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Introduction: Dengue virus (DENV) is the leading cause of mosquito-borne viral

diseases in humans. Dengvaxia, the first licensed dengue vaccine, is

recommended for DENV-seropositive individuals aged 9–45 years. In the

Philippines, Dengvaxia was administered to more than 830,000 children

without prior serological testing in 2016–2017. Subsequently, it was revealed

that DENV-seronegative children who received Dengvaxia developed severe

disease following breakthrough DENV infection. As a result, thousands of

children participating in the mass vaccination campaign were at higher risk of

severe dengue disease. It is vital that an assay that identifies baseline DENV-naïve

Dengvaxia recipients be developed and validated. This would permit more

frequent and extensive assessments and timely treatment of breakthrough

DENV infections.

Methods: We evaluated the performance of a candidate assay, the DENV1–4

nonstructural protein 1 (NS1) IgG enzyme-linked immunosorbent assay (ELISA),

developed by the University of Hawaii (UH), using well-documented serum/

plasma samples including those >20 years post-DENV infection, and tested

samples from 199 study participants including 100 Dengvaxia recipients from

the fever surveillance programs in the Philippines.

Results: The sensitivity and specificity of the assay were 96.6% and 99.4%,

respectively, which are higher than those reported for pre-vaccination

screening. A significantly higher rate of symptomatic breakthrough DENV

infection was found among children that were DENV-naïve (10/23) than

among those that were DENV-immune (7/53) when vaccinated with Dengvaxia
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(p=0.004, Fisher’s exact test), demonstrating the feasibility of the assay and

algorithms in clinical practice.

Conclusion: The UH DENV1–4 NS1 IgG ELISA can determine baseline DENV

serostatus among Dengvaxia recipients not only during non-acute dengue but

also during breakthrough DENV infection, and has implications for assessing the

long-term safety and effectiveness of Dengvaxia in the post-licensure period.
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Introduction

The four serotypes of dengue virus (DENV; DENV1–DENV4)

cause an estimated 390 million infections worldwide each year (1,

2). Although most DENV infections are not apparent,

approximately 25% result in clinical disease, ranging from a self-

limited illness, known as dengue, to more severe and potentially life-

threatening disease, known as dengue with warning signs and severe

dengue, respectively (1–3).

After a primary DENV (pDENV) infection, individuals develop

long-term protection against the infecting serotype. During

secondary DENV (sDENV) infection with a different serotype,

individuals are at higher risk of developing severe disease than

those experiencing pDENV infection (1). No licensed antiviral

drugs are currently available for dengue treatment. Although

several dengue vaccine candidates have completed different

phases of clinical trials, Dengvaxia, a chimeric yellow fever-

tetravalent dengue vaccine, was the first dengue vaccine licensed

in 20 countries (4, 5). Based on initial reports, Dengvaxia was

recommended for individuals aged 9–45 years in 2016 (4–7).

In the Philippines, a Dengvaxia school-based vaccination

program was launched in April 2016 among 9–10-year-old

children with >830,000 children receiving at least one dose

(~420,000 one dose, ~49,000 two doses, and ~370,000 three doses)

(5, 8–10). After this program was initiated, a DENV nonstructural

protein 1 (NS1) IgG enzyme-linked immunosorbent assay (ELISA)

was employed in a post-hoc case-control study to determine the

baseline DENV serostatus in samples collected 13 months after the

first dose of Dengvaxia. The results showed that DENV-seronegative

children receiving Dengvaxia were at higher risk of hospitalization

and severe dengue during breakthrough DENV infections (5, 11, 12),

resulting in the cancellation of the Dengvaxia vaccination program

and an overall increase in vaccine hesitancy in the Philippines.

Subsequently, the recommendation for Dengvaxia was revised by

the World Health Organization and administration of the vaccine

was limited to DENV-seropositive individuals aged 9–45 years (5, 8,

9, 13). A pre-vaccination screening strategy using assays with high

specificity (≥98.0%) to avoid erroneous vaccination of individuals

without prior DENV infection and high sensitivity (≥95.0%) to detect
02
individuals with a single prior DENV infection has been proposed

(14, 15). Several serological tests have been reported to determine the

DENV serostatus for pre-vaccination screening, including rapid

diagnostic tests (RDTs) and ELISAs (16–21).

