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Bacteria are the dominant particulate matter in livestock houses and can threaten 
animal and public health. Antimicrobial resistance (AMR) is a crucial concern 
worldwide, and nationwide measures established based on the One Health 
approach are being implemented in many countries. This requires multidisciplinary 
perspectives and collaboration among the human, animal, and environmental 
sectors. However, information on the AMR risk in livestock house aerosol is 
limited, especially its association with antimicrobial usage (AMU). Therefore, 
this study was conducted to reveal the AMR profile of Staphylococcus, the 
major bacterial genus in the aerosol of the piggeries of Japanese farms, and the 
association between farm-level AMU and AMR. The investigation at 10 farrow-to-
finish pig farms revealed that regardless of the sampling season and the piggery 
group, the resistance rate of isolated staphylococci for oxacillin, erythromycin, 
and lincomycin was more than 40% of the median and tended to be  higher 
than that for other antimicrobials. The AMU adjusted by the defined daily dose 
(DDD-adjusted AMU) in the fattening piggery group was significantly higher than 
that in the sow piggery group (p  <  0.05). Finally, for the fattening piggery group, 
the generalized linear mixed model revealed that the AMR rate for oxacillin, 
erythromycin, tetracycline, and chloramphenicol was positively associated with 
the corresponding class-based DDD-adjusted AMU of penicillins (odds ratio 
(OR)  =  2.63, p  =  0.03), macrolides (OR  =  6.89, p  =  0.0001), tetracyclines (OR  =  2.48, 
p  =  0.04), and amphenicols (OR  =  3.22, p  =  0.03), respectively. These significant 
positive associations observed in this study imply that the resistance rate for 
these antimicrobials may decrease by reducing the corresponding antimicrobials’ 
use. In addition, the resistance rates for erythromycin and chloramphenicol also 
displayed a positive association with the AMU of antimicrobial classes other 
than macrolides and amphenicols, respectively. The mechanism underlying 
these phenomena is unclear; therefore, further evaluation will be  needed. As 
limited studies have reported staphylococci in piggery aerosol and its AMR with 
quantitative AMU, these results based on on-farm investigations are expected to 
aid in establishing countermeasures for AMR of aerosol bacteria in pig farms.
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1. Introduction

Particulate matter in aerosol is an essential indicator of air 
pollution (1). Toxic and harmful substances, including microorganisms 
and bacteria, constitute air pollution (2, 3), dominating livestock farm 
aerosols (4). Therefore, it is rational that bacteria from the environment 
and animals threaten both animal and public health. For instance, the 
increased density of animals in piggeries under an intensive 
production system often results in poor air quality (5). This 
phenomenon increases the risk of various opportunistic infections, 
unless ventilation is appropriately managed. Moreover, pig house 
farmers are at higher risk of respiratory diseases than chicken, cattle, 
or sheep farmers (6, 7).

Moreover, as the world faces multiple health challenges, 
antimicrobial resistance (AMR) is a crucial concern listed among the 
top 10 global health threats (8, 9). A recent worldwide estimation 
revealed approximately 4.95 million deaths associated with AMR in 
2019 (10). Excessive and inappropriate antimicrobial usage (AMU) 
has been primary reason; therefore, nationwide measures based on the 
action plan of each country, established based on the Global Action 
Plan with the One Health approach, are being taken (11). Thus, the 
human, animal, and environmental sectors need to have 
multidisciplinary perspectives and collaborate by sharing the insights 
obtained from each sector.

In Japan, the total quantity of antimicrobials based on the weight 
of active substances was 1,761.4 tons in 2018. Among those, 36.7 and 
12.3% accounted for the livestock sector and feed additives, 
respectively. Moreover, 74.5% of those for the livestock sector were 
used in pig production, with tetracyclines, penicillins, sulfonamides, 
and macrolides as the major classes (12).

Although information on bacterial AMR in the piggery aerosol is 
available (13), that on its association with AMU is limited. Therefore, 
this study revealed the AMR characteristics of staphylococci, including 
animal and human pathogens. We  also aimed to evaluate the 
association between farm-level AMU and AMR of staphylococci. This 
study’s findings would aid in establishing better countermeasures for 
AMR in piggeries for animal and public health.

