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ABSTRACT

An interval-valued random forests

by

Paul Gaona Partida, Master of Science

Utah State University, 2023

Major Professor: Yan Sun, Ph.D.
Department: Mathematics and Statistics

Analyzing soft interval data provides increased flexibility for analyzing data with vary-

ing degrees of quality and precision. Within this context, regression methods for interval

data have been extensively studied. As most existing works focus on linear models, it is

important to note that many problems in practice are nonlinear in nature, and the devel-

opment of nonlinear regression tools for interval data is crucial.

We propose the Interval-Valued Random Forests (IRF) model, which introduces a novel

splitting criterion based on variance reduction and an L2-type metric in the Banach space

of compact intervals. The IRF model takes into account both the centers and ranges of

the interval, as well as their interactions. Unlike linear models that require additional

constraints for mathematical coherence, our model estimates the regression function in a

nonparametric way, naturally ensuring nonnegative interval lengths without constraints.

Simulation studies show that our method outperforms typical existing methods for

various linear, semi-linear, and nonlinear data archetypes under different error measures. A

real data example is presented to demonstrate the applicability, where the price intervals

of the Dow Jones Industrial Average index and its component stocks are analyzed.

(72 pages)
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PUBLIC ABSTRACT

An interval-valued random forests

Paul Gaona Partida

There is a growing demand for the development of new statistical models and the re-

finement of established methods to accommodate different data structures. This need arises

from the recognition that traditional statistics often assume the value of each observation to

be precise, which may not hold true in many real-world scenarios. Factors such as the col-

lection process and technological advancements can introduce imprecision and uncertainty

into the data.

For example, consider data collected over a long period of time, where newer measure-

ment tools may offer greater accuracy and provide more information than previous methods.

In such cases, it becomes crucial to restructure the data to account for imprecision and in-

corporate uncertainty into the analysis.

Furthermore, the increasing availability of large datasets has introduced computational

challenges in analyzing and processing the data. Representing the data in terms of intervals

can help address this uncertainty by reducing the data size or accommodating imprecision.

Traditional methods have already embraced this concept, but given the rising popularity

of machine learning, it is essential to develop models for interval-valued data within the

machine learning framework.

Tree-based methods, in particular, are well-suited for handling interval-valued data due

to their robustness to outliers and their nonparametric nature. Therefore, we propose a new

model that takes into account the natural structure of the interval-valued data.. These tree-

based methods offer improvements over existing models for interval-valued data, providing

a framework capable of effectively handling data with uncertainty arising from imprecision

or the need for size management.
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CHAPTER 1

INTRODUCTION

The development of traditional statistical and machine learning methods has primarily

assumed that data is collected in the form of single numbers or points. However, this

assumption has been observed to be increasingly insufficient or unrealistic in many real-

world situations. In today’s world, it is not uncommon to encounter data that is measured

or observed with imprecision or consists of a massive number of observations [1]. The lack of

precision in data can be attributed to various limitations in measurement tools or observer

biases [2]. Moreover, the prevalence of massive datasets leading to ultra computational

complexity is a consequence of the reduced cost of data creation and storage [3].

To address the issue of imprecision and to summarize data into a more manageable size,

alternative methods need to be developed and considered. These methods aim to account

for imprecision in measurements or provide meaningful summaries of the data. By doing

so, researchers and practitioners can obtain valuable insights and make reliable inferences

from the data.

An example using daily weather temperature suggests that, instead of registering tem-

perature solely with minimum, maximum, or expected values, using an interval comprised

of the minimum and maximum temperature provides more information and interpretability.

Additionally, it reduces the size of the temperature data to a single interval-valued observa-

tion for each day, rather than a collection of individual temperatures associated with each

day.

Over the past few decades, interval-valued data analysis has garnered increasing interest

among researchers. Various models have been built upon set arithmetic [4–10], as well as

within the framework of Symbolic Data Analysis (SDA) [11–14]. In the former domain,

interval-valued data is typically regarded as realizations of one-dimensional random sets,

and statistical inferences are made based on underlying probability theory. SDA [15], on
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the other hand, focuses on extending classical statistical methods to handle complex forms

of data, such as histograms, hypercubes, and intervals.

Models are being developed in more modern branches of statistics, including spatial

statistics [16], Bayesian statistics [17], and statistical learning [18]. From an applied perspec-

tive, interval-valued data analysis has been extensively used in various disciplines, including

biology, socio-demographic surveys, and forecasting [19].

Over time, the Classification and Regression Tree (CART) [20] and Random Forests

(RF) [21] models have become quintessential tools in the machine learning toolbox as non-

parametric approaches. Their ability to interpret regression and classification tasks through

ensembles of decision trees makes them popular models among data scientists and statisti-

cians. These black box supervised learning algorithms enable users to obtain uncorrelated

outcomes that often outperform comparable parametric regression and classification models.

The widespread use of RF and the increasing interest in SDA offer an opportunity for

an extension that bridges these two areas. This extension aims to provide a nonparamet-

ric approach that can compete with previously proposed regression models [13, 14, 22–25].

Additionally, it takes into consideration the correlation between the center and range of

the intervals, which is advantageous as previous methods suggest modeling the centers and

ranges individually [25].

The proposed method in this paper synchronizes the RF framework for regression with

interval-valued data by introducing a new impurity measure that is based on the Bertoluzza

metric dW [26] for the centers (mids) and range (spread, radius, half-range). The advantages

of the proposed method are empirically demonstrated using synthetic and real datasets.

The rest of the paper proceeds as follows: The next chapter introduces the preliminar-

ies of random sets and provides a recap of the frameworks for the various distance measures.

Chapter 3 reviews classical tree-based regression and the literature on interval-valued re-

gression, respectively. Our proposed interval-valued RF model is described in Chapter

4. Chapters 5 and 6 present the results from the simulation and real-world data studies,

respectively, and Chapter 7 concludes with final remarks.
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CHAPTER 2

PRELIMINARIES

2.1 Random Sets

Denote by K
(
Rd
)

or K the collection of all nonempty compact subsets of Rd. The

Hausdorff metric

ρH(A,B) = max
(

sup
a∈A

ρ (a,B), sup
b∈B

ρ (b, A)
)
,∀A,B ∈ K, (2.1)

where K is the collection of nonempty closed and bounded (compact) subsets, defines a

metric in K
(
Rd
)

. In Rd, ρ denotes the Euclidean metric. Therefore K(Rd) is defined as a

metric space, that is complete and separable [27], such that the space K, can be defined as

a linear structure by Minkowski addition and scalar multiplication

A+B = {a+ b : a ∈ A, b ∈ B} and λA = {λa : a ∈ A}.

∀A,B ∈ K(R) and λ ∈ R. Note that K(R) cannot be considered to be a vector space, as

no inverse element of addition exists [28]. Generally, A + B + (−1)B 6= A. For example,

letting A = [2, 7] and B = [3, 5], we have

A+B + (−1)B = [2, 7] + [3, 5] + [−5,−3] = [0, 9] 6= A.

The collection of nonempty compact convex subsets of Rd is denoted by KC(R). When

d = 1, an interval can be represented as belonging to the classKC(R) = [a, b] : a, b ∈ R, a ≤ b.

All compact intervals, A ∈ KC(R) can be represented by their bounds or their infimum and

supremum, i.e., A = [a, a] = [aL, aR], where aL ≤ aR. An alternate expression is using the

midpoint and the range (spread, radius, half-range), [aC ± aR], where aC = (aR + aL)/2
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and aR = (aR − aL)/2.

Let (Ω,L, P ) be a probability space. Since K is equipped with the Borel σ-algebra

induced by the Hausdorff Metric, a random compact set is a Borel measurable function

A : Ω→ K. If A(ω) is convex almost surely, then A is known as a random compact convex

set [29]. The expectation of A is defined by the Aumann integral of set-valued functions [30]

EA = Eξ : ξ ∈ A almost surely. (2.2)

For d = 1, a measurable function [X],Ω→ KC(R) is called a random interval. The Aumann

expectation of [X] is given by

E[X] = [EXL,EXU ]. (2.3)

2.2 Distance Measures

For the analysis of set- and interval-valued data, the measure of distance is a critical

issue. Several distances were considered and studied in the early stages of SDA. Among

those, for instance, the Hausdorff metric ρH is a natural choice but was determined to be

less preferred for statistical inferences for several reasons. One important reason is that

Eρ2H
(X,h(X)) is not minimized at h (X) = E (X), which contradicts the fundamental

principle of classical statistics.

