
Digital in-memory stochastic
computing architecture for
vector-matrix multiplication

Shady Agwa* and Themis Prodromakis

Centre for Electronics Frontiers, Institute for Integrated Micro and Nano Systems, School of Engineering,
The University of Edinburgh, Edinburgh, United Kingdom

The applications of the Artificial Intelligence are currently dominating the
technology landscape. Meanwhile, the conventional Von Neumann
architectures are struggling with the data-movement bottleneck to meet the
ever-increasing performance demands of these data-centric applications.
Moreover, The vector-matrix multiplication cost, in the binary domain, is a
major computational bottleneck for these applications. This paper introduces a
novel digital in-memory stochastic computing architecture that leverages the
simplicity of the stochastic computing for in-memory vector-matrix
multiplication. The proposed architecture incorporates several new approaches
including a new stochastic number generator with ideal binary-to-stochastic
mapping, a best seeding approach for accurate-enough low stochastic bit-
precisions, a hybrid stochastic-binary accumulation approach for vector-matrix
multiplication, and the conversion of conventional memory read operations into
on-the-fly stochastic multiplication operations with negligible overhead. Thanks
to the combination of these approaches, the accuracy analysis of the vector-
matrix multiplication benchmark shows that scaling down the stochastic bit-
precision from 16-bit to 4-bit achieves nearly the same average error (less than
3%). The derived analytical model of the proposed in-memory stochastic
computing architecture demonstrates that the 4-bit stochastic architecture
achieves the highest throughput per sub-array (122 Ops/Cycle), which is better
than the 16-bit stochastic precision by 4.36x, while still maintaining a small average
error of 2.25%.

KEYWORDS

stochastic computing, in-memory computing, beyond von-neumann architectures,
vector-matrix multiplication, RRAM, deep neural network, emerging technologies

1 Introduction

Nowadays we are witnessing the end of Moore’s Law due to the physical limits of the
technology scaling. On the other hand, the Artificial Intelligence (AI) revolution has
introduced new challenges due to the ever-increasing performance demands of its data-
intensive applications such as computer vision, speech recognition, and natural language
processing. At the core of these AI applications, the Deep Neural Networks (DNNs) are
widely used to mimic the human-brain functionality through layers of neurons that are
connected by statistically weighted links. The DNNs may consist of tens of layers to do
computations on tens of millions of data weights (Jouppi et al., 2017). The conventional Von
Neumann architectures are not originally designed to deal with this gigantic amount of data.
Thus, new beyond-Von Neumann architectures became an urgent need to mitigate the data-
movement bottleneck of these data-centric applications.

OPEN ACCESS

EDITED BY

Jeongwon Park,
University of Nevada, Reno, United States

REVIEWED BY

Jiyong Woo,
Kyungpook National University, Republic
of Korea
Marc Riedel,
University of Minnesota Twin Cities,
United States

*CORRESPONDENCE

Shady Agwa,
shady.agwa@ed.ac.uk

RECEIVED 18 January 2023
ACCEPTED 12 July 2023
PUBLISHED 24 July 2023

CITATION

Agwa S and Prodromakis T (2023), Digital
in-memory stochastic computing
architecture for vector-
matrix multiplication.
Front. Nanotechnol. 5:1147396.
doi: 10.3389/fnano.2023.1147396

COPYRIGHT

© 2023 Agwa and Prodromakis. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Nanotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 24 July 2023
DOI 10.3389/fnano.2023.1147396

https://www.frontiersin.org/articles/10.3389/fnano.2023.1147396/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1147396/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1147396/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2023.1147396&domain=pdf&date_stamp=2023-07-24
mailto:shady.agwa@ed.ac.uk
mailto:shady.agwa@ed.ac.uk
https://doi.org/10.3389/fnano.2023.1147396
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2023.1147396

In another direction, the Vector-Matrix Multiplication (VMM),
which is the computational core of the DNNs, is the major
computational bottleneck due to the binary multiplication
complexity. Accelerating the VMM computational core of the
DNNs should have a significant contribution to the AI hardware
efficiency. This adds more performance demands to the proposed
beyond-Von Neumann architectures. The current emerging
situation has spotlighted the urgent need to explore not only
emerging architectures that are data-centric-oriented but also
unconventional computing domains that reduce the computation
complexity of the VMM.

To mitigate the data-movement bottleneck, In-Memory
Computing (IMC) architectures were proposed to avoid moving
data across the chips. The main idea is to process data where it exists
in DRAMs (Seshadri et al., 2013; Farmahini-Farahani et al., 2015) or
SRAMs (Jeloka et al., 2015; Eckert et al., 2018; Fujiki et al., 2019; Al-
Hawaj et al., 2020). In SRAMs, the bitline computing approach is
used to compute bitwise AND and NOR operations for two
simultaneously activated wordlines. These digital in-memory
computing architectures have to add one extra address decoder
to activate two wordlines simultaneously which consumes more
energy. In addition, compute-logic stacks are added to the SRAM’s
peripherals to do more complex operations. These complex
operations (like additions and multiplications) require a
standalone controller to run micro-algorithms to perform these
operations in the digital binary domain. Due to the controller and
the micro-algorithms, a multiplication-accumulation operation can
consume up to hundreds of cycles (Al-Hawaj et al., 2020). This long
latency extremely degrades the benefits of the IMC approach in the
binary domain.

Analog in-memory computing architectures were also proposed
using emerging technologies like RRAMs (Yao et al., 2020; Kim
et al., 2022; Wan et al., 2022). The VMM is done in the analog
domain where inputs and weights are converted to analog
representations (voltages and resistances) and then analog
outputs are converted back to the digital domain. However, these
analog architectures suffer from the analog domain’s scalability
issues in addition to the high cost of the analog/digital
interfacing circuitry (Adam et al., 2018; Liu et al., 2020).
Resistivity variations of the RRAMs and manufacturing process
variations in Analog-to-Digital Converters (ADCs) are also major
obstacles that make the analog computation less accurate and more
challenging (Yu et al., 2021). Eventually, the productivity of the
analog design is well-known to be much less than the digital one.
This makes the analog design’s reusability and time-to-market
unpromising for the increasing DNNs’ market demands.

