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I-optimal or G-optimal: Do we have to choose?

Stephen J. Walsha , Lu Lub , and Christine M. Anderson-Cookc

aDepartment of Mathematics and Statistics, Utah State University, Logan, UT, USA; bDepartment of Mathematics and Statistics,
University of South Florida, Tampa, FL, USA; cLos Alamos, NM, USA

ABSTRACT
When optimizing an experimental design for good prediction performance based on an
assumed second order response surface model, it is common to focus on a single optimality
criterion, either G-optimality, for best worst-case prediction precision, or I-optimality, for
best average prediction precision. In this article, we illustrate how using particle swarm opti-
mization to construct a Pareto front of non-dominated designs that balance these two crite-
ria yields some highly desirable results. In most scenarios, there are designs that
simultaneously perform well for both criteria. Seeing alternative designs that vary how they
balance the performance of G- and I-efficiency provides experimenters with choices that
allow selection of a better match for their study objectives. We provide an extensive reposi-
tory of Pareto fronts with designs for 17 common experimental scenarios for 2 (design size
N¼ 6 to 12), 3 (N¼ 10 to 16) and 4 (N¼ 15, 17, 20) experimental factors. These, when com-
bined with a detailed strategy for how to efficiently analyze, assess, and select between
alternatives, provide the reader with the tools to select the ideal design with a tailored
balance between G- and I-optimality for their own experimental situations.
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1. Introduction

For response surface designs, experimenters frequently
assume that a second-order model will adequately
describe the underlying relationship between the
response and experimental factors, and the choice of
which designed experiment to run focuses on the abil-
ity to predict well throughout the input space.
Assuming a particular model, the prediction variance
(PV) – how much variability or uncertainty is associ-
ated with the prediction of the mean response value –
can be calculated for the design at any point of pre-
diction in the input space. Since the PV is a function
of the natural variability of the process, which is typ-
ically unknown at the point of designing the experi-
ment, we focus on the relative prediction variance
(RPV), which removes this constant and allows easy
comparisons between designs before data are col-
lected. Historically, researchers have focused on either
I-optimality (minimizing the average RPV across the
input space) or G-optimality (minimizing the worst-
case RPV) design criterion for this scenario. Both

criteria have some intuitive and practical appeal. The
RPV throughout the input space represents a distribu-
tion of values, with statisticians and scientists often
focusing on the center of distributions for a simple
summary of their characteristics. Alternately, since
one may not know a priori all locations where future
predictions are needed, protecting against the worst
possible RPV is appealing to bound the prediction
uncertainty from the estimated model.

Algorithms, like the coordinate exchange (Meyer
and Nachtsheim 1995), for generating optimal designs
exist in most major statistical software packages. The
D- and A-optimality criteria are commonly used when
the focus is on model parameter estimation (such as
in screening experiments), and I-optimality has rela-
tively recently emerged as the dominant choice when
prediction is the primary post-experiment analysis
objective. The preference to use I-optimality over
G-optimality for generating designs well suited for pre-
diction appears to be influenced by two factors – (1) the
tendency of statisticians to focus more frequently on
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the central characteristic of distributions, here the RPV
throughout the input space, and (2) the computational
ease of generating I-optimal designs compared with
generating G-optimal designs (Rodriguez et al. 2010;
Walsh and Borkowski, 2022). But should experimenters
be automatically guided to I-optimality when they want
to focus on the quality of prediction of a design? Are
there benefits to seeing and comparing the I- and G-
optimal designs to understand how well each does rela-
tive to the other criterion? And, perhaps most import-
antly, are there designs that might be more appealing to
practitioners than either the I-optimal or G-optimal
designs? For example, there may exist designs that
retain high performance on both criteria.

After exploring a suite of rational alternatives that
balance the two RPV-based optimality criteria, we
believe that for many experimental scenarios, there
are superior choices available other than the strictly
optimal design for either G- or I-criterion. Focusing
on generating a good design under only one of the
criteria potentially ignores the other completely. In
many cases, a small reduction in the efficiency of one
criterion can lead to disproportionate improvement in
the other. The efficiency of a design based on a criter-
ion (formally defined in Section 2.1) ranges from 0 to
100% and describes how well the design does relative
to the best possible design for that criterion.

