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1 Abstract 4 

The use of artificial intelligence (AI) is becoming more common in landscape architecture. New 5 

methods and applications are proliferating yearly and are being touted as viable tools for research 6 

and practice. While researchers have conducted assessments of the state of AI-driven research 7 

and practice in allied disciplines, there is a knowledge gap for the same in landscape architecture. 8 

This literature review begins to fill the gap by searching and evaluating studies specifically 9 

focused on AI and disciplinary umbrella terms (landscape architecture, landscape planning, and 10 

landscape design). It includes searches of academic databases and industry publications that 11 

combine these umbrella terms with the main subfields of artificial intelligence as a discipline 12 

(machine learning, knowledge-based systems, computer vision, robotics, natural language 13 

processing, optimization). Initial searches returned over 600 articles, which were then filtered for 14 

relevance, resulting in about one hundred articles that were reviewed in depth. The work 15 

highlights trends in dissemination, synthesizes emergent AI-Landscape (AI-LA) themes, and 16 

argues for unifying dissemination and compilation in research and practice so as not to lose 17 

relevant AI-LA knowledge and be caught off guard in the built environment profession’s next 18 

technological leap. 19 
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1 Introduction 23 

Leaders in landscape architecture have declared the need to consolidate data and 24 

expertise from disciplines such as engineering, land planning, agriculture, and ecological 25 

sciences to give “artistic physical form to modern ideals of equity, sustainability, resilience, and 26 

democracy” (ASLA Is Committed to Climate Action, n.d.; New Landscape Declaration, 2016). 27 

Such an assertion is fitting since landscape architects see their profession as an intersection 28 

among all others dealing with spatial issues (Kullmann, 2016). As designers of all types of 29 

exterior spaces, landscape architects’ work involves near-constant coordination with experts in 30 

allied fields. This is especially evident in the current state of practice, where projects are 31 

increasingly scaling up in scope to meet open-ended, territorial scale challenges (Bryant, 2021; 32 

Polk, 2015). Yet, for all the diverse ways designers engage across disciplines, most simply lack 33 

the time, knowledge, or background to account for the sheer number of ‘design problem’ 34 

permutations arising from multifaceted issues such as climate change resilience, large-scale 35 

ecological degradation, and social equity. To this end, there is an emerging discussion around the 36 

potential of artificial intelligence (AI) to address such limitations. The discussion includes topics 37 

like laying a historical groundwork for AI (Z. Zhang, 2020), current and potential AI 38 

applications to landscape architecture (Cantrell et al., 2021), proposing machine learning primers 39 

and ontologies (Alina et al., 2016; Fernberg et al., 2021; Tebyanian, 2020), gauging the potential 40 

for AI in coastal adaptation (Z. Zhang & Bowes, 2019), and conceptualizing an autonomous 41 

post-human ecological infrastructure (Cantrell, Martin, et al., 2017). 42 

Still, AI-focused literature remains underdeveloped in landscape architecture, leaving 43 

knowledge seekers to turn to adjacent disciplines where the research is less nascent. The majority 44 

of current research in AI systems for landscape design or planning focuses on either conceptual 45 
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exercises or somewhat singular tools for specific applications. Even if current explorations evoke 46 

broad observations about AI in landscape, a lack of compilation presents key unanswered 47 

questions:  48 

1) What exactly do we mean when we say AI in the context of landscape architecture?  49 

2) How has AI been used in landscape architecture research/practice, if at all? And 50 

3) Where are our current knowledge gaps with regard to AI? 51 

This literature review seeks to lay a foundation to begin answering these questions. In it, 52 

we: 1) establish a scope of review for landscape architecture and its subfields, 2) identify a 53 

framework for artificial intelligence as a research area within which to embed the landscape 54 

disciplines (i.e. the definition of AI as a discipline along with its sub-fields), 3) combine those 55 

terms to perform a literature search using online databases, and 4) after refining results, we 56 

provide a summary of trends, highlight emergent themes, and present the need for a future AI-57 

Landscape (AI-LA) research framework. 58 

2 Defining Review Parameters 59 

2.1 “Terms” of Landscape Architecture 60 

Landscape architecture practice is interdisciplinary, so it can often be difficult to 61 

delineate what falls under its purview. Grading, for instance, is a design exercise that can 62 

reasonably be claimed by both engineers and landscape architects but is often taught, talked 63 

about, and executed quite differently by each discipline. The same holds for many activities 64 

landscape architects carry out (e.g. stormwater management, construction documentation, 65 

landscape history, etc.). We recognize defining the scope of practice within landscape 66 

architecture is integral for a comprehensive and systematic review of AI’s pervasion into the 67 

entire discipline—and that such an undertaking could be enhanced by using established 68 
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frameworks such as the Landscape Architecture Body of Knowledge (LABOK) survey findings 69 

(2004) or Langley et al.’s knowledge domains of landscape architecture (2018). However, the 70 

combination of these multi-level conceptual frameworks with the scope of artificial intelligence 71 

is extremely vast. There have indeed been efforts to frame the context of the AI-LA knowledge 72 

base (Cantrell et al., 2021; Tebyanian, 2020; Z. Zhang, 2020), but these works did not intend to 73 

comprehensively review and formalize an AI-LA framework. Thus, for this review, we first 74 

needed to establish a simple but encompassing disciplinary scope as the foundation for this 75 

framework. We chose to adopt Ogrin’s definition of landscape architecture as a discipline which 76 

comprises design and planning as two distinct subfields of creative work (1994). Hence our 77 

scope uses the three disciplinary terms from Ogrin: landscape architecture, landscape design, and 78 

landscape planning. These are often used interchangeably, and though sometimes seen as distinct 79 

in detailed discussions of practice, they can confidently be lumped into a representative set that 80 

represents the same discipline for the purposes of this review (von Haaren et al., 2014).  81 

2.2 Artificial Intelligence and Applicable Subfields 82 

The Oxford English Dictionary defines the term artificial intelligence (or AI) as “the 83 

theory and development of computer systems able to perform tasks that normally require human 84 

intelligence, such as visual perception, speech recognition, decision-making, and translation 85 

between languages.” In the context of the AEC industry, the is often used colloquially as a catch-86 

all for highly technical or computational approaches toward design and automation. The term 87 

machine learning is also used in common speak, often interchangeably with AI, even though it 88 

technically represents only a subset of the AI field. The scope of AI is extremely vast, which has 89 

led to the derivation of several subfields or branches. Here we outline some of the more common 90 

subfields seen in literature to provide a framework for how we conceptualize the contributions 91 
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and application of AI within landscape architecture. The primary subfields we explore in this 92 

paper include: 1) Machine Learning, 2) Knowledge-based Systems, 3) Computer Vision, 4) 93 

Robotics, 5) Natural Language Processing and 6) Optimization (Abioye et al., 2021; Public 94 

Health Agency Canada, 2020). We acknowledge there is a range of other proposed subfields 95 