The potential promising approach should inherit the
computation simplicity of the analog domain while still utilizing
the scalability and robustness of the digital in-memory computing
approach. Stochastic Computing (SC) is a promising computing
domain which reduces the complexity of the binary multiplication to
a simple bitwise AND operation. This unconventional computing
domain can fully utilize the digital in-memory computing approach
without further logic complexity unlike the binary computing
domain. Thus, a digital in-memory stochastic computing
architecture is a middle ground that achieves the benefits of both
analog and digital in-memory computing approaches while avoiding
their drawbacks.

In this paper, we investigate the accuracy of the stochastic
computing domain for a VMM benchmark across three different
phases: generation, multiplication, and accumulation. Our accuracy
analysis targets minimizing the accuracy loss at each phase. It
explores two major parameters which are the seeding of the
random number generator and the bit-precision of the stochastic
bitstream. As part of the accuracy study, we present a new stochastic
number generator with an ideal binary-to-stochastic mapping to
increase the accuracy of the generation phase. We also introduce a
hybrid stochastic-binary accumulation approach to increase the
VMM accuracy without dramatically increasing the hardware
complexity of the targeted architecture. Additionally, this paper
presents a novel digital in-memory stochastic computing
architecture for VMM. The proposed architecture converts the
conventional memory read operations into on-the-fly stochastic
multiplication operations with negligible overhead. An analytical
model was built to explore the space of the different architectural
design points. This analytical model surveys the different trade-offs
among latency, throughput, design complexity, and accuracy for the
different stochastic bit-precisions.

2 Stochastic computing

Stochastic computing is a discrete computing system that
combines features from both analog and digital domains. The
stochastic numbers are represented by random bitstreams of ones
and zeros which are interpreted as probabilities. This paper is
focusing on the unipolar stochastic numbers where values are
calculated as ratios of the number of ones to the total number of
bits in the bitstream. This representation makes the stochastic
computing more friendly to biological systems where the data is
represented by the rate of pulses (Alaghi, 2015).

The stochastic domain inherits the computation simplicity of
the analog domain while keeping the same robustness, scalability,
and productivity of the digital domain. Figure 1 shows the circuits of
stochastic multiplication, addition, and subtraction (Alaghi et al.,
2013; Alaghi and Hayes, 2013; Alaghi and Hayes, 2014; Groszewski
and Lenz, 2019; Winstead, 2019). The multiplication is done by a
bitwise AND operation between X (4/8) and Y (6/8) producing the
output Z (3/8). This can be mapped to their equivalent probabilities
where X is 0.5 and Y is 0.75 so that the multiplication output should
be 0.375 which is equivalent to (3/8). The stochastic computing
addition is done by a weighted multiplexer where a stochastic
bitstream is forwarded to the select signal. If the select signal (S)
has the probability of 0.5, it gives the same weight for the two inputs
and the output will be (X+Y)/2 as shown in Figure 1. Regarding the
subtraction, it is done by a bitwise XOR operation, however it
requires the two stochastic inputs to be correlated to each other. For
example, the outputs of the stochastic multiplication and addition in
Figure 1 are correlated because they are generated from the same
inputs X and Y, so that the XOR gives the absolute value of their
subtraction (Alaghi, 2015).

Figure 1 also shows the conventional stochastic number
generator which is widely used (Alaghi, 2015; Zhang et al., 2019;
Salehi, 2020). To convert an n-bit binary number (B) to a 2n

stochastic bitstream (X), the binary (B) is compared to a random
number (R) with the same bitwidth (n) for 2n cycles and the output

Frontiers in Nanotechnology frontiersin.org02

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

bitstream (X) represents the probability Px of B/2n. The Linear
Feedback Shift Register (LFSR) generates pseudo random numbers
which are still valid for the purpose of stochastic number generation.

The stochastic computing is an approximate computing domain
in which the outputs are not exact values in contrast to the binary
domain. However, AI applications which mainly depend on DNNs
tolerate the approximated results by re-adjusting the weights to be
more friendly to the stochastic domain (Lee et al., 2017; Liu et al.,
2021). In another direction, the length of the stochastic bitstream
creates a trade-off between efficiency and accuracy. By intuition, the
longer the bitstream the more accurate results the system can
generate. Representing n-bit binary numbers by less than 2n-bit
bitstreams reduces the mapping resolution from the binary domain
to the stochastic domain which potentially decreases the overall
accuracy. In the next section, the accuracy of the stochastic VMM
computation is studied through three different phases: generation,
multiplication, and accumulation.

3 Stochastic vector-matrix
multiplication accuracy

This section investigates the accuracy of the stochastic computing
through three different phases: stochastic number generation,
stochastic element-by-element multiplication, and stochastic Vector-
Matrix Multiplication including the accumulation operations. This
accuracy analysis tries to minimize three different sources of errors: 1)
the truncation error due to stochastic bit-precision reduction by best
seeding at the generation phase, 2) the input correlation error at the
multiplication phase by re-exploring the best seeding for less
correlation, 3) the approximation error of the accumulation phase
by fine-tuning a hybrid stochastic-binary accumulation. The input seed
and the stochastic bit-precision are the two major parameters that
affect the accuracy of the stochastic computing. Thus, the objective is to

find the best seeding while exploring the stochastic bit-precision space
of the VMM benchmark. As we keep an eye on the VMM of the DNN
applications (likeMNIST), a 4-bit binary systemwas adopted as a case-
study where inputs and weights are 4-bit binary values.

3.1 Stochastic generation accuracy

As shown by the conventional stochastic number generator in
Figure 1, an LFSR and a comparator are used to generate the stochastic
numbers by comparing the binary input against the pseudo random
values generated by the LFSR. For full stochastic precision, the 4-bit
binary values aremapped to 16-bit stochastic numbers with one-to-one
linear mapping from the binary domain to the stochastic/probabilistic
domain. However, this conventional stochastic number generator
produces non-ideal mapping regardless the input seed as shown by
Figure 2. While the ideal linear mapping is shown in blue, it is
noticeable that the real mapping (in orange) is being deviated as the
value of the seed increases. This deviation is caused by the non-ideal
uniform distribution of the pseudo random values generated by the
LFSR. The 4-bit LFSR generates values from 1 to 15 but not a 0 value.
During the 2n generation cycles, the LFSR starts and ends with the same
seed value which means it is able to generate only 2n-1 pseudo random
values. Consequently, the (R < B) comparator generates less accurate
bitstreams due to ignoring the missing value case, and specially for
random seeds with higher values. As the deviation error accumulates in
one direction, this can lead to higher error rates during the different
stochastic operations (like multiplication).