Recent meta-analyses have identified sDENV infection as a

prognostic marker for severe dengue and recommended the inclusion

of sDENV infection in the bedside scoring system to facilitate triage and

timely treatment of patients with dengue prior to progression to severe

dengue (22–24). As such, a serological test that can determine DENV

serostatus prior to receiving Dengvaxia is critically needed; such a test

should have high sensitivity and specificity, allowing for the

identification of baseline DENV-naïve Dengvaxia recipients that

would experience an sDENV infection during breakthrough

infection, consequently being at high risk of severe dengue (8, 25). A

previously reported DENV NS1 IgG ELISA was used to test 13-month

samples collected during the Dengvaxia vaccine trials (10, 11). At

present, it is unclear whether this test can be applied to Dengvaxia

recipients in the real world, where some received only one or two doses

>13 months after vaccination, if it can be applied to individuals that

present with breakthrough DENV infection, or if it can help assess the

long-term safety and effectiveness of Dengvaxia (26, 27).

Within the genus Flavivirus of the family Flaviviridae, there are

several mosquito- or tick-borne viruses that cause prominent

human diseases, including the four DENV serotypes, Zika virus

(ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV),

yellow fever virus (YFV), and tick-borne encephalitis virus (28). As

the major target of the antibody response following DENV

infection, the envelope (E) protein has been employed as the

main antigen for serological tests, including the use of

recombinant E protein, inactivated virions, or virus-like particles

(VLPs) (28). Due to the cross-reactivity of anti-E antibodies to

various flaviviruses, different or modified antigens, such as NS1

protein, fusion-loop (FL)-mutated recombinant E proteins, and

VLPs, have been developed (29–31). We previously reported that

ELISAs based on DENV1–4 NS1 protein and DENV1 FL-mutated

VLPs could detect DENV infection with a sensitivity and specificity

of 95.6%/89.5% and 100.0%/93.3%, respectively (32, 33).

The objectives of this study were to 1) evaluate the performance

of our NS1 IgG ELISA (developed by the University of Hawaii; UH),
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designated as UH DENV1–4 NS1 IgG ELISA, by using well-

documented samples of different flavivirus infections with known

sampling times; 2) investigate whether it can be employed to

determine the baseline DENV serostatus of Dengvaxia recipients

in real-world settings, some of whom received only one or two doses

>13 months after the first dose; and 3) determine the baseline

DENV serostatus during both non-acute dengue and acute dengue

situations. As Dengvaxia presents the premembrane/E proteins of

DENV and nonstructural proteins including NS1 of YFV, we

hypothesized that for Dengvaxia recipients without acute dengue,

failure to detect DENV NS1 IgG antibodies would indicate a child

vaccinated when DENV-naïve, whereas detection of DENV NS1

IgG would indicate a child vaccinated with prior DENV infection

(s). For Dengvaxia recipients bled during an acute DENV infection,

detection of DENV NS1 IgG could be due to a previous DENV

infection or induced by a current DENV infection depending on the

sampling day.
Materials and methods

Samples from participants

The study of coded serum or plasma samples was approved by

the Institutional Review Boards of the UH (2022-00201, 2021-

00947, CHS #17568), Research Institute for Tropical Medicine

(RITM), Philippines (2019-042), and Kaohsiung Medical

University Hospital (KMUH; KMUH-IRB-960195 and KMUH-

IRB-[I]-20170185). The numbers, sources, sampling times, and

confirmation methods for the different panels of control samples

are summarized in Supplementary Table 1. Samples from a DENV

seroprevalence study in Kaohsiung, Taiwan, were confirmed by a

microneutralization test (to DENV) as pDENV, sDENV, or DENV-

negative (34, 35), and the sampling time was available based on

questionnaires from study participants. Samples of reverse
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transcription-polymerase chain reaction (RT-PCR)-confirmed

DENV cases were obtained from Taiwan, Hawaii, and Nicaragua

prior to the Zika outbreak in 2015−2016 (32, 34, 36), and JEV cases

were obtained from the KMUH, Taiwan. Samples from a ZIKV

study in Salvador, Brazil, were confirmed by a microneutralization

test (to ZIKV and DENV) as primary ZIKV (pZIKV) and ZIKV

with previous DENV (ZIKVwprDENV) infection (37). Samples

from blood donors that tested positive for WNV transcription-

mediated amplification and IgM and IgG antibodies were

designated as primary WNV (pWNV) infection (32). Samples

from YF-17D vaccine recipients (n=19) were tested using YFV

NS1 IgG ELISA but were not included as a control panel because of

the unknown history of other flavivirus infections.
Fever surveillance in the Philippines

In 2018, the Department of Health in the Philippines initiated a

fever surveillance program for Dengvaxia recipients. The inclusion

criteria were Dengvaxia recipients with acute febrile illness.