For intervals (i.e., one-dimensional sets) in particular, Masuo Hukuhara [31] introduced

the Hukuhara difference. Given intervals A,B ∈ K(R), where A−HA = 0 and (A+B)−

HB = A, there exists some interval C ∈ K(R) [32] such that

A−H B = C ⇐⇒ A = B + C, (2.4)

∀A,B ∈ Rd, and bR ≤ aR. This can be shown by letting A = [2, 7] and B = [3, 5], we then

have:
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A−H B = [2, 7]−H [3, 5] = [−1, 2] = C.

In general, A−B 6= A−H B.

2.2.1 L2-distance

According to the embedding theorems [33] and [34], KC(Rd) can be isometrically em-

bedded into the Banach space C(S) of continuous functions on the d-dimensional unit sphere

Sd−1, which are realized by the support function of X ∈ KC. As a result, a compact convex

random set X ∈ KC(Rd) can be represented by its support function sX with an imposed

normalized Lebesgue measure µ.

For the special case d = 1, a closed bounded interval X ∈ KC(R) has its support

function defined as:

SX(u) = sup〈u, x〉, x ∈ X, u ∈ S0 = −1, 1.

Thus, it can be easily seen that SX can be expressed as

SX(u) =


xU if µ = 1,

−xL if µ = −1.

(2.5)

The Lp metric for X can be expressed by the Lp-norm of the support function

‖SX‖p =

(∫
Sd−1

d|SX(µ)|pµ(du)

) 1
p

. (2.6)
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To obtain the L2-distance (δ2) in R between two intervals A = [AL, AU ] and B =

[BL, BU ], a similar approach is taken as in (2.6), using the measures from (2.5)

δ2(SA, SB)2 =

∫
S0

(SA(µ)− SB(µ))2µ(du)

=
1

2
[(aU + bU )2 − (bL − aL)2], (2.7)

or equivalently, in terms of center and range

δ2(SA, SB)2 = (aC − bC)2 + (aR − bR)2. (2.8)

2.2.2 Weighted L2-distance

The weighted L2 distance, referred to as the W -distance, was proposed by [35] based

on the Bertoluzza metric [26]. It is considered to be more general than the aforementioned

standard L2 distance because it not only involves the use of the distances between the

extreme points (infima and suprema), but also the distances between the inner points in

the intervals. Being an L2-type metric, the W -metric has similar properties that are useful

in relation with the least squares method applied in statistical problems.

The Bertoluzza metric [36] dW on KC(R) is defined for every pair of intervals A =

[aL, aU ], B = [bL, bU ] as the average distance between a point in A and the point in B with

the same relative position. Precisely,

d2W (A,B) =

∫
[0,1]

(fA(t)− fB(t))2dW (t), (2.9)

where W is any nondegenerate symmetric measure on [0, 1] and fA(t) = t(aL) + (1− t)aU ,

t ∈ [0, 1], represents the point in the interval A with relative position t. It is easily seen

that d2W is computed as

d2W (A,B) =

∫
[0,1]

[t(aL − bL) + (1− t)(aU − bU )]2dW (t). (2.10)
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Considering the relationships

aL = aC − aR bL = bC − bR

aU = aC + aR bU = bC + bR, (2.11)

and letting

Z1 =

∫
[0,1]

t2dW (t) Z2 =

∫
[0,1]

(1− t)2dW (t),

Z3 =

∫
[0,1]

t(1− t)dW (t).

We obtain the following

d2W (A,B) = (aC − bC)2(Z1 + Z2 − 2Z3) + (aR − bR)2(Z1 + Z2 + 2Z3)

+(aC − bC)(aR − bR)(−2Z1 + 2Z2), (2.12)

where

Z1 + Z2 − 2Z3 = 1 Z1 + Z2 + 2Z3 =

∫
[0,1]

(2t− 1)2dW (t)

−2Z1 + 2Z2 =

∫
[0,1]

(2t− 1)dW (t).

Requiring dW (−A,−B) = dW (A,B) ∀A,B ∈ KC(R), we derive

4(aC − bC)(aR − bR)

(∫
[0,1]

(2t− 1)dW (t)

)
= 0,

which implies

∫
[0,1]

(2t− 1)dW (t) = 0,
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or equivalently

EW [t] =

∫
[0,1]

tdW (t) =
1

2
.

The alternative center-range formula is obtained for the dW distance as

d2W (A,B) = (aC − bC)2 + (aR − bR)2
(∫

[0,1]
(2t− 1)2dW (t)

)
. (2.13)

Specifically,
∫
[0,1](2t − 1)dW (t) ∈ [0, 1] is some constant determined by W , and as such,

when calculating the L2-distance, the W -distance can also be interpreted as a weight for

(aR − bR)2. Therefore (2.9) and (2.13), present the advantage of the flexibility of the W -

distance in assigning weights to the points in the interval.

2.2.3 DK-distance

In a separate context, Körner and Näther [37] proposed another L2 metric, which when

restricted to KC(R) is

D2
K(A,B) =

∑
(u,v)∈S0×S0

(sA(u)− sB(u)) (sA(v)− sB(v))K(u, v), (2.14)

where K is a symmetric positive definite kernel and (u, v) ∈ S0 × S0. Recall that S0 =

{−1, 1} and

SA(u) =


aU , u = 1

−aL, u = −1,

SB(u) =


bU , u = 1

−bL, u = −1.

It follows that

D2
K(A,B) = K(1, 1)(aU − bU )2 +K(−1,−1)(bL − aL)2 + 2K(1,−1)(aU − bU )(bL − aL).

(2.15)



9

Considering the relationships from (2.11), and the expressions of D2
K(A,B), each ex-

pression can be obtained separately as

K(1, 1)(aU − bU )2 = K(1, 1)((aC + aR)− (bC + bR))2

K(−1,−1)(bL − aL)2 = K(−1,−1)((bC − bR)− (aC − aR))2

2K(1,−1)(aU − bU )(bL − aL) = 2K(1,−1)((aC + aR)− (bC + bR))((bC − bR)− (aC − aR)).

After expanding and combining like terms, we form the following linear combinations of the

kernel, K

A11 = K(1, 1) +K(−1,−1)− [K(1,−1) +K(−1, 1)]

A22 = K(1, 1) +K(−1,−1) + [K(1,−1) +K(−1, 1)]

A12 = A21 = K(1, 1)−K(−1,−1).

Thus, the DK distance can be defined alternatively in the center-range form as

D2
K(A,B) = A11(a

C − bC)2 +A22(a
R − bR)2 + 2A12(a

C − bC)(aR − bR). (2.16)

It is seen that, when K is a symmetric positive definite, so is A. Therefore, we see that DK

is a more generalized L2 metric than dW that takes into account the interaction between

the center and the range.

These distance measures play a fundamental role in defining an appropriate splitting

criterion (eq. 4.9) for interval-valued data when using a tree-based regression model. This

development extends the regression framework for interval-valued data in a nonparametric

manner. Linear regression for intervals typically treats an interval as a bivariate vector and

fits separate point-valued models to the center and range (or lower and upper bounds) of

the interval. However, our proposed model considers the relationship between the center

and range, which previous linear regression models fail to capture.
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CHAPTER 3

REGRESSION REVIEW

3.1 Review of Interval-Valued Regression Models

Linear regression for interval-valued data has been extensively studied over the past

decades. Existing models have been developed mainly in the domains of random sets and

SDA. In the framework of random sets, an interval is viewed as a single entity, and the

linear relationships between intervals are modeled using set arithmetic. Models developed

in this framework are generally restrictive to achieve certain mathematical properties and

will not be further discussed in this thesis.

On the other hand, the aim of SDA is to extend classical data analysis techniques to

nontraditional data formats, such as lists, intervals, histograms, and distributions. As a

result, SDA models usually offer improved flexibility and are preferred in many practical

situations. In the following, we will review the major SDA models for interval-valued

regression.

Consider predictor intervals [Xi], . . . , [Xp] where [X] is a n×p matrix of intervals. Each

row is a vector xi = (xij , . . . , xip), with xij = [xLij , x
U
ij ] . Let the response interval to be

predicted [Y] and yi = [yLi , y
U
i ].

3.1.1 Center Method (CM)

The CM [22] uses the the center as the parameter estimation for the β coefficients. It

was the initial approach to fitting a linear regression model to interval-valued data.