Consider the design scenario with 2 continuous input
factors and an experiment with 9 experimental runs in a
rectangular study region. The algorithm for finding the
I-optimal design does not consider G-efficiency at all.
Likewise, the G-optimal design was constructed with
focus only on that criterion in isolation. Figure 1(a)
shows a scatterplot of the I- and G-efficiencies of these
designs plus the suite of rational alternatives found on
the Pareto front, that is, the set of non-dominated
designs based on the two criteria. From this plot, we see
that the I-optimal design (blue dot) that is by definition

100% I-efficient is only 70.2% as G-efficient as the
G-optimal design. This means that the worst-case RPV
over the input space is (1/0.702� 1) ¼ 0.425 or 42.5%
larger than the worst case from the G-optimal design.
Similarly, the G-optimal design (green dot with 100%
G-efficiency) is only 80.2% as I-efficient as the best avail-
able. This means that the average RPV for this design is
(1/0.802� 1) ¼ 0.247 or 24.7% larger than the best pos-
sible average. Thus, focusing exclusively on one criterion
has led to mediocre performance on the other. However,
as we advocate in this article, if both criteria are consid-
ered during the design construction phase, then we can
construct some attractive designs that have the following
efficiencies:

Ieff ,Grel�effð Þ ¼ 99:2%, 84:4%ð Þ red dotð Þ
97:3%, 92:9%ð Þ purpleð Þ
95:0%, 95:3%ð Þ orangeð Þ:

If we consider the first of these three options, this means
that there is a design that has an average RPV that is
only (1/0.992� 1) ¼ 0.008 or 0.8% larger than the
I-optimal design and has a maximum RPV that is
(1/0.844� 1) ¼ 0.185 or 18.5% larger than the G-optimal
design. Similarly, for the third option, the design has
both the average and maximum RPV that is only �5%
larger than the best possible for each criterion.

Figure 1b shows the fraction of design space (FDS)
plots (Zahran, Anderson-Cook, and Myers 2003) for
these 5 designs. FDS plots show a summary of the
entire range of RPV values for a given design in the
input space defined by the range of the experiment
settings. The vertical-axis shows the RPV values, while
the horizontal-axis shows the proportion of the input
space at or below a particular RPV value for that
design. For example, for the I-optimal design (blue),
the point (0.6,0.4) means that 60% of the inputs space
has RPV at or below 0.4. The ideal design has an FDS
curve that is as low and flat as possible, as this

Figure 1. Summary of non-dominant designs for K¼ 2, N¼ 9 scenario. (a) the Pareto front with the I-optimal (blue) and G-optimal
(green) designs. (b) the FDS plot of the 5 highlighted designs marked in (a).
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indicates good precision in prediction throughout the
input space. For I-optimality, the focus is on having
the average value (generally found near the center of
the horizontal-axis range) of the line as small possible.
Note how the blue curve has the lowest values for
most of the horizontal-axis range, but at the expense
of a very large maximum value. G-optimality seeks to
make the right endpoint of the curve (the maximum
RPV) as small as possible. The associated green curve
has the lowest maximum, but at the expense of con-
siderably larger values across most of the horizontal-
axis range. The red, purple, and orange curves from
the Pareto front highlight the potential of more bal-
anced solutions. They are each able to lower the RPV
values throughout the horizontal-axis range, relative
to the green G-optimal curve, while simultaneously
lowering the maximum (worst-case) RPV value rela-
tive to the blue I-optimal curve. For many experi-
menters, the middle 3 curves highlight solutions that
may represent better alternatives to either of the opti-
mal designs. The key is to be able to construct these
designs through an effective optimization algorithm,
and then be able to examine the alternatives to iden-
tify the one that is the best match to experimental
goals.

In this article, we explore 17 design scenarios for
K¼ 2, 3, and 4-factor designed experiments with the
goal of good prediction precision for a standard
second-order response surface model. We present the
two optimal designs based on either criterion alone,
and then provide a rich set of alternative designs on
the Pareto front (PF) based on the two criteria that
allow the practitioner to choose the right balance for
their experiment. For some experiments, it is critical
to protect against poor worst-case prediction. In other
cases, it may be more appealing to choose a design
that performs well for the average RPV. In most cases,
designs exist that perform extremely well, but not
strictly best, for both criteria simultaneously. As a key
contribution of this article, we provide a repository of
designs which characterize the PFs for the 17 design
scenarios considered in the Supplementary Materials
(SM). Part 1 of the SM describes the spreadsheet con-
taining all of the designs for each of the PFs. R-code
has been included that allows for easy extraction of
any selected design. With this repository, the reader is
equipped with the tools needed to select the best
design for their experimental situation that finds the
appropriate balance between the worst-case and aver-
age RPV throughout the input space.