Administration of Dengvaxia was verified using vaccine cards or

a list from the national vaccination program (Epidemiology Bureau,

the Philippines). The exclusion criteria were patients that did not

receive Dengvaxia. After Dengvaxia recipients presented with

symptoms compatible with dengue at any health facility in the

Philippines (3), blood samples were collected and sent to RITM, the

national reference laboratory, for diagnostic testing. Participants

testing positive, using either DENV RT-PCR or Panbio dengue

IgM-capture ELISA (Abbott, South Korea), were defined as

laboratory-confirmed acute dengue cases, and participants testing

negative using both tests were classified as non-acute dengue or

other febrile illnesses (38, 39). The day of symptom (fever) onset

was designated as day 1. A total of 199 participants (100 Dengvaxia

and 99 non-Dengvaxia recipients) were included in this study

(Table 1). Samples from Dengvaxia recipients, including 59 non-
TABLE 1 Samples from fever surveillance programs in the Philippines.

Groupa Subgroup Laboratory testsb No. of subjects/samples Sampling dayc

(post-symptom onset)

Non-Dengvaxia
recipients

Non-acute dengue
DENV RT-PCR (−)
and DENV IgM (−)

50/50 day 2−14

Acute dengue
(first sample)

DENV RT-PCR (+)
or DENV IgM (+)

49/49
day 3−10
acute to
early convalescent-phase

Acute dengue
(second sample)

DENV RT-PCR (+)
or DENV IgM (+)

20/20
day 6−18
acute to
convalescent-phase

Dengvaxia recipients Non-acute dengue
DENV RT-PCR (−)
and DENV IgM (−)

59/59 day 7−32

Acute dengue
(first sample)

DENV RT-PCR (+)
or DENV IgM (+)

41/41
day 7−21
acute to
convalescent-phase
aDengvaxia and non-Dengvaxia recipients were from the fever surveillance program for Dengvaxia and dengue surveillance program, respectively, in the Philippines.
bDENV RT-PCR test and Panbio dengue IgM-capture ELISA were performed at the RITM. Either one tested positive was designated as acute dengue and both tested negative as non-acute
dengue.
cThe day of symptom (fever) onset was designated as day 1.
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acute dengue and 41 acute dengue cases, were selected by simple

random sampling from >3,000 samples of Dengvaxia recipients

received at the RITM between January 2018 and May 2019. Samples

from non-Dengvaxia recipients (all age groups) including 50 non-

acute dengue and 49 acute dengue cases (49 first-time point and 20

second-time point samples) were randomly selected from the

existing dengue surveillance program at the RITM. The non-

Dengvaxia group served as a comparative group to assess the

DENV seroprevalence rate in this population.
NS1 IgG ELISAs

DENV1−DENV4 and YFV NS1 proteins were purchased from

Native Antigen (Oxford, UK). To increase the possibility of

identifying previous DENV infections, we increased the amount

of NS1 proteins coated on 96-well plates (24/12/24/12 ng of pooled

DENV1/2/3/4 NS1 proteins per well, respectively, or 50 ng of YFV

NS1 protein per well) compared to our previously reported NS1 IgG

ELISA (32). This was followed by incubation with a blocking buffer,

primary (serum or plasma at 1:400) and secondary (anti-human

IgG conjugated with horseradish peroxidase) antibodies, and

substrate and stop solution (32). The optical density (OD) at 450

nm was recorded using 630 nm as the reference wavelength (32).

Each ELISA plate included two positive controls (confirmed-dengue

samples), four negative controls (DENV-negative samples), and test

samples; all samples were run in duplicate wells. The OD values

were divided by the mean OD value of one positive control

(expected OD close to 1), which was run in duplicate on the same

plate, to calculate the relative OD (rOD) values for comparison

between the plates. The cutoff rOD was defined as the mean rOD

value of negatives plus 12 standard deviations, which was, at a

minimum, the 99.3rd percentile of the distribution of negative rODs

(32, 40). The mean cutoff rOD values of 18 plates were determined

as the final cutoff rOD (0.139 and 0.098 for DENV1–4 and YFV

NS1 ELISAs, respectively). Each ELISA was performed twice at

the UH.
DENV FL-VLP IgG ELISA

IgG ELISA using DENV1 FL-mutated VLPs was performed as

previously described (33). Briefly, DENV1 FL-mutated VLPs

(containing W101A and F108A mutations) were coated onto 96-

well plates at 4°C overnight, after which the steps previously

described were followed (33). The OD read, positive and negative

controls, rOD, and cutoff rOD were recorded and calculated as

described above, and the mean cutoff rOD from six plates was

determined as the final cutoff rOD (0.117).
Microneutralization test

Microneutralization tests were performed as previously

described (35, 37). Briefly, two-fold serial dilutions of serum were

mixed with 50 focus-forming units of DENV1 (Hawaii), DENV2
Frontiers in Immunology 04
(NGC), DENV3 (CH53489), DENV4 (H241), or ZIKV