Let xCij = (xLij + xUij)/2 and yCij = (yLi + yUi )/2, and the linear regression relationship is

as follows

yC = XCβ + εC .
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Where, yC = (yC1 , . . . , y
C
i ), XC = ((xc1)

T , . . . , (xcn)T ), (xc1)
T = (1, xci1, ..., x

c
1p)(i =

1, . . . , n), β = (β0, . . . , βp), ε
C
i = (εC1 , . . . , ε

C
n )T , The β coefficients can be estimated if

XC has a full rank p+ 1 ≤ n, and so the least squares estimates for β are given as

β̂ = ((XC)TXC)−1(XC)TyC .

Therefore the estimates for predictions of y are

ŷL = (xL)T β̂ ŷU = (xU )T β̂. (3.1)

Notice that the CM uses only the center point of the interval in estimating the β

parameters, while it may be more suitable to consider both the centers and ranges of an

interval for parameter estimation and improvement of model prediction performance.

3.1.2 Center and Range Method (CRM)

The CRM was introduced by [13], as a new linear regression method using the midpoints

and range of the interval-valued data. Consider the formalities from the CM and let xRij =

(xUij − xLij)/2 and yRij = (yUij − yLij)/2, the linear regression relationship is as follows

yC = XCβC + εC

yR = XRβR + εR.

Where the conditions for the center and range are

yC = (yC1 , . . . , y
C
i )T yR = (yR1 , . . . , y

R
i )

XC = ((xC1 )T . . . , (xCn )T ) XR = ((xR1 )T , . . . , (xRn )T )

βC = (βC0 , ..., β
C
p )T βR = (βR0 , . . . , β

R
p )T

εC = (εC1 , . . . , ε
C
n )T εR = (εR1 , . . . , ε

R
n )T

(xCi )T = (1, xCi1, . . . , x
C
1p)(i = 1, . . . , n) (xRi )T = (1, xRi1, . . . , x

R
1p)(i = 1, . . . , n). (3.2)
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The least squares estimates for βC and βR are given, if both XC and XR are full rank

p+ 1 ≤ n, as

β̂
C

= ((XC)TXC)−1(XC)TyC

β̂
R

= ((XR)TXR)−1(XR)TyR.

Therefore the estimates of predictions [ŷ] are

ŷC = (xC)T β̂
C

ŷR = (xR)T β̂
R
. (3.3)

Seeing as the CRM builds upon the CM by considering the range of an interval in

estimating the coefficients. A concern is that the β̂
R

must be greater than or equal to zero.

Which is not guaranteed unless one considers an inequality constraint over β̂
R

.

3.1.3 Constrained Center and Range Method (CCRM)

The CCRM [14] considers one important feature that is not accounted for in the CRM.

The CCRM mathematically ensures the inequality of yLi ≤ yUi is true by constraining

βRj ≥ 0. The linear regression relationship is as follows

yC = XCβC + εC

yR = XRβR + εR.
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While βRj ≥ 0, j = 0, . . . , p is the constraint required for the CCRM. One important

item to note is the parameters: βCj , (j = 0, . . . , p) do not have any restrictions. Additionally,

yC = (yC1 , . . . , y
C
i )T , yR = (yR1 , . . . , y

R
i ),

XC = ((xC1 )T . . . , (xCn )T ), XR = ((xR1 )T , . . . , (xRn )T ),

βC = (βC0 , ..., β
C
p )T , βR = (βR0 , . . . , β

R
p )T ,

εC = (εC1 , . . . , ε
C
n )T , εR = (εR1 , . . . , ε

R
n )T ,

(xCi )T = (1, xCi1, . . . , x
C
1p)(i = 1, . . . , n), (xRi )T = (1, xRi1, . . . , x

R
1p)(i = 1, . . . , n). (3.4)

The least squares estimates for βC and βR are given as

β̂
C

= ((XC)TXC)−1(XC)TyC

β̂
R

= ((XR)TXR)−1(XR)TyR.

The predictions for [ŷ] are

ŷC = (xC)T β̂
C

ŷR = (xR)T β̂
R
. (3.5)

Constraining the βR coefficients mathematically ensures the nonnegativity required for

the CCRM.

3.1.4 Limitation of Existing Models

There is an intrinsic difficulty in performing linear regression with interval-valued data

because KC(R) does not have an inverse operation of addition, and therefore, it is not a linear

space (see [38] for a detailed discussion). This fundamental issue necessitates the imposition

of nonnegative constraints in most models. However, these constraints introduce biased

estimators as they typically penalize underestimation more heavily than overestimation.

Additionally, they significantly complicate the computational aspects, making it challenging

to draw inferences.
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Hence, there is a need to extend the analysis beyond these linear methods and introduce

tree-based methods as an appropriate alternative.

3.2 Regression Trees

Regression trees are a powerful and popular tool for analyzing data in machine learning

through a nonparametric framework. They first originated in the 1960s by Morgan and

Sonquist [39] and were developed in the 1980s as CART by statisticians Leo Breiman and

colleagues [20]. Regression trees are a type of decision tree that is grown when the data has

a nominal response variable y, by dividing the predictor space X = X1, X2, ..., Xp in Rn

into J distinct nonoverlapping regions R1, ..., RJ referred to as nodes.

The formulation of the nodes can be framed as an optimization problem with the task

of partitioning X into Rj boxes that minimize the RSS for each Rj .

RSSRj =

J∑
j=1

∑
i∈Rj

(yi − ŷRj)2. (3.6)

Here, ŷRj denotes the mean response for the training observations within the j-th region of

X.

Unfortunately, considering every possible partition of X is computationally infeasible.

Therefore, regression trees adopt a top-down greedy approach known as recursive binary

partitioning.

The algorithm for growing a regression tree is as follows :

1. Begin with a single node containing X.

2. Stop if the stopping criterion is met. Otherwise, search for the greatest reduction

in RSSRj by considering all binary splits s of Xj that partition X into binary child

nodes Xj < s and Xj ≥ s.

3. Partition the data into two new child nodes based on the reduction in RSSRj found

in step 2.

4. Repeat step 2 for each new node.
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Once the algorithm concludes, each terminal (leaf) node c will have a sample mean

computed from the response values of the data, representing the predicted value for that

leaf node, denoted as ŷc. Resulting in the formulation of a regression tree, T .

Regression trees are particularly useful in scenarios where the underlying data is com-

plex or nonlinear, or when the dataset contains numerous variables. They can also help

identify interactions between predictor variables, facilitating the identification of the most

important predictors in a dataset.

3.3 Random Forests (RF)

The RF algorithm is an ensemble method developed by Leo Breiman [21]. RF consist

of a collection of trees. Prior to the introduction of RF, ensembles had already attracted

significant attention due to their ability to achieve more accurate predictions than individual

trees. Various techniques for constructing ensembles were proposed by different authors,

including popular examples such as Bagging [40] and Adaboost [41]. In Bagging, each tree

is constructed from a bootstrap sample drawn with replacement from the training data.

The original version of Adaboost resamples observations with weights that are successively

adjusted to give higher weight to ”difficult” observations. Randomization is used to create

an ensemble by randomizing the interval decisions made by the base algorithm.

After constructing the ensembles, classification is performed by taking the majority

vote of the individual classifiers, while regression involves taking the average. It is well

understood that averaging results leads to variance reduction and reduces the correlation

between individual classifiers, thereby further enhancing the variance gains. Motivated

by this principle, RF introduce another layer of randomness by changing the structure of

each tree. Instead of optimizing the response by evaluating all the predictors, as is done

with single-tree methods or Bagging, RF employ a subset of predictors that is randomly

drawn independently for each node in each tree. This strategy has been shown to perform

exceptionally well and exhibits robustness against overfitting.

One of the main advantages of RF over other estimation methods is their full non-

parametric nature, which includes the effects of predictors and response variables. This
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allows RF to effectively handle issues such as nonlinearity and mathematical coherence.

Specifically, the prediction of the range is based on an average of the terminal nodes, which

contain all positive elements (i.e., range of the observed intervals), resulting in automatic

positive predictions without any constraints. Traditional methods may struggle with situ-

ations where the number of predictor variables is equal to or greater than the number of

observations, but RF automatically handle the issue of dimensionality, largely due to the

use of decision trees as base learners in the ensemble process. Like all tree-based methods,

RF naturally capture interactions between predictors without the need for specifying them

in advance.

Importantly, the RF algorithm has only three tuning parameters: the size of the subset

at each node, the number of trees in the forest, and the depth of the trees. This makes it

convenient and practical to apply. In fact, the number of trees can be chosen arbitrarily

large without risking loss of accuracy, and for classification tasks, the trees can be grown

to their maximum depth. The results are not particularly sensitive even to the size of the

subset at each node, making tuning relatively straightforward.

The algorithm for growing a RF for regression is as follows:

1. For each b from 1 to B:

(a) Take the training data and draw a bootstrap sample Z of size N .