Regardless of which design is finally selected, we
argue that knowledge is power: understanding the

available alternatives enables clearer comparisons and
ultimately better decision-making when selecting the
design to implement in practice. In addition, the
trade-offs between the G- and I-criteria differ substan-
tially depending on the number of input factors and
the size of the design sought. Seeing what is possible
for a particular experimental scenario provides valu-
able information, and we propose a structured process
for carefully considering different choices and com-
paring their performance.

The remainder of the article is organized as follows:
Sections 2.1–2.3, respectively, provide background on
the RPV-based optimality criteria, Pareto fronts (PF)
and the particle swarm optimization (PSO) algorithm
used to identify designs worthy of further consideration
for each experimental scenario. Section 3 illustrates the
complete method for comparing I- and G-optimal
designs to rational alternatives that balance the two
objectives and a process for selecting the right design
for each experimenter’s preferred compromise between
objectives. Section 4 shows the suites of optimal
designs and Pareto fronts for several different sized
designs with 2 continuous input factors. Section 5 sum-
marizes results for designs with 3 and 4 continuous
input factors. Finally, Section 6 contains conclusions.
The SM include (1) a 5-part document with additional
information, (2) the repository containing 17 .csv files
labeled “ParetoFront_K#_N�.csv”, where “#” indicates
the number of continuous factors, and “�” indicates
the design size, and (3) three files with R code to easily
extract designs from the repository and implement the
design selection methods described in Section 3.

2. Background

This section provides background on the components
needed to implement the methods described in the
remainder of the article: the RPV-based optimality crite-
ria, Pareto fronts (PF) and the particle swarm optimiza-
tion (PSO) algorithm used to identify worthy designs.

2.1. Prediction variance based optimality

We now introduce some of the background of the design
metrics considered in this article as well as a historical
perspective on the optimality criteria for prediction.

Second-order models are a common choice for
locally approximating a wide variety of smooth and
continuous underlying relationships between a set of
K experimental factors and a response. They provide a
robust approximation since they can be thought of as
a parameterized version of the second-order Taylor
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series expansion (Myers, Montgomery, and Anderson-
Cook 2016). The assumed model form is

y ¼ b0 þ
XK
i¼1

bixi þ
XK�1
i¼1

XK
j¼iþ1

bijxixj þ
XK
i¼1

biix
2
i þ e

and includes an intercept, K main effects, K(K� 1)/2
two-way interactions and K quadratic terms. The
error term, e, is assumed to be independently and
identically distributed as N 0, r2ð Þ: We consider the
scenario for an experiment with N design points and K
experimental factors. For the results summarized in this
article, we assume all design factors are scaled to range
[�1, 1] and so the design space is the v ¼ [�1, 1]K
hypercube, where all settings of each input in that
range are assumed possible. In the conclusions we dis-
cuss how this assumption may be relaxed to include
categorical design factors. Hence, we are considering
the class of continuous designs. A design point (i.e., an
experimental run) is an x0 :1�K row-vector of the
form, x0 ¼ x1 x2::: xKð Þ and specifies the values of all
inputs to be implemented for that experimental run.
We use X ¼ ½x1 x2 � � � xN �0 to denote the N � K
design matrix with the rows representing the N design
points.

For estimation of the model and for prediction of
new observations in the input space, let F be the
N� p model matrix with rows given by the expansion
vector

f 0 x0ið Þ ¼ ð1 xi1 ::: xiK xi1xi2 :::xi K�1ð ÞxiK x2i1 ::: x2iK).

The model can be written in matrix-vector form as
y ¼ Fbþ e: The ordinary least squares estimator of b

is b̂ ¼ F0Fð Þ�1F0y, which has variance Var b̂
� �
¼

r2 F0Fð Þ�1, where r2 is the variance of e: The total
model information matrix for b, specifically M Xð Þ ¼
F0F, plays an important role in optimal design of
experiments as all commonly used optimal design
objective functions are functions of this matrix.

To implement the construction of an ideal experi-
mental design in practice, an optimality criterion is
selected and used to define which candidate designs
X � vN are highly desirable. An optimization algo-
rithm is required to search vN to find the “best,” or
optimal, design. Thus, an exact optimal design prob-
lem (Goos and Jones 2011) is defined by the three
components:

(1) The number of design points N affordable in
the experiment.

(2) The structure of the model one wishes to fit
(here, the second-order model).

