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We review the iid2022 workshop on statistical methods for X-ray and γ-ray
astronomy and high–energy astrophysics event data in astronomy, held in
Guntersville, AL, on Nov. 15–18 2022. New methods for faint source detection,
spatial point processes, variability and spectral analysis, andmachine learning are
discussed. Ideas for future developments of advanced methodology are shared.
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1 Statistical challenges arising in high–energy
astrophysics

The science analysis of data in high–energy astrophysics differs from most fields of
astronomy in important ways. The data, typically from space-based observatories, consist
of energetic photons counted individually as they arrive in a detector. These datasets often
can be viewed in tabular form as a sequence of events with four characteristics: arrival time,
location in two-dimensions, and energy. The analysis commonly proceeds in stages: sources
are identified in the 2-dimensional image, photons are extracted for individual sources or
emitting regions, and 1-dimensional analysis proceeds for the energy distribution and arrival
times. These univariate distributions are often complicated: multi-component spectral
emission processes are convolved with instrumental sensitivity, and temporal processes can
depend on unpredictable variations in accretion onto compact objects. Common analysis
procedures include:

1) Individual photons are examined, often smoothedwith knowledge of the telescope point
spread function, in the image plane;

2) Sparse samples of individual events from faint sources are modeled along one-
dimensional energy (spectra) or temporal axis (light curves);

3) Richer samples of events are grouped into bins along the spectral or temporal axis and
then subject to statistical or astrophysical modeling.

Table 1 summarizes important statistical procedures developed in the high–energy
astrophysical community over the past half century. The accomplishments are impressive,
but the impact on the research community is mixed. Some methods, such as the Lomb-
Scargle periodogram, are widely used, although there may be insufficient appreciation
of the challenges of estimating reliable False Alarm Probabilities (VanderPlas, 2018). But
other valuable statistical procedures − such as different limits for source existence and flux
(Kashyap et al., 2010) and Bayesian estimates of faint-source hardness ratios (Park et al.,
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TABLE 1 Presentations at the iid2022workshop.

KEYNOTE LECTURE

 Parametric estimation of spatial point processes D. Zimmermann (Iowa)

1. STATISTICAL MODELING OF COUNT DATA

 Overview of regression methods for count data M. Bonamente (UAH)

 Bayesian field-based likelihood analysis A. Heavens (Imperial)

 A ground-based search for terrestrial gamma-ray flashes in Fermi-GBM Data S. Lesage (student)

2. STATISTICS FOR IDENTIFICATION OF LOW-COUNT SOURCES

 Flux estimation from count-based data D. Mortlock (Imperial)

 Introduction to low-count statistics V. Kashyap (Smithsonian)

 Maximum likelihood calibration of the tip of the red giant branch using Milky Way field giants Siyang Li (student)

 Are giant planet-hosting stars young? C. Swastik (student)

3. ANALYSIS OF SPECTRAL DATA

 Goodness-of-fit for regression with count data M. Bonamente (UAH)

 Joint spatio-spectro-temporal analysis of X-ray events V. Kashyap (Smithsonian)

 Machine learning to detect CIV absorption lines in SDSS spectra R. Monadi (student)

 Properties of late-type dwarfs using low-resolution spectroscopy from Gaia Z. Way (student)

 Assessing the impact of narrow-band information in photometric surveys L. Nakazono (student)

 Properties of lowest metallicity galaxies at z = 0.2–1 I. Laseter (student)

4. STATISTICS FOR VARIABLE SOURCES

 Time domain astronomy: Grouping to reveal structure G. Belanger (ESAC)

 Bayesian Basics T. Enßlin (MPA)

 Statistics for low count rate variable sources E. Feigelson (Penn State)

 Bayesian Blocks I J. Scargle (NASA-Ames)

 Bayesian Blocks II M. Kerr (SLAC)

5. STRUCTURES IN IMAGES: SPATIAL POINT PROCESSES

 Spatial Point Processes E. Feigelson (Penn State)

 Information field theory for event data T. Enßlin (MPA)

 Constraints on the temperature-density relation of the ISM with non-negligible absorber spatial structure T. Ksenia (student)

 Image deconvolution and reconstruction methods in Poisson images A. Siemiginowska (Smithsonian)

 pyLira tutorial A. Donath (student)

 Phase coherence of the solar wind turbulence M. Nakanotani (student)

 Galaxy Clusters and Protoclusters at HST-SSP Survey V. Marcelo (student)

 Sampling Methods T. Ensslin (MPA)