(b) For an individual regression tree Tb grown from Z, recursively repeat the following

steps for each new node until a stopping criterion is met:

i. Randomly sample p variables from the P variables of the data.

ii. Follow the procedure for growing a regression tree as described in Section

3.2.

2. Output the ensemble of trees T1:B.

After growing the forest, predictions can be made for a new point x by averaging the

results from all the trees.
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CHAPTER 4

INTERVAL-VALUED REGRESSION TREE (IRT) AND RANDOM FORESTS (IRF)

While linear regression is often preferred for its simplicity, there are many practical

situations where nonlinearity exists and linear methods alone are insufficient to address those

problems. Therefore, it is important to develop nonlinear regression methods for interval-

valued data. However, compared to linear regression, nonlinear regression for interval-valued

data has received much less attention in research.

Among these, we are particularly interested in the RF regression proposed by [25]. This

model separates the centers and ranges of the intervals, formulating the regression task by

fitting separate point-valued models for the center and range.

One concern is that fitting separate models does not consider the correlation between

the centers and ranges. In the multivariate setting of RF, ignoring the correlation among re-

sponse variables (treating each response variable separately) can potentially have a substan-

tial impact on performance when the response variables are highly correlated [42] and [43].

Therefore, for interval-valued data, we will focus on proposing a new method that considers

the potential impact of the correlation between the centers and ranges of the data.

The extension of tree-based regression methods to interval-valued data from univariate

tree-based regression methods is achieved by replacing the univariate variables X and Y

with an interval response variable [X] and [Y ]. In order to accommodate interval-valued

data, it becomes necessary to redefine the splitting criterion from the univariate sum of

squares to an interval-valued version, which involves computing the sum of squares of the

interval-valued means. This is done by calculating the sum of squared differences (SSD)

between the centers and ranges of the intervals. The objective at each node is to minimize

the sum of squared distances of the intervals, thereby reducing the variance within each

interval for the individual leaf nodes.

Consider [X] and [Y ] to be interval-valued variables, where
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[xij] = [xLij, xU ij] ∈ KC(R) (4.1)

= [xL, xU ] : xL, xU ∈ R, xL ≤ xU (4.2)

= [xC ± xR] (4.3)

and

[yi] = [yLi , y
U
i ] ∈ KC(R) = [yCi ± yRi ] (4.4)

are the observed values of [X] and [Y ].

Therefore interval-valued regression trees, [T ], can be grown by dividing the interval-

valued predictor space [X] = [X1], [X2], . . . , [Xn] into K distinct nodes R1, . . . , RK . Recall

the Aumann Expectation (2.3) of [X]

E[X] = [EXL,EXU ],

the δ2 of two intervals from Section 2.2.1

δ2([a], [b]) = (aC − bC)2 + (aR − bR)2,

and the δ2ω of two intervals from Section 2.2.2

δ2ω([a], [b]) = (aC − bC)2 + ω(aR − bR)2.

Therefore the variance of [X] is

V ar([X]) = E(δ2([X],E[X]))

= V ar(XC) + V ar(XR) (4.5)
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or

V arω([X]) = V ar(XC) + ωV ar(XR) (4.6)

Note that these variance equations are when XC and XR are independent of each

other. If we wanted to consider a more generalized version than we can use Sections 2.2.2

and 2.2.3, such that

V ar([X]) = V ar(XC) + V ar(XR) + 2Cov(XC , XR) (4.7)

and

V arω([X]) = V ar(XC) + ωV ar(XR) + 2ωCov(XC , XR). (4.8)

Minimizing the SSD of the centers and range of [yi] and [ŷi] requires the partitioning

of [X] into RK boxes that minimize the the SSD of RK .

SSDRK
=

K∑
k=1

∑
i∈Rk

δ2([yi], [ŷRk
]) (4.9)

For the RF, by building B regression trees on bootstrap sets of the center and range

data, denoted as [T ] ∈ {TCj and TRj }, we obtain the following predictions for the centers

and ranges:

ŷC =
1

B

B∑
j=1

TCj (xC) ŷR =
1

B

B∑
j=1

TRj (xR), (4.10)

The formulation of the proposed method of an Interval-valued regression tree follows the

traditional regression tree algorithm 1, and the approach from the traditional RF algorithm

2 will be used for the proposed method of IRF. Both require a new stopping criterion

derived from Equation 4.9. This new method will be tested in Chapter 5 and Chapter 6,

with simulated and real data.
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CHAPTER 5

SIMULATION STUDY

This section demonstrates the computational feasibility of the IRF model in comparison

to CCRM, traditional RF, and IRT models. Monte Carlo experiments were conducted

using various settings, considering different characteristics of the centers and ranges of the

dependent and independent interval variables, as well as their respective error terms.

Each setting independently considered three sample sizes: n = 100, 250, 500. For each

simulated dataset, 80% of the data was used as the training set, and the remaining 20% as

the testing set. The analysis was performed using the datasets in R, with CCRM and RF

models formulated using the iRegression [44] and randomForest [45] packages in R [46].

The models for IRT were generated using the mvpart [47] package.

One of our major contributions in this research is the manual programming necessary

to implement IRF. Unfortunately, mvpart has been removed from CRAN and is no longer

actively maintained to align with the current updates of R (4.2.3).

As a workaround, we wrapped mvpart within a Bagging architecture for simulation.

The simulations and real data example exhibit a relatively small number of total predictor

intervals, which can potentially minimize selection bias and allow for an exhaustive search

of all possible data [40]. Each tree in the RF will be trained using all the available predictor

intervals without any randomness introduced during variable selection. Therefore, the ran-

dom selection of predictor intervals is effectively disabled, and the RF algorithm behaves

similarly to Bagging [21]

In future research, we aim to extend the framework by incorporating random sub-

sampling of predictor intervals at the individual node level to more closely resemble the

exact structure of a RF. For programming details, please refer to the following source:

https://github.com/PaulGaona/IntRF.

https://cran.r-project.org/web/packages/mvpart/index.html
https://github.com/PaulGaona/IntRF
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The empirical evaluations and assessment of model performances between the IRF, IRT,

RF, and CCRM, using various error metrics, are shown in Section 5.1.

5.1 Accuracy Measures

The assessment of model performance relies on three commonly used error metrics:

Mean Squared Error (MSE), Mean Absolute Error (MAE), and Coefficient of Determination

(R2).

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (5.1)

MAE =
1

n

n∑
i=1

| yi − ŷi |, (5.2)

and

R2 = 1− MSE

σTrain
= 1−

1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi − ȳ)2

, (5.3)

where y = (y1, · · · , yn) and ŷ = (ŷ1, · · · , ŷn) represent the predicted and observed val-

ues from the testing dataset [YTest], with i = 1, · · · , n. Similarly, y = (y1, · · · , ym) and

ŷ = (ŷ1, · · · , ŷm) denote the observed values from the training dataset [YTrain], with

j = 1, · · · ,m.

These equations will be adapted for interval-valued data by combining errors from

both the centers and ranges of the predicted intervals, ensuring consistency with the dW -

distance defined as the splitting criteria. They will be referred to as the Total Standardized

Mean Squared Error (TS-MSE), Total Standardized Mean Absolute Error (TS-MAE), and

Composite Coefficient of Determination (C-R2). Their formulas are as follows:

TS -MSE = MSEC + ωMSER =
1

n

n∑
i=1

(yCi − ŷCi )2 +
ω

n

n∑
i=1

(yRi − ŷRi )2, (5.4)
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TS -MAE = MSEC + ωMSER =
1

n

n∑
i=1

| yCi − ŷCi | +
ω

n

n∑
i=1

| yRi − ŷRi |, (5.5)

and

C -R2 = 1− MSECTest + MSERTest
σCTrain + σRTrain

= 1−
1
n

∑n
i=1(y

C
i − ŷCi )2 + 1

n

∑n
i=1(y

R
i − ŷRi )2

1
n

∑n
i=1(y

C
i − ȳC)2 + 1

n

∑n
i=1(y

R
i − ȳR)2

, (5.6)

where yC = (yC1, · · · , yCn), ŷC = (ŷC1, · · · , ŷCn), yR = (yR1, · · · , yRn), ŷR = (ŷR1, · · · , ŷRn)

represent the predicted and observed values of the centers and ranges from the testing

dataset [YTest], where i = 1, · · · , n. Similarly, yC = (yC1, · · · , yCm) and yR = (yR1, · · · , yRm)

represent the observed values of the centers and ranges from the training dataset [YTrain],

where j = 1, · · · ,m. σC is the standard deviation of yC, and σR is the standard deviation

of yR.