To achieve the ideal linear mapping for the 16-bit full stochastic
precision, we propose a new stochastic number generator shown in
Figure 1. As the expected number of ones per any stochastic
bitstream should not exceed 15 for any 4-bit binary input, a zero
value is intentionally injected at the beginning of the stochastic
bitstream to avoid the repetition of the seed value at the 2n

FIGURE 1
The basic circuits of the stochastic computing domain: SCmultiplication using ANDgate, SC addition usingMUXwith 50%weighted select signal, SC
subtraction for correlated inputs using XOR gate, the conventional stochastic number generator using LFSR with a comparator and a new proposed
stochastic number generator where the register has initial state of 0.

Frontiers in Nanotechnology frontiersin.org03

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

generation cycle. In this case, the LFSR feeds the comparator with
15 pseudo-random values with uniform distribution while the
comparison circuit is modified to (B > = R) to overcome the
missing 0 case of the pseudo random values. The new proposed
circuit generates an ideal mapping from 4-bit binary to 16-bit
stochastic for any seed value (from 1 to 15) as shown by the blue
line in Figure 3.

Although the 16-bit stochastic number offers a full accuracy for
the data representation, it consumes more resources to save the data
(4x) in comparison to the binary domain. The straightforward
mitigation approach is to scale down the bit-precision of the
stochastic domain to less than 16-bit. However, this may
dramatically decrease the accuracy of the generation phase due to
a non-linear mapping from binary to stochastic numbers. While the
progressive precision approach targets early accurate-enough results
from the full stochastic precision (Alaghi and Hayes, 2014; Alaghi,
2015; Chen et al., 2017; Lin et al., 2021; Wu et al., 2021), we propose
re-mapping the binary space to a smaller stochastic space with less
precision. The target is to accomplish this mapping on-the-fly
without going back to the binary domain for quantization. Our
approach uses the same proposed new stochastic number generator
in addition to the input seed fine-tuning approach to find the best
pseudo-random numbers’ distribution. The greater the degree of
linear mapping, the higher the generation accuracy we achieve.

The non-linear mapping from 4-bit binary to 4-bit stochastic
precision is illustrated by the gray line (bad seeding, SEED 7) in
Figure 3. Consequently, the target is to find the best quasi-linear

mapping to the binary domain which is close enough to the full
stochastic precision mapping as shown by the orange line (good
seeding, SEED 9) in Figure 3. As Table 1 shows, the two seeds have
two completely different mappings from 4-bit binary to 4-bit
stochastic due to the different pseudo-random numbers’
distributions. While the maximum absolute error of SEED 9 is
18.75% (binary 9 and binary 15), the maximum absolute error of
SEED 7 is 56.25% (binary 13). It is clear that the 4-bit stochastic
number provides 4 probabilities (0.0, 0.25, 0.5, 0.75) for both SEED
9 and SEED 7, but the main advantage of SEED 9 is its ability to map
the binary values from 1 to 15 across the 4 probabilities in a quasi-
linear way which is close enough to the 16-bit full stochastic
precision mapping.

Our methodology was to use all possible seeds (from 1 to 15)
to convert the 4-bit binary values (from 1 to 15) into stochastic
bitstreams with different stochastic precisions (14-bit, 12-bit, 10-
bit, 8-bit, 6-bit, and 4-bit). Then we measure the accumulated
error for all binary values in comparison to the 16-bit full
stochastic precision case. A 4-bit LFSR with reconfigurable
seeding was used to forward pseudo random values to the new
stochastic number generator. Figure 4 shows the accumulated
data-generation errors of the 4-bit binary values per each seed for
all targeted stochastic bit-precisions. The average error of the best
seed is also shown per each stochastic precision. The results show
that choosing a bad seed for any precision increases the average
error of the data generation by few times. It is also promising to
notice that decreasing the stochastic precision from 16-bit to 4-

FIGURE 2
Mapping 4-bit binary values to 16-bit full stochastic precision using the conventional stochastic number generator.

Frontiers in Nanotechnology frontiersin.org04

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

bit (4x reduction), increases the average error by only 8.33% due
to the best seeding. This shows that mapping the binary domain
to a less-precision stochastic domain is feasible on-the-fly during
the generation phase. The same proposed binary-to-stochastic
converter circuit allows us to generate accurate-enough mapping
to any stochastic bit-precision not only the 16-bit stochastic
precision. This provides the system with a higher level of
flexibility for runtime stochastic precision reconfiguration
without incurring any additional hardware penalty.

3.2 Stochastic multiplication accuracy

Although increasing the accuracy of the generation phase is
important, the overall accuracy of the stochastic multiplication has a
higher priority. Both seeding and bit-precision affect the accuracy of
the generation phase, however the stochastic multiplication has a
third important parameter which is the correlation between the
input stochastic numbers. To study the stochastic multiplication
accuracy, we generated a vector of 1,024 4-bit random binary
numbers to act as an input vector V[1 × 1024], and a matrix of
1,024 rows and 10 columns of 4-bit random binary numbers M

[1024 × 10]. The benchmark targets element-by-element
multiplication of the matrix M by the vector V without
accumulating the results to measure the average stochastic
multiplication error in isolation from accumulation. The average
multiplication error is calculated and updated over the
10,240 stochastic multiplication operations for the different
seeding combinations at the 16-bit stochastic precision. After few
thousands of operations the average error starts to stabilise around a
certain value (as more operations are taken into consideration)
whichmeans that the stochastic multiplication is more friendly to AI
applications where thousands of multiplications take place. From
the stochastic generation accuracy subsection, all seeds have 0.0%
average generation error for the 16-bit stochastic precision.
However, the different seeding combinations generate different
stochastic multiplication accuracy results. The average error is
few times higher when the same seed is used to generate both
stochastic inputs due to the high input correlation. This means that
even for a full stochastic precision, it is necessary to search for the
best seeding that generates the most uncorrelated inputs for the best
stochastic multiplication results.

