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ABSTRACT

Constrained Route Optimization with Fleet Considerations for Electrified Heavy-Duty

Freight Vehicles

by

Zarin Subah Shamma, Master of Science

Utah State University, 2023

Major Professor: Mario Harper, Ph.D.
Department: Computer Science

Heavy-duty freight is a significant contributor to local pollution, air quality, and degra-

dation in the health of regions with significant vehicle density. The health impacts of local-

ized heavy-duty transit cause many at-risk and disadvantaged communities to experience

a degraded quality of life. The EVPRE-heavy-duty software framework aims to illustrate

the impacts of electrified heavy-duty freight vehicles through analysis of route efficiency (in

terms of energy, time, or route distance) with the anticipated health impacts of electrifica-

tion while honoring freight cost limitations for fleet operators. Our software and algorithms

are tested in a simulation environment using many routes commonly employed by freight

vehicles in the Salt Lake City area. Algorithmic improvements show an energy reduction of

∼ 6% to ∼ 10% at the cost of ∼ 3% increases in vehicle travel distance.

(70 pages)
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PUBLIC ABSTRACT

Constrained Route Optimization with Fleet Considerations for Electrified Heavy-Duty

Freight Vehicles

Zarin Subah Shamma

Almost 75% of traffic-related emissions are caused by heavy-duty freight trucks and

significantly impact neighborhoods, schools, and communities around shipping and distri-

bution lines. With poor air quality and respiratory health, many children in at-risk and

disadvantaged communities experience high rates of asthma, lower attendance in school,

and lower concentration. This research creates to improve the impacts of heavy-duty elec-

tric freight by improving the route efficiency (in terms of energy, time, or route distance) of

EV trucks. Our software and algorithms are tested in a simulation environment using data

from several thousand fleet trucks operating in the Salt Lake City area. The software shows

an anticipated energy reduction of ∼ 6% to ∼ 10% at the cost of ∼ 3% increases in vehicle

travel distance. Further, we anticipate positive health impacts in areas of dense trucking as

we reduce the energy needs of electrification for fleet operators.
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CHAPTER 1

INTRODUCTION

1.1 Impacts of ICE-based Heavy-Duty Freight Vehicles

Mitigating ICE (internal combustion engine) - based heavy duty freight is a core concern

for many disadvantaged communities due to their proximity to distribution centers and

large roadway arteries. Usually, these communities reside within the close radius of large

distribution centers or warehouses responsible for being the route source of more than 100

heavy-duty freight trucks delivering to locations every day. As 98% of the heavy-duty freight

vehicles are fueled by diesel, nearby communities get significantly affected by traffic-related

particulate matter. Heavy-duty vehicles (HDV) (and, to a lesser extent, medium-duty

vehicles (MDV)) need to travel for longer distances and remain in areas longer while idling.

They can often be older, inefficient models due to the costs of replacing fleets. The health

impacts on disadvantaged communities in the USA are significantly higher than in other

communities [1], and health continues to degrade for those living near shipping warehouses,

truck terminals, and ports. As shown in Fig. 1.1, the areas around the Utah Inland Port

have high to mid-level poverty with higher emissions from heavy-duty ICE-based vehicles.

These areas are the most affected ones as most freight vehicles take these highways every

now and then for their deliveries.

1.1.1 Degradation of Health and Increasing Air Pollution

ICE or fuel-based engines have been in use since the inception of motor vehicles, while

the repercussions of using ICEs (particularly diesel-based engines) have come to light, al-

ternatives have continued to be uneconomical for long-term adoption and investment. Ad-

vances in EVs (Electric Vehicles) and EVSE (Electric Vehicle Supply Equipment) are be-

coming more favorable compared to traditional ICE-based vehicles [2]. While EVs still
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Fig. 1.1: Poverty Status around the Utah Inland Port in Salt Lake City

remain (at the time of writing) more expensive to purchase and operate than ICE alter-

natives for Heavy-duty trucking, they directly alleviate transportation-based particulate

emissions in dense urban areas.

Almost 75% of transport-related emissions are caused by fuel-based HDV used in road

transport [3]. Diesel-based vehicles are responsible for emissions of substances such as car-

bon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx),

and particulate matter (PM), which are known to affect human health and the environment

adversely [4]. In the U.S., transportation sources are responsible for 77% of CO emissions,

45% of NOx, 36% of volatile organic compounds, and 22% of particulates [5]. Emissions

from transportation are the reason for serious health issues, including asthma and more seri-

ous respiratory degradation, particularly for children [6,7]. Exposure to diesel exhaust from

HDVs has been linked to lung cancer, asthma, bronchitis, and other respiratory diseases.

These pollutants also worsen existing conditions, such as chronic obstructive pulmonary

disease (COPD) and asthma. Long-term exposure to PM can lead to premature death,

especially among vulnerable populations such as children, the elderly, and those with pre-

existing health conditions [8], [9]. ∼ 29,000 premature deaths in the U.S. were recorded in
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2005, which were induced by transportation emissions [10].

According to [11], truck and bus generated CO2 emissions have increased 2.2% per

year. In the studies, it has been found that the most polluting heavy-duty freights cause

more than half of the total emissions ranging from 41% to 70% in China [12]. As described

in [13], in the U.S., ∼ 30% emissions can be reduced if the long-haul freight emissions could

be reduced.

1.1.2 Effects of Age in ICE-based Vehicles

When the age of heavy-duty vehicles increases, their operating efficiency is often re-

duced, and these vehicles become super-emitters as their percentage of harmful particulate

matter emission gets escalated. HDVs operation efficiency is inversely proportional to the

increased kilometers traveled, resulting in more wear and tear in vehicle parts and emission

control equipment. In Ethiopia, the average age of fleet vehicles is 20 years, contributing

almost one-half of the hydrocarbon emissions and more than 27% of the carbon monox-

ide emissions although the number of those vehicles covers less than 15% of the vehicle

population [14]. In a study of Europe, it has been found that approximately 8% higher

NOx emissions with negative implications are recorded because of ∼ 10 to 20 years old

vehicles [15]. In [16], it has been stated that in Tirana, vehicles aged more than fourteen

years had a high percentage of dangerous air pollutants in emissions compared to European

standards of emission. The high percentage of air pollutants in the emission can result

from the age of vehicles, poor fuel quality, and low maintenance. The average age of US

class-8 HDVs has continued to rise, exceeding 12.8 years of operation in 2018 [17]. During

pandemic shortages, more trucks were required as shipping increased drastically drawing

on repair services to maintain an aging fleet [18].

1.2 Electrification of Heavy-Duty Freight Vehicles

Electrification of freight vehicles offers a high impact on regional health and mitigation

of other pollution that influences the wider population of cities and states. The electrifica-

tion decreases theNOx emissions by 209 thousand tones (3%) overall. Air quality benefits of
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electrification are modest, mostly less than 1 ppb for ozone and 0.5gm–3 for fine particulate

matter (PM2.5). According to the research done in [19], continental U.S. NOx emissions

decrease by 3% with the comparable reduction due to off-road and on-road electrification

(41–42% of total reduction). With that, CO has decreased 9%, PM2.5 has decreased 1%

and PM10 has decreased 0.5% with the electrification.

Many barriers exist that prevent fleet adoption of heavy-duty electric vehicles, largely

due to charging times and costs. Drayage trucks deliver heavy goods from the ports to

different warehouses and hubs. They are typically class 8 tractor-trailers with a traveling

distance of under 100 miles on average. Delivery trucks like these have short-range and

usually fixed routes. This denotes that the electrification of these vehicles can be done

reasonably well but it will depend on the particular characteristics of the daily drive cycle.

For doing so, the weight and payload capacity of batteries needs to be identified in order to

lessen the recharging requirements in the daytime. Electrification of both types of trucks

would benefit air quality [20].

Technological challenges like limited range, high costs of big batteries, weight capacity,

extended charging time, lack of charging stations, increased demand for electricity gener-

ation, etc. are stopping the adoption of electrification of heavy-duty freight vehicles. The

first problem arises when bigger batteries need to be installed to avoid range anxiety with

limited battery capacity. Small batteries cover a smaller range and big batteries require

higher costs. Besides, if small batteries are used for electrification, the lack of charging

infrastructure does not allow freight vehicles to deliver goods with long-traveled distances.

Along with all of these, the increment in the use of EVs will lead to an increased demand

for more generation of electricity which is highly expensive. This study provides energy-

efficient routes to mitigate range anxiety and energy usage which will eventually reduce the

necessity of frequent recharging.

1.3 Our Contribution

This study builds a simulation framework-based software suitable for heavy-duty freight

electric vehicles. In the software, the FASTSim algorithm has been used for the simulation
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framework where the information for simulating different models has been gathered using

Google Maps API, OpenWeatherMap API, and Geotab API. These APIs provide required

elevation data, and weather data like temperature, humidity, wind speed, traffic time infor-

mation, etc. The software has been designed to provide energy-efficient, time-efficient, and

distance-efficient routes. There is another framework within that where some trade-offs are

possible with these objectives. Multi-objective optimization has been done using a balanced

parameter weight-based optimization technique. The weights for the optimization can be

altered by the users according to their choice. It has been shown that significant energy sav-

ings can be realized by building route optimizations for heavy-duty freight electric vehicles.