Each setting was carefully selected to highlight the competitiveness of IRF against

the other models. Setting 1 and 2 are linear settings. In Setting 1, we anticipate that

CCRM will be the most competitive model due to the linear nature of the data and model.

Additionally, we expect IRF and RF to perform well and be competitive with CCRM. In

Setting 2, we maintain a linear dataset but introduce a negative trend for the centers and

range. Here, we expect IRF and RF to outperform CCRM because the constraint of a

nonnegative range in CCRM may lead to challenges compared to the tree-based methods.

Setting 3 and Setting 4 are nonlinear settings, but when introduced with errors, they

exhibit a close-to-linear appearance. This creates a simulation scenario where CCRM may

excel in predicting the data, despite its inherent nonlinearity. Thus, in Setting 4, we an-

ticipate that CCRM will be competitive against IRF. Similar expectations to Setting 2 are

applicable to Setting 3, as it also includes a negative trend in the range.

Setting 5 and Setting 6 are nonlinear settings. In Setting 5, both the centers and

range follow a trigonometric relationship. However, similar to Settings 3 and 4, the range

exhibits a close-to-linear appearance. Consequently, we expect the tree-based methods to

outperform CCRM. Setting 6 features a parabolic relationship in the centers and a close-

to-linear relationship in the range, while incorporating an interaction between the centers
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and range for predicting the range. In this case, we anticipate that IRF will outperform RF

and CCRM, taking advantage of the correlation among the outcome variables [42].

Lastly, Setting 7 adopts a multiple interval approach, considering nonlinearities and

interactions among the centers and range with five predictor intervals. This enables the

tree-based methods to construct splits based on multiple variables. Due to the nonlinear

nature and correlations among some variables, we expect IRF to outperform RF and CCRM.

The following distributions for XC , XR, εC , and εR are independently generated ac-

cording to the following specifications for each setting 1-6:

5.2 Settings

• Setting 1:

XC ∼ N (12, 32) XR ∼ U(1, 3)
εC ∼ N (0, 0.752) εR ∼ N (0, 0.052),

and the center and range of the response variable

Y C = 2XC + 15 + εC

Y R = .25XR + εR. (5.7)

• Setting 2:

XC ∼ N (−5, 102) XR ∼ U(1, 2)
εC ∼ N (0, 2.52) εR ∼ N (0, 0.12),

and where the center and range of the response variable as

Y C = −XC + 50 + εC

Y R = − 2XR + 5 + εR. (5.8)

• Setting 3:
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Fig. 5.1: Scatterplot of centers and range for the linear Setting 1 with 100 observations.

10

20

30

40

50

60

70

80

90

100

−40 −30 −20 −10 0 10 20 30
[X]

[Y
]

Setting 2

Fig. 5.2: Scatterplot of centers and range for the linear Setting 2 with 250 observations.
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XC ∼ N (5, 12) XR ∼ U(0.1, 0.25)
εC ∼ N (0, 12) εR ∼ N (0, 0.252),

therefore the equations for the center and range of the response variables are

Y C = .5(XC)2 + 20 + εC

Y R = 0.05(XR)−2 + 1 + εR. (5.9)
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]

Setting 3

Fig. 5.3: Scatterplot of centers and range for the close-to-linear Setting 3 with 500 obser-
vations.

• Setting 4:

XC ∼ N (12, 42) XR ∼ U(0.5, 2)
εC ∼ N (0, 12) εR ∼ N (0, 0.1252),
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the equations for the center and range of the response variables follow

Y C = 10 ln(XC) + 10 + εC

Y R = 2.5
√
XR + εR. (5.10)
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Fig. 5.4: Scatterplot of centers and range for the close-to-linear Setting 4 with 100 obser-
vations.

• Setting 5:

XC ∼ N (3, 22) XR ∼ U(0.5, 1)
εC ∼ N (0, 1.52) εR ∼ N (0, 0.06252),
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the equations for the center and range of the response variables follow

Y C = 10 sin(0.15πXC) + 10 + εC

Y R = XR + 0.5 + εR. (5.11)
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Fig. 5.5: Scatterplot of centers and range for the nonlinear Setting 5 with 250 observations.

• Setting 6:

XC ∼ N (8, 22) XR ∼ U(0, 1)
εC ∼ N (0, 12) εR ∼ N (0, 0.252),

the equations for the center and range of the response variables follow

Y C = − (XC − 8)2 + 32 + εC

Y R = 0.0625eX
R
√
XC + εR. (5.12)
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Fig. 5.6: Scatterplot of centers and range for the nonlinear Setting 6 with 500 observations.

• Setting 7: Their respective centers have the following distributions: XC
1 ∼ N (5, 32),

XC
2 ∼ β(0.5,−.5), XC

3 ∼ N (10, 3.52), XC
4 ∼ U(0.5, 1.5), and XC

5 ∼ N (8, 3.52) Now

define,

V1 = u1e
−0.5γ(3,2)+τ1 ,

V2 = u2e
−0.5β(1,2)+τ2 , (5.13)

where τ1, τ2 ∼ N (0, 0.22) and u1, u2 ∼ U(0, 0.5) are generated independently. The

distribution for the predictor interval range are range for the predictor intervals are

generated by XR
1 =

2V1
1 + V 1

, XR
2 =

3V2
1 + V 2

, XR
3 ∼ N (10, 32), XR

4 ∼ U(2.5, 3.5),

XR
5 ∼ β(2, 5). The center and range of the response interval are determined by the
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following equations

Y C
i = (XC

1i + (XC
1i)

2)(XC
2i + (XC

2i)
2)− (XC

3i + (XC
3i)

2)(XC
4i + (XC

4i)
2)−XC

5i + εCi

Y R
i =

(XR
2i)

2

5
+ 0.1XR

3i − 5(XR
1iX

R
4i +XR

5i) + 4 + εRi , (5.14)

where εCi ∼ N (0, 12) and εRi ∼ N (−3, 0.152) , i = 1, . . . , n.

5.3 Results

We observed the competitiveness of IRF against CCRM and RF in Settings 1 and

4. Specifically, in Setting 1 where both the center and range exhibit positive linearity,

CCRM achieved the best metrics, while IRF and RF were close behind. In Setting 4, which

demonstrates a close-to-linear relationship, IRF outperformed the other models, as evident

in Table 5.1. The results from Settings 2 and 3 highlight the limitations of nonnegativity in

CCRM, while IRF and RF competed closely with each other. Notably, RF’s performance

improved with increasing sample size.

An interesting phenomenon we have observed in the simulation is that the IRF seems

to make more efficient use of the data than the separate RF. We can see for most of the

settings that IRF achieves the optimal performance much faster than RF. Especially, for the

scenarios where they are supposed to perform competitively, RF always starts inferior and

catches up later for large sample size (≥ 500). In Table 5.2, Setting 5 is a good example that

well demonstrated such a phenomenon. While RF is noncompetitive to IRF for small sample

sizes, it surpasses IRT and becomes somewhat competitive with IRF when the sample size

grows to 500. It is expected that if we simulated even more observations, we could see RF

being more competitive against IRF.

The inclusion of an interaction in Setting 6 revealed the limitations of separate RF

models. While CCRM’s poor performance was expected, RF also struggled in this setting.