(PRVABC59) at 37°C for 1 h; the mixtures were added to each

well of 96-well plate pre-seeded with Vero cells, followed by

incubation at 37°C for 48−70 h, fixation, mouse mAb 4G2 and

secondary antibodies (IRDye® 800CW-conjugated goat anti-mouse

IgG and DRAQ5™) (35, 37). Signals were detected using a Li Cor

Odyssey imager and analyzed using Image Studio (LiCor

Biosc ience, Lincoln, Nebraska) to determine percent

neutralization at different concentrations and 90% neutralization

(NT90) titers (35, 37).
Statistical analysis

The odds ratio and 95% confidence intervals (CI) were

calculated using Excel. Two-tailed Fisher’s exact test and Mann

−Whitney test were used to compare qualitative and quantitative

variables, respectively, between the two groups. The Kruskal−Wallis

test and chi-square test for trend were used to compare quantitative

variables and proportions, respectively, between the three groups

(GraphPad Prism 6, GraphPad, Boston, Massachusetts).

McNemar’s test was used to compare the sensitivity of two assays

within the same group (SPSS 20). Sensitivity and specificity were

calculated using different panels of control samples from each

individual, and multiple samples from the same individual were

counted only once.
Results

UH DENV1–4 NS1 IgG ELISA

The majority (191/197) of the samples from the DENV panels

(pDENV, sDENV, and ZIKVwprDENV) contained anti-DENV

NS1 IgG antibodies in one or more tests (Figure 1A). Of the 174

sera from the non-DENV panels (DENV-negative, pZIKV, pWNV,

and JEV), only 1 contained dengue NS1 IgG antibodies. The overall

sensitivity/specificity was 96.6%/99.4% (95% CI=93.9−98.0%/98.3

−100.0%). When examining the detection rate over time, we found

that the sensitivity declined to 71.4% in samples collected >20 years

after symptom onset for the pDENV panel (Figure 1B), and the

sensitivity was between 85% and 100% from 1–6 years to >20 years

for the sDENV panel (Figure 1C). Notably, the detection rate

remained at 100% up to 2.5 years for the ZIKVwprDENV

panel (Figure 1D).
DENV serostatus among non-
Dengvaxia recipients

Next, we used the UH DENV1–4 NS1 IgG ELISA to examine

the DENV serostatus in 99 non-Dengvaxia recipients (Table 1). As

shown in Figure 2A, 33/50 of the non-acute dengue subgroup tested

positive, suggesting a DENV seroprevalence rate of 66.0%, which

was consistent with the positive rate of 70.0% (35/50) measured

using a previously described E protein-based FL-VLP IgG ELISA
frontiersin.org
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(Figure 2B). As expected, a trend of increasing seropositivity with

age was observed (Supplementary Figure 1). We next examined the

first and second time-point samples from 49 acute dengue cases and

found that 81.6% (40/49) of the first and 90.0% (18/20) of the

second time-point samples tested positive (Figure 2A). A similar
Frontiers in Immunology 05
trend was observed using FL-VLP IgG ELISA, with positive rates of

93.9% (46/49) and 100.0% (20/20) for the first and second time-

point samples, respectively (Figure 2B). We did not test for

differences or trends, but the results were consistent with the

delayed appearance of anti-NS1 IgG during the early convalescent
B

C

D

A

FIGURE 1

Performance of UH DENV1–4 NS1 IgG ELISA on panels of well-documented serum samples with known flavivirus infections. (A) rOD and detection
rates in different control panels including DENV (pDENV, sDENV, and ZIKVwprDENV) and non-DENV (DENV-negative, pZIKV, pWNV, and JEV) panels.
(B−D) rOD and detection rates for samples with different sampling times after symptom onset for the pDENV (B), sDENV (C) and ZIKVwprDENV
(D) panels. Dotted lines indicate the cutoff rOD. Data represent the mean of two experiments (each in duplicate). rOD, relative OD; NC, negative
control of DENV-negative samples; pDENV, primary DENV infection; sDENV, secondary DENV infection; pWNV, primary WNV infection; pZIKV,
primary ZIKV infection; ZIKVwprDENV, ZIKV infection with previous DENV infection; JEV, JEV infection.
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phase or a faster anti-E antibody response (29, 32, 33). This was