2. Materials and methods

2.1. Farm recruitment and sampling frame

With the cooperation of the field veterinarians from The Japanese 
Association of Swine Veterinarians,1 consent for participation in this 
observational study was obtained from ten farrow-to-finish pig farms 
on a convenient basis. Between November 2017 and July 2020, each 
farm was visited twice in the warm (spring and summer) and cold 
(autumn and winter) seasons, respectively, except for farm E (visited 
only once in the cold season). Brief descriptions of these farms are 
presented in Table 1 with the varied farm size of 70–1,790, based on 
sow number. At each visit, aerosol samples were collected from five 
pig houses of different life stages, including sow stall and farrowing 
houses as the sow piggery group and the weaners, growers, and 

1 http://www.e-jasv.com/

finishers houses as the fattening piggery group. Using a commercial 
air sampler (CORIOLIS MICRO, Bertin Technologies SAS, France) 
placed at the center of each piggery, 3,000 L of air was passed into 
10 mL of sterilized phosphate-buffered saline (PBS, Dulbecco’s PBS 
(−) “Nissui” Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) for 10 min. 
These PBS samples were brought to the National Institute of Animal 
Health for laboratory investigations.

In total, 19 sampling visits were made in ten cold and nine warm 
seasons. Samples were obtained from both piggery groups during all 
nine warm season visits, meaning nine sow and nine fattening 
piggeries. However, during the ten cold season visits, due to the 
technical condition, samples were collected from only the fattening 
piggery group of Farm D, which meant nine sow and ten fattening 
piggeries were targeted. This sampling frame is summarized in 
Figure 1.

2.2. Isolation and identification of bacteria

Within 20 h after the on-farm sampling, 100 μL of the PBS sample 
obtained from each piggery was inoculated on 5% sheep blood in 
trypticase soy agar (TSA) (BD Trypticase Soy Agar with 5% Sheep 
Blood, Nippon Becton, Dickinson, and Company, Japan) and 
mannitol salt agar (MSA) (Mannitol Salt Agar “Nissui,” Nissui 
Pharmaceutical Co., Ltd., Tokyo, Japan) and aerobically cultured for 
16–20 h at 37°C. MSA was used as gram-positive bacteria selective 
agar, especially, salt-tolerant bacteria, which included some members 
of the Staphylococcus genus. Then, 10 isolates were randomly selected 
from each medium and stored in 10% glycerol-added Muller Hinton 
broth (Difco; BD, New Jersey, United  States) at −80°C 
until identification.

All the isolates were identified using species-specific PCR for 
staphylococci, assumed as the dominant genus by the authors, 
following previously established procedures (14, 15). For those not 
identified using this PCR, partial gap gene sequencing (16) or 16S 
rRNA partial sequencing using a commercial kit (Bacterial 16S rDNA 
PCR Kit, Takara Bio Inc., Shiga, Japan) was applied following the 
manufacturer’s instructions. In addition, sequence data were analyzed 
to determine the most likely species, referring to the EzBioCloud 
Database.2

The identified isolates’ distribution by genus was summarized. In 
particular, the Chi-square test statistically evaluated the proportion of 
staphylococci among all the bacterial isolates in each farm by the 
seasons and the piggery groups.

2.3. Antimicrobial susceptibility test

For all the isolated staphylococci, the minimum inhibitory 
concentration (MIC) values of the 11 antimicrobials below were 
determined using a commercial kit (Dry Plate “Eiken,” Eiken 
Chemical Co., Ltd., Japan). Antimicrobial phenotypes were interpreted 
based on the breakpoints provided by the CLSI guidelines: 0.5 μg/mL 
for oxacillin (OXA), 0.5 μg/mL for ampicillin (AMP), 8.0 μg/mL for 

2 https://www.ezbiocloud.net/
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cefazoline (CFZ), 16.0 μg/mL for kanamycin (KAN), 16.0 μg/mL for 
gentamycin (GEN), 8.0 μg/mL for erythromycin (ERY), 16.0 μg/mL 
for tetracycline (TET), 32.0 μg/mL for chloramphenicol (CHL), 
32.0 μg/mL for vancomycin (VAN), 8.0 μg/mL for lincomycin (LCM), 

and 4.0 μg/mL for ciprofloxacin (CIP), respectively (17). In addition, 
the following quality control strains were also assessed: Staphylococcus 
aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Escherichia 
coli ATCC 25923, and Pseudomonas aeruginosa ATCC 27853.