Around ∼ 6% to 10% energy consumption can be mitigated following the energy-optimized

routes which can lead to a good increment in the adoption of heavy-duty freight electric

vehicles. The software is also able to add ∼ 7% to 11% of time efficiency along with the

energy efficiency if they want some trade-offs among the multiple objectives.

In Chapter 2, we have discussed the potential barriers that are coming in the way

of adopting EVs. The motivation behind this thesis was to build an algorithm so that

it can help in mitigating some of the challenges that are becoming great issues for the

users of EVs. Chapter 3 presents the available studies on the routing algorithm for electric

vehicles. These routing algorithm has been designed for solving electric vehicle routing

problems. The studies include different predictive modeling, optimization techniques, and

search algorithms like Bellman-Ford, etc. which can be different potential ways of solving

the routing problems of EVs. Chapter 4 discusses the internal requirements and calculations

for the FATSim framework. FASTSim framework has been used in the software to create a

simulation world where all the required information is provided for simulating the selected

electric vehicle in a simulating world. This provides some simulated performance that

reflects the real-world performance of the EV fulfilling some conditions and requirements.

In Chapter 5, our redesigned software has been discussed. All its designing modules have

been introduced there. Chapter 6 is all about the simulation procedures and results. All

the potential system designs have been discussed in this chapter. The performance of the
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designed modules has also been visualized. The statistical analysis of the results has been

produced and presented here. Finally, in Chapter 7, the thesis has been concluded with

some important remarks and potential future works.
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CHAPTER 2

CHALLENGES OF FLEET HEAVY-DUTY FREIGHT

The demand for freight vehicles is increasing every day as medicine, home, food sup-

plies, and deliverable business goods need to be at their destination on time. But these

heavy-duty freight delivery vehicles are causing dangerous environmental pollution. Light-

duty vehicles (LDVs) are regulated with emissions reduction strategies mostly stating in

mind that LDVs account for the biggest portion of vehicles on the road. MDVs and HDVs

are about 10% of the vehicles on the road but disproportionately contribute to emissions:

about 29% of transportation greenhouse gas (GHG) emissions, 45% of on-road NOx emis-

sions, and 57% of direct PM2.5 (particulate matter≤ 2.5 microns in diameter) emissions [21].

MDVs and HDVs are critical to goods movement in the US—over 70% of all freight is moved

by trucks, the vast majority of which are powered by diesel fuel [22]. Globally, on-road

freight is responsible for 6% of total GHG emissions and is increasing [23]. In the urban

areas of Europe, 39% of NOx emissions and 15% of PM2.5 emissions make transportation

one of the main resources of air pollution [24]. It has been found in [25] that 53,000 deaths

have occurred because of PM2.5 when additional 5,300 deaths are the results of ozone.

2.1 Barriers in the Adoption of Electric Vehicles

Freight EVs can be the potential component in mitigating GHG emissions but for the

successful adoption of electrified freight vehicles, range anxiety, limited cargo capacity, and

elevated charging time need to be taken care of.

2.1.1 Range Limitations

The range limitation of EVs refers to the distance an EV can travel on a single battery

charge. Although the range of EVs has been increasing with advances in technology, it is still

a concern for many drivers, especially those who need to travel long distances regularly. The



8

range of an EV can vary depending on several factors, including battery capacity, driving

style, temperature, and terrain. To address this limitation, automakers, and technology

companies are working on improving the range of EVs through various means, such as

increasing battery capacity and developing more energy-efficient routing. Additionally, the

deployment of fast charging stations is expanding, which can recharge an EV battery to

a significant percentage in just a matter of minutes. Despite these efforts, range anxiety

remains a significant concern for many potential EV buyers [26].

Although electricity has many advantages as a vehicle fuel, it has two disadvantages:

bulky and expensive storage and slow refueling (typically 1–20 kW electric versus 5000kW 3

gasoline). This states that EVs will cover less range with one full charge compared to

gasoline and the refueling will be more time-consuming [27]. Electric vehicles mostly depend

on the state of charge of the batteries installed. Bigger batteries give more ranges but it

costs more and can add significant weight to the system, reducing cargo capacity. The

EVs have limited range availability compared to ICE-based vehicles. This limited range

availability creates anxiety in the drivers of EVs as their habits are different because of the

gasoline-enabled driving habits.

EVs provide comfortable and better driving performance for drivers with increasing

availability in models and designs. Moreover, their maintenance is inexpensive compared to

conventional ones. But these advantages come with some requirements to follow. In order

to enjoy the benefits of EVs, drivers must accept the limitations of their driving range and

charging times, which can take up to 20 minutes to charge up to 80% battery capacity and

several hours to reach full capacity, depending on the charging facilities available [28]. This

means that there are limits to the distance that can be traveled with an EV, and commuters

who travel more than 75 km to work (15% of commuting trips) may face uncertainty about

getting home, particularly in cold weather. To overcome this, they would need to either

find charging opportunities during the day, which could require detours, or use alternative

transportation options [29].
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When it concerns the electrification of heavy-duty freight vehicles, range anxiety be-

comes more prominent as the freight vehicles require bigger batteries which will need to be

charged with more electricity. This leads to a larger charging time (more unused time for

driver and asset) as well as the high unavailability of high-power, rapid charging stations.

2.1.2 Higher Costs

In comparison to ICE-based vehicles, EVs have limited functionality at higher expense

due to the lack of an economy of scale [30]. Some cost barriers that have hindered the

adoption of EVs among consumers:

1. High Upfront Cost: EVs generally have a higher upfront cost compared to conven-

tional vehicles, primarily due to the expensive batteries used to power them. This can

be a significant barrier for consumers, especially for those who are price-sensitive [31].

2. Lack of Incentives: In many countries, there is a lack of incentives for EV adoption.

This can include subsidies or tax breaks for purchasing an EV or for installing a

charging station at home [32]. Without these incentives, the cost of owning an EV

can be prohibitive for some consumers.

3. Maintenance Costs: While EVs generally have lower maintenance costs than conven-

tional vehicles, the cost of replacing a battery can be prohibitively expensive. Con-

sumers may be concerned about the long-term costs of owning an EV, especially if

they need to replace the battery at some point in the future [33].

4. Resale Value: Finally, the resale value of EVs can be a concern for some consumers. As

the technology continues to evolve rapidly, some buyers may be reluctant to purchase

an EV that may become obsolete in a few years, leading to lower resale values [34].

2.1.3 Cargo Capacity

The cargo capacity barrier of heavy-duty electric vehicles refers to the limitations on

the amount of cargo that can be carried by an electric vehicle. This is an important
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consideration for many people when choosing a vehicle, particularly for those who need to

transport goods or equipment for work, or for families who need to transport large items

such as bicycles, strollers, or luggage. EVs rely on batteries for power, and the weight and

space taken up by those batteries can limit the amount of cargo the vehicle can carry [35].

This is because batteries are heavy and require a significant amount of space. In order

to maximize range and performance, EV manufacturers must balance the need for larger

batteries with the need for cargo space [36].

There are a few reasons why cargo capacity can be a barrier for electric vehicles. First,

electric vehicles tend to have smaller overall dimensions than their gas-powered counter-

parts, which can limit the amount of cargo that can be carried [37]. Additionally, the

batteries and other components of electric vehicles can take up space that would otherwise

be used for cargo [38]. Another factor to consider is the weight of the cargo. Electric vehi-

cles have a limited payload capacity, meaning that they can only carry a certain amount of

weight [39]. This can be particularly problematic for larger electric vehicles, such as electric

SUVs or pickup trucks, which may have a higher overall cargo capacity but are still limited

by their payload capacity.

However, some electric vehicles are specifically designed with cargo capacity in mind.

For example, many electric SUVs and crossovers have a similar cargo capacity to their gas-

powered counterparts. Additionally, some electric pickup trucks are being developed with

the ability to tow heavy loads, which can increase their overall cargo capacity.

2.1.4 Lack of Public Charging Infrastructure

EVs rely on charging infrastructure to replenish their batteries, but the availability

and accessibility of charging stations can vary widely depending on where you live or travel.

This can be a major barrier for drivers who are considering switching to an EV, as they need

to be confident that they will be able to find charging stations when they need them [40].

There are different types of charging stations with varying charging speeds, ranging from

slow Level 1 charging (using a standard wall outlet) to fast Level 3 charging (also called DC

fast charging) [41]. However, Level 3 charging stations are currently less common and can be
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expensive to install, making it challenging to have a comprehensive charging network [42].

This lack of charging infrastructure can create “range anxiety” among EV drivers, who may

be concerned about running out of charge and not being able to find a charging station.

This can be a particular issue for those who live in apartment buildings or other locations

where they do not have access to a private charging station [43]. There are a few reasons

for the current lack of charging infrastructure:

• One is simply that EVs are still a relatively new technology, and the market for them

is not yet fully developed. This means that there is less incentive for businesses and

governments to invest in charging stations [44].