consistent with the findings of other trials in which DENV

RNAemia and NS1 antigenemia were measured. Of note, there

was no difference in sensitivity between the UH DENV1–4 NS1 IgG

ELISA and FL-VLP IgG ELISA when testing non-Dengvaxia

recipients with non-acute dengue (33/50 vs. 35/50) and at the

second time point after acute dengue (18/20 vs. 20/20) (p=0.69

and 0.50, respectively, McNemar’s test) except at the first time point

after acute dengue (40/49 vs. 46/49) (p=0.03, McNemar’s test).
Frontiers in Immunology 06
DENV serostatus among
Dengvaxia recipients

Next, we employed a DENV FL-VLP IgG ELISA to examine

whether the anti-E antibody was induced by Dengvaxia. In the non-

acute dengue subgroup, 54/59 (91.5%) tested positive, suggesting a

seroconversion rate of 91.5%, which can probably be attributed to

the fact that most (56.1%) Dengvaxia recipients in this study

received only one dose (Figure 2B). Of the 57 Dengvaxia
B

C

A

FIGURE 2

Results of UH DENV1–4 NS1 IgG and DENV FL-VLP IgG ELISAs using samples of participants from the fever surveillance in the Philippines. There are
non-Dengvaxia recipients (non-acute dengue and acute dengue first and second time-point subgroups) and Dengvaxia recipients (non-acute
dengue and acute dengue subgroups). (A) UH DENV1–4 NS1 IgG ELISA, (B) DENV FL-VLP IgG ELISA and (C) UH DENV1–4 NS1 IgG ELISA for
Dengvaxia recipients with acute dengue stratified by different sampling times post-symptom onset. Dotted lines indicate cutoff rOD. Data represent
the mean of two experiments (each in duplicate). rOD, relative OD.
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recipients, 28/32 (87.5%) of those who received one dose

seroconverted, whereas 25/25 (100.0%) of those who received two

or three doses seroconverted (Supplementary Figure 2A). Notably,

41/41 (100.0%) of the participants in the acute dengue subgroup

tested positive for DENV (Figure 2B; Supplementary Figure 2B).

We examined the DENV serostatus of children administrated

Dengvaxia. Among the children that were not ill when studied, 13/

59 (22.0%) were seronegative when vaccinated and 46/59 (77.9%)

were seropositive; thus, they were immune to DENV when

vaccinated. Of the vaccinated children that experienced an acute

infection, 10/41 tested negative, that is, there were vaccinated while

seronegative. Conversely, 31/41 tested positive. The detection of

anti-DENV NS1 IgG could have resulted from a DENV infection

prior to vaccination or from the current breakthrough

DENV infection.

Based on previous observations that anti-NS1 antibodies from

primary flavivirus infections, such as pDENV, pZIKV, or pWNV

infection, do not cross-react with flaviviruses from different

serocomplexes (32, 41, 42), we reasoned that anti-NS1 IgG’s,

induced by breakthrough DENV infection among baseline

DENV-naïve Dengvaxia recipients, would appear from days 8 to

12 post-symptom onset similar to pDENV infection (29, 43–46). In

contrast, anti-NS1 IgG’s, induced by breakthrough DENV infection

among baseline DENV-immune Dengvaxia recipients, would

follow the kinetics of sDENV infection, in which antibodies were

boosted by breakthrough infection within a few days. As such, we

established stringent criteria, in which the presence of anti-DENV

NS1 IgG ≤day 7 post-symptom onset was interpreted as baseline

DENV immune. The presence of anti-DENV NS1 IgG >day 7 post-

symptom onset, however, could be due to previous DENV infection

or induced by the current breakthrough infection and therefore was

interpreted as undetermined. Of the 31 Dengvaxia recipients with

acute dengue, seven serum samples were collected on or before day

7 after the onset of symptoms and tested positive for anti-DENV

NS1 IgG, suggesting that these individuals were immune to DENV

when vaccinated. Sera were collected from 24 individuals on days 8

to 21 after the onset of dengue symptoms. The immune status of

these children at the time of vaccination could not be determined

(Figure 2C). Of the 23 baseline DENV-naïve Dengvaxia recipients

with febrile illnesses studied, 10 had a confirmed acute

breakthrough DENV infection, whereas 13 experienced only mild

disease. Of the 53 baseline DENV-immune participants that

received Dengvaxia and experienced a febrile illness, seven were
Frontiers in Immunology 07
confirmed as acute dengue and 46 as non-acute dengue (odds

ratio=5.05, 95% CI=3.91−6.20) (Table 2).