(3) A criterion which defines an optimal design.
This is a function of M Xð Þ:

In this article we consider the G- and I- criteria
described below. Both criteria are functions of the
variance of a mean prediction, ŷðx0Þ, at an arbitrary
location x0 2 v, which is defined as

Var ŷðx0Þ� � ¼ r2f 0 x0ð Þ F0Fð Þ�1f x0ð Þ:
Since the natural variability of the experimental

process, r2, is generally unknown at the time of plan-
ning the experiment, we consider the RPV which
removes the scale parameter r2 by multiplying by the
factor 1=r2: The RPV (of a candidate design X) at
any location x0 2 v, is calculated as

RPV x0ð Þ ¼ f 0 x0ð ÞMðXÞ�1f x0ð Þ ¼ f 0 x0ð Þ F0Fð Þ�1f x0ð Þ

and allows for easy scale-free comparisons between
designs of the same or different sizes (Jensen 2018).

The G-score of an arbitrary design X measures the
maximum RPV compared to the theoretical optimum
over all points of prediction in x0 2 v: There is a
known theoretical lower bound for the RPV maximum

of p=N ¼ 1þ 2K þ K K�1ð Þ
2

� �
=N, where p is the num-

ber of parameters in the second order model (Myers,
Montgomery, and Anderson-Cook 2016). Hence, the G-

score (often called G-efficiency) is defined as G Xð Þ ¼
100 p=N

maxx02v RPV x0ð Þ , with larger values indicating smaller

maximum RPV, i.e., more precise worst-case prediction.
The G-optimal design, X�, is the design which maxi-
mizes, over all designs X � vN , the G-score.

Evaluating the G-score for candidate designs
remains a computational challenge because the score
itself is defined as an optimization throughout the
design space,

G Xð Þ ¼ p

Nmax
x02v

RPV x0ð Þ :

This calculation has proved troublesome for global
optimal design searches, see Walsh and Borkowski
(2022) for some discussion on this topic. Recognizing
a symmetry in the RPV surface for second order mod-
els, several authors have found an approximation to
this calculation to be adequate and give small error
when calculating the G-criterion for a candidate
design (see, e.g., Borkowski 2003; Hernandez and
Nachtsheim 2018; Walsh 2021; Walsh and Borkowski
2022). These authors employ a 5K grid over v with

the grid defined as Gv ¼ �1, � 0:5, 0, 0:5, 1f gK to
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calculate RPV with the maximum value of RPV over
these points taken as an approximation to the
G-score.

The I-criterion is sometimes referred to as an inte-
grated variance criterion. An I-optimal design mini-
mizes the average RPV over the design space, v:
Hence, we can think of the I-optimal design, X8, as
that which minimizes the average relative prediction
variance ARPV Xð Þ ¼ avg RPV x0ð Þð Þ, over all designs
X � vN : In this article, for a candidate design X, we
compute an I-score as the inverse of the I-criterion
(so larger I-score means better design)

I Xð Þ ¼ 1

ARPV Xð Þ ¼
VÐ

f 0 x0ð Þ F0Fð Þ�1f x0ð Þdx0
, or I Xð Þ

¼ V

tr F0Fð Þ�1W
� � ,

where tr �f g is the trace operator, W ¼ Ð
f x0ð Þf 0

x0ð Þdx0 is referred to as the region-moments matrix, and
V represents the volume of the design space. A larger I-
score indicates more precise prediction averaged cross
the design space. Provided the design space is a simple
geometry, such as the K-dimensional hypercube (as in
the problems addressed in this article), the multi-dimen-
sional integral has closed-form and can be computed
exactly (see Myers, Montgomery, and Anderson-Cook
2016).

In this article, we consider designs that are not
strictly the G- or I-optimal designs, but rather seek
good performance on both criteria. Hence, we define
the relative efficiency for a given design, X, as

Grel�eff ¼ 100
GðXÞ
GðX�Þ and Ieff ¼ 100

IðXÞ
IðX8Þ ,

where the relative efficiencies lie in [0,100]% and the
optimal design is in the denominator for each equa-
tion as we seek to maximize both the G- and I-scores.

Historically, both G- and I-optimality in the context
of exact designs, were the subject of much academic
research, with I-optimality appearing to have gained
more widespread application among practitioners.
Borkowski (2003) applied a genetic algorithm to gener-
ate both G- and I-optimal designs for the second-order
model and twenty-one exact small response surface
design scenarios covering K¼ 1, 2, 3 design factors and
experiment sizes N ¼ 3, :::, 9, N ¼ 6, :::, 12, and
N ¼ 10, :::, 16, respectively. Rodriguez et al. (2010)
developed an augmented coordinate exchange algorithm
to reproduce the designs generated by Borkowski (2003)
and extended the study to K¼ 4, 5 factors and design
sizes N¼ 15, 20, 24 and N¼ 21, 23, 30, respectively.

