (TNF-α) is ubiquitous in the human body and plays a
significant role in various physiological and pathological processes. However,
TNF-α-induced diseases remain poorly understood with limited efficacy due to
the intricate nature of their mechanisms. N6-methyladenosine (m6A)methylation,
a prevalent type of epigenetic modification of mRNA, primarily occurs at the post-
transcriptional level and is involved in intranuclear and extranuclear mRNA
metabolism. Evidence suggests that m6A methylation participates in TNF-α-
induced diseases and signaling pathways associated with TNF-α. This review
summarizes the involvement of TNF-α and m6A methylation regulators in
various diseases, investigates the impact of m6A methylation on TNF-α-
induced diseases, and puts forth potential therapeutic targets for treating TNF-
α-induced diseases.
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Introduction

Tumor Necrosis Factor-alpha (TNF-α), a cytokine ubiquitous in the human body, is
pivotal in the pathogenesis of various diseases, particularly immune and inflammatory
disorders. The intricate mechanisms and aggressive therapeutic interventions necessitate a
further investigation of the underlying pathogenesis and potential therapeutic targets. The
widespread involvement of m6A methylation in physiopathological processes is a well-
established phenomenon. Recent studies have demonstrated the existence of m6A-induced
gene expression regulation in various TNF-α-induced diseases. This regulation involves the
participation of the writer, eraser, and reader and plays a crucial role in multiple biological
processes, including RNA stability, degradation, and variable cleavage. This study aims to
summarize the TNF-α-induced diseases and elucidate the relationship between signaling
pathways and m6A methylation. This endeavor provides a promising opportunity to gain
further insights into the role of m6A methylation in TNF-α-induced diseases and identify
potential therapeutic targets.

TNF-α

TNF-α, or cachectin and TNFSF1A, is a constituent of the tumor necrosis factor
superfamily and comprises a 157 amino acid homotrimeric protein (Campanati A et al.,
2019). Various immune cells, including macrophages, monocytes, neutrophils, CD4+ T cells,
and Natural killer cells (NK cells), secrete TNF-α in response to endotoxin stimulation
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(Chadwick et al., 2008). TNF-α exits in two biologically active forms:
transmembrane TNF-alpha (tmTNF-α) and secretory TNF-alpha
(sTNF-α). The former predominantly exists in a membrane-bound
configuration and is converted into sTNF-α by the TNF-α
converting enzyme TACE. The systemic circulation is the
primary site of action for sTNF-α, imparting an endocrine role
to TNF-α (Yang et al., 2018).

The cellular receptors for TNF-α are classified into TNFR1 and
TNFR2. TNFR1 is expressed ubiquitously on almost all cells and can
be activated by sTNF-α and tmTNF-α. It interacts with TNFR1-
associated death domain (TRADD) adaptor proteins (Pobezinskaya
and Liu, 2012). Conversely, TNFR2 expression is restricted to
immune cells, endothelial cells, and neurons. Furthermore, sTNF
signaling via TNFR1 primarily initiates pro-inflammatory pathways,
while tmTNF binds to TNFR2 for immune regulation and tissue
regeneration (Zhang et al., 2017).

Role of TNF-α in autoimmune/inflammatory
diseases

TNF-α plays an important role in physiology and pathology.
Physiologically, TNF-α is a critical component of normal immune
responses. TNF-α is regulated by immune system activation and has

various biological activities, such as regulating inflammation,
apoptosis, chemokine production, and metabolism (Brenner
et al., 2015). However, abnormal or excessive TNF-α activation
can lead to or aggravate chronic inflammation and neoplastic
diseases (Idriss and Naismith, 2000; van Horssen et al., 2006).
Figure 1 illustrates the role of TNF-α in TNF-α-induced diseases.