(Chiabai et al., 2018; Mata et al., 2018; Zhu & Yan, 2015), but for this review we chose these six 96 

as they are the most applicable to landscape architecture.  97 

Machine learning. Machine Learning is one branch of AI, but the techniques often underpin a 98 

range of different subfields. The term itself may often be used as a synonym for artificial 99 

intelligence, perhaps because it is not well understood by non-experts or the diversity of AI 100 

subfields is not well understood (and ever changing). In simple terms, machine learning focuses 101 

on using statistical methods and models that can redefine and refine themselves to “learn.” 102 

Learning is done through supervised, unsupervised or reinforcement learning. Supervised 103 

learning necessitates a system to observe data, conduct analyses, and output to improve its 104 

understanding of the analyzed phenomenon (Bzdok et al., 2018; Kotsiantis et al., 2007). 105 

Unsupervised also uses statistical techniques which are suited to discovering patterns without 106 

outputs or interaction with another agent such as a human or other computer system (Hastie et 107 

al., 2009; Tarca et al., 2007). Reinforcement learning includes techniques where the computer 108 

agent is intended to explore a set of actions or situations and then learn or anticipate outcomes 109 

from different choice options (Sutton, 1992); the system learns the relationship between 110 

consequence and action (Chandak et al., 2019; Huang, 2021). A simple example of machine 111 

learning is an online application that learns purchasing habits and begins to make 112 

recommendations based on your own patterns and those of individuals like you. 113 
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Knowledge-based Systems (KBS). Knowledge-based systems are focused on using existing 114 

knowledge to enable computational decision making. This subfield aims to develop inferences 115 

about knowledge and enable user interaction to support, supplement or engage complex systems 116 

(Akerkar & Sajja, 2009). These systems may require constructed representations of knowledge 117 

(e.g. that use an ontology) with a particular focus on the relationship of the meaning of elements 118 

within the set of knowledge. A KBS is an agent that adapts or creates inferences (Bergmann et 119 

al., 2005) based on existing knowledge. While these systems have existed for some time, they 120 

are not as popular given newer development in AI (Abdullah et al., 2006). 121 

Computer Vision. Computer vision may be one of the more popular known AI techniques 122 

within landscape architecture because of the subfield’s pursuits of simulating human perception 123 

of visual elements (Szeliski, 2010). There are a range of approaches used in this subfield, with 124 

some of the more recent oriented toward machine learning approaches. Computer Vision focuses 125 

on pattern recognition (Chen, 2015) and object extraction (Prince, 2012). A popular tool 126 

landscape architects use is Google Lens, which can identify a whole host of plants using 127 

computer vision techniques. 128 

Robotics. Robotics is centered on the use of sensors, often coupled with machine learning (often 129 

reinforcement) and computer vision, to automate tasks. Robotics can encompass technology such 130 

as autonomous vehicles (Faisal et al., 2019) and lawnmowers (Wasif, 2011), as well as systems 131 

to irrigate and weed agricultural lands (Talaviya et al., 2020). Robotics can serve to replace 132 

human actions but can also offer new forms of collaboration (Vrontis et al., 2022). 133 

Natural Language Processing (NLP). Natural language processing is another subfield that 134 

focuses on learning language and then recreating it to generate meaningful responses or outputs. 135 

NLP uses a range of techniques to form an understanding of language, including grammar and 136 
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lexicon, learning and language processing (statistical techniques), constructs and representation 137 

(meaning and action), and techniques to manipulate language and learn the appropriateness of 138 

those manipulations (Chowdhary, 2020). 139 

Optimization. Optimization is another subfield within AI, that may often be misrepresented 140 

within landscape architecture. While designers often attempt to optimize a given space, or 141 

develop parametric models to aid in design, AI approaches necessitate some kind of learning or 142 

algorithm to support the optimization. An important lesson here is that AI approaches usually 143 

require a specific delineation of the problem in some quantifiable means. The techniques often 144 

associated with optimization in AI are usually associated with search algorithms (Mirjalili & 145 

Dong, 2020), such as genetic algorithms (Chamberlain & Meitner, 2009; Li et al., 2013), 146 

simulated annealing (Rutenbar, 1989). 147 

Importantly for all the subfields identified, the quantitative expression of constraints, 148 

goals, inputs and outputs (when applicable) must be well defined. Fernberg and Chamberlain 149 

(Fernberg et al., 2021) state that nearly every application of AI requires creating ontologies, 150 

methods, data mining or expert-based learning and developing statistical approaches to facilitate 151 

reasoning and may be done explicitly or implicitly. While humans play a range of defining roles 152 

in AI, the key is that the machine is the learning agent. Learning happens, typically, with 153 

abundant data, a clear language, and a reliable set of rules to follow. 154 

3 Methodology 155 

This section lays out a protocol for implementing our systematic review. In it, we 156 

describe the process for searching, screening, and selecting literature that is sufficiently relevant 157 

to the research objectives. Landscape Architecture encompasses activities and processes from a 158 

range of disciplines. Many LA-related fields already have extensive AI-related literature reviews, 159 
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such as urban forestry (César de Lima Araújo et al., 2021), urban design and planning (Abusaada 160 

& Elshater, 2021; L. Yang et al., 2022), transportation (Abduljabbar et al., 2019), land use 161 

planning (Chaturvedi & de Vries, 2021), horticulture (B. Yang & Xu, 2021), construction 162 

(Abioye et al., 2021) and a range of others. For this review, we narrowed articles to specific 163 

disciplinary keywords of Landscape Architecture, Design and Planning. 164 

To be included in our review, articles must exist within a searchable English-based 165 

literature database. All years of publication were included, though the recency of AI in literature 166 

is relatively new (post 2000s). The initial literature search utilized three databases: Scopus, 167 

IEEE, and JSTOR. Each of these was chosen to provide expansive interdisciplinary coverage 168 

across the arts, humanities, and sciences—all of which are integral in some way to the landscape 169 

and AI fields. JSTOR and a digital humanities affiliate called Constellate were used to find 170 

landscape architecture industry insights, as JSTOR currently houses every issue of the official 171 

periodical for the American Society of Landscape Architects (ASLA)—currently operating with 172 

the moniker Landscape Architecture Magazine or LAM—from its first publication in 1910 up 173 

until 2015. The most recent issues of LAM, from 2016 to the present, were searched and 174 

screened using keyword searches on the publication website, URL 175 

https://landscapearchitecturemagazine.org/. Hence, SCOPUS was chosen as the main data 176 

source, while the others were used for full article download and data validation. 177 

3.1 Search Strategy 178 

The search terms comprised two lists, one encompassing all relevant AI techniques and 179 

methods (and spelling modifiers) and one representing what we deem to be core landscape 180 

discipline terms, organized into two single-line text strings then combined with the Boolean 181 

operator AND. These terms were adapted from previous literature reviews of AI (Abioye et al., 182 

https://landscapearchitecturemagazine.org/


9 
 

2021; Emaminejad & Akhavian, 2022; Tebyanian, 2020; Wu & Silva, 2010; Yigitcanlar et al., 183 