Rodriguez et al. (2010) focused specifically on generating
G-optimal designs and comparing the proposed G-opti-
mal design’s prediction variance properties to those of
corresponding I-optimal designs. They noted that, while
G-optimal designs have lower maximum RPV, the
I-optimal designs had lower RPV over a larger portion
(say > 80%) of the design space. This observation, in
conjunction with the fact that it is considerably more
difficult to generate G-optimal designs than I-optimal
designs, led the authors to recommend that, from a
practitioner’s perspective, the added expense and diffi-
culty of generating G-optimal designs may not be worth
the effort nor risk (of not finding the optimal design).
Hernandez and Nachtsheim (2018) published a new
augmented coordinate exchange algorithm based on
continuous I-optimal preference designs as a starting
point, to generate highly G-optimal designs in a reason-
ably short computing time. They covered the Borkowski
(2003) scenarios and proposed G-optimal designs for
scenarios K¼ 4, N¼ 17, and K¼ 5, N¼ 23. Most
recently Walsh and Borkowski (2022) provide a detailed
discussion on the history and difficulty of generating
G-optimal designs and provide the current best-known
G-optimal designs for the design scenarios discussed
in this article generated efficiently via an adaptation of
particle swarm optimization.

2.2. Pareto fronts and multi-objective optimal
design

Next, we introduce some background for Pareto
fronts, which are used extensively in this article to
find rational solutions that strike different balances
between the G- and I-criteria. The Pareto front (PF)
has been broadly used for multi-objective optimization
(Chen and Zhou 2022; Lu, Li, and Anderson-Cook
2016; Lu, Anderson-Cook, and Zhang 2021; Fox et al.
2019; Trautmann and Mehnen 2009; Gronwald,
Hohm, and Hoffmann 2008) and has recently been
adapted for design optimization (Lu, Anderson-Cook,
and Robinson 2011; Lu and Anderson-Cook 2014,
2021). The method finds the set of non-dominated
solutions based on multiple criteria, and hence
extracts a set of objectively superior solutions before
considering the subjective user priorities. Consider
our problem of maximizing G- and I-efficiencies. A
design is said to Pareto dominate another if G- and I-
efficiencies of the first design are as large as those of
the latter design and at least one of the G- or I-effi-
ciency of the first design is strictly larger than the cri-
terion value of the latter design. Hence, the PF
contains the designs that are not outperformed by any
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other design based on all the criteria (here two) under
consideration.

To find the PF from a collection of M designs
with calculated G- and I-efficiencies, the following
steps can be used to identify the PF:

1. Add the first design from the collection into the
current PF.

2. Update the current PF with the idesign in the col-
lection via steps 2a-c and repeat this
for i ¼ 2, :::, M:

2a. If the ith design is Pareto dominated by at
least one design on the current PF, discard the
ith design without changing the current PF;

2b. If the ith design Pareto dominates at least one
design on the current PF, remove the domi-
nated design(s) and add the ith design to the
current PF;

2c. If the ith design does not Pareto dominate any
design and is not dominated by any design on
the current PF, then add the ith design to the
current PF without removing any other
designs.

Note the above steps can be used not only to find
a PF from a finite set of designs, but also to be built
into a search algorithm for continuing to populate
the PF.

The goal of the proposed methodology is to pro-
vide a suite of multiple designs, which are not strictly
optimal for either prediction variance criteria, but
rather that simultaneously achieve good performance
for both. The degree to which the chosen design
achieves near-ideal performance involves considering
the trade-offs between the available alternatives and
matching the experimental priorities to what designs
are available. The relative emphasis that is placed on
performance of G- and I-optimality is a subjective
choice that the experimenter can make after examin-
ing the set of non-dominated PF solutions.