On the other hand, both interval-valued tree-based methods performed well, with IRF

outperforming IRT. In the multivariable Setting 7, IRF once again outperformed all other

models. CCRM performed extremely poorly, while RF remained competitive against IRT.
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TS-MSEω TS-MAEω C-R2

N IRF IRT RF CCRM IRF IRT RF CCRM IRF IRT RF CCRM

Setting 1

100 0.18 0.39 0.27 0.13 0.39 0.69 0.54 0.38 0.91 0.80 0.87 0.93

250 0.15 0.30 0.19 0.13 0.36 0.62 0.45 0.37 0.92 0.85 0.90 0.94

500 0.15 0.27 0.17 0.12 0.38 0.58 0.42 0.36 0.92 0.86 0.92 0.94

Setting 2

100 0.16 0.35 0.21 1.08 0.38 0.66 0.48 1.06 0.92 0.82 0.89 0.46

250 0.14 0.28 0.14 1.05 0.36 0.59 0.40 1.05 0.93 0.86 0.93 0.48

500 0.14 0.25 0.12 1.07 0.38 0.58 0.38 1.06 0.93 0.87 0.94 0.47

Setting 3

100 0.18 0.38 0.24 1.15 0.40 0.66 0.50 1.03 0.91 0.81 0.88 0.43

250 0.15 0.30 0.16 1.08 0.37 0.59 0.42 1.01 0.92 0.85 0.92 0.46

500 0.15 0.26 0.13 1.04 0.39 0.57 0.39 1.00 0.92 0.87 0.94 0.48

Setting 4

100 0.24 0.46 0.33 0.24 0.42 0.69 0.57 0.50 0.88 0.77 0.83 0.88

250 0.18 0.33 0.24 0.25 0.35 0.60 0.48 0.48 0.91 0.83 0.88 0.88

500 0.15 0.28 0.20 0.24 0.37 0.56 0.46 0.48 0.92 0.86 0.90 0.88

Table 5.1: Averaged accuracy metrics from Monte Carlo simulations of Settings 1-4.
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TS-MSEω TS-MAEω C-R2

N IRF IRT RF CCRM IRF IRT RF CCRM IRF IRT RF CCRM

Setting 5

100 0.14 0.30 0.41 1.20 0.39 0.61 0.68 1.23 0.93 0.85 0.79 0.40

250 0.12 0.24 0.23 1.19 0.38 0.56 0.51 1.23 0.94 0.88 0.88 0.41

500 0.13 0.22 0.17 1.18 0.40 0.54 0.45 1.23 0.93 0.89 0.91 0.41

Setting 6

100 0.33 0.52 1.44 2.11 0.41 0.64 1.14 1.49 0.84 0.74 0.28 -0.06

250 0.19 0.37 1.22 2.01 0.37 0.60 1.06 1.48 0.91 0.81 0.39 -0.01

500 0.16 0.30 1.14 1.92 0.38 0.57 1.01 1.46 0.92 0.85 0.43 0.04

Setting 7

100 0.31 0.56 0.68 11.11 0.43 0.74 0.81 3.41 0.84 0.72 0.66 -4.56

250 0.20 0.38 0.40 10.64 0.35 0.63 0.62 3.36 0.90 0.81 0.80 -4.32

500 0.18 0.33 0.28 11.50 0.38 0.60 0.52 3.34 0.91 0.84 0.86 -4.25

Table 5.2: Averaged accuracy metrics from Monte Carlo simulations of Settings 5-7
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CHAPTER 6

REAL DATA STUDY

A real dataset is analyzed using the IRF regression model to demonstrate its applica-

bility. The dataset comprises daily [min, max] stock price ranges for five companies: Boeing

Aircraft Manufacturing Company (BA), General Electric (GE), JPMorgan Chase (JPM),

Procter and Gamble (PG), and Microsoft (MSFT), as well as the Dow Jones Industrial

Average index (DJIA). There were a total of 1509 price intervals for each asset, spanning

from January 3rd, 2012, to December 30th, 2017. The data was divided into a training set

of 1207 intervals (80%) and a test set of 302 intervals (20%).
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Fig. 6.1: Scatterplot of centers and range of JPM vs DJIA, where a linear relationship is
shown

DJIA is a stock market index created by Charles Dow, the editor of the Wall Street
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Journal, and co-founder of Dow Jones & Company. It aims to demonstrate the trading

activities of 30 large, publicly owned companies based in the United States during a standard

trading session in the stock market [48]. In our analysis, the DJIA is initially used as the

sole variable to predict each of the three individual stocks. As shown in Figures 6.1, 6.2,

and 6.3, JPM (along with other stocks) exhibits a fairly linear relationship with the DJIA

index. Therefore, CCRM serves as the baseline model. To compare the results of the IRF

model with those of CCRM, RF, and IRT models, the same accuracy measures used in the

simulation study of Section 5.1 will be employed. Finally, a multiple-variable model using

interval-valued data for BA, GE, JPM, PG, and MSFT will be used to predict the DJIA.
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Fig. 6.2: Scatterplot of centers and range of BA vs DJIA, where a close-to-linear relationship
is shown

BA, GE, JPM, PG, and MSFT are five leading companies in their respective industries.

Therefore, these stocks have the potential to explain a significant portion of the variability

in the DJIA index. The predictive model for the DJIA is formulated using the five stock
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price intervals. The multivariate analysis is conducted similarly to the previous analysis,

with both the centers and ranges of the stocks utilized as predictors for the center and range

of the DJIA index.
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Fig. 6.3: Scatterplot of centers and range of GE vs DJIA, where a non-linear relationship
is shown

6.1 Results

Individual predictive results demonstrate that our IRT and IRF models consistently

outperform or compete with traditional RF and CCRM, despite the linear or close-to-linear

trends observed in Figs. 6.1 and 6.2. Specifically, when predicting JPM, IRT competes well

with RF and CCRM, while IRF outperforms all models. In the case of predicting BA, the

interval-valued tree-based methods significantly outperform CCRM and RF. Similarly, the

accuracy metrics for interval-valued tree-based methods surpass other models in predicting

GE. In the multiple-variable setting for predicting DJIA, IRF and IRT outperform RF and
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CCRM. However, RF performs better than IRT in terms of TS-MSEω. Despite CCRM’s

efforts to capture as much information in the linear-appearing and multiple-variable setting,

it struggles to compete with RF. The IRF model consistently achieves better performance

than CCRM, traditional RF, and IRT. This can be attributed to RF’ ability to account for

nonlinearity, correlations between predictor variables, and, more importantly, correlations

between outcome variables. This trend persists across all analyses, with the IRF model

consistently yielding the best results.

TS-MSEω TS-MAEω C-R2

Real Data IRF IRT RF CCRM IRF IRT RF CCRM IRF IRT RF CCRM

Stock

JPM 0.13 0.41 0.56 0.67 0.39 0.49 0.62 0.74 0.93 0.79 0.72 0.66

BA 0.15 0.32 0.70 1.09 0.33 0.51 0.61 0.84 0.92 0.84 0.65 0.45

GE 0.12 0.36 0.60 1.27 0.40 0.50 0.75 1.13 0.94 0.82 0.70 0.37

DJIA 0.08 0.23 0.33 0.56 0.32 0.55 0.47 0.63 0.96 0.88 0.83 0.72

Table 6.1: Real data: Predicting index to stock price and multivariate stock prices predicting
index.
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CHAPTER 7

CONCLUSION

We proposed a RF regression model for interval-valued data, by considering the ob-

served intervals as realizations of a random interval and utilizing the random sets theory.

This set us to find the Aumann expectation and variance of an interval that allowed us

to formulate a new splitting criterion for the RF model to jointly consider the centers and

ranges, rather than creating separate models.

The proposed IRF model demonstrates robustness against overfitting, outliers, and

high-dimensionality, making it more flexible than previous interval-valued regression models.

It also retains the user-friendliness of the traditional RF model. The rigidity imposed by

previous linear regression models for interval-valued data is eliminated due to the non-

parametric nature of our method, which automatically ensures mathematical coherence.

The empirical results from both simulation and real stock market data highlight the

effectiveness of the proposed IRF method in modeling and predicting interval-valued data.

It consistently outperforms or competes with other traditional models for interval-valued

data.

One notable result worth noting is that our proposed model demonstrates greater data

efficiency compared to the separate RF model. This is demonstrated by the settings in

which both models are expected to be competitive against each other. IRF achieves optimal

performance with less data than the separate RF (Tables 5.1 and 5.2, specifically Setting 5),

which requires a larger sample size to achieve competitive results. A deeper investigation

for a more in-depth conclusion may be suitable.

Further development of the model, including accounting for the correlation between the

centers and range, as well as evaluating variable importance, will enhance the advantages

of the IRF model and establish it as an important tool in the analysis of interval-valued

data.
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[37] R. Körner and W. Näther, On the variance of random fuzzy variables, C. Bertoluzza,
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APPENDIX A

R Implementation

In this appendix, the three main R scripts for obtaining the accuracy metrics, as well

as the code for plotting simulated data, are provided. The functionality for the IRT can be

accessed at the following link:

https://github.com/PaulGaona/IntRF.

All additional files can be found at:

https://github.com/PaulGaona/IntRf_Application.

A.1 Settings 1 -7

These files are designed to conduct a simulation study with the objective of comparing

the performance of different models and visualizing the relationships among variables in

various settings. The simulation is conducted for different sample sizes, and it is repeated

for each combination of setting and sample size. There are seven different settings defined

by specific parameters passed to the functions set1 to set7. Each set function returns a

list of data frames, with each data frame containing the simulated data for one run of the

simulation.

The performance of each model is assessed using the testing data. The average results

across all simulation runs for each combination of setting and sample size are obtained.