Autoimmune/inflammatory diseases are a series of tissue
injuries caused by systemic or organ-specific inflammation
(Wang L et al., 2015). Epidemiology suggests that autoimmune/
inflammatory diseases affect 3%–5% of the population (Surace and
Hedrich, 2019). Autoimmune/inflammatory diseases are monogenic
or polygenic, with autoantibodies and/or reactive lymphocyte
populations being induced. They are influenced by individuals
and the environment, ultimately leading to disease development
(Wang X et al., 2015; He et al., 2018). TNF-α is widely involved in
autoimmune/inflammatory diseases, such as rheumatoid arthritis
(RA), inflammatory bowel disease (IBD), ankylosing spondylitis
(AS) arteriosclerosis, psoriasis (PS), and noninfectious uveitis
(NIU). TNF-α expression is elevated in tissues and/or blood and
is associated with disease activity in TNF-α-induced autoimmune/
inflammatory diseases (Arican et al., 2005; Wehkamp et al., 2016;
Bullock et al., 2018; Ebrahimiadib et al., 2021). Meanwhile, TNF-α
inhibitors have proven therapeutic in treating the above diseases
(Udalova et al., 2016). These studies suggest an important role for
TNF-α in autoimmune/inflammatory diseases.

Macrophages and Th1 cells secrete TNF-α in RA, activate
synovial fibroblasts, and produce excessive cathepsins and MMPs,
destroying cartilage and bone and causing joint erosion. TNF-α
promotes osteoclast generation and induces synovial hyperplasia
and angiogenesis. TNF-α can also produce other inflammatory
cytokines and promote an inflammatory milieu in the synovium,
manifesting clinically as pain and joint swelling (Koch et al., 1994;
Brennan and McInnes, 2008; Lin et al., 2020).

Stressed keratinocytes secret TNF-α and other cytokines in PS,
activating DCs macrophages and neutrophil accumulation, which is
pathologically characterized by parakeratosis, acanthosis, and
Munro microabscesses. TNF-α also induces keratinocyte
proliferation and anti-apoptosis via the NF-κB/MAPK signaling
pathway (Jang et al., 2021).

IBD primarily comprises Crohn’s disease (CD) and ulcerative
colitis (UC). TNF-α induces pro-inflammatory effects, including
macrophages and T cell activation, chemotaxis of neutrophils and
monocytes, increased endothelial cell adhesion molecules (EcAMs)
expression, and activation of coagulation and fibrinolytic responses,
resulting in epithelial injury, endothelial activation, and vascular
destruction. TNF-α also promotes intestinal fibrosis caused by
intestinal fibroblasts, leading to intestinal strictures formation
(Liou and Storz, 2010; Bounder et al., 2020).

Role of TNF-α in tumors

TNF-α is a double-edged sword in cancer. When TNF-α is
secreted in excess, it stimulates tumor cells to release pro-
inflammatory mediators, inhibits the anti-tumor activity of
immune cells, suppresses mucosal healing, and disrupts mucosal
barrier function, inducing cancer cell proliferation, immune escape,
invasion, angiogenesis, and metastasis (Havell et al., 1988). The

FIGURE 1
The role of TNF-α in TNF-α-induced diseases. Macrophages,
neutrophils, and T cells secrete TNF-α. TNF-α promotes inflammatory
cell activation and accumulation induces inflammatory factor
production, forms a local inflammatory environment, and leads
to tissue proliferation and destruction.

Frontiers in Cell and Developmental Biology frontiersin.org02

Wang et al. 10.3389/fcell.2023.1166308

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1166308


mechanisms may be related to reactive oxygen species (ROS) and
reactive nitrogen species (RNS) generation (Adegbola et al., 2018).
High TNF-α concentrations may also play an anti-tumor role (Levin
et al., 2016). Additionally, the role of TNF-α depends on its
expression site in the tumor (Landskron et al., 2014).

m6A methylation

m6A refers to the adenine methylation at position N6 and is a
rich and extensive RNAmodification, accounting for approximately
80% of all RNAmethylation modifications (Dominissini et al., 2012;
Yue et al., 2015). m6A modifications are widespread in mammals,
plants, and viruses and are highly conserved among species
(Horowitz et al., 1984; Fu et al., 2014; Liu et al., 2014).