6. APPLICATIONS TO ASTRONOMICAL DATA

 Chemodynamical ages of small-scale kinematic structures in the solar neighborhood I. Medan (student)

 Modeling quasar UV/optical variability as stochastic diffusion processes Weixiang Yu (student)

 Forming supermassive black holes with the collapse of Self-Interacting Dark Matter Halos S. Gad-Nasr (student)

 The Galactic Center as a gravitational laboratory R. Della Monica (student)

 A new method of investigation of the orientation of galaxies in clusters in the absence of information on their morphological
types

M. Błażej (student)

 Practical application of the new method of investigation of the alignment of galaxies in clusters W. Godłowski (Opolski)

(Continued on the following page)
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TABLE 1 (Continued) Presentations at the iid2022workshop.

7. NON-DETECTION: CENSORED AND TRUNCATED DATA

 Non-detections: Censoring and truncation in astronomical surveys E. Feigelson (Penn State)

 Using biostatistics doubly robust estimators to model the progression of symptoms for neurodegenerative diseases in astronomy J. Vazquez (student)

8. MACHINE LEARNING AND NUMERICAL METHODS

 From histograms to hierarchical models: Bayesian modeling of event and population data with point processes T. Loredo (Cornell)

 Cosmology in the machine learning era F. Villaescusa-Navarro
(Simons Fnd)

 Numerical information field theory P. Franck (MPA)

 Techniques for variational inference P. Franck (MPA)

 Estimating the sensitivity of a polarimeter module for the Large Area burst Polarimeter (LEAP) K. Oñate Melecio
(student)

 Machine learning applied to meteor detection filtering S. Anghel (student)

 Utilizing aMetropolis-Hastings algorithm to determine the dominantmechanismof particle energy gain by interactingwith dynamic small-scale
flux ropes

K. Van Eck (student)

 A global 21 cm signal emulator of 21cmFAST D. Breitman (student)

 Concluding remarks M. Bonamente (UAH)

2006) − are not commonly used. Many have listened the warning
that likelihood ratio tests should not be used near the boundary
of parameter values (Protassov et al., 2002), but there is inadequate
recognition that likelihood ratios should be penalized by model
complexity as with the Bayesian Information Criterion.

There is also a general unawareness within the astronomical
community of basic methods that are common in other fields.
For example, multiple linear regression for count data (Cameron
and Trivedi, 2013) is used extensively in econometrics and other
areas, but astronomers often compare a response variable to
single covariates in a sequential fashion. Aperiodic stochastic
temporal behaviors (that might arise from accretion processes or
magnetic activity) are analyzed using Fourier methods designed
for periodic time series rather than autoregressive modeling
(Box et al., 2015).

2 The iid2022 workshop

These issuesmotivated theworkshop iid2022: StatisticalMethods
for Event Data-Illuminating the Dynamic Universe workshop, held
in Huntsville Alabama on November 15–18, 2022. The spirit
of the workshop was to give the participant an opportunity to
review and learn about certain statistical methods, and also make
presentations based on their own research. Accordingly, the eight
sessions had introductory talks by more senior scientists, followed
by oral presentations by students and early–career scientists. The
National Science Foundation provided support for twenty students
and early–career scientists to attend the workshop, via a grant
issued to the University of Alabama in Huntsville. Such support was
essential to attract students who would not otherwise have had the
opportunity to attend.

Table 1 lists presentations made at the workshop. The vast
majority of attendees were astronomers, with a few notable

exceptions such as Prof. Dale Zimmermann of the University of
Iowa, who gave the keynote lecture, and biostatistics graduate
student Jesus Vasquez from the University of North Carolina at
Chapel Hill.

3 Past accomplishments in
methodology

High–energy astronomy has its roots in the study of cosmic rays
on mountaintops during the 1930s and the discovery of X-rays from
the solar corona during the 1950s (Rossi 1948; Tousey et al., 1951).
The first detection of X-rays outside the Solar System involved a few
thousand counts from the Galactic Plane obtained during a brief
rocket flight (Giacconi et al., 1962). Early analyses involved simple
statistical procedures such as the runningmean (Bowyer et al., 1964)
or (mathematically incorrect) least squares procedures applied to
Poisson distributed data. The first use of the Poisson distribution
to derive a cosmic source flux upper limit appears to be by Hearn
(1968).