TABLE 1 Brief description of the ten recruited pig farms.

ID Number of sites Sows (head) Annual shipment (head) Workers All-in all-out in operation

A 1 70 2,200 3 No

B 2 620 16,200 16 Yes

C 1 1,790 40,700 34 Yes

D 1 510 12,500 11 Yes

E 1 800 18,200 15 Yes

F 2 1,260 21,900 18 Yes

G 2 490 13,000 7 Yes

H 2 320 7,600 7 Yes

I 1 90 1,700 3 No

J 1 240 4,100 6 Yes

FIGURE 1

Flowchart of the sampling process in this study based on farm visits by season and piggery group.
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The resistance rate (%) for each antimicrobial was defined as the 
proportion of resistant staphylococci isolates among the staphylococci 
isolates analyzed using the antimicrobial susceptibility test and the 
distribution of each antimicrobial based on the sampling seasons 
[n = 19 for “cold”s, and 18 for “warm”s (Figure 1)] and piggery groups 
[n = 18 for “sow”s, and 19 for “fattening”s (Figure 1)] was compared 
using the Mann–Whitney U test.

2.4. Quantification of AMU

Annual antimicrobial product purchases were recorded for the 
piggery groups in each farm. This study used the previous year’s 
volume as the reference AMU data for a farm visit between January 
and June. The current year’s data were adopted for visits between July 
and December. Then, the annual mean treatment days (head*day) 
were estimated as follows:

 

Annual mean treatment days for sows head day
weight of ac
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The defined daily dose (DDD) is the Japanese pig production-
specific indicator established previously (18, 19), based on the original 
concept and definition by the World Health Organization (20). These 
annual mean treatment days were the annual DDD-adjusted usage of 
each commercial product and summed up by the antimicrobial classes, 
which were tetracyclines (TETs), amphenicols (APCs), penicillins 
(PENs), cephalosporins (CEPs), sulfonamides (SULs), pyrimidines 
(PMDs), macrolides (MCLs), lincosamides (LCMs), aminoglycosides 
(AGDs), quinolones (QUIs), polymixins (PMXs), and pleuromutilins 
(PLMs), respectively. The class-based annual DDD-adjusted AMU was 
statistically compared by the seasons [n = 19 of “cold”s, and 18 of 
“warm”s (Figure 1)] and piggery groups [n = 18 of “sow”s, and 19 of 
“fattening”s Figure 1)], respectively, using the Mann–Whitney U test.

2.5. Statistical modeling to evaluate the 
association between the resistance rate of 
each antimicrobial and class-based annual 
DDD-adjusted AMU

Association between the resistance rate of staphylococci for each 
antimicrobial and class-based annual DDD-adjusted AMU was 
explored using the generalized linear mixed model on each piggery 
group (n = 18 for the sow group and n = 19 for the fattening group). 
Considering the difference in the number of staphylococci 
successfully obtained on each sampling visit, raw data used for 
resistance rate calculation were incorporated into the model as the 
dependent variable; both tested and resistant staphylococci isolates 

were directly employed. Moreover, with the various farms 
cooperating, as presented in Table 1, sampling season was forced into 
the model, and the farm was employed as the random effect. 
Therefore, the model is described as follows:

 
logit p p

p
season RF e( ) =

−








 = + + ∑ + +log
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Where p in logit (p) of the model outcome represents the 
resistance rate accounting for the tested and resistant staphylococci 
isolates, α  is the model intercept, season  is the dichotomous data of 
cold or warm season, χ  is the fixed effect as the dichotomous data 
classified as “high” or “low” based on the median of the class-based 
annual DDD-adjusted AMU, β  is its coefficient, RF  is the farm as the 
random effect, and e is the binomially distributed residual term.