Consequently, the benchmark was repeated to execute the
element-by-element multiplication of the matrix M by the vector

FIGURE 3
Mapping 4-bit binary values to both 16-bit full stochastic precision and 4-bit reduced stochastic precision. The graph shows that SEED 9 gives a
more linear mapping (quasi-linear) for the 4-bit stochastic precision which makes it closer to the 16-bit full stochastic precision accuracy. Table 1 shows
the accompanied probabilistic values and the absolute errors of the good and bad seedings for the 4-bit stochastic precision versus the 16-bit full
stochastic precision (for any seed).

Frontiers in Nanotechnology frontiersin.org05

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

V for the targeted stochastic precisions (16-bit down to 4-bit) for all
possible input-seeding combinations. Figure 5 shows the best and
worst average stochastic multiplication error per each stochastic
precision. As the input correlation starts to contribute to the error, it
is reasonable to have some new best seeds that are different from the
best seeds of the generation phase. The new best seeds make a

balance between the input stochastic generation accuracy and the
low input correlation to achieve the optimum overall accuracy.
The results show that choosing a better seeding for the stochastic
multiplication operation increases the accuracy by few times. For
example at 16-bit stochastic precision, choosing SEED 8 for the
vector and SEED 10 for the matrix decreases the average error by

TABLE 1 The absolute errors of mapping the 4-bit binary probabilistic values to 4-bit stochastic precision using good and bad seeding.

Full Precision Good SEED 9 Bad SEED 7

Binary P16(B) SC 4-bit P4(B) |Error| SC 4-bit P4(B) |Error|
.0000 0.0 0000 0.0 0.0 0000 0.0 0.0

.0001 0.0625 0000 0.0 0.0625 0000 0.0 0.0625

.0010 0.125 0000 0.0 0.125 0000 0.0 0.125

.0011 0.1875 0010 0.25 0.0625 0000 0.0 0.1875

.0100 0.25 0010 0.25 0.0 0000 0.0 0.25

.0101 0.3125 0010 0.25 0.0625 0000 0.0 0.3125

.0110 0.375 0011 0.5 0.125 0000 0.0 0.375

.0111 0.4375 0011 0.5 0.0625 0100 0.25 0.1875

.1000 0.5 0011 0.5 0.0 0100 0.25 0.25

.1001 0.5625 0111 0.75 0.1875 0100 0.25 0.3125

.1010 0.625 0111 0.75 0.125 0100 0.25 0.375

.1011 0.6875 0111 0.75 0.0625 0100 0.25 0.4375

.1100 0.75 0111 0.75 0.0 0100 0.25 0.5

.1101 0.8125 0111 0.75 0.0625 0100 0.25 0.5625

.1110 0.875 0111 0.75 0.125 0101 0.5 0.375

.1111 0.9375 0111 0.75 0.1875 0111 0.75 0.1875

FIGURE 4
The accumulated error (normalized to 1.0x) of representing the 4-bit binary numbers (1–15) using different stochastic bit-precisions while applying
all possible seed values for each precision.

Frontiers in Nanotechnology frontiersin.org06

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

3.34x in comparison to using the same seed for both vector and
matrix. It is also promising to notice that the best seeding at the
lowest precision (SC 4-bit) has a better average error than the
worst seeding at the highest precision (SC 16-bit) as shown in
Figure 5.

3.3 Stochastic vector-matrix multiplication
accuracy

The accumulation process of the element-by-element stochastic
multiplications is crucial to preserve the overall accuracy. Figure 6

FIGURE 5
Theminimum average error (due to best seeding) and themaximum average error (due toworst seeding) of the stochasticmultiplication benchmark
(10,240 operations) per each targeted stochastic bit-precision.

FIGURE 6
The error per each output of the stochastic VMMbenchmarking for all targeted precisions. The average error per each stochastic bit-precision is also
shown.

Frontiers in Nanotechnology frontiersin.org07

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

shows the errors of the output vector VMM[1 × 10] which is generated
by multiplying the matrix M[1024 × 10] by the vector V[1 × 1024].
While the element-by-elementmultiplicationwas done in the stochastic

domain, the accumulation was done in the binary domain to generate
the 10 output values. These output results were compared to the original
binary results to calculate the error per each output and then the average

FIGURE 7
The errors including the average error of the stochastic VMM outputs using different hybrid stochastic-binary accumulation combinations for the
targeted stochastic bit-precision.

Frontiers in Nanotechnology frontiersin.org08

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

error for all targeted stochastic bit-precisions. The results, in Figure 6,
show that the average error per each stochastic precision was improved
over the only multiplication average error, in Figure 5, due to the
accumulation of the negative and positive errors which cancel each
others. This in-deterministic behavior makes a lower stochastic
precision like 8-bit offers a better accuracy than its higher
counterparts like 10-bit and 12-bit. However, the 16-bit stochastic
precision still produces the most accurate results as expected. It is
also promising to notice that using a fully binary accumulation
approach can scale down the stochastic bit-precision from 16-bit to
4-bit while the average error degrades only from 0.35% to 0.85%.