• Another challenge is the high cost of installing charging infrastructure. Depending on

the type of charger and the location, the cost of installation can be quite high. This

can be a deterrent for businesses that are considering installing charging stations, as

they may not see a clear return on investment [45].

• Finally, there is also a lack of standardization in charging infrastructure. There is

a variety of charging standards and connectors in use around the world, which can

make it more difficult for EV drivers to find compatible charging stations [46].

2.1.5 Increased Demand for Electricity Generation

The increased demand for electricity generation for EVs is a direct result of the grow-

ing popularity of EVs. As more people switch to electric cars, the demand for charging

infrastructure and the electricity needed to power these vehicles also increases. Electric

vehicles rely entirely on electric power to function, which means that they require a sig-

nificant amount of electricity to be generated to meet this growing demand. According to

a report by the International Energy Agency (IEA) in [47], the number of electric cars on

the road surpassed 10 million in 2020, up from just a few hundred thousand a decade ago.

This growth is expected to continue, with the IEA projecting that there will be 145 million

electric cars on the road by 2030. By using the electric energy stored in their batteries

without the need for a recharge, electric vehicles with a range of up to 60 miles (about 97
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km) have the potential to reduce CO2 emissions by 50% and petroleum consumption by

over 75% [48].

The widespread deployment of EVs presents both a challenge and an opportunity

for power grid operations. While EVs offer benefits, such as reduced emissions and fuel

consumption, their unmanaged charging can strain electric grid capacity, especially at the

distribution level where capacity limitations are more likely to occur. However, smart

charging strategies can harness the flexibility of charging demand to minimize the need

for costly grid capacity upgrades and enhance grid system operations. Additionally, the

batteries of grid-connected EVs could potentially serve as a large, responsive storage system,

further improving grid efficiency [49]. According to the EV scenario projections, wind power

generation in Scandinavia and Germany is expected to increase by 7-30% by the year 2030,

compared to a scenario without EVs. Additionally, investing in solar power may not be

as valuable, with a reduction in value ranging from 22-42% across all EV scenarios when

compared to a scenario without EVs [50].
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CHAPTER 3

STUDIES ON ROUTING ALGORITHMS FOR ELECTRIC VEHICLES

One of the main barriers in the way of adopting electric vehicles is range anxiety. This

anxiety usually occurs in the fear that the batteries of EVs could have been left with no

charge in the middle of the road as a result of the unavailability of charging infrastructure

nearby. Along with that, the EVs cover less distance with a fully charged battery compared

to the ICE-based vehicles with a full amount of fuel. This increases the frequency of

recharging the EVs. Also, the time required for a full recharge of the batteries of EVs is

quite extended. All of these could have been solved if an energy-efficient routing algorithm

could have been designed. The energy-efficient routing algorithm could denote a path in

the map that will save the most energy consumption by the EV the most. Energy-efficient

routing of electric vehicles involves finding the most optimal route for a vehicle to reach

its destination while minimizing energy consumption. This can be achieved by considering

various factors such as the vehicle’s battery capacity, charging infrastructure along the

route, traffic conditions, and road topology.

3.1 Predictive Algorithms

One approach to energy-efficient routing is to use predictive algorithms that take into

account the energy consumption of the vehicle under different driving conditions. For

example, the algorithm may take into account the vehicle’s energy consumption at different

speeds, when accelerating or decelerating, and when driving up or down hills. Based on

this information, the algorithm can calculate the most energy-efficient route for the vehicle

to take. This concept has been applied in [51] to design a model providing energy-efficient

routes. In this model, geographical data and weather data are integrated into the vehicle

data to predict energy consumption with the help of the Multiple Linear Regression model.

A neural network has been inducted into the prediction of unknown driving parameters.
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Energy-efficient routing algorithm has been designed in [52] to extend the driving range and

battery life of EVs using data mining techniques. Historical driving data has been used here

and then they have been clustered to get the class of the goal driver infusing classification

approach. The travel time and energy consumption on the basis of the historical speed

profiles are tested and the desired ones are achieved.

3.2 Optimization Techniques

The Particle Swarm Optimization (PSO) technique has been used in literature to op-

timize single to multiple constraints like energy, time, distance, etc. Garcia et al. have

used PSO in [53] to develop the energy-efficient route. It has also been stated that PSO is

slower than the Bellman-Ford algorithm to get the routes for smaller maps but the situa-

tion is the opposite when the map’s size gets increased to a certain point. Abousleiman and

Rawashdeh have also used PSO in [54] to optimize the energy consumption of EVs up to

9.2%. Rami et al. have used a different optimization technique, Ant Colony Optimization

(ACO) in [55] to achieve a better result but ended up reducing ∼ 9% energy consumption

which is very good. In [56], PSO and ACO both have been used to get the energy-efficient

path. ACO turned out to be more straightforward when PSO caused more modifications

even when PSO was faster (400 milliseconds) than ACO (1.8 seconds) to get the solution.

3.3 Bellman-Ford Algorithm

Another approach could have been to use real-time data about traffic conditions and

charging infrastructure to adjust the route in real time. For example, if there is a traffic

jam on a particular route, the algorithm can redirect the vehicle to a less congested route.

Similarly, if the vehicle’s battery is running low, the algorithm can direct the driver to

the nearest charging station. Numerous routing techniques are currently available for con-

sumers, including tools such as MapQuest and Google Maps which are commonly used on

the web. GPS receivers are often integrated into vehicles, which store map information on

a flash drive and offer the shortest distance routing.
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These routing techniques rely primarily on algorithms based on Dijkstra or Dijkstra-

like algorithms. According to the investigation of [56], the Dijkstra algorithm cannot be

used for EVs as EVs generate negative path costs by regenerative braking. One of the key

requirements for the Dijkstra algorithm is that all the edge costs need to be positive. So, the

Bellman-Ford algorithm is a potential one in this kind of scenario as it gives effective results

with negative path costs. This theory has been used in the model of [57]. In the model, the

energy consumption of EVs has been calculated using different vehicle characteristics like

vehicle mass, road grade, velocity, frontal area, drag coefficient, regenerative braking factor,

etc. A big road network has been generated where the nodes are the designated places and

the routes among them are denoted to the edge. The calculated energy value is given as

the edge cost of the graph.

Finally, the Bellman-Ford algorithm has been used to get the most energy-efficient

route between two designated points. The same procedure has been followed in [58] but

some weather information like temperature, air velocity, etc. are included in the calculation

of energy consumption by the EVs. After all these, 8-16% energy efficiency could have been

achieved on average for random selections of origin and destination from the map. In [59],

the edge weight is represented by a function instead of a constant value like the previous

ones and the users can choose the trade-off between energy efficiency and shortest distance

with an input parameter as the optimization factor.

3.4 Route Planning for Freight Vehicles

A freight vehicle is a kind of transportation vehicle that must consider preset routes

and have hard constraints on delivery times, and utilization (all time spent deployed is

expensive in energy consumed while idling, driving, maintenance, etc). Such vehicles can

take various forms, such as trucks, trains, or ships, and are typically constructed with bigger

cargo areas and more robust engines than those of passenger vehicles. [60] has discussed a

planner that provides route choices for urban areas where the time and location information

are given for the optimization of the route in delivery. The time and location information is

the real-time suggestions. Users’ pre-trip information is also used for more accurate future
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calculations. Luigi et al. have constructed a tool in [61] for express freight delivery that

truck companies can use to optimize the scheduling of pickup and delivery requests. It

aims to provide various benefits, such as reducing the need for empty truck journeys and

considering the tank status for refueling during operations. The tool includes a data-sharing

module for capturing and storing order information. It also utilizes the Google Maps API

and TomTom API to gather location and traffic data for the routing algorithm within the

fleet module. The planning module then utilizes this information along with real-time data

and profit margin to schedule orders and plan routes. As described in [62], an eco-route

planner can give an optimal route where the optimization criteria could be fuel consumption

or speed, or travel time. [62] and [58] are constructed with the same methodology but the

difference is that [62] gives optimal routes for ICE-based heavy-duty freight vehicles and [58]

gives optimal routes for electric heavy-duty freight vehicles.
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CHAPTER 4

FASTSIM

There are various computer tools available for modeling EVs, with one popular option

being Future Automotive Systems Technology Simulator (FASTSim). This tool, supported

by the U.S. Department of Energy and provided by the National Renewable Energy Lab-

oratory (NREL), is especially useful for quick analysis of route planning, as it offers a

straightforward way to estimate vehicle efficiency, performance, and battery life. While

there are other models that offer more detailed information, FASTSim’s simplicity and fast

processing time make it ideal for real-time planning. Although the tool simplifies vehicle-

specific details, it still provides accurate results, as demonstrated by the fact that most

vehicles modeled in the simulator consume energy within 5% - 10% of their actual con-

sumption [63]. FASTSim’s ease of use, accuracy, and open-source transparency make it a

widely referenced tool.