2020) with some additional terms we added in order to be more exhaustive. We did not limit 184 

applications of AI. The combination is as follows:  185 

Line 1 (AI Search Terms): “Robotics” OR “Computer vision”, OR “Machine learning” OR 186 

“Expert System” OR “Knowledge-based Systems” OR “Optimisation” OR “Optimization” OR 187 

“Natural Language Processing” OR “Artificial Intelligence” OR “K-Means Clustering” OR 188 

“Hierarchical Clustering” OR “Fuzzy Clustering” OR “Model-based Clustering” OR “Linear 189 

Discriminant Analysis” OR “Monte Carlo” OR “Deep Belief” OR “Deep Boltzmann” OR “Deep 190 

Learning” OR “Convolutional Neural Network” OR “Stacked Autoencoders” OR “Recurrent 191 

Neural Network” OR “Deep Neural Network” OR “Speech processing” OR “Evolutionary 192 

computing” OR “Evolutionary Algorithms” OR “Swarm Intelligence” OR “Discrete 193 

Optimisation” OR “Convex Optimisation” OR “Discrete Optimization” OR “Convex 194 

Optimization” OR “Automated Planning” OR “Ontology” OR “Automated Scheduling” 195 

AND 196 

Line 2 (Disciplinary Search Terms): “Landscape Architect*” OR “Landscape Design*” OR 197 

“Landscape Plan*” 198 

Scopus initially returned 528 results and IEEE returned 67. The search query could not be 199 

effectively executed in the JSTOR database due to character limitations and a catalog method 200 

which returned too many irrelevant results. We attempted to custom code our search using URL 201 

hacks, but the results were still highly problematic. To ensure due diligence and not leave a 202 

resource entirely, we attempted a simple Boolean-limited search using “Landscape Architecture” 203 

and “Artificial Intelligence”. The initial return was >6000 results, and a quick browse of the first 204 
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several dozens of these results found the included articles to be completely irrelevant to the topic. 205 

However, after doing an advanced search in which the publication title had to contain the word 206 

“landscape”, we were able to narrow the results to a return of 56 articles, three of which 207 

contained a directly relevant subject matter (Lindhult, 1988; McCarthy & Portner, 1980; von 208 

Wodtke, 1988). While these articles are not included in the formal results of our systematic 209 

search, they will be touched on in the Discussion section. Furthermore, to account for other 210 

sources that may not have been included in the systematic search process, we investigated 211 

Google Scholar, Google. On Google Scholar and Google (web search) we used the same two 212 

Boolean-limited search terms as used with JSTOR. These did not result in any substantially 213 

different outcomes. Where possible, we included articles in the discussion. 214 

3.2 Data Collection 215 

Metadata and bibliographic information on the initial search results were exportable from 216 

all databases and done so in two ways. The first was to export the saved searches in .RIS format 217 

to Zotero reference management software, where each article’s bibliographic information along 218 

with links to full text were organized into database-specific folders. The second data collection 219 

method was an export of the saved searches into .CSV files, one from each database. The data 220 

were then cleaned and combined into a common attribution structure joined into a single .CSV 221 

file, which served as the principal dataset for our review and analyses. A cleaned table of the 222 

data is included in Supplemental Materials. 223 

3.3 Study Selection Coding 224 

While the initial search returned a somewhat digestible literature chunk, it also returned 225 

many duplicates and articles which seemed irrelevant to the purposes of this review—either 226 

because the work did not constitute a true investigation of AI, did not utilize AI methods, or did 227 



11 
 

not reasonably fall into the scope of landscape architecture/design or landscape planning, despite 228 

the use of the Boolean operators to narrow the search.  229 

To decide whether a study met the inclusion criteria of the review, we created a Python 230 

script to further refine our master database. The code iterated through each item, by combining 231 

the title, abstract and keywords and then identifying the frequency of keywords used that 232 

matched our search terms. We used the same disciplinary search terms (“landscape architecture”, 233 

“landscape design” and “landscape planning”) and then separated each of the subfields of AI 234 

with their specific terms (each term listed was in quotes and shortened words utilized * for 235 

Boolean limiting): 236 

• Machine Learning: machine learning, supervised learning, unsupervised learning, 237 

reinforcement learning, deep learning, k-means clustering, hierarchical clustering, fuzzy 238 

clustering, model-based clustering, linear discriminant analysis, monte carlo, deep belief, 239 

deep boltzmann, deep learning, convolutional neural network, stacked autoencoders, 240 

recurrent neural network, deep neural network; 241 

• Knowledge-based Systems: knowledge-based system, expert system, intelligent agent, 242 

case-based reasoning, linked system, ontology; 243 

• Computer Vision: computer vision, scene reconstruction, motion analysis, image 244 

restoration, recognition; 245 

• Robotics: robotic, climbing, actuation, locomotion; 246 

• Natural Language Processing: natural language processing, speech processing, text 247 

mining, text analy; 248 
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• Optimization: optimiz, optimis, discrete optimi, convex optimi, evolutionary comput, 249 

evolutionary algorithm, genetic algorithm, differential evolution, particle swarm, swarm 250 

intelligence. 251 

The script then coded each literature with the number of instances each of the disciplinary 252 

terms and subfield keywords indicated in the matched fields, as well as a general search for 253 

“artificial intelligence.” We further refined our data by eliminating any instances where no 254 

keywords were present. This process provided a validation of the database search, by offering 255 

complete control over the included literature. Further, as the script processed each literature row, 256 

it identified if a duplicate article was found using year + title, since a DOI was not always 257 

present. Duplicates were denoted in a separate file, then the authors manually confirmed and 258 

removed them (85 in total). 259 

Once all literature was coded, we then manually coded all dissemination venues (journal, 260 

proceeding, book, etc.) for: 1) alignment to the disciplinary search terms and 2) review rigor of 261 

the dissemination venue. Alignment of the field consisted of journals that are predominately 262 

associated with the discipline, including adjacent journals or proceedings. For instance, venues 263 

primarily aimed toward computer science or engineering were considered a low alignment for 264 

LA. Further, review rigor was evaluated based on the reputation of the journal, including impact 265 

scores (factors, cite score, etc.) and the review process. Coded values included: 1 = high 266 

alignment and review rigor, 2 = combination of low/high or mid for both, and 3 = low alignment 267 

and review rigor. These dissemination values (1-3) were then referenced with each article. The 268 

full list of all venues and the tier scoring is provided in Supplemental Materials. 269 

The resulting master dataset now provided a means to filter literature using: 270 
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• Appropriateness of the venue and review rigor; 271 

• Alignment with one or more of the disciplinary terms; 272 

• An AI-related keyword. 273 

The results and trends provided are delineated from different filtering mechanisms used. 274 