This promises a great reduction in the hardware area and energy
cost of the stochastic domain, however it increases the design
complexity in the binary domain as more bigger counters are
required. Although the accumulation can be easily done in the
binary domain by integrating it with the stochastic-to-binary
converters, it is a hardware-costly solution for large-scale
architectures that deal with large DNNs’ datasets. Furthermore, it is
not hardware-friendly to the in-memory computing architectures due
to the layout pitch-matching constraints of the memory design. Doing
the accumulation in the stochastic domain is expected to dramatically
degrade the final accuracy of the VMM. To avoid increasing the binary

domain design complexity, we propose a hybrid stochastic-binary
accumulation approach to trade accuracy for better energy and less
design complexity. Our methodology is to repeat the previous VMM
benchmark for all stochastic bit-precisions with different numbers of
ROWs. The ROW number determines the number of stochastic
accumulation operations before the result needs to be converted
back to the binary domain for further binary accumulation. Hence,
every ROW times of stochastic accumulation operations, one binary
accumulation takes place for the stochastic result. The ROW parameter
varies fromROW-1 (whichmeans fully binary accumulation approach)
to ROW-1024 (which means fully stochastic accumulation approach)
including ROW-16, ROW-32, ROW-64, ROW-128, ROW-256 and
ROW-512. Figure 7 shows the errors (including the average errors) of
the stochastic VMM using the different combinations of the hybrid
stochastic-binary accumulation approach for all targeted stochastic bit-
precisions. Regarding the 16-bit stochastic precision, the fully stochastic
accumulation generates an average error of 18.87% in comparison to
0.35% in case of the fully binary accumulation. However, the ROW-128
hybrid approach generates only 2.94% average error which is 6.4x better
than the fully stochastic accumulation approach. On the other side, the
fully stochastic accumulation of the 4-bit stochastic precision gives an
average error of 7% which is better than expected due to accumulating

FIGURE 8
The proposed column-wise modifications to convert the conventional read operation into an on-the-fly bitwise AND operation between the input
IN and the bitcell data: (A) differential bitcells like 6T CMOS SRAM bitcells, (B) single-ended bitcells like 1T1R RRAM bitcells.

Frontiers in Nanotechnology frontiersin.org09

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

the positive and negative errors. It also offers an average error of 2.56%
at the ROW-64 hybrid approach which is nearly equivalent to the
ROW-128 hybrid approach of the 16-bit stochastic precision.

These results show that the stochastic bit-precision can be scaled
down for VMMs from 16-bit to only 4-bit without experiencing any
significant loss in accuracy. While searching for the best seeding is
urgent to increase the element-by-element multiplication accuracy,
finding a good ROW value is essential for increasing the VMM
accuracy and decreasing the design complexity. Thanks to the
hybrid stochastic-binary accumulation approach, the stochastic
accumulation reduces the hardware complexity of the design while
the periodic binary accumulation mitigates the approximation error of
the stochastic accumulation. Therefore, the average errors of all
stochastic bit-precisions can be forced to converge below 3% for
different good ROW cases. If the AI system tolerates up to 3%
average error for a VMM, different hybrid stochastic-binary
accumulation setups can be extracted for all stochastic bit-precisions.
These different design points have different performance/design-
complexity trade-offs, and therefore the accuracy analysis is a vital
milestone towards the design space exploration of our novel in-memory
stochastic computing architecture.

4 In-memory stochastic computing
architecture

The stochastic computing domain is less data-compact due to
the bitstream data representation in contrast to the binary domain
which represents the same data by a fewer number of bits. This main
drawback of the stochastic computing domain adds more insult to
injury regarding the data-movement bottleneck. Hence, the
conventional Von Neumann architectures are not the best
environment for both DNNs and stochastic computing. In-
memory computing aims at mitigating the data-movement
bottleneck by avoiding, as much as possible, any unnecessary
data transmission. High-density on-chip memories are the best
candidates to host the relatively long stochastic bitstreams, while
performing the in-memory computation avoids transferring these
longer bitstreams between the memory and the processing units
(potentially through a network-on-chip).

The conventional digital in-memory computing approach using
SRAMs depends mainly on the bitline computing technique. During
the bitline computing mode, two wordlines are activated
simultaneously so the read-data and its complementary (data_

FIGURE 9
Data layout of Vector-Matrix Multiplication including physical data layout saved in thememory sub-array, input vectormapping to different columns
of the matrix, and the VMM flow through the accumulation tree.

Frontiers in Nanotechnology frontiersin.org10

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

bar) represent the bitwise AND and NOR operations between the
two wordlines. This requires adding an extra address decoder and
modifying the sense-amplifier per each column to a reconfigurable
sense-amplifier which nearly doubles the size of the conventional
one. Adding one extra address decoder while activating two
wordlines simultaneously increases the overall energy footprint of
these architectures. To avoid this penalty, we propose a novel in-
memory stochastic computing approach which is shown in Figure 8.
This new approach converts the conventional memory read
operations into on-the-fly bitwise AND operations between the
input (IN) and the data saved by the active bitcell. Unlike the
conventional bitline computing approach, the proposed architecture

has a negligible hardware overhead. While using hardwired AND
gates reduces the throughput by 50%, this novel in-memory
stochastic computing approach utilizes the full bandwidth of the
memory to achieve the full throughput.

Regarding the conventional 6T CMOS SRAMs shown by
Figure 8A, the bitline (BL) is pre-charged to VDD if the input IN
is 1 which leads to the conventional read operation functionality. If the
active bitcell captures the value of 1 (0), the sense-amplifier reads logic
1 (0) which is the bitwise AND operation. If the input IN is 0, the BL is
pre-discharged to GND (or a low voltage) and the sense-amplifier
always reads logic 0 regardless the active bitcell’s value, which is the
bitwise AND operation. The input should be forwarded in the same

FIGURE 10
An abstract view of the proposed in-memory stochastic computing architecture using hybrid stochastic-binary accumulation for VMM applications.

Frontiers in Nanotechnology frontiersin.org11

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

way to the bitline_bar (BLb) to avoid any read-disturbance while
performing the proposed on-the-fly AND operation.

For the in-memory stochastic computing architecture, we are
only interested in the bitwise AND operation which acts as a
stochastic multiplication. Thus we are not interested anymore in
the complementary of the data and the bitwise NOR operation. The
digital 1T1R memory arrays use a single-ended 1T1R bitcell where
High Resistance State (HRS) represents logic 1 and Low Resistance
State (LRS) represents logic 0 (Agwa et al., 2022). This emerging
technology promises a higher on-chip data density and capacity for
the in-memory stochastic computing architecture. As shown by
Figure 8B, the same approach is proposed to pre-charge BL if IN is
1 and pre-discharge BL if IN is 0, while BLb is pre-discharged
regardless the input value. This new approach utilizes the inherent
AND behavior of the memory read operations to perform massive
parallel stochastic multiplication operations through the in-memory
computing architecture.