FASTSim is efficient enough to give fast and accurate analytical results using inputs

like mass, inertia, fuel converter parameters, air resistance, motor characteristics, battery

specifications, tire dimensions, and other relevant vehicle characteristics. It propagates

the information including derived data from API keys, roadway information, weather in-

formation, etc. within a simulated environment in 0.1 seconds increments. Altogether, it

can estimate the vehicle and fuel efficiency. battery life and cost within just 10 seconds

when the powertrain comparisons can be graphed in less than 5 seconds [64]. The FAST-

Sim model utilizes a small simulation cycle at runtime, by creating emulations of vehicles

operating along an edge’s length (i.e., road section length) and in a height differential (ele-

vation). This allows it to provide accurate predictions of fuel and energy consumption and

performance, even for complex systems with multiple energy sources, such as conventional

vehicles, hybrid-electric, plug-in hybrid, all-electric vehicles, etc. The default version of the

simulator comes as a package where 20 different vehicle information has been already added
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with the facility of integrating new vehicle information.

FASTSim uses a physics-based approach to model the vehicle, which means it simulates

the movement of each component in the vehicle and how they interact with each other

providing speed-versus-time drive cycles. FASTSim takes some vehicle information as inputs

for modeling most high-level vehicle powertrains. These inputs include:

Table 4.1: Input Values for Vehicle Model in FASTSim

Parameter Value

Drag Coefficient 0.645
Frontal Area 9.5 m2

Glider Mass 0.645
Center of Gravity 1.07 m
Drive Axle Weight Fraction 0.03
Wheel Base 5.5 m
Cargo Mass 27000 kg

The first four parameters are used to calculate the estimated power consumption meet-

ing one cycle when the last three parameters handle the traction limitations. FASTSim

has a high-level representation of the battery. The parameters for the battery implication

include:

Table 4.2: Input Values for Battery Model in FASTSim

Parameter Value

Power 120 kW
Energy 396 kWh
Base Mass 75 kg
Round Trip Efficiency 0.97

The energy management strategy of FASTSim has control of the operation of the

battery converter. Its inputs are:

There are some more places for other components’ input information which are essential

for conventional vehicles relating to the fuel converter. All these input parameters help

FASTSim to simulate the environment for an electric vehicle to do a run test within that.
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Table 4.3: Input Values for Energy Management Model in FASTSim

Parameter Value

Battery minimum SOC 0
Battery maximum SOC 1
The speed where the Battery should be Empty 0 mph
The speed where the Battery should be Full 60 mph
Attempted Level of Engine Charging the Battery 0.2

the default one does the simulation for light-duty fuel-based vehicles. But medium-duty and

heavy-duty vehicle parameters including the electric ones can be used to get the electric

power transfer during the duty cycles. FASTSim is available in two versions:

1. Excel Version of FASTSim: The Excel version has an interactive graphical user inter-

face (GUI) that helps to visualize the duty cycles and their performances in graphs and

models. This makes the data handling and customization of the operations simpler.

This version also includes battery life comparisons to calculate the energy consump-

tion by EVs.

2. Python Version of FASTSim: The Python version is usually beneficial for integration

with large duty-cycle databases. In this thesis work, this version has been extensively

used and modified for the fulfillment of the objectives. Python-based FASTSim pairs

with the geo-spatial cycles incorporating weather factors like temperature. It also uses

roadway characteristics like road grade. This model can be customized for additional

energy consumption impacts which is a requirement for evaluating the energy profile

of EVs.

4.1 Customized FASTSim for Heavy-Duty Freight Electric Vehicle

In this study, FASTSim is customized to use for a class 8 electric vehicle. For doing

so, new vehicle information needed to be integrated into the Python version of FASTSim.

Class 8 electric vehicles are heavy-duty trucks that are designed to transport large loads

over long distances. These trucks are typically used in commercial applications such as

freight and logistics, construction, and mining. Class 8 trucks have a gross vehicle weight
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rating (GVWR) of 33,000 pounds or more, and they typically require a lot of power to

operate, which makes the development of electric versions of these trucks challenging [65].

One of the biggest challenges in developing Class 8 electric vehicles is ensuring that they

have enough range to meet the needs of commercial fleets.

Kenworth is a leading manufacturer of heavy-duty trucks. In recent years, Kenworth

has been developing electric truck models as part of its commitment to sustainable trans-

portation. The Kenworth electric truck is designed to offer zero-emission solutions for

commercial fleets that need to comply with environmental regulations and reduce their car-

bon footprint. One of Kenworth’s electric truck models is the Kenworth T680E, which is a

Class 8 truck designed for drayage and local pickup and delivery applications. The T680E is

powered by a 536 horsepower electric motor and a 720-volt battery system that can provide

up to 100 miles of range on a single charge. The battery system can be recharged in as

little as 3.3 hours using a 180 kW DC fast charger, and in around 6 hours using a 75 kW

charger [66]. The Kenworth T680E has a regenerative braking system that helps recharge

the battery system while driving, as well as advanced driver assistance systems that improve

safety and reduce driver fatigue.

In order to collaborate with Kenworth T680E into FASTSim, different information

regarding the vehicle needed to be used as the input. The main goal of doing so is to

simulate the performance of the battery and range optimization of T680E using FASTSim.

Table 4.4: Parameter Values for Kenworth T680E Configuration

Parameter Value

Battery Size 396 kWh
Mass of Vehicle 37194 kg
Air Resistance / Drag Coefficient 0.645
Frontal Area of Vehicle 9.5 m2

Information stored in Table 4.4 is required for the configuration file. This helps to refer

to the specific vehicle information in the FASTSim database. After denoting the selected

vehicle type and loading its configuration details, FASTSim requires some more data as
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input so that it can use them for the simulation. The data include vehicle parameters,

battery parameters, wheel parameters, etc. These data are useful to calculate the vehicle

powertrain. The vehicle powertrain links and manages the components in Table 4.5 that

are given as the input to the FASTSim. The following equation is used to calculate the

power to overcome drag:

(4.1)power = 0.5 ∗ airDensityKgPerM3 ∗ dragCoef ∗ frontalAreaM2

∗ (average(prevMpsAch, cycMps)3)/1000

where,

airDensityKgPerM3 - Air Density (kgm−3)

dragCoef - Vehicle Drag Coefficient

frontalAreaM2 - Vehicle Frontal Area (m2)

prevMpsAch - Previous Vehicle Speed (ms−1)

cycMps - Current Speed of Input Drive Cycle (ms−1)

Table 4.5 has information on seven simulation models like the Vehicle model, Battery

model, etc. All these models are emulating the actual vehicle in the simulated world of

FASTSim. With this information, the simulated vehicle is acting like the original one.

After that, the simulated vehicle is run in the simulated world to see how it performs so

that an estimation of its performance in the real world can be visualized.

The data used in the simulation work of the software (stored in Table 4.5), have been

collected from the available Kenworth Electric Truck T680E (Fig. 4.1) owned by the USU

ASPIRE (Advancing Sustainability through Powered Infrastructure for Roadway Electrifi-

cation) center.
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Table 4.5: Inputs to the Customized FASTSim (Detailed information of Kenworth T680E)

Simulation Model Parameter Value

Vehicle

Vehicle Glider Mass 37194.574 kg
Vehicle Center of Gravity Height 1.07 m
Drive Axle Weight Function 0.03
Wheel Base 5.5 m
Cargo Mass 27000 kg

Motor

Motor Power 150 kW
Motor Peak Efficiency 0.95
Motor Time to Full Power 3 s
Motor Controller Mass 0.833 kg/kW
Motor Controller Base Mass 21.6 kg

Traction Battery

Battery Power 120 kW
Battery Energy 396 kWh
Battery Mass 8 kg/kWh
Battery Base Mass 75 kg
Battery Round Trip Efficiency 0.97
Battery Life Coefficient A (product) 110
Battery Life Coefficient B (power) −0.6811

Wheel

Wheel Inertia (one wheel) 0.815 kgm2

Number of Wheels 10
Rolling Resistance Coefficient 0.008
Tire Radius 0.53 m
Wheel Coefficient of Friction 0.7

Energy Management

Minimum State of Charge 0
Maximum State of Charge 1
Speed where the Battery should be Empty 0 mph
Speed where the Battery should be Full 60 mph
Attempted Level of Engine Charging the Battery 0.2
Speed at which Engine is Commanded On 1 mph
Power Demand at which Engine is Commanded On 100 kW

Miscellaneous

Charger Efficiency 0.86
Auxiliary Loads 0.5 kW
Transmission Mass 114 kg
Transmission Efficiency 0.98
Maximum Battery to Fuel Energy Error 0.005
Maximum Regen 0.98

Validation Data

City AC elect. Consumption w/charging 2.64 kWh/mile
Highway elect. Consumption w/charging 2.877 kWh/mile
Combined elect. Consumption w/charging 2.756 kWh/mile
0-60 MPH Acceleration Time 17 s
Vehicle Range 150 miles
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Fig. 4.1: Kenworth Electric Truck T680E utilized for the data usage

Table 4.6: Example of Weather Information from OpenWeatherMap API integrated into
Customized FASTSim

Parameter Value

Temperature 299.06 K
Humidity 34%
Visibility 6.21 mile
Wind Speed 2.56 mph
Wind Heading 110 degrees

The customized FASTSim has some weather impacts too. The OpenWeatherMap

API has been used to get weather information. An example has been given in Table 4.6.