The bulk of our commentary and detailed review of articles were from those with a score of 1 for 275 

appropriateness of venue and review rigor, which also matched at least one disciplinary and AI 276 

search term. These are referred to as tier 1 articles. We reviewed each filtered result and coded 277 

them further across two additional criteria: degree of contribution and relevancy to the landscape 278 

search terms. For the degree of contribution, we coded one of the following: 279 

• Mention: merely mentions a disciplinary and AI term 280 

• Discourse: theoretical or commentary  281 

• Application: applies AI technique or approach 282 

• Creation: develops new technique or heuristic 283 

For relevancy, we denoted if an article seemed central to activities or knowledge related 284 

to the landscape architecture discipline. There were instances where we recoded an article that 285 

may have had a landscape-oriented search term but was completely irrelevant to AI, or vice 286 

versa. Broader trends metrics include articles with a score of 2-3 for appropriateness of venue 287 

and review rigor. These articles were not reviewed in depth and are referenced as tier 2 for the 288 

purposes of this literature review. Tier 2 does not necessarily mean the contribution is of less 289 

value, particularly if the article aligns primarily with other fields. 290 

Further, we noted that articles with terms aligned with optimization were often not AI-291 

related, instead using the term to describe other quantitative or qualitative techniques. When used 292 
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quantitatively, optimization overwhelmingly referred to a linear or stochastic technique to 293 

optimize a space or design, typically with a set of environmental variables. Additionally, some 294 

optimization articles focus on parametric modeling with mentions of optimization, but again 295 

were clearly focused on the optimization of the model or design element without a coupled AI-296 

approach. We anticipate that several articles in tier 2 may be aligned with optimization, but not 297 

with AI. After completing our search, we filtered all disciplinary results where optimization was 298 

indicated without any other AI keyword. We then read through all titles to identify potential 299 

articles that likely used AI techniques but may have not stated this explicitly or used a term that 300 

may have been missed by our search terms. Any article we suspected may have used AI-coupled 301 

approaches were flagged (roughly a dozen). Unfortunately, there precisely delineating the degree 302 

to which AI is embedded across all optimization articles is nearly impossible. This is because 303 

every article would need to be read in-depth (some of which are unavailable in full text) and 304 

others with substantial interpretation (many have inadequate documentation of methods). 305 

4 Review Results and Trends for AI-LA Applications 306 

4.1 Results of Literature Review 307 

A total of 600 articles were identified that met both the landscape keyword requirement 308 

and the AI keyword requirement. These were published across over 300 different venues ranging 309 

from top-tier journals, conference proceedings, individual university publications and book 310 

publishers. Of the venues, 70 were tier 1 (priority for review), 31 were tier 2, and 207 were tier 3 311 

(with 90% of those receiving the lowest ranking due to applicability to discipline and review 312 

rigor). Of the 600 articles that met the tier 1 filter, 31 were associated with keyword “Landscape 313 

Architecture”, 29 with “Landscape Design” and 150 with “Landscape Planning”, with ten of 314 

these overlapping more than two of these terms. 315 
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Upon reviewing all publications with keywords, the authors identified roughly one 316 

hundred articles that meaningfully apply to the discipline and AI simultaneously and represent 317 

the greater themes in the literature. The vast majority of these were application-based, with a 318 

handful of others oriented towards theoretical or speculative discourse and a very select few 319 

denoting a new advancement or creation.  320 

4.2 Trends 321 

The recent popularity and growth in AI-related works has been substantial. Figure 1 322 

illustrates the rates of publication for each of the three disciplinary keywords. The figure shows 323 

publications from 2000 to the end of November 2022 for all literature that met both AI and 324 

disciplinary terms, as well as those literature published in top tier venues. As the chart indicates, 325 

publications with the term “landscape planning” emerged earlier and was consistently producing 326 

more than the other terms. While this is true for top tier venues, the trend has shifted recently 327 

with “landscape design” emerging with more publications when all non-disciplinary venues and 328 

lower tier venues were considered. From top tier venues, “landscape architecture” and 329 

“landscape design” seem to have a similar output frequency with the latter slightly higher. 330 

Broadly, the data show continued growth in the topic, with an extremely fast rise in publications 331 

when considered all venues. 332 
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 333 

Figure 1: Publication Counts of All Matching Keywords that met both discipline and AI keywords (2000-2022). Lines 334 
show the results across tier 1 ranked dissemination publications (darker lines) and All tiers (lighter colors). X-axis is count of 335 
publications. 336 

Across all three terms, there were 12 publications before 2000, with the first in 1978 that 337 

used a multiple hierarchical clustering method to help create a database of natural resources for 338 

assessment and planning (Frondorf et al., 1978). The articles during this time period were 339 

focused on database development, computer vision techniques and impact assessment. Some 340 

were methodological (primarily within computer science venues) and other were applications 341 

(primarily environmental journals). After 2000, there was a gradual increase in published works, 342 

with the majority of works being published in the five years. In general, publications have 343 

continued to rise across the umbrella landscape terms, with a significant drop during 2014-2016. 344 

The most rapid rise has come since 2016. 345 

It should be noted that in our review, the terms landscape design and planning 346 

incorporated very broad definitions, with landscape design incorporating projects of a range of 347 

areas, while planning was typically oriented toward larger areas. It was also more apparent that 348 
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both landscape design and landscape planning were terms used in other disciplines when they 349 

wanted to mention how their development or application of AI might align with other 350 

disciplines. We noted that landscape architecture was not used as frequently in mentions, even 351 

though the discipline does conduct both design and planning across scales. 352 

We also identified author country affiliation across all publications. In total, we found 353 

791 counts of country affiliations (meaning numerous articles were partnerships with scholars of 354 

more than one country). Twelve countries were identified as having more than 10 affiliations 355 

across all tiers, those countries are shown in Figure 2. Over one-third of the world’s countries, 356 

with representation from all continents, have published something related to our search terms (67 357 

countries). A full list of all affiliations is included in the Supplementary Documentation. The 358 

rapid rise of AI-related publications across all tiers seems to emerge broadly across the world 359 

with Chinese scholars leading this effort. It is important to recognize the substantial diversity of 360 

projects and venues where authors publish – and the proportion of tier 1 to all tiers differs 361 

substantially by country. Of the top 20 countries affiliated two thirds have about half of the 362 

publications in a tier 1 venue, with over half of all countries publishing at least fifty percent of 363 

articles in tier 1 venues. The overall trend indicates a growing interest in AI globally, which may 364 

represent a likely increase in funding related to this work, the expertise necessary to 365 

operationalize AI within the disciplines and partnerships being formed across disciplines. 366 
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 367 

Figure 2: Author Country Affiliations showing the difference of affiliations by tier ranking. 368 

4.3 AI Subfield Prevalence 369 

We conducted an analysis of the distribution of AI techniques within the discipline 370 

(landscape architecture, design and planning). The analysis observed all 600 publications that 371 

returned one or more matching disciplinary keywords and AI keywords (including “artificial 372 

intelligence”). Since artificial intelligence is not a single technique, for the purposes of reporting 373 

here, we eliminated any article that did not mention one of the subtypes of AI. There were 62 374 

instances where only “artificial intelligence” was used as a keyword without any other subtypes 375 

indicated as a keyword. Of the 538 articles remaining, there were 597 total keywords instances 376 

where one of the AI keywords was used (indicating several articles with more than one AI 377 

subtype keyword included). The distribution of the subfields is provided in Figure 3.  378 
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 379 