Data layout, which is how data is physically saved in memory, is
an important parameter to explore the design space of this in-
memory stochastic computing architecture. Figure 9 shows the
logical layout of the input vector and the matrix which should be
physically mapped to the memory rows (called wordlines). The in-
memory computing architecture has massive parallel computing
resources and the target is to maximize the utilization of these
resources to do as many stochastic multiplications as possible per
cycle. The physical data layout, depicted in Figure 9, shows that the
input vector and the matrix columns are divided into multiple
batches. Each batch has a certain number of rows and columns
with a specific arrangement that makes the accumulation process
easier to generate the final VMM outputs. The sizes of these batches
depend on the stochastic VMM accuracy analysis done in Section 3.
The ROW number of each stochastic bit-precision determines the
suitable size of its batch. For example, ROW-128 of 16-bit stochastic
precision means that the batch is 128 values of 16-bit stochastic data
which can be mapped to 16 rows and 8 columns (16 × 8) in the
memory.

Figure 10 shows the proposed architecture where the data batches
are mapped to virtual clusters. Every cluster consists of a number of
virtual ALU lanes and each lane handles one n-bit stochastic
multiplication at a time. The outputs of these ALU lanes should be
accumulated using a stochastic accumulation tree ofmultiplexers. The
outputs of the stochastic accumulation stage are converted to the
binary domain by counters and the latency of these counters is hidden
while computing the next batch. Thus, the accumulation is done for
one batch in the stochastic domain using a tree of multiplexers and
then for the whole dataset in the binary domain using the binary
counters to accumulate the batches together. Each cluster is
responsible for multiplying one column of the matrix by the input
vector to generate one output. Ideally, the cluster should have only one
binary counter to accomplish the binary accumulation. However, the
cluster may have a few of binary counters and a further accumulation
addition tree for smaller batch sizes. The small batch sizingmeans that
more accumulation is done in the binary domain and the architecture
has to parallelize the binary accumulation (using more counters) to
increase the memory resources’ utilization.

Our methodology is to fix the memory sub-array size for
128 ROW X 256 COL with 4 KB capacity which is suitable to
build on-chip cache memories. Based on the accuracy analysis in

Section 3, we consider all design points for all stochastic bit-
precisions that have an average error less than 3%. The Verilog-
based stochastic VMM benchmarking was utilized to build an
analytical model for the proposed architecture. Table 2 shows the
definitions of the different parameters of the analytical model while
Table 3 shows the extracted equations. We use this model to search
for the optimum design point per each stochastic bit-precision
depending on different metrics like: throughput, latency, design
complexity, memory utilization per sub-array, and accuracy. As each
cluster is responsible for generating a standalone output, it has its
own counter/counters to complete the hybrid stochastic-binary
accumulation independently in parallel with the other running
clusters. Increasing the number of counters per sub-array
increases the design complexity and the energy footprint of the
whole system.

TABLE 2 The analytical Model’s parameters of the in-memory stochastic
computing architecture using hybrid stochastic-binary accumulation for VMM.

Parameter Definition

N The number of rows per matrix.

M The number of columns per matrix.

R The stochastic bit-precision (resolution).

Col Number of columns per sub-array (256).

Row Number of rows per sub-array (128).

NSubArray Number of sub-arrays required for accomplishing the VMM.

RowBest ROW number that gives best stochastic VMM accuracy.

S Number of columns per batch (stride).

L Latency in cycles for the stochastic VMM.

C Number of counters per sub-array.

RB Number of rows per batch.

Nbits Number of bits per each counter.

T(Ops/Cycle) Throughput of the stochastic VMM.

TABLE 3 The analytical Model’s equations of the in-memory stochastic
computing architecture using hybrid stochastic-binary accumulation for VMM.

NSubArray = [R p NpM]/[Col p Row].

S = RowBest/R.

L = [Row p R] + log2[N/Row] → Where (S = 0).

L � [Row p (1 + S
N)] + R + 1 → Where (N/S≤Row).

L = Row + R + 2 + log2[N/(S p Row)] → Where (N/S > Row).

C = Col/R → Where (S = 0).

C = Col/[S p R] → Where (S > 0).

RB = RowBest/S → Where (S > 0).

Nbits = log2[Min(Row, [N/S]) p R/RB] + 1 → Where (S > 0).

Nbits = log2[Min(Row, N) p R] + 1 → Where (S = 0).

T(Ops/Cycle) = [Row p S p C p Ops]/L → Where (OpsMAC = 2).

Frontiers in Nanotechnology frontiersin.org12

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

Figure 11 shows the required number of counters per sub-array
for each design point of the different stochastic bit-precisions. It is
noticeable that decreasing the size of the batch increases the number
of counters as expected. The latency and throughput per sub-array for
each design point are also shown in Figure 11. The results show how a
key factor the stochastic bit-precision is to improve throughput and
latency. It determines the number of virtual ALU lanes running in
parallel per each sub-array which determines the throughput. The
stochastic multiplication operation is done on-the-fly and consumes
only one clock cycle regardless its stochastic bit-precision. In contrast,
the binary accumulation’s contribution to the overall latency depends
on the stochastic bit-precision. The higher the stochastic precision, the

more cycles the counter consumes to do the accumulation. However,
the binary accumulation has a minor contribution to the overall
latency because it is hidden by computing the next batch except the
last binary accumulation run.

Table 4 shows the most efficient design point per each stochastic
bit-precision. The design efficiency was calculated as a ratio of the real
throughput versus the ideal throughput, while the ideal one is not
considering the cost of the accumulation process and assuming an ideal
utilization for thememory sub-array. This design efficiencymetric takes
into consideration the effects of the latency and the memory utilization
on the throughput degradation for each stochastic bit-precision. Thus, it
shows how efficient and hardware-friendly the design point is, from the

FIGURE 11
The analytical model’s results including number of counters, latency and throughput per sub-array for each architectural design point.

TABLE 4 Comparison among the different stochastic bit-precisions with their best architectural design points.