If the resistance rate to an antimicrobial revealed a positive and 
significant association with “high” class-based annual DDD-adjusted 
AMU of its class, a multivariable model for the associations with the 
AMU of other classes was also explored. The final model met the 
minimum Akaike’s Information Criterion (AIC), and statistical 
significance was set at p < 0.05 for the remaining independent variables 
with positive fixed effects.

The statistical modeling and other tests mentioned above were 
performed using R version 4.1.0.3 Primarily, the “glmmML” package 
version 1.1.34 was used for the generalized linear mixed model.

2.6. Ethics statement

Animal ethics approval was not required for this study as the 
samples consisted of piggery aerosol and were collected in the 
presence of the veterinarians during their routine farm visits for 
veterinary care and consultation.

3. Results

3.1. Description of the aerosol bacteria

In total, 915 bacterial isolates were obtained from TSA, and the 
genus-level description is summarized in Figure 2. The most dominant 
genus was Staphylococcus (n = 610, 66.7%), followed by Aerococcus 
(n = 85, 9.3%) and Rothia (n = 50, 5.5%). Finally, 1,113 staphylococci 
isolated from TSA (n = 610) and MSA (n = 503) underwent the 
antimicrobial susceptibility test, respectively.

The proportion of staphylococci exceeded 50% in most sampling 
visits. Farms A and H had over 70%. Apart from Farm E, which was 
visited once, no intra-farm significant seasonal difference was 
observed in the staphylococci proportion (Figure 3A, Chi-square test: 
p > 0.05). Sow and fattening piggeries had over 40% of staphylococci 
among the isolates. Farm A’s sow piggery group and both piggery 
groups of Farm H had over 80%. Only Farm C and I had significantly 

3 https://www.R-project.org/

4 https://CRAN.R-project.org/package=glmmML
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higher proportions of staphylococci in the fattening piggery group 
than in the sow piggery group (Figure 3B, Chi-square test: p = 0.02 and 
0.03 for Farm C and Farm I, respectively).

Among the 1,113 staphylococci isolates, the most dominant 
specie was S. sciuri (which was renamed Mammaliicoccus sciuri in 
2020) (n = 265, 23.8%), and others had <10% each (Table 2). The top 
five species S. sciuri, S. cohnii, S. saprophyticus, S. haemolyticus, and 
S. chromogenes dominated over 40% of each farm and some over 80% 
(data not shown).

3.2. Distribution of AMR rate

For 10 of the 11 tested antimicrobials (all the isolates were 
susceptible to VAN), datasets of the resistance rate of staphylococci by 
the seasons (Figure 4A and Supplementary file 1) and piggery groups 
(Figure 4B and Supplementary file 2) were obtained. Regardless of the 
seasons and piggery groups, resistance rates for OXA, ERY, and LCM 
were > 40% of the median and tended to be  higher than those of 
other antimicrobials.

A significant seasonal difference was only identified in the 
resistance rate for OXA, with the median for the cold and warm 
seasons being 65.4 and 80.7%, respectively (Figure  4A and 
Supplementary file 1, p = 0.03 as revealed by the Mann–Whitney U 
test). In contrast, a significant between-piggery group difference was 
identified in OXA, AMP, ERY, and CHL. The resistance rates for 
these four antimicrobials in the fattening piggery group were 
significantly higher than those in the sow piggery group, with a 
median of 78.8 and 58.0% for OXA, 57.1 and 31.8% for AMP, 82.4 
and 48.4% for ERY, and 45.5 and 21.1% for CHL for the fattening 
and sow piggery groups, respectively (Figure  4B and 
Supplementary file 2, all p < 0.05 as revealed by the Mann–Whitney 
U test).

3.3. Distribution of AMU

Figure 5 illustrates the distribution of the class-based annual 
DDD-adjusted AMU. The AMU varied by farm; however, no 
intra-class difference was identified by season (Figure  5A and 

FIGURE 2

Genus description of bacterial isolates from the aerosol in ten pig 
farms (n  =  915 obtained by trypticase soy agar).