Figure 3: AI Subfield Distribution Counts of All Matching Keywords (discipline and AI) 380 

Figure 3 demonstrates the vast proportion of works involve machine learning and 381 

optimization, a pattern which mirrors that of other AEC industry disciplines (Abduljabbar et al., 382 

2019; Abioye et al., 2021). We investigated our data further, counting not only whether an article 383 

mentioned a subfield, but also the total frequency of mentions of keywords. It is difficult to make 384 

inferences about the meaning of the frequency of word use, but there is a slight increase in the 385 

use of optimization and machine learning relative to the other subfields. This is likely because 386 

most recent AI advancements have been within the realm of machine learning or optimization, 387 

though this is quickly changing as fields natural language processing, robotics, and computer 388 

vision are making exponential progress (Malone et al., 2020). 389 

As we acknowledged earlier in the Methods, the keyword search for optimization 390 

overestimates the number of contributions to literature in artificial intelligence because 391 

optimization is a term that can be used qualitatively and parametrically where automated 392 

learning is not central to the process but could be replaced with a stochastic or recursive 393 

algorithm without learning. Subsequently, without having access to full text for all articles, we 394 

conducted a review of titles and keywords manually to identify instances where optimization was 395 

clearly indicating an AI technique. We found less than 5% of the optimization articles fit this 396 
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criterion, but even after reviewing articles we could access in full text, it was not always clear if 397 

their methods were actually AI because of limited documentation. As such, we have visualized, 398 

in Figure 4, the distribution of all non-optimization techniques to emphasize the role of three 399 

primary techniques used in the field. Likewise, the distribution of these subtypes through the 400 

years (starting in 2000) is provided in Figure 5. This distribution shows a trend in the subtypes 401 

that are associated with publications, suggesting machine learning and computer vision 402 

applications have grown almost tenfold, whereas the other subtypes are dropping in proportion. 403 

This is likely due to the increasing availability of tools and training scholars are using, as well as 404 

the a natural shift away from other techniques (Abdullah et al., 2006). 405 

 406 

Figure 4: Subset of AI Subfield Distribution Counts of All Matching Keywords (discipline and AI) 407 



21 
 

 408 

Figure 5: Temporal distribution and use of different subfields of AI from Figure 4 (only showing 2000-2022) 409 

4.4 Salient Themes in AI-LA Research and Practice 410 

A close reading of the literature reveals significant themes in AI-LA knowledge work. These 411 

themes range from a fine-grained focus on optimizing aesthetics or design process to using self-412 

improving algorithms for large-scale ecological modeling and forecasting, to analyzing policy 413 

efficacy and public sentiment of open spaces through natural language processing. They are as 414 

follows. 415 

Design generation and evaluation. AI-driven applications for landscape design are proliferating 416 

rapidly as landscape practitioners are learning how to extrapolate the technology to improve 417 

design process and products. The review illustrates this occurring across a range of scales, from 418 

Zhang et al.’s computer vision driven classification method for design details of Suzhou-style 419 

private gardens (2021) to Naderi and Raman’s decision trees for pedestrian landscape designs 420 

(Naderi & Raman, 2005), to a slew of academics and professionals’ use of machine learning for 421 

generating concepts at the urban scale (Koma et al., 2017; Raman et al., 2022; Slager & De 422 

Vries, 2013). There is also an emerging trend of AI applications for design evaluation, ranging 423 

from improving machine perception of greenery (Suppakittpaisarn et al., 2022) to the use of 424 
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computer vision, machine learning, and optimization techniques for post-occupancy evaluation 425 

of user experience and ecosystem services in public open spaces (Schlickman, 2020; Wael et al., 426 

2022; X. Wang, 2021; J. Yang et al., 2022). Outside of the results found in academic databases, 427 

our web searches revealed an abundance of AI-powered design applications being introduced or 428 

operated. Some are directly relevant to landscape design, such as Autodesk and Sidewalk Labs’ 429 

tools for urban landscape design (Harrouk, 2020; Hickman, 2020); while others are more general 430 

but have potential use and impact for design. These include apps like NVIDIA Canvas, which 431 

allows users to make rough, color-coded brush strokes and instantly iterate them into landscape 432 

renderings of various styles (Tack, 2021) and AI-powered text-to-image generators like 433 

Midjourney, DALL-E 2, or Stable Diffusion, which create conceptual renderings from user-434 

generated text strings (Brezar, 2022; Dreith, 2022; Monge, 2022).  435 

Perhaps the most obvious pervasion of AI applications into landscape architecture and 436 

design workflows will be through the already burgeoning computational design ecosystem. In 437 

2017, Proving Ground introduced LunchboxML, one of the first published plugins for machine 438 

learning in the Grasshopper/Rhino3D environment (Miller, 2017), and a slew of ML plugins 439 

have proliferated since. The following year, Cantrell and Mekies assembled a group of leading 440 

professionals and academics to conjecture the role of parametric and computational design in 441 

landscape architecture in a series of essays (2018), some of which anticipated a prompt pervasion 442 

of AI applications into design (Ervin, 2018). The review results combined with perusal of non-443 

academic sources suggest such anticipation to be accurate, and also suggest the need for a better 444 

way of documenting the phenomenon. 445 

Ecological modeling. Computational ecology has been prolific in the AI literature, and the 446 

field’s methods have begun to creep into modeling applications tooled for landscape design and 447 
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planning purposes. For instance, Zhang and Bowes trained ML models that outperformed typical 448 

models in real-time predictions of groundwater table response to storm surge in Coastal Virginia 449 

(2019), and in turn posited a more machine-driven landscape monitoring regime. Abdollahi et al. 450 

(2022) devised a new optimization approach to modeling urban ecosystem service zones based 451 

on landscape patterns. On the other side of the urban-rural transect, Benke et al. introduce a 452 

sophisticated application of geovisual analytics (driven by agent-based modeling) to model the 453 

movements of ruminants in the landscape using satellite tracking data. While possibly not central 454 

to the discipline as of yet, the concept of using advanced modeling to predict patterns of grazing 455 

animals over large landscapes could be useful to consider as part of a design process. This is 456 

especially true for animals that may use intentionally-designed large areas. Taking the idea of 457 

machine-driven management further, Goodwin et al. (2022) and van Strien and Grêt-Regamey 458 

(2022) both introduce ML methods for classification of landscape typologies. Taken with the 459 

other autonomous management methods, a provocative question arises of whether AI utilization 460 

could foster a land management regime that is entirely automated from start to finish. 461 

There are also significant AI developments in forest planning and management. Salient 462 

examples from the review include techniques to optimize (here we cite AI-optimization) for 463 

timber harvest (Eyvindson et al., 2018; W.-Y. Liu & Lin, 2015), land use modeling (Lin et al., 464 