We further examined 17 Dengvaxia recipients with

breakthrough DENV infection and found no difference in disease

severity between the 10 baseline DENV-naïve (eight diagnosed with

dengue with warning signs and two diagnosed with dengue) and

seven baseline DENV-immune (five diagnosed with dengue with

warning signs, one diagnosed with severe dengue, and one

diagnosed with dengue) subgroups, probably due to the small

sample size (Supplementary Table 2).
Detection of anti-YFV NS1 IgG among
Dengvaxia recipients

Finally, we explored the possibility of detecting anti-YFV NS1

IgG as a biomarker of Dengvaxia in countries where YFV

vaccination or the YFV infection rate is low. As shown in

Figure 3A, anti-YFV NS1 IgG was detected in 40.0% (40/100) of

Dengvaxia recipients. The detection rate was higher among

Dengvaxia recipients with acute dengue than in the non-acute

dengue subgroup (53.7% [22/41] vs. 30.5% [18/59]; odds

ratio=2.64; 95% CI=1.81−3.46), but the difference could not

distinguish the two subgroups. Among the 57 Dengvaxia

recipients with non-acute dengue that had received a known

Dengvaxia dosage, there was an increasing rOD trend of anti-

YFV NS1 IgG ELISA (Figure 3B) as well as an increasing detection

rate (Figure 3D) as Dengvaxia increased from one dose to three

doses, suggesting a dose–response relationship (p=0.0003 for rOD,

Kruskal−Wallis test; p=0.006 for detection rate, chi-square test for

trend). For Dengvaxia recipients in the acute dengue subgroup,

there was no difference in the rOD or detection rate between the

one- and three-dose subgroups (Figure 3C).
Discussion

In this study, we reported that the UH DENV1–4 NS1 IgG

ELISA can be used to retrospectively identify the baseline DENV

serostatus among Dengvaxia recipients that received one or two

doses up to 30 months after vaccination. Moreover, our assay can be

employed not only during non-acute dengue but also during

breakthrough DENV infection, and has implications for assessing
TABLE 2 Dengvaxia recipients: baseline DENV serostatus and disease outcome.

Groupa Subgroupsb

(disease outcome)

DENV serostatusc

baseline
DENV-naïve

baseline
DENV-immune

Dengvaxia recipients Non-acute dengue (n=59) 13 46

Acute dengue (n=17) 10 7
aDengvaxia or non-Dengvaxia recipients were determined by history of receiving Dengvaxia.
bDENV RT-PCR test and Panbio dengue IgM-capture ELISA were performed at the RITM. Either one tested positive was designated as acute dengue and both tested negative as non-acute
dengue.
cDENV serostatus was determined by the UH DENV1−4 NS1 IgG ELISA; those tested negative were baseline DENV-naïve and those tested positive with sampling time ≤day 7 after symptom
onset were baseline DENV-immune. Baseline DENV-naïve Dengvaxia children had a higher risk of symptomatic DENV breakthrough infection than baseline DENV-immune children (odds
ratio=5.05, 95% CI=3.91−6.20).
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the safety and effectiveness of Dengvaxia in the post-

licensure period.

Notably, the DENV NS1 IgG ELISA employed in a previous

post-hoc Dengvaxia study had a sensitivity and specificity of 95.3%

and 68.6%, respectively, based on seven control samples from other

flavivirus infections (5, 11, 12). After testing 197 DENV (pDENV
Frontiers in Immunology 08
and sDENV panels) and 174 non-DENV samples, we showed that

the UH DENV1–4 NS1 IgG ELISA had a superior sensitivity/

specificity of 96.6%/99.4% (95% CI=93.9−98.0%/98.3−100.0%).