To find suitable designs to compare and consider, a
PF is constructed to find all the non-dominated
designs for the G- and I-optimality criteria. This
builds on the algorithms developed for efficiently cre-
ating a suite of designs that trade-off their level of
performance on the set of user-specified criteria. In
design optimization, point exchange and coordinate
exchange algorithms have been broadly used with pre-
defined candidate sets for finding exact optimal
designs on the PF (Lu, Anderson-Cook, and Robinson
2011; Lu and Anderson-Cook 2013; Cao, Smucker,
and Robinson 2017). In addition, multi-objective

evolutionary algorithms have been popular for finding
the PF solutions for broad applications (Deb et al.
2002; Deb and Jain 2014; Lu, Chapman, and
Anderson-Cook 2013; Chapman, Lu, and Anderson-
Cook 2018). Recently, particle swarm optimization
(PSO), has gained popularity in design optimization.
See Chen, Chen, and Wong (2022) and Walsh and
Borkowski (2022) for a comprehensive review. In this
article, we explore the use of PSO for populating the
PF of non-dominated designs based on G- and I-opti-
mality criteria.

Note that the identification of the PF is solely
based on the criteria values of individual solutions
and does not depend on any subjective choices.
Hence, it has been broadly accepted that identifying
the PF offers a good first step for providing an object-
ively best set of alternatives from which the experi-
menter can choose based on other subjective factors.
Using exploratory and graphical methods, described
in Section 3, the design that best achieves the desired
balance between good G- and I- performance to
match the experimental objectives can be identified.

2.3. Particle swarm optimization algorithm

To construct the PF based on the two prediction vari-
ance criteria, we use an adaptation of particle swarm
optimization (PSO) algorithm as discussed in Walsh
and Borkowski (2022). PSO is a fast and effective
meta-heuristic optimization algorithm well-suited for
generating highly optimal exact designs. Several par-
ticles or agents comprise the swarm that explores the
solution space looking for the optimum. Each particle
tracks its personal best solution, while the overall
algorithm tracks the global best. Evolution of the
swarm considers both the personal and global or
groups best and balances these pieces of information
to control how particles step through the search space
in search of the optimal solution.

PSO is an attractive optimizer for the optimal
design problem because 1) it makes little to no
assumptions regarding the structure of the objective
function, 2) it is non-greedy, allowing all elements of
the design to change during the search and 3) it is
robust to entrapment to local optima. The combin-
ation of these characteristics leads to a high probabil-
ity of finding the global optimum in a single run
relative to local optimizers like the coordinate or point
exchange algorithms. Optimal design problems are
well-known to have high-dimensional multimodal
objectives (Lin et al. 2015) and thereby are a good
match to the PSO algorithm.
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PSO is a relatively new tool for solving the optimal
design problem. Chen et al. (2014) were the first to
use PSO for the construction of optimal designs and
generated Latin-hypercube designs. Chen et al. (2014)
and Mak and Joseph (2018) applied PSO to generate
space-filling designs. PSO for generating optimal
designs for non-linear models were proposed in
Lukemire, Mandal, and Wong (2019), Chen et al.
(2015), and Chen et al. (2019). PSO-generation of
Bayesian continuous designs is discussed in Shi,
Zhang, and Wong (2019) and a PSO algorithm for
constructing continuous optimal designs for mixture
experiments is presented in Wong et al. (2015). The
literature is relatively lacking for applications and
adaptations of PSO to generate exact optimal designs,
but a comprehensive review and development is pro-
vided by Walsh (2021).

For the full details of the implementation of PSO
applied to the searches in this article, see Walsh and
Borkowski (2022). Here we provide a brief overview
of the key parts of the search algorithm. The goal of
the search is to optimize a scalar criterion. PSO pro-
ceeds by randomly generating a number, S, candidate
designs which form a swarm, and then employs the
following update equations which cause the “design
swarm” to step through the space of candidate matri-
ces in search of the optimal design:

Viðt þ 1Þ ¼ xViðtÞ ðintertiaÞ
þ c1UKð0, 1Þ⨀ðPbest, i � XiðtÞÞ ðcognitiveÞ
þ c2UKð0, 1Þ⨀ðGbest � XiðtÞÞ ðsocialÞ

Xiðt þ 1Þ¼ XiðtÞ þ Viðt þ 1Þ ðdesign movesÞ

where Xi tð Þ represents candidate design i at time t,
Vi tð Þ is the corresponding velocity which governs
both step-size and direction, Pbest, i represents design’s
personal best location found during the search, Gbest

represents the groups best location found (this is the
solution of the optimization search at the end of the
algorithm run), ⨀ denotes Hadamard product,
UK 0, 1ð Þ represents a K-dimensional uniform random
vector with values drawn between (0, 1), and x, c1,
and c2 are the PSO velocity update scaling weights.
The optimal values of these weights for searches in
standard Euclidean spaces have been shown to be
x ¼ 1

log 2 , and c1 ¼ c2 ¼ 1
2þ log 2 (Clerc and

Kennedy 2002; Clerc 2012) and so we adopt these val-
ues in this article.