2009), habitat-specific restoration (Westphal et al., 2007), measuring forest connectivity (Peng et 465 

al., 2019; Shanthala Devi et al., 2013) and spatial design of forests (G. Liu et al., 2006); machine 466 

learning applications for species distribution modeling (Alegria et al., 2021; Ngarega et al., 467 

2021); modeling and planning for effects of fire in the forest landscape (Miranda et al., 2020; 468 

Stamou et al., 2016; Zema et al., 2020); and modeling complexities of varied forest landscapes 469 

(Ask & Carlsson, 2000; Gärtner et al., 2008; Hummel & Cunningham, 2006). These works 470 
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represent only a sample of what has been done in Forestry—the discipline has been prolifically 471 

producing optimization methods in recent decades (Kaya et al., 2016) and AI has creeped 472 

significantly into urban forestry (César de Lima Araújo et al., 2021)—but are representative of 473 

the research authors deemed relevant to landscape planning or design, whether in titles or 474 

keywords. 475 

Predictive analytics. Simulation and forecasting are another obvious anecdote for trending 476 

methods in landscape and spatial planning, and the review gives evidence for it. Subjects cover 477 

anything from using gaming technology, agent-based modeling (ABM) and AI to simulate 478 

potential pedestrian and social life in urban spaces (Almahmood & Skov-Petersen, 2020) to 479 

forecasting climate and emissions scenarios at the landscape scale (Bergier et al., 2019; Ngarega 480 

et al., 2021), optimization for estimating green infrastructure potential (Dong et al., 2022), and 481 

landscape simulations for improving predictive forest management (Hummel & Cunningham, 482 

2006; Kampichler & Sierdsema, 2018; Stamou et al., 2016). While predictive analytics only had 483 

a handful of results falling under the umbrella term of “landscape planning”, the fact that they 484 

are among the most common methods in AI-driven urban planning, internet of things (IoT) or 485 

Smart Cities conceptualizations (Souza et al., 2019) makes them very relevant to the landscape 486 

disciplines, as many decisions and models will inevitably creep into the operational territory of a 487 

landscape architect or planner focused on urban environments. 488 

Landscape policy evaluation. A number of studies utilized AI methods to model ecosystem 489 

services. For instance, Groot et al. used evolutionary algorithms for generating planning and 490 

design solutions for multi-functional landscapes (2018); Queiroz et al. used k-means clustering 491 

to map and classify ecosystem services bundles (2015); while others modeled socio-ecological 492 

determinants, associations, or natural capital stocks and flows associated with ecosystem services 493 
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(Lorilla et al., 2020, p.; Mouchet et al., 2014; Zank et al., 2016). Other projects utilized AI as 494 

part of evaluating landscape policy outcomes (both potential and actual). These include 495 

Berkhardt et al., who used machine learning to generate land use classifications from remote 496 

sensing imagery in order to measure conformity to and impacts of water conservation measures; 497 

Wang et al.’s Monte Carlo simulation technique to measure cooling and energy saving potentials 498 

of shade trees and urban lawns in Phoenix (2016); clustering methods for prioritization of green 499 

corridor development (Shapira et al., 2013); and development of machine learning tools for 500 

maximizing biodiversity benefits in conservation planning (Thomson et al., 2020). 501 

Sentiment analysis and social media. Sentiment analysis (SA), or sentiment modeling, is a 502 

burgeoning research area that uses text and image data mining and to understand public opinion 503 

of issues, services, or social phenomena, among other things (L. Zhang & Liu, 2017). The 504 

methodology has grown precipitously over the last decade and pervaded across a wide variety of 505 

fields, mostly due to the abundance of user data generated in social media (Yue et al., 2019). The 506 

landscape and urban design disciplines are included in this creep (C. Yang & Liu, 2022), and 507 

review results suggest future growth as public engagement methods evolve among researchers 508 

and practitioners. Much of the work to date centers around public green space satisfaction. Song 509 

et al. utilized computer vision (including face and object detection models) to analyze and 510 

annotate imagery captured from social media platforms to inventory and assess characteristics 511 

such as temporal patterns of park use, social dynamics, activities, and demographics (2022). 512 

Jahani et al. applied artificial intelligence techniques to identify the prevalence of bird sounds in 513 

urban green spaces and their association with mental restoration (2021). Ghermandi et al. 514 

extracted online geolocated photographs from social media platforms then used computer vision 515 

cloud services to characterize human-open space interactions in urban green spaces (2022). 516 
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Wang et al. zoomed out to a regional scale as they employed machine learning techniques to 517 

assess green space satisfaction of 50 parks in Beijing (2021). They also introduced a landscape-518 

feature lexicon to help improve granularity of landscape sentiment analysis. Other studies focus 519 

on measuring sense of place in important cultural or touristic landscapes such as the Las Vegas 520 

Strip, USA (Song et al., 2021) or Mt. Huangshan, China (Chai et al., 2021), or on simply 521 

understanding discrepancies between policy measures and user experience using natural 522 

language processing of user-generated text data (Wartmann et al., 2021). 523 

Knowledge systems for AI-LA applications. Another less prolific but important grouping of 524 

studies are theoretical or speculative pieces touching on the permeation of AI methods into 525 

landscape practice and the need to formulate knowledge frameworks that help designers and 526 

planners adapt to it. Zhang provides a historical sketch of cybernetic environments, positing that 527 

landscape designers have previously had influence on their development and should reclaim that 528 

influence to drive the future (2020). Cantrell et al. argue through synthesis of current 529 

developments that AI’s fast-growing influence presents an epistemological crisis for landscape 530 

architecture and that the profession may need to rethink its authorial role in solving wicked 531 

problems of the day (2021). In accordance with this frame, Fernberg et al. suggest addressing the 532 

crisis involves formalizing operational language into ontological frameworks for AI systems 533 

(2021) and that there is a need to grow more systematic knowledge of AI in landscape 534 

architecture. Exemplary efforts to do so include Tebyanian’s review and primer for machine 535 

learning in urban landscape design (2020) and Ervin’s history and taxonomy of digital landscape 536 

architecture, which gives historical context to computational developments and associated 537 

progression in landscape architecture while providing commentary about terminology and 538 
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definitions—including one of the first references in the literature to the concept of ‘bionic’ 539 

landscapes (2020). 540 

5 Discussion 541 

In carrying out the review process, the authors drew some distinct impressions of the 542 

state of AI in landscape architecture. Broadly, sentiment toward AI within the field is growing 543 

rapidly. This is depicted by the diversity of AI-based implementation across all publications, the 544 

global distribution of work and likely the recognition of the importance of design from within 545 

more computationally centric fields. Yet even amongst the most non-technical, discipline-546 

focused venues for landscape architecture, planning, and design, there appears to be an uptick in 547 

publications. Further, the sophistication and implementation of AI methods may demonstrate the 548 

increased training and access to techniques that are being afforded researchers, as well as 549 

funding opportunities globally. Importantly, researchers within the discipline who are interested 550 

in AI should become aware of the vast interest from other disciplines who want to engage in the 551 

discipline, in particular being aware that much of the growth in the topic is associated with the 552 

term “landscape design”. More broadly, we reflect on Fernberg and Chamberlain (2019) who ask 553 

about the role technology specialists might play within the future of landscape architects. To 554 

what extent will landscape architects (here we speak more broadly toward designers and planners 555 

as well) develop and embrace AI taking agency on how it is implemented within the discipline, 556 

or will technology designers from outside the discipline shape the discipline using AI? 557 