Mammalian m6A methylation sites near the mRNA stop codon
and in the 3′untranslated region (3′UTR) (Fu et al., 2014), non-
coding RNAs, such as long non-coding RNAs (lncRNAs) and
microRNAs (miRNA), also have m6A modification sites (Alarcón
et al., 2015a; Jacob et al., 2017). m6A transferases, demethylases, and
binding proteins regulate involvement in m6A modification and
play essential roles in biological processes, such as mRNA stability,
degradation, alternative splicing, nuclear export, and translation
(Wang et al., 2014; Zaccara et al., 2019; Wei and He, 2021). A recent
study of m6A methylation has demonstrated a rapid increase trend
with the rapid update of new technologies. m6A modification plays
an essential role in the body’s primary metabolism and basic
physiological functions (Dominissini et al., 2012; Frye et al.,
2018; Shi et al., 2019). Methylation of m6A has been studied in
various diseases, such as tumors, cardiovascular diseases,
neurological diseases, viral infections, and autoimmune
inflammation (Zhao et al., 2014; Geula et al., 2015; Sun et al.,

2019). The m6A binding protein binds to the corresponding
m6A modification site to achieve their respective biological
functions and can also change RNA secondary structure and play
a regulatory role (Zhang C et al., 2019; Chai et al., 2021).

Enzymes involved in catalyzing and recognizing m6A
modifications can be divided into writer, eraser, and reader based
on their function. Table 1 presents their functions. The writer,
including major components, such as methyltransferase-like 3
(METTL3), methyltransferase-like14 (METTL14), and Wilms’
tumor 1-associated protein (WTAP), is primarily responsible for
catalyzing m6A modifications and writing methyl groups in RNA.
METTL3 is a prominent constituent member of this complex.
METTL3 localizes to nuclear patch areas of the nucleus and
forms a stable heterodimer with METTL14 (Liu et al., 2020; Zeng
et al., 2020). METTL3 recognizes S-adenosyl methionine (SAM)
during catalysis. It exhibits catalytic activity (Liu et al., 2014),
whereas METTL14 recognizes RNA substrates and methyl
localization, enhancing methyltransferase activity besides
stabilizing METTL3 (Wang et al., 2016; Zhang et al., 2020).
WTAP regulates the METTL3/14 accumulation on mRNAs and
the specific mRNA methylation as its primary function (Fan et al.,
2022). Other components of the m6A methyltransferase complex
include KIAA1429, RNA-binding motif protein 15 (RBM15), and
Zinc finger CCCH-type containing 13 (ZC3H13) (Hu et al., 2016;
Huang et al., 2021; Jiang et al., 2021; Zhang, et al., 2022a).

m6A demethylase catalyzes the reversible m6A modification
process. Demethylases, primarily Fat mass and obesity-associated
protein (FTO) and Alkylation repair homolog protein 5 (ALKBH5),
play a role in catalyzing demethylation (Ito et al., 2011). FTO
belongs to the iron/α-ketoglutarate–dependent AlkB protein
family and is tightly linked to obesity (Dina et al., 2007; Frayling
et al., 2007; Gerken et al., 2007). However, the substrate-bound by

TABLE 1 Writers, erasers, and readers for m6A.