The quality of each design as measured by the
chosen criterion of interest is defined as its desirability
(a weighted combination of G- and I-criteria) denoted
by Des Xi tð Þð Þ, which without loss of generality we

seek to maximize. As the S initially randomly selected
designs in the swarm search the space of candidate
designs for the global optimizer, the personal best and
group’s best designs found are updated via the simple
logic:

if Des Xi t þ 1ð Þð Þ > Des Pbest, ið Þ
Pbest, i  Xi t þ 1ð Þ

if Des Pbest, ið Þ > Des Gbestð Þ
Gbest  Pbest, i

end if
end if :

While most applications of PSO for generating opti-
mal designs have utilized the so-called global commu-
nication topology (see, e.g., Chen et al. 2014; Wong
et al. 2015), Walsh and Borkowski (2022) recently
demonstrated that the local communication topology
yields significant increases to the probability that a
single run of PSO would find the globally optimal
design. The algorithm can be flexibly applied for any
scalar criterion to be optimized. For the K¼ 2, 3 and
4 scenarios explored, the standard PSO algorithm was
initially applied for each of the G- and I-criteria separ-
ately. This provided calibration for the range of results
possible, and defined clear ending points of the PF.
To populate the remainder of the PF, adaptations to
the algorithm to combine the criteria were needed.

To generate candidate G/I Pareto front optimal
designs, we define how the PSO algorithm can be
adapted to simultaneously handle the two criteria (G
and I) for this scenario. We use desirability functions
(Derringer and Suich 1980) to combine them into a
single metric to guide the direction of our searches
for all different emphases of the criteria. In particular,
the additive desirability function provides a way to
direct the optimization objective which is defined as

Des Xjwð Þ ¼ wGs Xð Þ þ 1� wð ÞIs Xð Þ
where Gs and Is are scaled/calibrated values of the G
and I-criteria following the approach of Lu,
Anderson-Cook, and Robinson (2011). Designs
defined by

X� ¼ argmaxDes Xjwð Þ
are promising designs and have strong potential to be
Pareto-optimal designs given a selected w: To explore
all regions of the Pareto front, we consider a set of
weights, w in a regular sequence of 50 values in (0.01,
0.03, … , 0.99) and apply PSO multiple times per w
to generate Pareto optimal designs for locations on
the PF close to each desirability weight, w: The final
Pareto-optimal designs provided in the repository are
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on the PF of the combined designs over the set of
weights explored.

This approach provides an effective way to explore
and populate and approximate the entire range of the
PF. It remains an open research question about how
to further improve the efficiency of PF generation and
approximation. We are currently exploring alternate
strategies to speed up the search and provide even
more complete PFs as part of continuing research.
The set-ups of the optimization run campaigns and
PSO parameters used to generate the databases from
which we extracted G/I-PFs for each fN, Kg design
scenario are provided in Part 2 of the SM.

3. Example K5 2, N5 9: Design selection from
a Rich Pareto front

The overall process of selecting the ideal design for a
particular scenario involves several stages:

1. Identify the criteria on which to base the
selection.

2. Construct a Pareto front of non-dominated sol-
utions based on the chosen criteria.

3. Select the best design from among the PF
choices that best matches the particular prior-
ities and goals of the experiment.

In this article, the first two stages have been provided
for the reader when the emphasis is on good prediction
variance performance. The G- and I-optimality criteria
were used to construct the PFs using PSO with choices
for each of the 17 design scenarios described. This sec-
tion focuses on how to effectively and efficiently com-
plete the third stage where the experimenter chooses
the ideal design from a rich PF for their requirements.
R-code is included in the SM that allows straightfor-
ward implementation of Step 3 described below.

Returning to the example in Figure 1, we see that
for the 2-factor case with 9 experimental runs, there
are designs that balance G- and I-optimality criteria
and offer good performance for both. So, how would
an experimenter proceed from having a rich Pareto
front that visually offers multiple alternatives that look
promising, to making a final choice of the one design
to be implemented and run?