It is important to underscore that the while scope of this review focuses on direct 558 

relevance to the umbrella terms “landscape architecture”, “landscape design”, and “landscape 559 

planning”, the breadth and depth of AI-related research increases significantly with the inclusion 560 

of terms or activities that could feasibly fall under the umbrella of the landscape architecture 561 
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discipline but have greater relevance or recognitions in allied fields or disciplines. For example, 562 

research advancements of automation in agriculture and ecology are longstanding, and now 563 

converging to offer unique solutions to global food security problems. Researchers have seen 564 

success in applications ranging from vegetation biomass and cover estimation in fire-damaged 565 

landscapes (Anderson et al., 2018), measuring forest tree defoliation using smart-phone photos 566 

(Kälin et al., 2019), or using image-based deep learning models for disease detection in 567 

agriculture (Mohanty et al., 2016) to thermal mapping waterbodies, forest monitoring, and aerial 568 

seeding using UAS (Amorós & Ledesma, n.d.; Hogan et al., 2017; Minařík & Langhammer, 569 

2016; Novikov & Ersson, 2019; Sai et al., 2020; Vovchenko et al., 2020). Combining artificial 570 

intelligence (AI) applications in agriculture with emergent methods in agroecology shows the 571 

potential to address pressing problems in 21st century food systems such as climate change 572 

uncertainty, optimizing data flows, or crop efficiency (Barbieri et al., 2018; Cherkauer et al., 573 

2018; Leippert et al., 2020). Most if not all of these applications have some relevance to 574 

landscape architecture or landscape planning—as some designers work in agricultural contexts 575 

or are interested in applications for ecological restoration in their site planning—but the subjects 576 

of the studies in and of themselves may not be considered central to the practices, teachings, or 577 

research of landscape architecture. 578 

Another interesting area of convergence that may appear less obvious is in robotics. 579 

While the literature search only returned one article on robotics in the landscape disciplines—580 

Westort and Shen’s exploration of robot-assisted, in-situ landscape gardening (2017)—the 581 

authors see robotics as an emerging theme. The exponential growth of robotics in the AEC 582 

industry as suggested by Abioye et al. (2021) and Emaminejad and Akhavian (2022), the man 583 

established architectural robotics labs (International Map of Robots in the Creative Industry, 584 
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n.d.), and an uptick in landscape-oriented robotics projects from institutions such as Louisiana 585 

State University and ETH Zurich (Harmon et al., 2022; Hurkxkens et al., 2020, 2022; Johns et 586 

al., 2020)—projects not picked up in the literature search because of term mismatch—there is 587 

clear evidence that this subfield of AI has potential for an outsized impact on the landscape 588 

disciplines, particularly design. 589 

While a distinction between relevant AI research in agriculture or robotics and landscape 590 

design is fairly intuitive, the line becomes thinner when considering fields like urban design and 591 

urban planning, which overlap significantly with landscape disciplines in interests, theory, and 592 

methods (Van Assche et al., 2013). For instance, there are a number of extensive and already 593 

highly cited reviews of artificial intelligence in urban planning subjects such as land planning 594 

dynamics (Wu & Silva, 2010), planning for smart cities and big data (Allam & Dhunny, 2019; 595 

Yigitcanlar et al., 2020), transportation planning (Abduljabbar et al., 2019), and urban forestry 596 

(César de Lima Araújo et al., 2021; Nitoslawski et al., 2019). All of these have direct relevance 597 

to landscape design in urban contexts but would be otherwise unknown in a review that only 598 

includes the keywords “landscape architecture,” “landscape design,” or “landscape plan”—599 

which could in turn mean hundreds of informative studies on landscape-relevant AI applications 600 

go unnoticed from parochial scoping in terms.  601 

Furthermore, the same dilemma applies to the more specialized terms of landscape 602 

architecture. If, for example, a reader would rely on the current study which focuses more 603 

broadly on the discipline, they would consider AI development to be overwhelmingly nascent 604 

with just a few dozen relevant studies. But if they were to perform a search using “stormwater 605 

management,” one of the specializations of which licensed landscape architects are required to 606 

have some knowledge, they would find an abundance of well-established literature on AI 607 



30 
 

applications for stormwater plans (Imran et al., 2013). In the authors’ view, this exercise paints a 608 

complicated picture wherein the vast majority of contributions to AI development relevant to 609 

landscape architecture come from researchers and practitioners outside the discipline; a paradox 610 

where AI-LA research and practice is at once established and emerging, quite possibly to the 611 

ignorance of many in the profession in either sense. Such a notion suggests that practice-based 612 

researchers should be aware that using only discipline-specific terminology in precedent research 613 

could unintentionally blind them to relevant information if they are too parochial in keyword 614 

usage. On the other hand, a more robust output of AI-LA research from within the discipline 615 

could bolster the relevance of its lexicon and help to avoid constant borrowing and fitting of 616 

knowledge from outside it. In other words, the knowledge domain unique to landscape 617 

architecture could effectively build a new appendage that relates to AI and its use in practice and 618 

scholarship. 619 

Given these limitations, we suggest that future work can more comprehensively 620 

illuminate the role of AI in landscape research and practice by expanding the scope of the 621 

research and utilizing a broader but systematic lexicon of disciplinary terms. For example, a 622 

future study could include a full-scale systematic literature review that takes the current work’s 623 

AI search terms protocol and queries literature using established disciplinary frameworks such as 624 

the Landscape Architecture Body of Knowledge (LABOK Task Force, 2004) or the core 625 

landscape knowledge domains developed by Langley et al. (2018). Doing so could likely provide 626 

a more encompassing panorama of AI-related work that includes the facets of the profession that 627 

clearly fall under its purview but do not always carry the labels of “landscape architecture”, 628 

“design”, or “planning”. Besides expanding the terminology, future AI-LA reviews or other 629 

investigations should also seek to bridge the knowledge accessibility gap between academia and 630 
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practice. While the current work illustrates practice-driven AI research and applications as 631 

published in the industry standard Landscape Architecture Magazine and white papers from a 632 

handful of practice-based research labs, the question of how to appropriately (and systematically) 633 

compile knowledge from industry and synthesize it with academic literature remains largely 634 

unsolved. A protocol for addressing this problem will provide mechanisms for consistent and 635 

defensible longitudinal research on AI’s transformations of the profession in coming decades. 636 