This weather information helps FASTSim to calculate the energy consumption with more

accuracy as Sina et al. have examined the impact of ambient temperature on the route

planning of EVs in [67]. They have found that on average 68% energy consumption can

increase in Fleet EVs because of the ambient temperature. This is a key factor to be

considered as the heating and cooling of the cabin can significantly affect the battery which

can result in the increment of energy discharged from it at the time of the trip.



24

CHAPTER 5

EVPRE HEAVY-DUTY

5.1 Electric Vehicle Path and Range Estimator (EVPRE)

The Electric Vehicle Path and Range Estimator (EVPRE) software framework creates

an energy-efficient route for electric vehicles and estimate the range they can travel from any

given starting point. It takes into account details such as the type of vehicle, road conditions,

and environmental factors to provide accurate predictions that are relevant to the user’s

location. Being an open-source tool, users can input their vehicle specifications to obtain

range predictions, optimal driving routes, and insights into energy usage for regular driving

in their desired areas. This software is intended to facilitate the adoption, experimentation,

and utilization of electric vehicles in everyday life.

Fig. 5.1: EVPRE System Design that follows Mode-View-Controller design pattern.

The EVPRE software follows the Model-View-Controller (MVC) design pattern and

requires multiple API keys to access real-time weather data and elevation information (see
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Fig. 5.1). Failure to query data from these keys will result in using historical information

instead. Road information is obtained from Open Street Map (OSM) and converted into a

graph representation with traffic speed, road grade, latitude, longitude, and length of road

segments. The software uses the Bellman-Ford algorithm to calculate routes and energy

consumption based on two types of prediction models - a physics-based analytic model

and NREL’s FASTsim. The physics-based model calculates the power cost at the wheels

and translates it up to the motor using the division of Pmotor and Pdriveline. The software

also collects wind speed data from Open Weather Maps and dynamically collects other

data during runtime. It includes a modified version of FASTSim that considers additional

effects for high-resolution information on power consumption from real-time sources. The

FASTSim model uses a small simulation cycle at runtime to create emulations of vehicles

operating along an edge’s length (i.e., road section length) and elevation differential, using

elevation data from Google Maps. Vehicle parameters such as velocity, mass, acceleration,

and resistance are stored and ingested similarly to the simple energy model. EVPRE returns

the most energy-efficient route between any two points after exploration.

(a) Simple Energy Model (b) FASTSim Energy Model

Fig. 5.2: Comparison between Simple and FASTSim Energy Model. FASTSim considers
factors throughout the drive cycle and street-dependent acceleration profiles. The simplified
physics model assumes vehicle constant acceleration profiles.

Jupyter notebooks are used to create visual representations of routes and expected

ranges as shown in Fig. 5.2 to illustrate the energy-efficient path and range estimation, and

the maps are interactive, allowing users to modify the start and goal pins to generate an

optimal route between two points. The size of the map can be adjusted by the user, but

caution must be taken not to exceed the API limits of the OpenStreetMaps service. The ma-
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jority of internal instructions and user inputs are relayed to models through the controller.

A configuration file contains vehicle information, including the model name, configuration

details that can be modified by the user, and requirements such as the range coverage and

starting coordinates. All necessary packages and the FASTSim model installation required

to prepare the controller are provided and installed during the initial setup [68].

5.2 New EVPRE: Heavy-Duty Freight EVs Extension

The EVPRE software has been redesigned and modified so that it can be used for heavy-

duty freight electric vehicles. An earlier version of EVPRE software helped to visualize the

route estimation and range prediction of light-duty EVs. The new version of the software

can now visualize the route estimation with the presence of traffic data for associating with

the speed change in roads and it is also suitable for heavy-duty freight electric vehicles. The

optimization technique has also been changed. Earlier it was a single-factor optimization

technique that has been upgraded to multi-objective optimization so that there could have

been some trade-offs among energy consumption, travel time, and distance.

Traffic data are required for increasing the efficiency of the estimation of energy con-

sumption for route optimization. Without the traffic information, the speed change cannot

be determined. This was missing in the earlier version of EVPRE which resulted in a

constant speed throughout the whole route that does not imitate real-world scenarios. The

speeds depend on the ongoing traffic on the road, dependent on the type of vehicle and time

of day. The data specific to HDV was obtained through a partnership with Geotab, which

maintains HDV fleet operation data for many freight vehicles. If the route optimization

is estimated with a constant speed profile, the energy consumption can be calculated as a

lower value compared to the real one. This can result in giving extended range coverage

which will not be the actual case in practice.

The previous version of EVPRE was optimizing one single factor like energy consump-

tion or travel time or distance traveled. But in reality, some trade-offs will always be needed

to choose an efficient route. As it is mentioned earlier, heavy-duty vehicles are highly used

for delivering heavy goods on time. If an energy-efficient route is chosen, there is no guar-
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antee that the route can get you to the destination on time. Then again, if a time-efficient

route is chosen, it will not be efficient for the battery of the vehicle to cover the range which

is not accepted. Multi-factor optimization extensions to EVPRE now enable route calcu-

lations with express trade-offs between energy efficiency and time efficiency or a trade-off

between energy efficiency and distance efficiency.

Fig. 5.3: New EVPRE System Design. Blue indicates the added components needed to
expand EVPRE to operate heavy-duty freight vehicles. The significant addition of Multi-
Objective optimization is necessary for balancing the needs of freight operators.

Fig. 5.3 is showing the added elements of the software in the bluish color. Initial

development integrated HDV information into the FASTSim module as described in section

4.1. The information displayed in Table 4.5 is given as the input of FASTSim using a CSV

ingestion. Whenever needed, the file is loaded and exported into the FASTSim model to do

the simulation and required calculations. Then comes the Geotab integration. Geotab is a

telematics company that provides data and analytics for fleet management. Geotab collects

data from vehicles equipped with its GPS tracking devices, including location, speed, fuel

usage, idling time, and other vehicle-specific information. This data is then transmitted

to the Geotab cloud platform where it is processed and analyzed. Geotab’s data can be
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used by fleet managers to improve the efficiency and safety of their operations. Geotab

also offers a range of software integrations and APIs that allow its data to be integrated

with other fleet management systems. Geotab’s data has been used for a variety of research

projects, including studies on the impact of congestion on air quality and the effects of

weather on vehicle performance. The company has also partnered with organizations such

as Smart Cities Council and the American Lung Association to promote sustainable and

healthy transportation.

In recent years, Geotab has been actively involved in electric vehicle (EV) research,

leveraging its extensive data resources to gain insights into EV usage patterns and perfor-

mance. Geotab has access to data from over 2 million connected vehicles globally, including

a growing number of electric vehicles. This data includes information on vehicle location,

speed, acceleration, charging activity, and other metrics that can be used to analyze EV

performance and usage [69]. One area of Geotab’s EV research has been focused on un-

derstanding the impact of weather on EV performance. By analyzing data from EVs in

different climate zones, Geotab has been able to identify patterns in battery performance

and range under different temperature and weather conditions. This information can help

EV manufacturers and fleet managers better understand how their vehicles will perform in

different regions and climates [70]. Geotab has also conducted research on the total cost of

ownership (TCO) of EVs versus traditional gas-powered vehicles. By analyzing data on fuel

costs, maintenance costs, and other factors, Geotab has found that EVs can have a lower

TCO than gas-powered vehicles in many cases [71]. This research can help fleet managers

and other businesses make informed decisions about switching to EVs. In addition to its

own research, Geotab has made its data available to researchers and organizations inter-

ested in studying EV performance and usage [72]. This data can provide valuable insights

into EV adoption and help inform policies and programs aimed at promoting sustainable

transportation.

Geotab has been integrated into EVPRE using the API key. The ‘TravelTime Avg’ has

been extracted throughout the whole path using Geotab so that the traffic can be estimated
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using this. ‘TravelTime Avg’ gives the data of average travel time in seconds of the road

segment with the associated traffic data. This will help in the optimization. This will help

the optimization model to redirect the vehicle to follow other routes depending on the travel

time requirements.

5.3 Software Components and Ease of Use

The new EVPRE software has the capability of providing single-factor optimized routes

as well as multi-factor optimized routes for heavy-duty electric vehicles. For doing so, a

graph object is highly needed that represents all the road segments and the locations along

with the road characteristics. Following the selection of one geographical area of interest,

Open Street Map (OSM) has been used to download the graphical representation of all the

roads. This downloaded data includes street speed, grade, latitude, longitude, length of

the road, etc. The Google Maps API is used in conjunction with OSMnx for the elevation

information of each node of the graph. OpenWeatherMap API will give the necessary

weather information like temperature, humidity, visibility, wind speed, etc. Geotab API is

incorporated into the software so that we can use the traffic information for route estimation

for more coverage. All these data will be associated with the node and edges in the graph

object. Finally, the customization for HDV requires specification details on the physical

vehicle as given in the input to the FASTSim model (see Fig. 5.4).