Bonaparte et al. evaluated four dengue RDTs and two commercial

ELISAs (from Alere and Focus Diagnostics) for pre-vaccination

screening and reported favorable specificities (99−100%) for some
B C

D

A

FIGURE 3

Results of YFV NS1 IgG ELISA for participants from the fever surveillance in the Philippines. (A) non-Dengvaxia recipients (non-acute dengue and
acute dengue first and second time-point subgroups) and Dengvaxia recipients (non-acute dengue and acute dengue subgroups). (B, C) rOD and
vaccine dosage for Dengvaxia recipients in non-acute dengue (B) and acute dengue (C) subgroups. The two-tailed Mann–Whitney test and Kruskal–
Wallis test (*) were used to compare rOD between two and three subgroups, respectively. (D) Detection rate and vaccine dosage for Dengvaxia
recipients in non-acute dengue and acute dengue subgroups. The two-tailed Fisher’s exact test and chi-square test for trend (*) were used to
compare detection rate between two and three subgroups, respectively. Dotted lines indicate cutoff rOD. Data represent the mean of two
experiments (each in duplicate). rOD, relative OD.
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RDTs and ELISAs, but the varying sensitivities (40−70%) of RDTs

were lower than those of ELISAs (≥90%) (16). Similar observations

were reported by others including those that used commercial

ELISAs from Euroimmun and Abbott (17–19). Recently, Liberal

et al. reported an RDT with a sensitivity/specificity of 95.3%/98.0%

based on a high-positivity panel (NT90 titer≥10), however, the

sensitivity dropped to 88.1% for monotypic DENV immune

samples (20). Thus, the sensitivity/specificity of our assay is

higher than that of RDTs and ELISAs reported for pre-

vaccination screening, and higher than that (≥95.0%/98.0%)

proposed by dengue experts (14, 15). However, the possibility

that anti-DENV NS1 IgG waned over time and was below the

limit of detection cannot be ruled out completely. Compared with

RDTs, our assay requires a smaller sample volume (<1 µL vs. 5-10

µL for RDTs) and can be performed at lower cost. However, sample
Frontiers in Immunology 09
processing requires laboratory equipment (ELISA washer and

reader vs. point-of-care test) and more time (>2.5 h vs. 20-25 min

for RDTs).

Based on the performance of the UH DENV1–4 NS1 IgG

ELISA, we proposed an algorithm to determine the baseline

DENV serostatus among Dengvaxia recipients with non-acute

dengue (Figure 4A). A notable proportion of Dengvaxia recipients

in the Philippines received only one dose (9, 10); among these

individuals, the seroconversion rate (to DENV E protein) was 87.5%

(Supplementary Figure 2A). An E protein-based IgG ELISA, such as

our FL-VLP IgG ELISA, can be used to identify baseline DENV-

naïve (anti-DENV NS1 IgG negative) and non-seroconverted (anti-

DENV E IgG negative) recipients as a separate subgroup to monitor

the outcomes of future DENV infection. Because of the different

kinetics of antibody responses during pDENV and sDENV
B

A

FIGURE 4

Algorithms using UH DENV1–4 NS1 IgG ELISA to determine baseline DENV serostatus among Dengvaxia recipients as well as non-Dengvaxia recipients.
(A) Individuals with no evidence of acute dengue (DENV PCR− and IgM−). (B) Individuals with acute dengue (DENV PCR+ or IgM+). pDENV, primary
DENV infection; sDENV, secondary DENV infection. *An E protein-based IgG ELISA can be used to identify baseline DENV-naïve (anti-DENV NS1 IgG
ELISA negative) and non-seroconverted (anti-DENV E IgG ELISA negative) Dengvaxia recipients as a subgroup for further analysis.
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infection, we proposed another algorithm to determine the baseline

DENV serostatus among Dengvaxia and non-Dengvaxia recipients

with acute dengue (Figure 4B). An E protein-based IgG ELISA can

also be used to identify baseline DENV-naïve and non-

seroconverted recipients as a separate subgroup.

While examining 100 Dengvaxia recipients from the fever

surveillance program, we found baseline DENV-naïve children

(10/23) had a higher rate of symptomatic breakthrough DENV

infection than baseline DENV-immune children (7/53) (odds

ratio=5.05, 95% CI=3.91−6.20), demonstrating the feasibility of our

assay and algorithms. Of note, a previous report of an increased risk

of hospitalization and severe dengue among baseline DENV-

seronegative Dengvaxia recipients compared with non-vaccinated

controls or baseline DENV-seropositive Dengvaxia recipients was

based on clinical outcomes after completion of three doses (12). Our

findings provide evidence to support an increased risk of

symptomatic breakthrough DENV infection among baseline

DENV-naïve Dengvaxia recipients compared to baseline DENV-

immune Dengvaxia recipients in real-world settings, where some

received only one or two doses of Dengvaxia. Notably, over 1.1

million individuals had received at least one dose of Dengvaxia prior

to 2018 when the baseline DENV serostatus was not determined (9).