As part of this special issue in Landscape Journal, we set out to explore how artificial 637 

intelligence has and is influencing landscape architecture, design, and planning. In conducting 638 

this review one of the more difficult decisions was selecting the bounds of a discipline, that is, by 639 

definition, rather interdisciplinary. Those reading this article are likely to have read and most 640 

certainly will read articles from a variety of different disciplines that relate or conduct research 641 

on landscapes. In many contexts the definitions of architecture, design and planning within 642 

landscape often blend, especially when referenced from outside the discipline. Ironically, in our 643 

search we not only discovered the increase in AI-related publications within these fields of study 644 

and practice, but a significant body of literature published in venues and by authors outside of 645 

these disciplines that give mention to their potential contribution to one or more of these three 646 

landscape terms. However, the wide range of different publication venues cataloged from our 647 

search and ranking techniques makes it difficult to ascertain the role AI might play within the 648 

discipline in the future. This is because most of the articles associated with the discipline come 649 

from lower tier venues where stated relevance to practice and research are vague. 650 

The question of what defines landscape architecture, or landscape design or landscape 651 

planning is an ontological and socio-cultural question. In our section, “Terms” of Landscape 652 

Architecture we provide some context for why we set out to identify these three terms and to 653 



32 
 

ascertain the contribution of AI within these narrower definitions of what these fields practice. 654 

We discovered an increasing trend of AI-related publications in venues central to these 655 

disciplines and that the rapid rise of this work has surged in the past few years. From within 656 

landscape architecture the rise has only increased recently. For instance, in the 2022 issue of the 657 

Journal of Digital Landscape Architecture, the authors identified several new publications that 658 

applied artificial intelligence techniques, with some of those being direct applications and others 659 

referencing the significance of the techniques (Barbarash et al., 2022; Fengjing et al., 2022; 660 

Khalilnezhad, 2022; X. Liu & Tian, 2022; J. Yang et al., 2022).  661 

One of the significant challenges of this research endeavor was identifying if and to what 662 

extent AI is playing a role in practice and education. Most literature reviews, including our own, 663 

often focus on peer-reviewed publications, or at a minimum, dissemination products that show 664 

up in literature related databases. Unfortunately, outside of Landscape Architecture Magazine 665 

(LAM) and the LAF Case Studies repository, there are not any obvious centralized venues for 666 

publishing practice-oriented work, at least in the US. While LAM has published AI-related 667 

articles (Cantrell, Ellis, et al., 2017; Fernberg & Chamberlain, 2021; Petrich, 1986; Zeiger, 668 

2019), these are limited in number and primarily contributions from academic scholars. We ask 669 

whether or not this is an indication of the lack of AI-related work being conducted in practice or 670 

if there is a knowledge and dissemination gap. As discussed in emerging themes, we are aware of 671 

several efforts from landscape architecture practice involving AI applications, but these 672 

contributions are not being included in searchable databases. Such a lack of compilation can 673 

make identifying contributions from practice very difficult and limit the democratization of these 674 

works, even if that is not the intent. 675 



33 
 

It is at the intersection of disciplinary recognition, ontology and the dissemination of 676 

works from the fields identified that we see a conundrum. Does landscape architecture, design 677 

and planning play a key role in proliferating or at least applying AI-related work? Are scholars 678 

within the field publishing in other disciplinary journals and not giving credit to the contribution 679 

to their field or is dissemination not taking place, or is there really a limited amount of work? In 680 

any case, we argue that researchers and practitioners should consider including search terms that 681 

relate to the broader landscape disciplines, while also including AI-related keywords in abstracts 682 

and metadata associated with publications. This may help to raise awareness of the contributions 683 

within the field and bring greater recognition to the application of these techniques to other 684 

disciplines, as well as make this information more readily available to students, practice and 685 

scholars. A specific example of this could be the use of the term “landscape design”. 686 

Interestingly, it appears the overwhelming increase in publications across all venues is associated 687 

with this term but come from venues outside the discipline. Further, in the articles we reviewed 688 

that used this term, we noticed that it often serves as a catch-all that might be more appropriately 689 

delineated as landscape architecture or landscape planning. Thus, in an effort to promote our own 690 

disciplinary contribution toward AI, future publications may want to consider adding ”landscape 691 

design” to keyword searchers where publications are AI centric. This may increase the likelihood 692 

of knowledge sharing within and outside landscape centric disciplines. When considering the 693 

general pulse of publications across all venues, the relative growth and access of AI-related 694 

techniques shows plausible continued growth of AI-related articles. 695 

6 Conclusion 696 

After reviewing hundreds of articles, websites, books, and proceedings, we believe our 697 

observations can be reasonably summed up in three important takeaways: 698 
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1. Interest and contributions toward AI are growing steadily and significantly in the 699 

landscape discipline, both in academic research and professional applications. 700 

2. Applications and discourse from all subfields of AI have grown exponentially over the 701 

past three years. This, in our view, suggests the emergence of a new technological 702 

paradigm for the discipline. 703 

3. Landscape researchers in all sectors (e.g. academia, practice, government) would be well 704 

served to formalize, compile, and contribute to a clear AI-LA knowledge framework 705 

and/or AI-LA standards of practice to ensure proper workforce preparedness (whether in 706 

pedagogical or professional settings). 707 

4. To promote AI knowledge sharing across all disciplines, more universally accepted terms 708 

(e.g. landscape design), should be included in AI publications within the discipline. 709 

5. The need for scholars and practitioners to improve the democratization of knowledge 710 

sharing by ensuring publications are indexed and easily accessible (e.g. open-source) 711 

from a variety of databases (e.g. Google Scholar, Scopus). 712 

Engagement with technology driven by artificial intelligence, both practically, 713 

speculatively, and critically, is increasing year over year in landscape architecture, design, and 714 

planning, and will continue to do so. This literature review is the first attempt at providing a 715 

formal epistemic baseline for said engagement and incite a more systematic approach to 716 

compiling the knowledge it produces. As artificial intelligence systems continue to permeate 717 

everyday landscape practice, the workforce will have to confront a number of adaptive 718 

challenges. How and where do we integrate AI into existing design and planning processes? Do 719 

those processes fundamentally change because of said integration? How will landscape 720 
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practitioners ensure that the AI systems mediating their workflows are producing socially and 721 

environmentally equitable outcomes? We argue that such questions can only be answered if there 722 

is a formal framework for understanding how AI has, does, and will affect the state of practice. 723 

The review shows evidence that AI-LA knowledge is nascent even if rapidly growing, hence 724 

current gaps in the literature could be reasonably identified or filled with a more systematic 725 

method for measuring AI’s influence in the more detailed subsets of landscape disciplines, 726 

especially one that bridges dissemination gaps between academia and professional practice. If 727 

researchers, professionals, and educators act now to develop this protocol, it could serve as 728 

leverage for landscape to take the lead in shaping a techno-vernacular of the future. If we 729 

hesitate, we run the risk of causing unnecessary root shock to the profession because of failure to 730 

get ahead of the next technological tipping point AI is pushing us towards. 731 
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