SC Batch # Sub- Utiliza- Latency Throughput Complexity Efficie- Error

Bit-Precision Size Array tion(%) (Cycle) (Op/Cycle) (Counters) ncy (%) Avg. (%)

4-bit/ROW-32 4 × 8 1.25 100 134 122.27 8x8-bit 95.52 2.25

6-bit/ROW-16 8 × 2 1.875 98.44 138 77.91 21x7-bit 92.75 1.7

8-bit/ROW-64 8 × 8 2.5 100 138 59.36 4x8-bit 92.75 2.50

10-bit/ROW-16 16 × 1 3.125 97.66 143 44.76 25x7-bit 89.51 0.85

12-bit/ROW-16 16 × 1 3.75 98.44 145 37.08 21x7-bit 88.28 1.86

14-bit/ROW-32 16 × 2 4.375 98.44 146 31.56 9x7-bit 87.67 1.47

16-bit/ROW-128 16 × 8 5 100 146 28.06 2x8-bit 87.67 2.94

Frontiers in Nanotechnology frontiersin.org13

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

hardware implementation perspective. From Table 4, the stochastic 16-
bit architecture with ROW-128 has the maximum batch size and the
minimum number of counters (two 8-bit counters) while it shares the
maximum memory utilization per sub-array (100%) with stochastic 4-
bit (ROW-32) and 8-bit (ROW-64) design points. However, the most
efficient design is the stochastic 4-bit with ROW-32 which has the
highest throughput (122 Ops/Cycle) and the best latency (134 Cycles)
due to its low bit-precision. From accuracy perspective, stochastic 10-bit
with ROW-16 has the lowest average error in this table (0.85%) but on
the other hand it has the worst design complexity due to the large
number of counters per sub-array (25 7-bit counters). These results
spotlight the different trade-offs of the architectural design space where
each design priority (Accuracy, Energy, Performance, Complexity) has
its own matching design point.

5 Conclusion

The in-memory computing architectures demonstrate significant
potential in mitigating the Von Neumann data-movement bottleneck,
while the stochastic computing domain shows promise for combining
the computation simplicity of the analog computing with the scalability,
productivity and robustness of the digital domain. This paper proposes
a novel digital in-memory stochastic computing architecture for
Vector-Matrix Multiplications (VMMs). This architecture avoids the
scalability and variability challenges associated with analog crossbars, as
well as the hardware complexity and long latency of digital in-memory
binary computing. The paper introduces a new stochastic number
generator that maps the 4-bit binary data ideally to 16-bit stochastic
numbers for any seed value. The same circuit is also utilized to map the
4-bit binary domain to lower stochastic bit-precisions with minimal
error by fine-tuning the seed value. An accuracy analysis of a stochastic
VMM benchmark is presented, incorporating a hybrid stochastic-
binary accumulation approach. This accuracy analysis demonstrates
the significance of different phases, including generation,multiplication,
and accumulation, in achieving optimal accuracy for the VMM
benchmark. Therefore, this paper introduces a technology-agnostic
accuracy roadmap for stochastic VMM computing, highlighting the
importance of all these phases. Thanks to the proposed hybrid
stochastic-binary accumulation approach, scaling down the
stochastic precision from 16-bit to 4-bit achieves nearly the same
average error (less than 3%) across different ROW numbers.
Additionally, this work presents a new digital in-memory stochastic
computing architecture that turns the conventional memory read
operations into on-the-fly stochastic multiplication operations. The
proposed architecture’s design space exploration is performed using an
analytical model. The extracted analytical model enables the
examination of various trade-offs among the different architectural
design points, including latency, throughput, design complexity, and

accuracy. Thanks to the adopted approaches, the 4-bit stochastic
architecture with ROW-32 achieves the highest throughput
(122 Ops/Cycle), which is 4.36x better than the 16-bit stochastic
precision with a small average error of 2.25%. This technology-
agnostic design space exploration study is a key milestone to
identify the promising design points for implementation. The
transistor-level implementation of the proposed architecture is
currently in progress using an in-house RRAM model and a
commercial 180 nm technology.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

SA was involved with the conceptualization of the different
ideas, conducting the benchmarking tests, extracting the analytical
model and writing the manuscript. TP was involved with the
conceptualization of the ideas and writing the manuscript. All
authors contributed to the article and approved the submitted
version.

Funding

This work has been funded by the EPSRC FORTE Programme
Grant (EP/R024642/2) and the RAEng Chair in Emerging
Technologies (CiET1819/2/93).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Adam, G. C., Khiat, A., and Prodromakis, T. (2018). Challenges hindering memristive
neuromorphic hardware from going mainstream. Nat. Commun. 9, 5267. doi:10.1038/
s41467-018-07565-4

Agwa, S., Pan, Y., Abbey, T., Serb, A., and Prodromakis, T. (2022). “High-density
digital RRAM-based memory with bit-line compute capability,” in 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), Austin, TX, 1199–1200.
doi:10.1109/ISCAS48785.2022.9937848

Al-Hawaj, K., Afuye, O., Agwa, S., Apsel, A., and Batten, C. (2020). “Towards a
reconfigurable bit-serial/bit-parallel vector accelerator using in-situ processing-in-SRAM,”
in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 1–5.
doi:10.1109/ISCAS45731.2020.9181068

Alaghi, A., and Hayes, J. P. (2014). “Fast and accurate computation using stochastic
circuits,” in Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 24-28 March 2014.

Frontiers in Nanotechnology frontiersin.org14

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://doi.org/10.1038/s41467-018-07565-4
https://doi.org/10.1038/s41467-018-07565-4
https://doi.org/10.1109/ISCAS48785.2022.9937848
https://doi.org/10.1109/ISCAS45731.2020.9181068
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

Alaghi, A., and Hayes, J. P. (2013). Survey of stochastic computing. ACM Trans.
Embed. Comput. Syst. 12, 1–19. doi:10.1145/2465787.2465794

Alaghi, A., Li, C., and Hayes, J. P. (2013). “Stochastic circuits for real-time image-
processing applications,” in 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, Texas, USA, 29 May - 7 June 2013.

Alaghi, A. (2015). The logic of random pulses: Stochastic computing. Ann Arbor, MI,
USA: Ph.D. dissertation, University of Michigan.