The heavy-duty vehicle has been chosen to be the Kenworth T680E model. Its infor-

mation helps FASTSim in this software to simulate the performance of heavy-duty electric

vehicles in an energy calculation module. Two options are provided and tested in this

software base:

1. Single Factor Optimization Framework: This framework optimizes one single objec-

tive between energy, time, or distance.

2. Multi-Factor Optimization Framework: This framework makes a trade-off between

the objectives. The trade-off could have been between energy-time or energy-distance

or energy-distance or energy-time-distance.
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Fig. 5.4: Work Flow of New EVPRE software
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The single-factor optimization framework gives either one of the following:

1. Energy-efficient route: The route takes the most energy-optimal route. The user can

consume the least energy value following this path.

2. Time-efficient route: The route takes the user to the destination fastest. The time

consumption of this route is the smallest compared to others.

3. Distance-efficient route: The route is the traditional distance optimal route. Following

this, the user can use the shortest route within the two locations.

If the user wants an energy-efficient route within the selected start and end point, the

calculated energy value is used as the edge weights in the graph. And if the efficiency factor

is time, the edge weights will be the time value gathered from the Geotab API. Likely, the

distance value as the edge weights will give distance-efficient routes. But all these shortest

routes will be selected using the Bellman-Ford algorithm in the weighted graph where the

factors would be either energy, time, or distance depending on the edge weights.

But, if the user wants a trade-off between energy, time, and distance or any two of

them, the multi-factor optimization framework is chosen. Three coefficients are used there:

1. Alpha: Corresponds to the weightage associated with the energy consumption by EVs.

2. Beta: Corresponds to the weightage associated with the traffic time value gathered

from Geotab.

3. Gamma: Corresponds to the weightage associated with the distance traveled.

The value of these coefficients depends on the percentage of the trade-offs. If the alpha

is increased, this states that the energy optimization will have more importance compared to

others. And, if the beta value is increased, it denotes that the user wants time optimization

more than energy or distance optimization. As described in Section 6.3, if the user wants the

route to be 80% energy efficient and 20% time efficient, the values of alpha and beta would

be 0.8 and 0.2 respectively. Finally, these functional values are given to the edge weights
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instead of a constant value for the multi-objective optimized routes. Then, Bellman-Ford

will choose the shortest path according to the edge weights between the two points giving

a multi-objective optimized path.
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CHAPTER 6

SIMULATION SCENARIOS

The new EVPRE software helps EV users to get energy-efficient, time-efficient, and

distance-efficient routes and also there is an added option of doing some trade-offs among

them for getting multi-objective optimized routes. But it is important to note that electric-

vehicle energy efficiency is different than ICE efficiency. First, it’s essential to understand

that EVs operate using electricity stored in batteries, while ICE vehicles use fuel like gasoline

or diesel. Electric vehicles are significantly more energy-efficient than ICE vehicles because

they convert more of the energy stored in their batteries into motion. Electric motors are

very efficient and can convert over 90% of the battery’s stored energy into motion. In

contrast, ICE vehicles only convert about 20-30% of the energy in the fuel into motion,

with the rest being lost as heat or through friction. Acceleration is faster at less power for

EVs and it does not mind stop-and-go traffic as much which is not the case for ICE-based

vehicles. They require more energy for higher acceleration and frequent stopping leads to

more energy consumption. Weight matters much more for freight EVs. If the cargo weight

is increased, the battery efficiency and size need to be increased simultaneously because it

will require more energy for operation. Also, downhill early or later on a route can have

a significant impact on electric vehicles’ energy requirements. In this case, the ICE-based

freight vehicles can carry bigger cargo weights with less increment in energy consumption.

It is also crucial to consider the time impact with energy for truck logistics and limited fleet

assets.

6.1 Choice of Location

Choosing a geographical area is the first step to moving forward with the new EVPRE

software. The new EVPRE software simulates heavy-duty electric vehicles within a chosen

area. We started looking for a suitable place near or within Utah being associated with
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Utah State University. The main criteria of the suitable area were that the area should

have been a big hub for the distribution of deliveries from where most of the goods are

taken out and delivered to Utah global markets. Usually, the communities around these

big ports or hubs of transportation are affected the most because of the dangerous emission

from ICE-based heavy-duty vehicles.

The Utah Inland Port seemed to be a good fit for the simulation work. The Utah

Inland Port is a project aimed at creating an inland port in Utah, United States. The

inland port is planned to be located on approximately 16,000 acres of land west of the Salt

Lake City International Airport, with a portion of the land being owned by the Utah State

government. The project involves developing an area of land in Salt Lake City to serve as

a hub for the transportation, warehousing, and distribution of goods from both domestic

and international sources. The proposed port is located in the northwest quadrant of Salt

Lake City and is designed to connect multiple modes of transportation, including rail,

truck, and air cargo. The project has been controversial since it was first proposed in 2018,

with many concerned about its potential impact on the environment, air quality, and local

communities. They have also criticized the lack of public input in the development process

and the potential for the project to exacerbate climate change. Despite these concerns, the

project continues to move forward with the support of the state government and private

investors.

On January 22, 2020, Dr. Kirtly Jones has spoken at the port report press release

about the negative health impact the port would have with the increase of air pollution.

The report [73] was released outlining the potential environmental harms of the proposed

Utah Inland Port. The report has questioned the choice of the site for constructing an

inland port to be critical in determining whether it will offer a viable solution or worsen

the situation. Unfortunately, some areas, particularly the vulnerable shores of Great Salt

Lake, have been earmarked for Utah’s inland port project, despite being deemed the most

unfavorable location for the well-being of people and the ecosystem. According to the report

in [73], the primary environmental worry for the public is air quality, particularly the impact
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of additional truck and rail traffic on the already inadequate air quality along the Wasatch

Front.

There is another potential area of interest in salt lake city and that is the newly

constructed Amazon regional warehouse which is on the 180,000-square-foot land located

in Marriott-Slaterville at Interstate 15 and 400 North. It has been stated in [74] that over

1,600 vehicles are estimated to be entering and exiting the facility daily. Most of these

vehicles are ICE-based heavy-duty freight vehicles which means that the air pollution rate

is going to increase heavily. But these hubs are creating lots of job opportunities as said by

the supporters of the projects. Also, it cannot be denied that such bug hubs or ports are

essential as delivering heavy goods is also important.

All these concerns are being created because of diesel-based heavy-duty vehicles. One

solution could have made a bridge between the supporters and opponents of the project

and that could have been the electrification of heavy-duty freight vehicles. For the fast

adaptation of the electrification of freight vehicles, this thesis work will help enormously as

this shows the path of using a comparatively smaller size of the battery in EVs covering

more range. This also provides an optimized solution to route estimation which makes

heavy-duty electric vehicle users content and comfortable.

6.2 Single-Factor Optimization Framework

It has been stated in section 5.3 that the new EVPRE software consists of two opti-

mization frameworks; one is single-factor optimization and another one is multi-factor opti-

mization. Single-factor optimization framework gives the users routes optimizing one single

factor which can be energy consumption by the vehicle or the time required for traveling or

the distance required within two user-selected locations. This framework is highly beneficial

for users who usually drive light-duty EVs where they can choose the energy-efficient route

so that they can keep the batteries in healthy operating regions as well as reduce range

anxiety. The optimization framework works within a graph object. The nodes denote the

locations of Northern Salt Lake City and the edges are the routes or roads of those locations.

This big graph has been downloaded using the Open Street Map. In this software, users can
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choose whether they want an energy-efficient or time-efficient, or distance-efficient route by

choosing the weights of the edges. If the weights are the calculated energy consumption by

the vehicles, the software will provide routes that are optimized by the energy value. But if

the weights are the time value that has been gained using the Geotab API, the routes will be

optimized by the time required to reach the destination starting from the source location.

Users have another choice which is to choose the weights to be the distance parameter.

This will allow the software to provide the routes which are optimized by the distance value

which is the length of the total route within the start and end locations.

Energy Value (kJ) Time Value (s) Distance Value (m)

Energy-efficient 21.03 2799.05 (46% more) 48654.13 (6% more)

Time-efficient 26.11 (20% more) 1512.05 49432.08 (8% more)

Distance-efficient 22.26 (6% more) 2440.93 (38% more) 45631.59

Table 6.1: Statistical Analysis of energy consumption, time requirement, and distance tra-
versed for the route in Fig. 6.1. In this route, 13% energy savings, 42% time savings, and
7% distance savings have been achieved on average.

In Fig. 6.1a, three routes are generated in three different colors within the start and end

locations with markers. The blue marker denotes the starting location which is the Utah

Inland Port and the red marker is for the destination. Among the three routes, the green

route will give the most energy-efficient route. The red route will help users to reach their

destination within the shortest time possible. And, the blue route will take the shortest

distance within the two markers. Users can choose any one of the routes to reach the

destination. If any user chooses the green route, s/he will expect his vehicle to consume the

least amount of battery comparing the other routes without caring for time and distance.