FIGURE 3

The proportion (%) of staphylococci from the aerosol in ten pig farms by sampling season (A) and piggery group (B). The last letter of each item 
denotes the following: C: cold season, W: warm season, S: sow piggery group, and F: fattening piggery group. *: p  <  0.05 as revealed by the Mann–
Whitney U test.
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Supplementary file 3, all p > 0.45 as revealed by the Mann–
Whitney U test). In contrast, a between-piggery group difference 

was identified in the AMU of all the classes, except PMXs and 
PLMs. Therefore, the fattening piggery group had a significantly 
higher AMU than the sow piggery group, with zero medians for 
all classes, except TETs and MCLs (Figure  5B and 
Supplementary file 4, all p < 0.05 as revealed by the Mann–
Whitney U test).

3.4. Association between AMU and 
resistance rate

Table 3 presents four final models obtained by statistical modeling 
from the datasets of the fattening piggery group for the association 
between the class-based annual DDD-adjusted AMU and resistance 
rate of staphylococci. Out of the 11 evaluated antimicrobials, the 
resistance rate for OXA, ERY, TET, and CHL was significantly 
associated with the AMU of the corresponding PENs, MCLs, TETs, 
and APCs, respectively.

Regarding OXA, the final model included only PENs, and its 
“high” usage was associated with a higher resistance rate for OXA 
[odds ratio (OR) and 95% confidence interval (CI)] = 2.36 (1.11, 
5.05), p = 0.03). For ERY, the final model included MCLs, APCs, 
and LCMs. A “high” usage of these three antimicrobial classes was 
independently associated with a higher resistance rate for ERY 

TABLE 2 Species description of staphylococci isolated from the aerosol 
in ten pig farms (n  =  1,113).

Species Isolates %

Staphylococcus sciuri 265 23.8

S. cohnii 98 8.8

S. saprophyticus 94 8.4

S. haemolyticus 81 7.3

S. chromogenes 75 6.7

S. cohnii subsp. cohnii 59 5.3

S. aureus 52 4.7

S. simulans 45 4.0

S. epidermidis 36 3.2

S. hyicus 35 3.1

S. nepalensis 34 3.1

S. equorum 31 2.8

Other Staphylococcus spp. 208 18.8

Total 1,113 100.0

FIGURE 4

Distribution of the resistance rate for ten antimicrobials of staphylococci from the aerosol in ten pig farms by sampling season (A) and piggery group 
(B). The last letter of each item denotes the following: C: cold season, W: warm season, S: sow piggery group, and F: fattening piggery group. OXA, 
oxacillin; AMP, ampicillin; CFZ, cefazoline; KAN, kanamycin; GEN, gentamycin; ERY, erythromycin; TET, tetracycline; CHL, chloramphenicol; LCM, 
lincomycin; CIP, ciprofloxacin. *: p  <  0.05 as revealed by the Mann–Whitney U test.
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FIGURE 5

Distribution of the defined-daily-dose-adjusted annual usage of 12 antimicrobial classes in ten pig farms by sampling season (A) and piggery group (B). 
The last letter of each item denotes the following: C: cold season, W: warm season, S: sow piggery group, and F: fattening piggery group. TETs, 
tetracyclines; APCs, amphenicols; PENs, penicillins; CEPs, cephalosporins; SULs, sulfonamides; PMDs, pyrimidines; MCLs, macrolides; LCMs, 
lincosamides; AGDs, aminoglycosides; QUIs, quinolones; PMXs, polymyxins; and PLMs, pleuromutilins. *: p  <  0.05 as revealed by the Mann–Whitney U 
test.

TABLE 3 Final models of resistance rate for four antimicrobials of staphylococci from the aerosol in fattening piggeries of ten Japanese pig farms in 
association with the annual antimicrobial class-based usage.

Model outcome Significant 
antimicrobial class

Usage level Coefficient (SE) Odds ratio 
(95% CI)