The results can be accessed by indexing the variable all res with the appropriate sample

size and setting name. For example, all res[[1]]$Setting1 contains the results for the first

sample size (n = 100) and the first setting (Setting1).

Simulation: (“all setting code.R”)

The data is then split into training and testing sets. The training data is fitted into

the following models:

https://github.com/PaulGaona/IntRF
https://github.com/PaulGaona/IntRf_Application
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• IRF (Interval-Valued Random Forests)

• IRT (Interval-Valued Regression Tree)

• RF (Random Forests)

• and CCRM (Constrained Center and Range Model).

# Load necessary functions and libraries

source("./Analysis/Simulation/Settings.R")

source("./Functions/Auto_Models.R")

source("./Functions/Dat_Split.R")

source("./Functions/Res_Avg_Set.R")

source("./Functions/CCRM_Pred.R")

library("tidyverse")

library("IntRF")

# Set up simulation parameters

n_vec <- c(100, 250, 500) # Sample sizes to simulate

mc_sim <- 100 # Number of Monte Carlo simulations to run

# Initialize empty list to store results

all_res <- vector("list", length(n_vec))

names(all_res) <- paste("n=", n_vec)

# Loop over all elements of the n_vec vector

for (i in seq(all_res )) {

set.seed (1)

# Generate a list of simulated data sets for each

# of the 7 different settings

list_sims <- list(

Setting1 = replicate(n = mc_sim , expr = set1(

n = n_vec[i],
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Xc_a = 12, Xc_b = 3,

ec_a = 0, ec_b = 3 / 4,

Xr_a = 1, Xr_b = 3,

er_a = 0, er_b = 1 / 20

)),

Setting2 = replicate(n = mc_sim , expr = set2(

n = n_vec[i],

Xc_a = -5, Xc_b = 10,

ec_a = 0, ec_b = 10 / 4,

Xr_a = 1, Xr_b = 2,

er_a = 0, er_b = 1 / 10

)),

Setting3 = replicate(n = mc_sim , expr = set3(

n = n_vec[i],

Xc_a = 5, Xc_b = 1,

ec_a = 0, ec_b = 1,

Xr_a = .1, Xr_b = .25 ,

er_a = 0, er_b = 0.25

)),

Setting4 = replicate(n = mc_sim , expr = set4(

n = n_vec[i],

Xc_a = 12, Xc_b = 4,

ec_a = 0, ec_b = 1,

Xr_a = .5, Xr_b = 2,

er_a = 0, er_b = .5 / 4

)),

Setting5 = replicate(n = mc_sim , expr = set5(

n = n_vec[i],

Xc_a = 3, Xc_b = 2,

ec_a = 0, ec_b = 1.5,

Xr_a = 0.5, Xr_b = 1,

er_a = 0, er_b = 1 / 16
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)),

Setting6 = replicate(n = mc_sim , expr = set6(

n = n_vec[i],

Xc_a = 8, Xc_b = 2,

ec_a = 0, ec_b = 1,

Xr_a = 0, Xr_b = 1,

er_a = 0, er_b = 0.25

)),

Setting7 = replicate(n = mc_sim , expr = set7(

n = n_vec[i],

X1c_a = 5, X1c_b = 3,

X1r_a = NA, X1r_b = NA,

X2c_a = .5, X2c_b = .5,

X2r_a = NA, X2r_b = NA,

X3c_a = 10, X3c_b = 3.5,

X3r_a = 10, X3r_b = 3,

X4c_a = .5, X4c_b = 1.5,

X4r_a = 2.5, X4r_b = 3.5,

X5c_a = 8, X5c_b = 3.5,

X5r_a = 2, X5r_b = 5,

ec_a = 0, ec_b = 1,

er_a = -3, er_b = 15,

tau1_a = 0, tau1_b = .2 ,

tau2_a = 0, tau2_b = .2 ,

un1_a = 0, un1_b = .5,

un2_a = 0, un2_b = .5,

v1_a = 3, v1_b = 2,

v2_a = 1, v2_b = 3

))

)

# Convert the list of simulations into a list
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# of data frames

list_sims_df <- lapply(list_sims , data.frame)

# Convert each element of the list of data frames

# into a nested

# list of data frames

list_sims_df2 <- lapply(list_sims_df , function(x) {

lapply(x, data.frame)

})

# Call the auto_models function on each nested list

# of data frames and store the results in a list

set.seed (1)

list_models <- lapply(list_sims_df2 , function(x) {

lapply(x, auto_models)

})

# Store the results for the i-th simulation in the i-th

# element of the all_res list

all_res [[i]] <- list_res(list_models)

}

all_res

Figures (“Settings123 Plot.R”)

This code demonstrates how to create a figure based on the simulated data, using the

setting and parameters described in Section 5.2. The file generates figures for settings 1, 2,

and 3, while Settings456 Plot.R generates figures for settings 4, 5, and 6. The example

provided includes only the essential code to generate Figure 5.1.

# Load necessary packages

library("ggplot2")
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library("dplyr")

library("IntRF")

library("ggpubr")

library("scales")

library("gridExtra")

source("./Analysis/Simulation/Settings.R")

set.seed (1)

# Setting 1 data simulating

df_set1 <- set1(

n = 500,

Xc_a = 12, Xc_b = 3,

ec_a = 0, ec_b = 3 / 4,

Xr_a = 1, Xr_b = 3,

er_a = 0, er_b = 1 / 20

)

# Plot Y vs X

set1_p <- IntRF::int_plot(

# Select relevant columns from prices dataframe

int_data = df_set1 %>%

dplyr::select(Yc, Yr, Xc, Xr),

title = "Setting1",

xlabel = "[X]",

ylabel = "[Y]"

) +

ggplot2::scale_x_continuous(

limits = c(

# Set lower limit of x-axis

min(df_set1$Xc - df_set1$Xr) - 1,

# Set upper limit of x-axis

max(df_set1$Xc + df_set1$Xr) + 1

),

# Set number of x-axis breaks to 8
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n.breaks = 8,

# Wrap x-axis labels to fit within 6 lines

labels = scales::label_wrap (6)

) +

ggplot2::scale_y_continuous(

limits = c(

# Set lower limit of y-axis

min(df_set1$Yc - df_set1$Yr) - 1,

# Set upper limit of y-axis

max(df_set1$Yc + df_set1$Yr) + 1

),

# Set number of y-axis breaks to 8

n.breaks = 8

) +

# Set title and text size of x and y axis

theme(

axis.title.x = element_text(size = 16),

axis.text.x = element_text(size = 14),

axis.title.y = element_text(size = 16),

axis.text.y = element_text(size = 14)

)

set1_p

A.2 Real Data: Individual Stocks

A similar process described in Appendix A.1 can be applied to predict the stock prices of

various companies using the DJIA (Dow Jones Industrial Average) as the predictor variable.

The same process is then repeated for predicting the stock prices of Boeing Co. (BA) and

General Electric (GE). Additionally, in Appendix A.3, the prediction of DJIA using JPM,

BA, GE, PG, and MSFT as predictors is also discussed.
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Plotting Data (“Stock Plot.R”)

Specifically, this example, is training and evaluating models to predict the stock price

of JPMorgan Chase & Co. (JPM).

# Load necessary packages

library("ggplot2")

library("dplyr")

library("IntRF")

library("ggpubr")

library("scales")

library("gridExtra")

# Plot JPM vs DJI

jpm_p <- IntRF::int_plot(

# Select relevant columns from prices dataframe

int_data = prices %>%

dplyr::select(c.JPM , r.JPM , c.DJI , r.DJI),

title = "",

xlabel = "[DJI]",

ylabel = "[JPM]"

) +

ggplot2::scale_x_continuous(

limits = c(

# Set lower limit of x-axis

min(prices$c.DJI) - 250,

# Set upper limit of x-axis

max(prices$c.DJI) + 250

),

# Set number of x-axis breaks to 10

n.breaks = 6,

# Wrap x-axis labels to fit within 6 lines

labels = scales::label_wrap (6)
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) +

ggplot2::scale_y_continuous(

limits = c(

# Set lower limit of y-axis

min(prices$c.JPM) - 10,

# Set upper limit of y-axis

max(prices$c.JPM) + 10

),

# Set number of y-axis breaks to 8

n.breaks = 8

) +

# Set title and text size of x and y axis

theme(

axis.title.x = element_text(size = 16),

axis.text.x = element_text(size = 14),

axis.title.y = element_text(size = 16),

axis.text.y = element_text(size = 14)

)

jpm_p

# export jpm

pdf(file = "./Analysis/Real/figs/jpm_fig.pdf")

jpm_p +

theme(aspect.ratio =1)

dev.off ()

Building the Models (“Predicting Stocks.R”)

Specifically, this example, is training and evaluating models to predict the stock price

of JPMorgan Chase & Co. (JPM).