Then again, if any user chooses the red route, s/he will expect to reach the red location in

the shortest amount of time considering the traffic condition as this new EVPRE software

is using the traffic data from Geotab. To validate this, Fig. 6.1b has been generated. In

Fig. 6.1b. the green bars are giving the energy value consumed following three different

paths from the software. The red bars are for the time value and the blue bars are for
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(a) Generated Routes 1

(b) Green bars: Energy consumption by the three routes, Red bars: Time required for the three
routes, Blue bars: Distance covered by the three routes.

Fig. 6.1: Energy-efficient route (Green), Time-efficient route (Red), and Distance-efficient
route (Blue) have been produced using the EVPRE software integrating the traffic time
data. The route covers a distance of around 45630 meters. The energy-efficient route uses
∼ 21.03 kJ energy and the time-efficient route reaches the destination in ∼ 1512.05 seconds
or ∼ 25 minutes.

the distance value for the three routes with three objectives. Looking at the green bars, it

has been confirmed that the energy-efficient route is consuming the least amount of energy.

The time-efficient route is also taking the user to the destination in the least amount of

time, as the distance-efficient route. Looking at the statistics of Table 6.1, it is visible that

the energy-efficient route is saving around 13% energy consumption on average. The time-

efficient route is taking around 42% less time to reach while the distance-efficient route is
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efficient in saving distance 7% on average.

(a) Generated Roues 2

(b) Green bars: Energy consumption by the three routes, Red bars: Time required for the three
routes, Blue bars: Distance covered by the three routes.

Fig. 6.2: Energy-efficient route (Green), Time-efficient route (Red), and Distance-efficient
route (Blue) have been produced using the EVPRE software integrating the traffic time
data. The route covers a distance of around 38800 meters. The energy-efficient route uses
∼ 18.39 kJ energy and the time-efficient route reaches the destination in ∼ 1549.42 seconds
or ∼ 26 minutes.

Similarly, Fig. 6.2a gives an energy-efficient route in green, a time-efficient route in

red, and a distance-efficient route in blue starting from Utah Inland Port. Fig. 6.2b is

showing the comparisons among them to prove their efficiency with visualization. The

stored statistics of Fig. 6.2 in Table 6.2 states that the energy-efficient route is efficient

3% on average in energy consumption in these locations when the time-efficient route will
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Energy Value (kJ) Time Value (s) Distance Value (m)

Energy-efficient 18.39 2121.23 (27% more) 43236.42 (10% more)

Time-efficient 18.99 (3% more) 1549.42 39766.77 (3% more)

Distance-efficient 18.91 (3% more) 1931.53 (20% more) 38814.27

Table 6.2: Statistical Analysis of energy consumption, time requirement, and distance tra-
versed for the route in Fig. 6.2. In this route, 3% energy savings, 23.5% time savings, and
6.5% distance savings have been achieved on average.

redirect the user to the destination with 23.5% less amount of time. Now, if Table 6.1

and Table 6.2 are compared, even though the route in Table 6.1 was about 6000 meters

longer than the route of Table 6.2, the energy-efficient route could save around 13% energy

consumption for the earlier route (Table 6.1).

Energy Value (kJ) Time Value (s) Distance Value (m)

Energy-efficient 16.29 1386.07 (2% more) 34228.93 (0.27% more)

Time-efficient 17.08 (5% more) 1363.83 35132.22 (3% more)

Distance-efficient 17.49 (7% more) 1468.82 (7% more) 34138.82

Table 6.3: Statistical Analysis of energy consumption, time requirement, and distance tra-
versed for the route in Fig. 6.3. In this route, 6% energy savings and 4.5% time savings
have been achieved on average while the distance-efficient route saves 1.6% distance than
others.

Energy Value (kJ) Time Value (s) Distance Value (m)

Energy-efficient 19.49 1870.75 (8% more) 40503.69 (0.14% more)

Time-efficient 21.09 (8% more) 1722.63 43700.33 (7% more)

Distance-efficient 20.41 (5% more) 1859.88 (7% more) 40446.26

Table 6.4: Statistical Analysis of energy consumption, time requirement, and distance tra-
versed for the route in Fig. 6.4. In this route, 6.5% energy savings and 7.5% time savings
have been achieved on average, and around 3.6% distance can be saved using the distance-
efficient route.

Looking at Figure 6.3 and 6.4, we can see that the energy-efficient route is saving
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(a) Generated Routes 3

(b) Green bars: Energy consumption by the three routes, Red bars: Time required for the three
routes, Blue bars: Distance covered by the three routes.

Fig. 6.3: Energy-efficient route (Green), Time-efficient route (Red), and Distance-efficient
route (Blue) have been produced using the EVPRE software integrating the traffic time
data. The route covers a distance of around 34100 meters. The energy-efficient route uses
∼ 16.29 kJ energy and the time-efficient route reaches the destination in ∼ 1363.83 seconds
or ∼ 23 minutes.

energy as well as it is following the closest to the shortest distant path. In Figure 6.3,

the energy-efficient route is saving around 6% energy consumption while it takes about 22

seconds more and just 0.3% more distance to reach the destination. In Figure 6.4, the
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(a) Generated Routes 4

(b) Green bars: Energy consumption by the three routes, Red bars: Time required for the three
routes, Blue bars: Distance covered by the three routes.

Fig. 6.4: Energy-efficient route (Green), Time-efficient route (Red), and Distance-efficient
route (Blue) have been produced using the EVPRE software integrating the traffic time
data. The route covers a distance of around 40400 meters. The energy-efficient route uses
∼ 19.49 kJ energy and the time-efficient route reaches the destination in ∼ 1722.63 seconds
or ∼ 29 minutes.

energy-efficient route is saving around 7% energy consumption and it is taking 3 minutes

more with 0.1% more distance for the travel. This says that the energy-efficient route can

be great also to save energy consumption as well as following a time-efficient route which

helps the Freight EV users to keep their battery life healthy along with maintaining fast

deliveries.
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Fig. 6.5: Average energy consumption, time requirements, and distance traversed of 30
different routes starting from the Utah Inland Port. The green bars are denoting the
simulated energy consumption values for following the three different routes. The red bars
are for visualizing the time requirements to reach the destinations and the blue bars are for
the distance covered for the three routes.

Avg Energy (kJ) Avg Time (s) Avg Distance (m)

Energy-efficient 17.98 1953.52 (27% more) 41432.59 (3% more)

Time-efficient 22.09 (23% more) 1434.15 44440.94 (10% more)

Distance-efficient 19 (5% more) 1725.06 (17% more) 40020.96

Table 6.5: Statistical Analysis of energy consumption, time requirement, and distance tra-
versed for the route in Fig. 6.5. These are the records for the average statistics showing
the efficiency of 30 generated routes from Utah Inland Port. It is evident that overall 14%
energy savings, 22% time savings, and 7% distance savings have been achieved.

Now, it is necessary to look at the average efficiency of the algorithm which can be

visualized with Fig. 6.5. 30 different routes have been chosen while all of them started at

the Utah Inland Port. We have tried to visualize the average efficiency of the generated

routes to reach different delivery locations starting from the Utah Inland Port. The bars

are showing that the optimal routes are giving the optimal result on average. This has been

recorded in Table 6.5. Table 6.5 states that the energy-efficient route consumes 22% less

energy on average and the time-efficient route reaches the destination 14% faster on average.

It is visible that there could have been around 5% error in the estimation. So, it can be

promised that it is efficient to follow the generated routes to fulfill the user’s optimization.
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Fig. 6.6: On average 6% of energy savings and 15% of time savings have been achieved from
30 routes starting from Utah Inland Port. These energy and time-efficient routes have been
compared with the traditional distance-based routes.

Fig. 6.6 is a great visualization of the fact that the single-factor optimization framework

is saving around 6% of energy consumption compared to the general distance-efficient routes

which are usually designed for the ICE-based vehicles for fuel consumption efficiency. We

have compared the energy-efficient and time-efficient routes with the baseline route which

is the distance-efficient route. There are 30 routes that have been used in Fig. 6.5. The

comparison between the energy values of the energy-efficient route with the baseline one

is giving them a saving of around 6%. This is a great achievement as savings in energy

consumption are a must while using EVs on a daily basis. If around 5% of the time, we can

save energy consumption, the adoption of EVs can be increased in a significant amount of

time because we can rely on the range coverage and we can assure that the battery life can

be improved to 5% at least.

But it is also visible in Table 6.1 that an energy-efficient route consumes 46% more

time and 6% more distance to reach the destination. This cannot be always acceptable.

Also, the time-efficient route is consuming 20% more energy which is not good for the

battery health and the range coverage of EVs. Even in table 6.2, it is non-negligible that

the energy-efficient route takes 27% more time which is around 10 minutes of extra time. To
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overcome this, if the user chooses the time-efficient route, it will consume 3% more energy.

This has been a great motivation for the multi-objective optimization work of the thesis.