p

Resistance rate of oxacillin Penicillins Low Reference

High 0.86 (0.39) 2.36 (1.11, 5.05) 0.03

Resistance rate of 

erythromycin

Macrolides Low Reference

High 1.93 (0.51) 6.89 (2.53, 18.73) 0.0001

Amphenicols Low Reference

High 1.57 (0.72) 4.81 (1.17, 19.69) 0.03

Lincosamides Low Reference

High 3.04 (0.90) 20.91 (3.60, 121.51) 0.001

Resistance rate of tetracycline Tetracyclines Low Reference

High 0.91 (0.45) 2.48 (1.03, 5.99) 0.04

Resistance rate of 

chloramphenicol

Amphenicols Low Reference

High 1.17 (0.53) 3.22 (1.14, 9.12) 0.03

Tetracyclines Low Reference

High 1.22 (0.34) 3.89 (1.73, 6.62) 0.0004

A generalized linear mixed model was used, in which season was forced into each model, and the farm was incorporated as the random effect.  
SE, standard error; CI, confidence interval.
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(OR (95% CI) = 6.89 (2.53, 18.73), p = 0.0001 for MCLs, OR (95% 
CI) = 4.81 (1.17, 19.69), p = 0.03 for APCs, and OR (95% 
CI) = 20.91 (3.60, 121.51), p = 0.001 for LCMs, respectively). For 
TET, the final model included only TETs, and its “high” usage was 
associated with a higher resistance rate for TET (OR (95% 
CI) = 2.48 (1.03, 5.99), p = 0.04). In addition, for CHL, the final 
model included APCs and TETs. A “high” usage of these 
antimicrobial classes was independently associated with a higher 
resistance rate for CHL (OR (95% CI) = 3.22 (1.14, 9.12), p = 0.03 
for APCs, and (OR (95% CI) = 3.39 (1.73, 6.62), p = 0.0004 for 
TETs, respectively). No significant interaction terms were 
identified in all the final models.

Conversely, analyses of the sow piggery group did not reveal any 
significantly positive association between the AMU and resistance 
rate. However, the resistance rates for KAN and TET had a marginally 
positive association with “high” AGDs and TETs use, respectively 
(p = 0.09 and 0.11, respectively, data not shown).

4. Discussion

Previous studies on aerosol bacteria in piggeries have been limited 
thus far (21); therefore, White et  al. (22) evaluated piggery 
staphylococci for their viability, capturability, inflammogenicity, and 
biofilm-forming capacity. Eisenlöffel et al. (23) and Tenzin et al. (24) 
revealed the impact of dust filtration and decontamination. These 
studies are relevant; however, once countermeasures are in operation, 
it is better to understand the extent of bacterial distribution and AMR 
status in these years to strengthen the rationale of the activities. 
However, few studies have targeted staphylococci AMR with 
quantitative AMU in Japan. Therefore, this study evaluated the 
bacterial profile of aerosol in Japanese piggeries, AMR characteristics, 
and the association between farm-level AMU and AMR, especially 
for staphylococci.

The aerobic culture using TSA revealed that most isolates were 
gram-positive bacteria (Figure 2), including the hazardous genus for 
animal and public health. The most dominant genus was 
Staphylococcus. In this study, staphylococci exceeded 40% and did not 
differ by sampling season and piggery group in each farm, with a few 
exceptions (Figure 3). Seasonal differences in sand dust in the general 
environment influence the bacterial community during aerosol 
pollution (25); nonetheless, the bacterial distribution stability 
observed in this study might be due to the relatively steady and closed 
state in the piggery based on the firm on-farm management system. 
These results imply the importance of staphylococci among aerosol 
bacteria and necessitate the maintenance or improvement of on-farm 
biosecurity levels, especially ventilation and humidity control in 
piggeries, to prevent clinical diseases in pigs. Further, workers need 
the shower-in and-out operation and change to washed and clean 
clothes and disinfected boots before they start their daily tasks. These 
procedures would promote animal and occupational health.

Among these staphylococci, the most dominant specie S. sciuri 
is a principally animal-associated bacterial species on the skin and 
mucosal surfaces of various pets and farm and wild animals. 
However, its clinical relevance in humans is increasing (26), and 
this bacterium is ubiquitous in human wound infection (27, 28). 
S. hyicus and S. aureus are occasionally involved in pig infections 
(29). Moreover, S. hyicus commonly occurs in the nares and on the 

hairy cutaneous areas of pigs; therefore, it sporadically induces 
exudative epidermitis in 5–60 d-old pigs along with other 
staphylococci, such as S. chromogenes and S. aureus (30). 
Livestock-associated methicillin-resistant S. aureus is more 
recognized as a public health concern, mainly associated with 
pigs. In Japan, its presence has been investigated using nasal swabs 
from slaughtered pigs (31). Given the present situation, there have 
been few evaluations on the environmental risks of each specie 
isolated from piggery aerosols. Therefore, a detailed species-based 
investigation is highly needed under the rational sampling frame 
in the future.