Name Function

Writer METTL3 Catalytic production of m6A modification

METTL14 1. Enhance methyl transferase activity in addition to stabilizing METTL3

2. Recognize RNA substrates and methyl localization

WTAP 1. Regulate METTL3/14 accumulation toward mRNAs

2. Methylation of specific mRNAs

Eraser FTO Demethylation

ALKBH5 1. Demethylation

2. Regulates mRNA export and stability

Reader

nucleus YTHDF2 Facilitates degradation

YTHDC1 Alternative splicing, alternative polyadenylation, and nuclear export

(HNRNP) A2B1/C/G Pre-mRNA processing, mRNA metabolism, and nuclear export

cytoplasm YTHDF1/3, eIF Facilitate translation

YTHDC2 mRNA stability and translation

(IGF2BP) 1/2/3 mRNA stability and translation
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FTO does not appear to be m6A alone. It has been claimed that FTO
impacts mRNA stability and translation efficiency by regulating
m6A.m. levels (Mauer et al., 2017). Moreover, FTO localization
varies in different cells, with FTOmediating the m6A demethylation
in the nucleus and mediating the demethylation of m6A.m. and
m6A in the cytoplasm (Wei et al., 2018). Except for demethylation,
ALKBH5 regulates mRNA export and stability by affecting the
splicing and mRNA production rates and participating in
functions, such as mRNA transport, metabolic processing, and
degradation (Zheng et al., 2013; Li et al., 2020).

The “writer” and “eraser” of m6A act on intranuclear mRNAs,
making m6A modifications dynamic and reversible. Furthermore,
downstream regulation at the mRNA translation level by the
“reader” is required to achieve biological function. Some m6A
readers have biological roles in the nucleus. Nuclear m6A readers
include nuclear ribonucleoprotein (HNRNP) A2B1/C/G, YT521-B
homology (YTH) domain-containing heterogeneous proteins, such
as YTHDC1 (Zhang et al., 2021). HNRNPs are RNA-binding
proteins associated with the precursor mRNA (pre-mRNA)
maturation in the nucleus and affect processes, such as pre-
mRNA processing, mRNA metabolism, and nuclear export (Das,
et al., 2019). HNRNPA2B1 initially promotes the primary miRNA
processing and maturation by binding transcription of m6A
methylation (Alarcon et al., 2015b). YTHDC1 mediates
alternative splicing, alternative polyadenylation, and nuclear
export (Xiao et al., 2016; Chen et al., 2021). A portion of the
reader plays a biological role in the cytoplasm. Extranuclear m6A
reader primarily includes YTHDF1/2/3, YTHDC2, and Insulin-like
growth factor 2 mRNA binding protein (IGF2BP) 1/2/3 (Xiao et al.,
2016). YTHDF1/3 and eIF can act on mRNA translation initiation
factors and contribute to mRNA translation (WANG X et al., 2015).
YTHDF2 binds to mRNA and promotes its degradation, affecting
stability and translation status (Wang and Liu, 2021). IGF2BP1/2/
3 promotes m6A-induced mRNA stability and translation (Liu et al.,
2015).

TNF-α and m6A methylation

Many studies have revealed that m6A methylation is involved in
TNF-α-induced disease progression. It mainly involves changes in
global m6A methylation, enzyme levels and activities, and TNF-α-
induced pathways. Figure 2 shows the role of m6A in TNF-α-
medicated diseases.

Li et al. (2021) discovered that differentially expressed m6A
methylation sites between lncRNAs and circRNAs were primarily
enriched in TNF signaling pathways after mapping m6A
methylation profiles in bladder cancer. These results suggest that
TNF signaling may differ in global m6A methylation levels in some
diseases.

m6A regulator levels (writers, erasers, and readers) change upon
TNF-α stimulation, ultimately impacting the disease. These results
suggest that m6Amethylation regulators may be involved in TNF-α-
induced disease progression. Wang, et al. (2019) discovered that
TNF-α stimulation decreased FTO expression in mesenchymal
stromal cells (MSCs), shortened the half-life of Nanog mRNA,
led to decreased mRNA and protein expression, and ultimately
significantly inhibited the ability of MSCs to differentiate into sweat