Chen, T. H., Ting, P., and Hayes, J. P. (2017). “Achieving progressive precision in
stochastic computing,” in IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Ottawa, Ontario, Canada, November 11-14 2017, 1320–1324.

Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R., Sylvester, D., et al. (2018).
“Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in
International Symposium on Computer Architecture (ISCA), Los Angeles, CA,
USA, June 1 2018 to June 6 2018.

Farmahini-Farahani, A., Ahn, J. H., Morrow, K., and Kim, N. S. (2015). “Nda: Near-
dram acceleration architecture leveraging commodity dram devices and standard
memory modules,” in International Symposium on High-Performance Computer
Architecture (HPCA), Burlingame, CA, USA, Feb 7 2015 to Feb 11 2015.

Fujiki, D., Mahlke, S., and Das, R. (2019). “Duality cache for data parallel
acceleration,” in International Symposium on Computer Architecture (ISCA),
Phoenix Arizona, June 22 - 26, 2019.

Groszewski, A. J., and Lenz, T. (2019). “Deterministic stochastic computation using
parallel datapaths,” in 20th International Symposium on Quality Electronic Design
(ISQED), Santa Clara, CA, USA, March 6-7, 2019, 138–144.

Jeloka, S., Akesh, N. B., Sylvester, D., and Blaauw, D. (2015). “A configurable tcam/
bcam/sram using 28nm push-rule 6t bit cell,” in Symposium on Very Large-Scale
Integration Circuits (VLSIC), Kyoto, Japan, June 17-19, 2015.

Jouppi, N., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al. (2017). “In-
datacenter performance analysis of a tensor processing unit,” in 44th Annual
International Symposium on Computer Architecture (ISCA ’17), Toronto ON
Canada, June 24 - 28, 2017.

Kim, D., Yu, C., Xie, S., Chen, Y., Kim, J.-Y., Kim, B., et al. (2022). An overview of
processing-in-memory circuits for artificial intelligence and machine learning. IEEE
J. Emerg. Sel. Top. Circuits Syst. 12, 338–353. doi:10.1109/JETCAS.2022.3160455

Lee, V. T., Alaghi, A., Hayes, J. P., Sathe, V., and Ceze, L. (2017). “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in Design,

Automation & Test in Europe Conference & Exhibition (DATE), March 27-31
2017, Lausanne, Switzerland. 13–18.

Lin, Z., Xie, G., Wang, S., Han, J., and Zhang, Y. (2021). “A review of deterministic
approaches to stochastic computing,” in IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), AB, Canada, Nov 8 2021 to Nov 10 2021.

Liu, Q., Gao, B., Yao, P., Wu, D., Chen, J., Pang, Y., et al. (2020). “A fully integrated
analog reram based 78.4tops/w compute-in-memory chip with fully parallel mac
computing,” in IEEE International Solid-State Circuits Conference (ISSCC), San
Francisco, California, USA, 16-20 February 2020, 500–502.

Liu, Y., Liu, S., Wang, Y., Lombardi, F., and Han, J. (2021). A survey of stochastic
computing neural networks for machine learning applications. IEEE Trans. Neural
Netw. Learn. Syst. 32, 2809–2824. doi:10.1109/TNNLS.2020.3009047

Salehi, S. A. (2020). Low-cost stochastic number generators for stochastic computing.
IEEE Trans. Very Large Scale Integration (VLSI) Syst. 28, 992–1001. doi:10.1109/TVLSI.
2019.2963678

Seshadri, V., Kim, Y., Fallin, C., Lee, D., Ausavarungnirun, R., Pekhimenko, G., et al.
(2013). “Rowclone: Fast and energy-efficient in-dram bulk data copy and initialization,”
in International Symposium on Microarchitecture (MICRO), Davis, CA, USA,
December 7-11, 2013.

Wan, W., Kubendran, R., Schaefer, C., Eryilmaz, S. B., Zhang, W., Wu, D., et al.
(2022). A compute-in-memory chip based on resistive random-access memory. Nature
608, 504–512. doi:10.1038/s41586-022-04992-8

Winstead, C. (2019). “Tutorial on stochastic computing,” in Stochastic computing:
Techniques and applications. EditorsW.Gross andV.Gaudet (Berlin, Germany: Springer).

Wu, D., Yin, R., and Miguel, J. S. (2021). “Normalized stability: A cross-level design
metric for early termination in stochastic computing,” in 26th Asia and South Pacific
DesignAutomationConference (ASP-DAC), Tokyo, Japan, January 18-21, 2021, 254–259.

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., et al. (2020). Fully hardware-
implemented memristor convolutional neural network. Nature 577, 641–646. doi:10.
1038/s41586-020-1942-4

Yu, S., Jiang, H., Huang, S., Peng, X., and Lu, A. (2021). Compute-in-memory chips
for deep learning: Recent trends and prospects. IEEE Circuits Syst. Mag. 21, 31–56.
doi:10.1109/MCAS.2021.3092533

Zhang, Y., Wang, R., Zhang, X., Zhang, Z., Song, J., Zhang, Z., et al. (2019). “A parallel
bitstream generator for stochastic computing,” in Silicon Nanoelectronics Workshop
(SNW), Honolulu, Hawaii, USA, 11-12 June 2022.

Frontiers in Nanotechnology frontiersin.org15

Agwa and Prodromakis 10.3389/fnano.2023.1147396

https://doi.org/10.1145/2465787.2465794
https://doi.org/10.1109/JETCAS.2022.3160455
https://doi.org/10.1109/TNNLS.2020.3009047
https://doi.org/10.1109/TVLSI.2019.2963678
https://doi.org/10.1109/TVLSI.2019.2963678
https://doi.org/10.1038/s41586-022-04992-8
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/MCAS.2021.3092533
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1147396

	Digital in-memory stochastic computing architecture for vector-matrix multiplication
	1 Introduction
	2 Stochastic computing
	3 Stochastic vector-matrix multiplication accuracy
	3.1 Stochastic generation accuracy
	3.2 Stochastic multiplication accuracy
	3.3 Stochastic vector-matrix multiplication accuracy

	4 In-memory stochastic computing architecture
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