# Sourcing functions required
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source("./Functions/CCRM_Pred.R")

# stock locations

# DJI : 1,7

# JPM : 4, 10

# BA : 5, 11

# GE : 2, 8

# Define the stock locations for each stock in the dataset

# JPM ~ DJI

# Data from Stock_Code.R

# train data

# Load in the training and testing data for the selected

# stock

price_train_jpm <- price_train_stand[c(4, 10, 1, 7)]

price_test_jpm <- price_test_stand[c(4, 10, 1, 7)]

# Split the training data into the response variable (price)

# and predictor variables (center and range values)

yprice_train_jpm <- price_train_jpm[c(1, 2)]

xcprice_train_jpm <- price_train_jpm [3]

xrprice_train_jpm <- price_train_jpm [4]

# Split the testing data into the response variable (price)

# and predictor variables (center and range values)

yprice_test_jpm <- price_test_jpm[c(1, 2)]

# Int RF

# Package
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# Use the IntRF package to train a RF model for

# interval regression

set.seed (1)

int_price_rf_jpm <- IntRF::intrf(

int_resp = yprice_train_jpm ,

cent_pred = xcprice_train_jpm ,

ran_pred = xrprice_train_jpm ,

train = price_train_jpm ,

test = price_test_jpm ,

mtry_int = ncol(xcprice_train_jpm)

)

# Extract the results from the model

res_jpm <- int_price_rf_jpm$Results

# Calculate accuracy metrics for the model

met_irf_jpm <- IntRF::acc_met(

cent_pred = res_jpm$center_pred ,

cent_act = res_jpm$center_actual ,

ran_pred = res_jpm$range_pred ,

ran_act = res_jpm$range_actual ,

yprice_train_jpm

)

# Output the accuracy metrics

met_irf_jpm

# Int Tree

# IRT

# Use the mvpart function to train an interval regression



54

# tree model

set.seed (1)

ydat_jpm <- price_train_stand[names(yprice_train_jpm )]

irt_jpm <- IntRF::mvpart(data.matrix(ydat_jpm) ~ .,

data = price_train_jpm ,

plot.add = FALSE ,

xv = "none"

)

# Make predictions using the model on the testing data

ctpred_jpm <- predict(irt_jpm ,

newdata = price_test_jpm ,

type = "matrix"

)[, 1]

rtpred_jpm <- predict(irt_jpm ,

newdata = price_test_jpm ,

type = "matrix"

)[, 2]

# Calculate accuracy metrics for the model

met_tree_jpm <- IntRF::acc_met(

ctpred_jpm ,

t(yprice_test_jpm [1]),

rtpred_jpm ,

t(yprice_test_jpm [2]),

yprice_train_jpm

)

# Output the accuracy metrics

met_tree_jpm

# RF model
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set.seed (1)

# create RF model for JPM stock price using

# all other variables

# except actual stock price

crf_jpm <- randomForest::randomForest(c.JPM ~ .,

data = dplyr::select(price_train_jpm , -c(r.JPM))

)

set.seed (1)

# create RF model for JPM stock price using all

# other variables

# except actual stock price

rrf_jpm <- randomForest::randomForest(r.JPM ~ .,

data = dplyr::select(price_train_jpm , -c(c.JPM))

)

# Make predictions using the model on the testing data

pcrf_jpm <- predict(crf_jpm , price_test_jpm)

prrf_jpm <- predict(rrf_jpm , price_test_jpm)

# calculate accuracy metrics for the RF models

met_rf_jpm <- IntRF::acc_met(

pcrf_jpm ,

t(yprice_test_jpm [1]),

prrf_jpm ,

t(yprice_test_jpm [2]),

yprice_train_jpm

)

# output accuracy metrics for RF models

met_rf_jpm
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# ccrm model

set.seed (1)

# create CCRM model for the JPM stock price as a function

# of the DJI stock price

simccrm_jpm <- iRegression::ccrm("c.JPM~c.DJI",

"r.JPM~r.DJI",

data = price_train_jpm

)

# predict JPM stock price using the CCRM model

pred_ccrm_jpm <- ccrm_pred(

cent_coef = simccrm_jpm [[1]] ,

cent_pred = as.matrix(price_test_jpm [3]),

ran_coef = simccrm_jpm [[5]] ,

ran_pred = as.matrix(price_test_jpm [4])

)

# calculate accuracy metrics for the CCRM model

met_ccrm_jpm <- IntRF::acc_met(

t(pred_ccrm_jpm$center_pred),

t(yprice_test_jpm [1]),

t(pred_ccrm_jpm$range_pred),

t(yprice_test_jpm [2]),

yprice_train_jpm

)

# combine accuracy metrics from all models into a single

# data frame for comparison

combined_res_jpm <- data.frame(

IRF = t(met_irf_jpm),
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IRT = t(met_tree_jpm),

RF = t(met_rf_jpm),

CCRM = t(met_ccrm_jpm)

)

combined_res_jpm

A.3 Real Data: DJIA

This process is described in Appendices A.1 and A.2.

Model Metrics (“Predicting DJI.R”)

# Data from Stock_Code.R

# Load required packages and set seed value

library(IntRF)

library(randomForest)

library(iRegression)

# Perform intrf model for Int RF and obtain results

set.seed (1)

int_price_rf <- IntRF::intrf(

int_resp = yprice_train ,

cent_pred = xcprice_train ,

ran_pred = xrprice_train ,

train = price_train_stand ,

test = price_test_stand ,

mtry_int = ncol(xcprice_train)

)

res <- int_price_rf$Results
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# Obtain accuracy metrics for Int RF

met_irf_dji <- IntRF::acc_met(

cent_pred = res$center_pred ,

cent_act = res$center_actual ,

ran_pred = res$range_pred ,

ran_act = res$range_actual ,

yprice_train

)

# Print output for Int RF accuracy metrics

met_irf_dji

# Perform mvpart model for Int Tree and obtain

# predictions

set.seed (1)

ydat <- price_train_stand[names(yprice_train )]

irt <- IntRF::mvpart(data.matrix(ydat) ~ .,

data = price_train_stand ,

plot.add = FALSE ,

xv = "none"

)

ctpred <- predict(irt ,

newdata = price_test_stand ,

type = "matrix"

)[, 1]

rtpred <- predict(irt ,

newdata = price_test_stand ,

type = "matrix"

)[, 2]
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# Obtain accuracy metrics for Int Tree

met_tree_dji <- IntRF::acc_met(

ctpred ,

t(yprice_test [1]),

rtpred ,

t(yprice_test [2]),

yprice_train

)

# Print output for Int Tree accuracy metrics

met_tree_dji

# Perform randomForests model for RF and obtain

# predictions

set.seed (1)

crf <- randomForest(c.DJI ~ .,

data = dplyr::select(price_train_stand , -c(r.DJI))

)

rrf <- randomForest(r.DJI ~ .,

data = dplyr::select(price_train_stand , -c(c.DJI))

)

pcrf <- predict(crf , price_test_stand)

prrf <- predict(rrf , price_test_stand)

# Obtain accuracy metrics for RF

met_rf_dji <- acc_met(

pcrf ,

t(yprice_test [1]),

prrf ,

t(yprice_test [2]),

yprice_train

)
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# Print output for RF accuracy metrics

met_rf_dji

# Perform ccrm model and obtain predictions

set.seed (1)

simccrm <- ccrm("c.DJI~c.GE+c.PG+c.JPM+c.BA+c.MSFT",

"r.DJI~r.GE+r.PG+r.JPM+r.BA+r.MSFT",

data = price_train_stand

)

pred_ccrm <- ccrm_pred(

cent_coef = simccrm [[1]] ,

cent_pred = as.matrix(price_test_stand [2:6]),

ran_coef = simccrm [[5]] ,

ran_pred = as.matrix(price_test_stand [8:12])

)

# Obtain accuracy metrics for ccrm

met_ccrm_dji <- acc_met(

pred_ccrm$center_pred ,

t(yprice_test [1]),

pred_ccrm$range_pred ,

t(yprice_test [2]),

yprice_train

)

# Combine accuracy metrics from all models into

# a single dataframe

combined_res_dji <- data.frame(

IRF = t(met_irf_dji),
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IRT = t(met_tree_dji),

RF = t(met_rf_dji),

CCRM = t(met_ccrm_dji)

)

# output results

round(combined_res_dji , 3)
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