gland cells. Jian D et al. (2020) discovered that when endothelial cells
are stimulated with TNF-α, METTL14 expression increases, acts
directly on the promoter regions of adhesion molecule-1 (VCAM-1)
and intercellular adhesion molecule 1 (ICAM1), increases the
FOXO1 gene m6A methylation level and promotes its
transcription, enhances expression, ultimately leads to
atherosclerotic plaque formation. METTL14 binds to the
engulfment and cell motility 1 (ELMO1) mRNA 3 ‘UTR and
promotes mRNA degeneration in Ankylosing spondylitis. TNF-α
stimulation decreased METTL14 expression and decreased the
ELMO1 degeneration rate, thereby increasing ELMO1 expression,
leading to enhanced directional migration of AS-MSC in vivo and
in vitro, ultimately aggravating the disease (Xie et al., 2021). Zhu
et al. (2021) revealed that METTL14 expression positively correlated
with TNF-α concentration in abnormal nucleus pulposus cells.
METTL14 was involved in TNF-α-induced m6A modification of
miR-34a-5p and interacted with DGCR8 to promote cell cycle arrest
and aberrant degeneration in nucleus pulposus (NP) cells from
intervertebral disc degeneration (IVDD) patients. In lumbar disc
herniation (LDH), WTAP can bind to METTL3 and METTL14 as
well as NORAD to promote its m6A methylation. Following TNF-α
stimulation of nucleus pulposus cells, WTAP expression was

FIGURE 2
The role of m6A in TNF-α-medicated diseases. m6A regulator
levels (writers, erasers, and readers) change upon TNF-α stimulation.
Simultaneously, TNF-α levels change with altered m6A regulator
expressions, implying that TNF-α and m6A regulators interact
with each other and jointly impact the disease condition. However, the
causal relationship between TNF-α and m6A regulators is currently
unknown.
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decreased.RNA immunoprecipitation (RIP) revealed that
YTHDF2 was the predominant reader protein, promoting
NORAD degradation and ultimately exacerbating disease (Li
et al., 2022).

Altered m6Amethylation regulator levels can also significantly affect
TNF-α levels and/or related signaling pathway expressions, ultimately
affecting the disease. Li et al. (2020) indicated that m6A RNA
modification is essential for Th cell differentiation and proliferation in
vivo.METTL3 knockdownmice significantly decreased the proportion of
naive T cells differentiating into Th1 and Th17 cells and a significant
increase in Th2 cells. METTL14 expression is significantly increased in
diabetic nephropathy, and METTL14 overexpression leads to increased
inflammatory factor secretion, such as TNF-α in serum. Mechanistically,
METTL14 downregulated α-klotho expression in an m6A-dependent
manner, leading to glomerular endothelial cell apoptosis in the kidneys of
diabetic nephropathy (DN) patients (Li M.et al., 2021). Sang et al. (2021)
exposed that METTL3 expression was decreased in osteoarthritis (OA),
and METTL3 overexpression decreased inflammatory factor levels, such
as TNF-α. METTL3 overexpression adjusts to the balance between
TIMPs and MMPs, possibly leading to extracellular matrix
degradation in OA. ALKBH5 expression has been decreased in TNF-
α-treated human umbilical vein endothelial cells (HUVECs).
ALKBH5 inhibits TNF-α-induced endothelial cell apoptosis via Bcl-2,
thereby reducing atherosclerosis (Zhang T. et al., 2022). Studies have
revealed that METTL3 is overexpressed in acute kidney injury (AKI)
models, and METTL3 deficiency reduces renal cell inflammation and
programmed cell death induced by TNF-α. METTL3 promoted m6A
modifications of TAB3 and enhanced stability via IGF2BP2-dependent
mechanisms (Wang B et al., 2022). METTL3 expression is reduced in
temporomandibular joint osteoarthritis (TMJ OA). Further investigation
indicated that TNF-α-induced osteoclast autophagy and apoptosis are
inhibited via the m6A/Ythdf1/Bcl2 signaling axis (He et al., 2022).
METTL3 expression was increased in mouse fungal keratitis (FK).
METTL3 deficiency reduced TNF-α expression and decreased PI3K/
AKT pathway protein expression, ultimately inhibiting the inflammatory
response (Huang et al., 2022). FTO expression was reduced in LPS-
treated cardiomyocytes, and FTO knockdown in cardiomyocytes may
lead to inflammatory cytokine overexpression, such as TNF-α. Them6A-
RNA immunoprecipitation (MeRIP) assay revealed that FTO
knockdown would lead to TNF-α mRNA transcript hypermethylation
(Dubey et al., 2022). YTHDF1 was downregulated and acts as YTHDF1/
WWP1/NLRP3/caspase-1 axis in sepsis. Overexpressed
YTHDF1 stabilizes the TNF-α expression in CLP-induced mice
(Zhang et al., 2022c). The YTHDF2 expression was increased in
lipopolysaccharide (LPS)-induced RAW 264.7 cells, and the
YTHDF2 knockdown significantly increased the TNF-α, MAP2K4,
MAP4K4, and activated downstream signaling pathway expressions,
such as NF-κB and MAPK (Yu H et al., 2019). However,
YTHDF2 expression was elevated in LPS-induced osteoclastogenesis
cells, and the YTHDF2 knockdown significantly increased the
inflammatory factor expression levels, such as TNF-α and activated
downstream pathways, including NF-κB and MAPK signaling (Fang
et al., 2021).