6.3 Multi-Factor Optimization Framework

Multi-factor optimization framework has been designed so that users can choose a

trade-off among the objectives; energy, time, and distance. It is practical to choose some

trade-offs rather than just ignoring one objective and optimizing another one. In a single-

objective optimization framework, it is not guaranteed that the energy-efficient path can

reach the user to the destination on time. It just ensures that following the resulting path

will consume the least amount of energy by the vehicle. This is evident in Table 6.1, 6.2,

6.3, 6.4 and 6.5. The energy-efficient route takes 27% more time on average to reach the

destination which means around 9 minutes more time will require following the energy-

efficient route than the time-efficient one. But if users want to reach on time following the

time-efficient route, it is not guaranteed that the vehicle can cover the range with one full

charge or that the path will be optimized for the battery which can arise range anxiety

within the driver. From the Tables 6.1, 6.2, 6.3, 6.4 and 6.5, it can be estimated that on

average 23% more energy will be consumed to reach on time.

Our balanced parameter weight-based optimization technique can solve the dilemma in

a comfortable state. In this multi-objective optimization framework, some trade-offs have

been offered to the users so that they can have the routes optimized like 80% of energy

consumption and 20% of time value. This will ensure that following the route the user can

get 80% less energy consumption while there will be a 20% chance that this route can get

him to the destination on time. In this framework, three coefficients have been used; alpha,

beta, and gamma. Alpha denotes the weightage to the energy consumption while beta

tends to the weight of time value and gamma has been used for the distance metric. The

values of these coefficients give the weights to the objectives. The values can be changed

according to users’ choice. If any user chooses alpha to be 0.7, beta to be 0.2, and gamma

to be 0.1, this will generate a route considering 70% weight to the optimization of energy

consumption, 20% weight to the time optimization, and 10% for the distance optimization.



45

So, the user can expect that the route can get him to the destination with around 5% less

energy consumption and 2% faster than the regular route on average.

Fig. 6.7: Multi-objective Optimization route. Green route: Energy-efficient, Red route:
Time-efficient, Black route: alpha0.8beta0.2gamma0.1. The route is 80% energy efficient
and 20% time efficient. The route is consuming 1.22 kJ more energy than the energy-efficient
one. The time required for the route is 5 minutes more than the time-efficient route and 21
minutes less than the energy-efficient route.

The route in Fig. 6.7 is a multi-objective optimized route. The route has 80% weight

to the energy efficiency and 20% weight to the time efficiency. The starting location is the

Utah Inland Port. The route is consuming 25.20 kJ of energy which is 1.22 kJ more than

the energy-efficient route. The route is taking the user to the destination in 36 minutes

which is 5 minutes more than the time-efficient route but this route is 21 minutes faster

than the energy-efficient route. This route is the most sufficient one because the time-

efficient route consumes 6.76 kJ more energy with just 5 minutes less time when this route

is energy-efficient as well as time-efficient compared to the other two.

The route in Fig. 6.8 is another multi-objective optimized route where energy is 80%

optimized and time is 20% optimized. The multi-factor optimized route consumes about

the same energy as the energy-efficient route but 8.16 kJ less than the time-efficient one.

This route takes around 32 minutes to reach the destination which is 5 minutes more than

the time-efficient one and 6 minutes less than the energy-efficient one. The multi-objective



46

Fig. 6.8: Multi-objective Optimization route. Green route: Energy-efficient, Red route:
Time-efficient, Black route: alpha0.8beta0.2gamma0.1. The route is 80% energy efficient
and 20% time efficient. The route is consuming 1.22 kJ more energy than the energy-efficient
one. The time required for the route is 5 minutes more than the time-efficient route and 21
minutes less than the energy-efficient route.

Energy Consumption (kJ) Time Requirement (s)

alpha0.8beta0.2gamma0.1 25.20 2201.39

Energy-efficient 23.98 3165.01

Time-efficient 31.96 1861.69

Table 6.6: Statistical Analysis of multi-objective optimization route (80% energy-efficient
and 20% time-efficient) of Fig. 6.7. The route is consuming 1.24 kJ less energy. The time
required for the route is 5 minutes more than the time-efficient route and 20 minutes less
than the energy-efficient route.

Energy Consumption (kJ) Time Requirement (s)

alpha0.8beta0.2gamma0.1 17.96 1937.16

Energy-efficient 17.94 2265.85

Time-efficient 26.12 1598.59

Table 6.7: Statistical Analysis of multi-objective optimization route (80% energy-efficient
and 20% time-efficient) of Fig. 6.8. The route is consuming the same energy as the energy-
efficient one. The time required for the route is 5 minutes more than the time-efficient route
and 6 minutes less than the energy-efficient route.

optimized route is a good choice for this travel because it is getting a route with some

trade-offs but it is efficient enough in terms of energy consumption which is essential for EV

users and also the time requirement is not too high. The time-efficient route is consuming

way more energy and the energy-efficient route is taking a long time than expected. So,
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this new optimized route is doing a bridge balancing these requirements.

Fig. 6.9: On average 7% of energy savings and 6% of time savings have been achieved from
30 multi-objective optimized routes starting from Utah Inland Port. These routes are 80%
energy-efficient and 20% time-efficient. These energy and time-efficient routes have been
compared with the traditional distance-based routes.

Fig. 6.9 and 6.10 have been generated to show the energy and time savings using the

multi-objective optimization framework with the comparison of the regular distance-efficient

route. In Fig. 6.9, the alpha and beta have been considered to be 0.8 and 0.2 respectively

which states that the weights have been given 80% to the energy consumption efficiency

and 20% to the time efficiency. These weights generate routes optimizing around 7% of

energy consumption and around 6% of time requirements.

In Fig. 6.10, the weights are 0.7 and 0.4 for alpha and beta respectively which resulted

in routes optimizing around 11% of energy consumption and around 3% of time savings.

All these routes have been generated considering the traffic information gathered from

Geotab API. Traffic impacts are not directly simulated as many non-highway roads do not

have data associated, but all routes are considering specific factors for heavy-duty freight

(i.e.: travel time including anticipated traffic and acceleration/deceleration from making

turns, energy costs of accelerating a filled freight trailer, and difficulty of making turns in
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Fig. 6.10: On average 11% of energy savings and 3% of time savings have been achieved
from 30 multi-objective optimized routes starting from Utah Inland Port. These routes are
70% energy-efficient and 40% time-efficient. These energy and time-efficient routes have
been compared with the traditional distance-based routes.

intersections). Some traffic constraints do exist here, and some routes (i.e.: energy-efficient

routes) may involve vehicles driving on smaller roads. However, all roads are viable for

heavy-duty trucking (as per Geotab).
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

Over the past few years, the price of electric freight vehicles has been gradually dropping

as battery technology has improved and production costs have decreased. As the demand

for more efficient transportation options continues to grow, more and more manufacturers

are entering the market, which is driving competition and further price reduction. But the

adoption of heavy-duty freight electric vehicles is still not increasing as it is needed because

of some factors like range anxiety, lack of charging infrastructure, cargo size, etc. While

the range of electric vehicles is improving, many freight operators are concerned about the

distance they can travel on a single charge and the availability of charging infrastructure

along their routes. Many freight operators are concerned about the availability and reliabil-

ity of charging infrastructure, particularly in rural areas or along remote routes. Without

a robust and reliable charging network, businesses may be reluctant to invest in electric

vehicles.

The main concern associated with the decreasing interest in adopting heavy-duty freight

electric vehicles is the battery charge. Smaller batteries are faster to charge and the tool

designed in this thesis allows systems to operate with ∼ 20% smaller batteries or smaller

freight capabilities for deliveries. The software is designed to deliver optimizing routes

based on three objectives; energy, time, and distance. These objectives can be optimized

one at a time and also there is an option for multi-factor optimization. Traffic information

has also been associated with the calculation of energy consumption so that efficiency can

be increased. In the single-factor optimization framework, users can choose from energy-

efficient, time-efficient, or distance-efficient routes, and in the multi-objective optimization

framework, users can do some trade-offs between energy or time, or distance so that they can

get the routes with mixed optimization. A balanced parameter weight-based optimization

technique has been introduced here where three coefficients; alpha, beta, and gamma have
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been used in consideration of the weights to the objectives. On average, the energy-efficient

routes can save ∼ 6% to 10% of energy consumption and time-efficient ones can be ∼ 3% to

6% faster compared to the traditional distance-based routes. In multi-objective optimized

routes, the energy savings and time savings are ∼ 11% and ∼ 6%, respectively. All these

savings will help in reducing battery usage and thus, it will maintain good battery health. It

will also help to increase the average range coverage of the heavy-duty freight EVs as smaller

batteries can cover comparatively longer routes if the routes could have been efficient enough

for energy consumption. This can eventually increase the adoption of electrified heavy-duty

freight vehicles by reducing range anxiety. Electrification impacts can significantly improve

health at even a 5% adoption increment as it will help cut back the fuel exertion caused by

conventional motor vehicles.

7.1 Future Works

The new EVPRE software is able to provide energy-efficient, time-efficient, and distance-

efficient routes with some options for trade-offs among them in a simulated world. The

testing and validation of the software with real-life data from the Kenworth truck company

is the next work to be done. The software can also be tested with some other optimization

techniques like particle swarm optimization (PSO), ant colony optimization (ACO), etc.
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do electric vehicles need? a review of the evidence and international comparison,”
Transportation research part D: transport and environment, vol. 77, pp. 224–242, 2019.
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