As satellite observatories replaced sounding rockets, more
specialized statistical procedures began to emerge and accelerated in
the early 21st century. Table 2 lists some of the important milestones
classified by the scientific problem addressed. Some methods have
had very broad impact with over a thousand citations by later
studies. Altogether, the development and promulgation of analysis
methods has been substantial and often quite successful.

In addition to procedures developed by practitioners within the
field, methods for astronomy have been adopted from the wider
arena of statistics. In early years, the textbook Data Reduction and
Error Analysis for the Physical Sciences (Bevington, 1969) promoting
least squares procedures had the greatest impact, not least because
it included convenient Fortran codes that could be typed into IBM
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TABLE 2 Statistical Milestones for X-ray and γ-ray Astronomy.

Procedure Citations References

Likelihood-based model fitting 2200 (Cash 1979)

1000 (Mattox et al., 1996)

600 (Akritas and Bershady 1996)

500 (Protassov et al., 2002)

Faint source significance 1000 (Li and Ma 1983)

400 (Kraft et al., 1991)

50 (Kashyap et al., 2010)

Treatments of upper limits 300 (Schmitt 1985)

700 (Feigelson and Nelson 1985)

700 (Isobe et al., 1986)

Truncation and selection effects 400 (Mantz et al., 2010a)

300 (Mantz et al., 2010b)

Searching for periodicity 5000 (Scargle 1982)

150 (Leahy et al., 1983)

300 (de Jager et al., 1989)

230 (Vaughan 2005)

Faint source detection 190 (Damiani et al., 1997)

500 (Freeman et al., 2002)

130 (Ebeling et al., 2006)

180 (Diehl and Statler 2006)

80 (Zhang et al., 2008)

240 (Broos et al., 2010)

10 (Stein et al., 2015)

Variability characterization 1100 (Edelson and Krolik 1988)

260 (Scargle 1998)

800 (Vaughan et al., 2003)

300 (Uttley et al., 2005)

Hardness ratio 250 (Park et al., 2006)

Treatments of measurement error 900 (Kelly 2007)

1,900 (Gehrels 1986)

Bayesian spectral modeling 70 (van Dyk et al., 2001)

800 (Buchner et al., 2014)

20 (Xu et al., 2014)

Markov Chain Monte Carlo 40 (Bonamente et al., 2004)

300 (Bonamente et al., 2006)

cards and used on main frame computers. It was largely supplanted
by Numerical Recipes: The Art of Scientific Computing (Press et al.,
1992) with editions providing code in Fortran, Pascal, C and C++.
Numerical Recipes garnered >12,000 citations in astronomy and
>120,000 citations in all fields.

Other useful textbooks include Statistical Methods in
Experimental Physics (Eadie et al., 1971), Practical Statistics for

Astronomers (Wall and Jenkins, 2012), Modern Statistical Methods
for Astronomy with R Applications (Feigelson and Babu, 2012),
Statistics, Data Mining, and Machine Learning in Astronomy
(Ivezić et al., 2019), and Statistics and Analysis of Scientific Data
(Bonamente, 2022). Bayesian inference has become an important
tool for modeling astronomical data as treated in texts like
(Hilbe et al., 2017) and (Bailer-Jones, 2017). However, neither the
classic works nor the newer volumes emphasize low-count rate
problems as encountered in high–energy astronomy. Some require
a basic knowledge of probability and statistics, and this can limit
their diffusion among astronomers who are often missing such
courses in their undergraduate education.

Table 3 lists a few of the methods discussed in the iid2022
workshop that are directly relevant to high–energy data and
science analysis. Software implementation are combined with
methodologies to allow quick implementation. In some cases,
such as Baddeley’s book for analyzing Poisson images and
variability detection procedures discussed by Feigelson, the codes
are already available in the general purpose R statistical software
environment. In other cases, such as Scargle’s Bayesian Blocks
and Xu’s multidimensional change-point analysis, codes are written
specifically for use in X-ray and γ-ray astronomy.

4 Looking towards the future

Presentations at the iid2022 workshop demonstrate that the
development of innovative procedures for analyzing high–energy
astronomical data is proceeding in a vibrant fashion. But there are
considerable difficulties in promulgation of newmethodology in the
research communities.We outline here challenges that can be readily
identified and suggest directions for improvements for the coming
years.

4.1 Statistics education

One of the main needs in high–energy astronomy is a
more rounded background in statistics for its practitioners. Most
graduate degrees leading to an advanced degree in astronomy
or astrophysics have no requirement of statistics courses, and
are often limited to a course on ‘data analysis methods’ that
lacks a foundation on statistical principles. Astronomers should be
familiar with differences between nonparametric hypothesis testing
and parametric modeling, Poisson and Gaussian distributions,
least squares and likelihood based modeling, and stationary and
nonstationary processes. Wavelet transforms, local regression,
autoregressive models, and Fourier approaches to time series
analysis should also be taught.