Influencing the activity of m6A methylation regulators can
similarly influence TNF-α levels and disease progression. LuHui
derivative (LHD), an FTO inhibitor, binds explicitly the pocket
containing the regulatory sites of RNA methylation in LHD protein,
leads to loss of FTO function, inhibits palmitate-induced cardiac

inflammation, reduces CD36 expression by reducing the stability of
CD36 mRNA, and inhibits inflammatory factor expressions, such as
TNF-α and IL-6, thereby relieving hyperlipidemic cardiomyopathy
(Yu et al., 2021). Emodin decreases inflammation, such as TNF-α
expression in LPS-treated 1321N1 cells, by inactivating METTL3-
induced NLRP3 expression (Wang J et al., 2022). Further, the
important role of m6A methylation in TNF-α-induced diseases is
illustrated.

In summary, m6A methylation is widely involved in TNF-α-
induced diseases involving various diseases and cells. Table 2
presents the role of m6A methylation in TNF-α-medicated
diseases. However, whether TNF-α acts directly on m6A
methylation regulators and how m6A methylation regulators are
altered in TNF-α-induced diseases still needs further investigation.

TNF-α signaling pathways

TNF-α exerts its biological function primarily via nuclear factor-
kappaB (NF-κB) and mitogen-activated protein kinases (MAPK)
signaling pathways. Studies have revealed that the above signaling
pathways are also involved in m6A methylation in other diseases.

NF-κB is a eukaryotic transcription factor family with five subunits:
p65 (RelA), RelB, c-Rel, p105/p50, and p100/p52. It involves various
processes, such as immune response, inflammation, apoptosis, growth,
and development (Lawrence, 2009; Wertz and Dixit, 2010; Kumar et al.,
2015). NF-κB signaling pathway contains canonical and non-canonical
signaling pathways. Classical signaling pathways initiate transcription by
degrading IκB and releasing NF-κB dimers, translocating to the nucleus
and activating target genes rapidly but transiently (Chen and Greene,
2004; Ruland, 2011). A few TNF superfamily receptors activate non-
canonical signaling pathways. The central event of the non-canonicalNF-
κB signaling pathway is processed for p100 to obtain p52. Proteolytic
processing of p100 leads to the p52 production and RelB release, forming
a RelB/p52 dimer and translocation to the nucleus, thereby activating
signaling pathways (Dejardin, 2006; Hayden and Ghosh, 2008; Sun,
2011).