AMR was revealed for 11 antimicrobials. A high resistance rate of 
staphylococci was observed for OXA, ERY, and LCM (Figure 3). The 
influence of season on the resistance rate was not identified in all 
antimicrobials, except OXA (Figure  4A). The class-based annual 
DDD-adjusted AMU did not exhibit seasonal differences (Figure 5A). 
In contrast, the resistance rate in the fattening piggery group was 
significantly higher than that in the sow piggery group for OXA and 
AMP of PENs, ERY of MCLs, and CHL of APCs (Figure 4B) as the 
AMU of the 10 classes, including PENs, MCLs, and APCs, was also 
higher in the fattening piggery group (Figure  5B). These results 
indicated that the AMU of the corresponding class might influence 
some antimicrobials’ resistance compared with environmental 
conditions. Generally, bacterial survival relies on various factors, such 
as bacterial species and their burden (32, 33) and environmental 
conditions, including the type of surface materials, ambient 
temperature, UV radiation extent, and water and nutrient availability 
(34, 35). These factors may affect AMR regardless of the 
bacterial isolates.

From the statistical modeling of the fattening piggery group, the 
resistance rate for four antimicrobials, including OXA, ERY, TET, and 
CHL, was positively associated with the AMU of the corresponding 
class (Table  3). This implies that the resistance rate for these 
antimicrobials might be  decreased by reducing the use of the 
corresponding antimicrobials.

Moreover, the modeling identified an association between the 
resistance rate for ERY and the AMU of APCs and LCMs, in addition 
to MCLs. A similar result was obtained in the association between the 
resistance rate to CHL and the AMU of TETs, in addition to APCs. 
The mechanism of these phenomena is unclear; however, Makita et al. 
(36) suggested that these issues were due to the natural, cross- or 
co-selection based on analyses of individual pig-originated Escherichia 
coli isolates and qualitative AMU. Further evaluation is strongly 
needed to validate our study.

In contrast, no significant association between the resistance rate 
and AMU in the dataset of the sow piggery group was identified. The 
possible reasons could be the relatively lower AMU in this group, 
which might be  insufficient to establish antimicrobial selection. 
Moreover, considering that the isolates were from the aerosol, they 
may include both environmental and pig-origin bacteria. Therefore, 
the AMR in this group was probably influenced by other factors along 
with the AMU. However, the resistance rate to KAN and TET 
displayed a marginally positive association with AGDs and TETs. 
Among these, TETs with relatively high AMUs in the sow piggery 
group could be the reason.

Some limitations should be considered in interpreting this study’s 
results. First, as mentioned above, the AMR of aerosol-origin bacteria 
is influenced by both the AMU and other factors. Therefore, evaluating 
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the pig-origin (including healthy and diseased ones) staphylococci 
will help better understand the piggery’s AMR risk. Second, this 
study’s statistical modeling was performed using aggregated data on 
the resistance rate and AMU, which could have an ecological fallacy 
(37). However, antimicrobials are administered on a herd basis in the 
general pig industry; hence, this is the best way to assess the on-farm 
situation quantitatively. Based on these results, it is essential to further 
evaluate the effect of the countermeasures aimed at decreasing the 
resistance rate for single antimicrobials at the farm level and clarifying 
multidrug resistance. Lastly, all the evaluations on the association 
between the resistance rate and AMU were performed on a genus 
basis to provide an overview of staphylococci. Therefore, detailed 
investigations focusing on each species will be more useful for the 
species-level measures.

In conclusion, the aerosol bacteria in Japanese pig farms included 
those that could threaten public and animal health, mostly 
staphylococci. Staphylococci resistance to some antimicrobials was 
associated with using the corresponding antimicrobial class, implying 
that reducing such antimicrobials would decrease resistance. These 
results should help establish countermeasures for the AMR of aerosol 
bacteria in pig farms.
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