As both authors and teachers, it is our opinion that the
typical high–energy data analyst should have a background that
includes at least one undergraduate course using a statistics textbook
such as Probability and Statistical Inference (Hogg et al., 2023).
Such background would be beneficial to understand in detail the
main statistical methods available, while giving the basic tools to
undertake more complex tasks such as developing new statistical
methods. At the graduate level, a course in methodology using
textbooks like Statistics, Data Mining, and Machine Learning in
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TABLE 3 Some Statistical Methodology Featured at the iid2022Workshop.

Spatial point patterns: Methodology and applications in R (Baddeley et al., 2015)

A semi-analytical solution to the maximum-likelihood fit of Poisson data to a linear model using the Cash statistic (Bonamente and Spence 2022)

LIRA—The Low-Counts Image Restoration and Analysis Package: A Teaching Version via R (Connors et al., 2011)

Time domain methods for X-ray and gamma-ray astronomy (Feigelson et al., 2022)

Matching Bayesian and frequentist coverage probabilities when using an approximate data covariance matrix (Percival et al., 2022)

The denoised, deconvolved, and decomposed Fermi γ-ray sky. An application of the D3PO algorithm (Selig et al., 2015)

Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations (Scargle et al., 2013)

Change-point Detection and Image Segmentation for Time Series of Astrophysical Images (Xu et al., 2021)

Astronomy: A Practical Python Guide for the Analysis of Survey Data
(Ivezić et al., 2019) and Modern Statistical Methods for Astronomy
with R Applications (Feigelson and Babu, 2012) should be widely
available in astronomy departments.

4.2 Integrate statistics into high–energy
mission projects

High–energy astrophysics missions have traditionally included
costs for ‘software development’ to write pipelines for processing
telemetry data through Level 1 and Level 2 data products. But it
is also important to fund, at the early stages, study of methods to
be implemented in the pipeline and off-line science analysis by
individual scientists. Methods as simple as maximum–likelihood
analysis of count data (Cash, 1979) and as complex as information
theory for gamma-ray astronomy (Enßlin, 2019) and 4-
dimensional change-point analysis (Xu et al., 2021) should be
considered.

Centralized facilities like NASA’s High Energy Astrophysics
Science Archive Center and ESA’s European Space Astronomy
Centre should institute organized procedures to evaluate newer
methodologies and bring them into their code libraries for use by
the research communities. Some methods can be incorporated into
important existing software tools such asXSPEC (Arnaud, 1996) and
SPEX (Kaastra et al., 1996), while other methods would be stand-
alone codes added to libraries such asHEASoft. Documentation and
tutorials for training community scientists in methodology should
accompany software releases.

4.3 Funding for methodology

For two decades starting in 1990, NASA’s Science Mission
Directorate had an Applied Information Systems Research
program that included development of statistical tools, machine
learning procedures, computational methods and algorithms for
astronomical missions. But this program has changed focus and
there is now no avenue for the research community to obtain
funds for the development of new methodology for high–energy
astrophysics. A program is needed similar to NASA’s Earth
Science Division’s Advanced Information Systems Technology
Program that includes development of advanced tools for data
and science analysis. Several White Papers were submitted to the
National Academy of Science Astro2020 Decadal Survey arguing

for improved funding in astrostatistics and astroinformatics for all
branches of the field.

4.4 Attitudes towards advances in
methodology

A major reason for the slow advancement in usage of
advanced − or even statistically acceptable − statistical methods in
high–energy astrophysics is absence of penalty for inaccurate or
misleading analysis methods. This includes review during mission
planning, individual observing proposals, and the final published
astrophysical literature. Sometimes forces lean towards mundane
analysis procedures: authors who present advanced statistical
methods in an astrophysics papermight encounter a reviewer poorly
prepared in statistics. The journals of the American Astronomical
Society now have a Statistics Editor, and reviewers expert in
statistical analysis can be sought in addition to a reviewer expert in
the scientific topic. A two-reviewer process is common for journals
like Annals of Applied Statistics and Journal of Applied Statistics.
The high–energy research community that widely encourages
improvements in telescope and detector capabilities should also
encourage improvements in data analysis capabilities that can
improve the scientific return from any instrument or observing
project.
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