The m6A methylation is involved in the NF-κB pathway in
various diseases and impacts the disease. METTL3 has been
overexpressed in RA, positively associated with disease activity.
Furthermore, METTL3 inhibited LPS-induced macrophages in
inflammation via NF-κB (Wang et al., 2019). Specific
METTL14 deletion leads to colon stem cell apoptosis in IBD,
mucosal barrier dysfunction, and severe colitis. Mechanistically,
METTL14 mitigates colonic epithelial cell death by controlling
Nfkbia mRNA stability and the NF-κB signaling pathway (Zhang
et al., 2022d). Mice with loss of METTL3 in myeloid cells develop
less age-associated incidence of non-alcoholic fatty liver disease
(NAFLD) and obesity. In macrophages, METTL3 deficiency may
cause significantly increased DNA Damage Inducible Transcript 4
(DDIT4) expression and activates the mTORC1/NF-κB signaling
pathway, finally improving NAFLD (Qin et al., 2021). The research
discovered that IL-6 cooperates with CUDR, causing METTL3 to
interact with SUV39h1 mRNA3 ‘UTR and promote
SUV39h1 expression. SUV39h1 enhances the NF-κB expression
and phosphorylation, leading to malignant transformation of the
human embryonic hepatocyte-like stem cells (Zheng Q et al., 2016).
ALKBH5 had higher expression in cancer stem cells than in normal
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tissue. TLR4 increases ALKBH5 expression via activating the NF-κB
pathway. The upregulated ALKBH5, whose m6A modification gene
is NANOG, promotes ovarian cancer cell aggressiveness (Jiang et al.,
2020).

MAPK is a signal-regulated protein kinase important in cell
proliferation, differentiation, autophagy, apoptosis, immune
response, and other physiological and pathological conditions
(Arthur and Ley, 2013). MAPKs act simultaneously as signaling
messengers, transducing extracellular signals into the cell and
regulating the various cytokine and chemokine expressions
(Zhao et al., 2018). MAPK signaling pathway comprises four
subfamilies: ERK1/2, JNK1/2/3, p38 MAPK, and ERK5 (Uddin
et al., 2021). This signaling pathway activates the MAPKs in a
three-tier kinase activity from MAPKKK, MAPKK to MAPK
(Burotto et al., 2014). The m6A methylation is widely involved
in regulating the MAPK signaling pathway. METTL3 expression is
decreased in tumor-infiltrating NK cells. SHP-2, an m6A-modified
gene whose protein expression is reduced in METTL3-deficient
NK cells, may render NK cells hyporesponsive to IL-15 via the
MAPK signaling pathway (Song et al., 2021). YTHDF2 interacts
with mRNAs encoding proteins, epithelial-to-mesenchymal
transition, and increased translation rates in MYC-driven breast
cancer to inhibit cell death via the MAPK signaling pathway
(Einstein et al., 2021). Highly expressed WTAP is associated
with shorter overall survival and lymph node metastasis in

ovarian cancer cells. WTAP downregulation decreased several
MAPK protein expressions, such as p-ERK, ERK, p-JNK, and
JNK, suggesting a possible correlation between WTAP and
MAPK signaling pathways (Yu R et al., 2019). METTL3, whose
m6A target modification is miR-1246, is upregulated in colorectal
cancer and promotes cell migration and invasion. SPRED2 is a
downstream target of miR-1246, and its downregulation promotes
MAPK signaling pathway expression (Peng et al., 2019).

Conclusion and future perspectives

This study reviews TNF-α and TNF-α-induced diseases and
summarizes the role of m6Amethylation in TNF-α-induced diseases
and the main signaling pathways involved in TNF-α. Moreover, an
in-depth study of m6A methylation may elucidate the pathogenesis
of TNF-α-induced diseases and provide more possibilities to identify
potential therapeutic targets.