In the Philippines, there were 414,535 dengue cases with 1,546 deaths

in 2019, as well as an estimated 5,158 dengue hospitalizations and

1,077 severe dengue cases among Dengvaxia recipients over 4 years

(8, 10, 47). As sDENV infection is a risk factor for severe dengue and

has been recommended for inclusion in the scoring system to

improve triage in the emergency room, information about the

baseline DENV-naïve serostatus among Dengvaxia recipients

would facilitate clinical assessment and timely treatment when

vaccine recipients present with suspected breakthrough DENV

infection (22–24). The time interval between the first DENV

infection (or exposure) and the second DENV infection, up to 20

years after the first infection, has been shown to affect disease severity

(48–50), underscoring the importance of assessing the long-term

safety of dengue vaccines through post-licensure studies (8, 9, 26, 27).

Based on an estimated DENV seroprevalence of 85% among children

aged 9−10 years in the Philippines, 15% of the 880,464 children that

received Dengvaxia (132,070) were estimated to be DENV-

seronegative. Of the 132,070 DENV-seronegatives, 63,129 would be

expected to experience a DENV infection during the 4 years after

completion of vaccination based on an estimated 4-year cumulative

infection rate of 47.8%; the remaining 68,941 individuals would be

Dengvaxia recipients that had not been infected and, if identified,

could benefit from improved clinical assessments and timely

treatment during breakthrough DENV infection (8, 10, 51).

Therefore, the assay and algorithms established in this study have

significant public health applications. It can be applied to prospective

studies to test Dengvaxia recipients, and identify those classified as

baseline DENV seronegative as “at risk” for continuous follow-up (8,

9). The assay can also be applied to fever surveillance program in the

Philippines or other dengue-endemic countries to determine the

baseline DENV serostatus for Dengvaxia recipients and evaluate

disease severity.
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The observation that single-dose Dengvaxia recipients had a

lower seroconvertion rate (87.5%) to DENV E protein than those

receiving two or three doses and that the anti-YFV NS1 IgG-

positive rate increased with Dengvaxia dosage suggests that

assessing the safety and effectiveness of Dengvaxia should

consider its dose effect. This is congruent with a recent report

from the Philippines revealing that the effectiveness of single-dose

Dengvaxia against hospitalized dengue (26%) and dengue with

warning signs (51%) was lower than that of the three-dose, which

were reported in vaccine efficacy trials (6, 12, 52).

The overall detection rate of YFV NS1 IgG ELISA was 40%

among Dengvaxia recipients, suggesting the difficulty of using anti-

YFV NS1 IgG as a biomarker of Dengvaxia in YFV non-endemic

countries. Consistent with this, a recent study reported a low

detection rate (44,4%) for anti-YFV NS1 IgG among YF-17D

vaccinees (53). Similarly, our YFV NS1 IgG ELISA had a

detection rate of 31.6% for YF-17D vaccinees (Supplementary

Figure 3). Collectively, these results suggest that anti-YFV NS1

IgG is not a good serological marker for the YF-17D vaccine as well.

Our study has several limitations. First, the sample size in each

group/subgroup was small, and future studies involving larger

sample sizes, well-described control panels (including Dengvaxia

recipients), and power analysis are needed, especially those aimed at

addressing the dose effect of Dengvaxia on the outcomes of

breakthrough infection among baseline DENV-naïve versus

DENV-immune Dengvaxia recipients. Second, DENV-

seropositive status was determined in less than 25% (7/31) of

Dengvaxia recipients with acute dengue, likely due to delayed

sampling time (>7 days post-symptom onset). Collecting early

samples (≤day 7) for Dengvaxia recipients presenting with febrile

illness is critical in future studies. Third, a previous study using

samples from Dengvaxia vaccine trials reported that the sensitivity

and specificity of an E protein-based DENV IgM ELISA to detect

breakthrough DENV infection were 93.1% and 77.8%, respectively

(54). The reduced specificity, probably due to the cross-reactivity of

anti-E antibodies, was unlikely to affect the interpretation of the UH

DENV1–4 NS1 IgG ELISA, however, caution should be exercised

when using an E protein-based IgM ELISA to detect breakthrough

DENV infection among Dengvaxia recipients. Finally, our assay

could not distinguish between baseline pDENV and sDENV

infections. As individuals with a pDENV infection had a higher

risk of severe disease during sDENV infection than those with naïve

or sDENV serostatus, new assays that can distinguish the serostatus

of pDENV or sDENV infection prior to Dengvaxia vaccination

would add to our understanding of the full spectrum of the

biological activity of Dengvaxia and the attributes of

dengue immunopathogenesis.
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