If anm6Amethylation regulator is aberrantly expressed and changes
with TNF-α levels in TNF-α-induced diseases, we can search the binding
sites of m6A methylation regulators to differentially expressed genes via
methylated RNA immunoprecipitation sequencing (MeRIP-seq) and
transcriptomic RNA sequencing (RNA-seq).

Studies have demonstrated that the external environment influences
the m6A methylation level. Cigarette smoke condensate (CSC) induces

TABLE 2 m6A in TNF-α-medicated diseases.

Disease/cells m6A Up/Downstream Functional outcome/correlation

Regulator (s) Target (s)

MSCs FTO↓ Nanog↓ Reduce stability

Atherosclerosis METTL14↓ FOXO1↑ Promote transcription

Ankylosing spondylitis METTL14↓ ELMO1↑ Reduce denaturation rate

Enhance directional migration

Intervertebral disc degeneration METTL14↑ MiR-34a-5p↑ Cell cycle arrest and senescence

Lumbar disc herniation WTAP↓ NORAD↓ Facilitates degradation

Diabetic nephropathy METTL14↑ α-klotho↓ Decrease mRNA stability

Osteoarthritis METTL3↓ MMP1↑, MMP3↑ Matrix degradation

MMP13↓, TIMP-1↓, TIMP-2↓

Atherosclerosis ALKBH5↓ Bcl-2↓ Apoptosis

Nephritis METTL3↑ TAB3↑ Enhance stability

Temporomandibular joint osteoarthritis METTL3↓ m6A/Ythdf1/Bcl2 axis↓ Enhance stability (Ythdf1)

YTHDF1↓

Fungal keratitis METTL3↓ PI3K/AKT pathway↑ Unknown

Myocardial inflammation FTO↓ Unknown Unknown

Sepsis YTHDF1↓ YTHDF1/WWP1/NLRP3/caspase-1 axis↑ Promote transcription

RAW 264.7 cells YTHDF2↑ MAP2K4, MAP4K4↑ Stabilization

Osteoclastogenesis YTHDF2↑ NF-κB and MAPK pathway↑ Reduce stabilization

↑: upregulate ↓: downregulate.
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hypomethylation of the METTL3 promoter, resulting in aberrant
METTL3 overexpression. The miR-25–3p promotes the pancreatic
ductal adenocarcinoma (PDAC) development in smokers by inhibiting
PH domain leucine-rich repeat protein phosphatase 2 (PHLPP2) and
activating AKT-p70S6K (Zhang J et al., 2019). Chronic exposure of
human bronchial epithelial (HBE) cells to arsenite sodium (NaAsO2)
increases m6A methylation levels significantly and induces a malignant
phenotype. Silencing METTL3 reversed these changes (Gu et al., 2018).
Given the potential link between TNF-α and m6A methylation, whether
TNF-α affects RNA functions, such as secondary structure, decoration
affinities, and protein binding partners, by affecting m6A methylation
regulators remains to be investigated.

Thus, m6A modification is a complex process working as a
double-edged sword for TNF-α-medicated diseases. Does the
relationship between TNF-α and m6A methylation regulators
are causal or associations? Therefore, unknown regulators exist
between TNF-α and m6A methylation. Furthermore, TNF-α has
a dual role of cytokines and inflammatory mediators. It is also
worth investigating whether TNF-α and m6A methylation
regulators can influence each other between different cells.
For example, in TNF-α-induced diseases that concern various
immune cells, can changes in the m6A methylation regulator
expression levels in one cell influence the m6A methylation
regulator levels and TNF-α in another immune cell? Further
exploration is needed.

Modulators of m6A methylation provide novel potential
therapeutic targets. If altered levels of m6A methylation
regulators improve disease conditions, inhibitors/activators

targeting m6A methylation regulators may provide potential
therapeutic possibilities. The newly identified m6A modifiers will
open novel therapeutic avenues to understand the m6A
methylation-associated diseases.
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