The PF offers an objective (not subjective) set of
desirable solutions. However, a process for moving
from many solutions to selecting a single final design
from the PF of the non-dominated solutions requires
an intentional plan with supporting tools. A rich set
of numerical and graphical summaries (Lu, Anderson-

Cook, and Robinson 2011; Lu, Chapman, and
Anderson-Cook 2013; Lu, Chapman, and Anderson-
Cook 2017; Lu and Anderson-Cook 2012) have been
proposed for further examining PF solutions and their
tradeoffs to facilitate informed solution selection. As
the richness of the PF solutions increases, interpreting
results and making further decisions becomes more
challenging even with the aid of these graphical and
analytical tools. This is particularly true when we con-
sider design selection over a continuous input space.
The identified PF in Figure 1a is so densely populated
that it is close to continuous. To make solution selec-
tion more manageable, we suggest a process to select
a final design from a rich PF, which includes 1) using
an efficient thinning approach to select a subset of
representative solutions from the dense PF and 2)
choosing a design from the reduced set with numer-
ical and graphical summaries to best match experi-
mental goals.

We use the K¼ 2 and N¼ 9 case from Figure 1a to
illustrate this structured design selection process based
on the dense PF in the provided repository. The
Pareto front contains 2508 designs and hence looks
almost continuous for most portions. There are a few
small gaps on the PF due to discontinuities in the
desirability function. The shape of the PF is convex
up toward the Utopia Point (UP) which is the theor-
etical optimum with the best values of both criteria
and is generally unobtainable as a real solution when
considering both optimality criteria. The shape of the
PF indicates there is a less severe tradeoff between the
two criteria and one is more likely to be able to find
solutions that offer acceptable performance on both
criteria. On the other hand, if the shape of the PF is
concave away from the UP, then it suggests more
severe tradeoffs and an improvement on one criterion
is likely to require more sacrifice on the performance
of another criterion. A spreadsheet consisting of all the
2508 designs on the PF with their G- and I-efficiencies
for the K¼ 2 and N¼ 9 case is in the SM repository.

3.1. Thinning a dense Pareto front

The proposed thinning process was adapted from
e-dominance proposed by Laumanns et al. (2002) to
improve convergence and diversity of PF solutions for
multi-objective evolutionary algorithms. The concept of
e-dominance was proposed as a relaxed Pareto domin-
ance relationship to provide a smaller approximation of
the full Pareto set (Hernandez-Diaz et al. 2007; Reuter
1990). There have been two kinds of e-dominace com-
monly discussed: additive e-dominace based on absolute
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deviation and multiplicative e-dominace based on rela-
tive deviation. We adapt the additive e-dominace con-
cept. Without loss of generality, we illustrate the
concept with a maximization problem with K objectives.
A solution x is said to e-dominate another solution y
for some e > 0 and denoted as x	ey, if and only if
xj þ e 
 yj for j ¼ 1, :::,K: Hence, some non-dominated
Pareto solutions can become e-dominated under the
relaxed dominance relationship, which allows for a thin-
ner PF to be identified.

The method divides the criterion space into a set of
hypercubes of length e (for 2 criteria, this is a square).
Then all the PF solutions located in the same hyper-
cube are e-dominated to each other. In this case, we
can select a smaller set of solutions by taking only
one solution from each hypercube of e-dominated sol-
utions while solutions from different hypercubes are
non-e-dominated. Then, a smaller set of non-domi-
nated hypercubes consisting of PF solutions are
selected to ensure the reduced solutions are more
spread out across the criteria values. The two single
criterion optimal designs are included in the thinned
PF to ensure a complete range of the PF values.
Below we summarize the key steps of the thinning
process for a rich PF based on a chosen e value.

Algorithm 1. Thin a rich PF based on
e-dominance

Step 1: Scale each criterion of PF solutions to [0,1],
where 1 corresponds to the best value and 0 to the
worst value of all points on the PF;

Step 2: For a selected e > 0 value, divide the PF cri-
terion space into hypercubes of length e;

Step 3: Select the set of non-dominated hypercubes
that contain PF solutions (many hypercubes will not
contain any solutions from the PF);

Step 4: Select the solution from each hypercube
that minimizes the Euclidean distance to the hyper-
cube Utopia point (the theoretical best value within
each hypercube, denoted by ðr � e, c � eÞ where r and c
represent the row and column numbers of the hyper-
cube from the origin);

Step 5: Add the single criterion optimal solutions
to the thinned PF, if not already included in the ear-
lier step.

Figure 2a shows an illustrative example of the
thinned PF based on a chosen e value for a hypothet-
ical PF for a maximization problem with two criteria.
The solid circles are the solutions included in the
thinned PF while the open circles are not selected.
The open circles have an adjacent square either above

or to the right of them containing a PF solution, and
hence were not included in the thinned PF. The red
dots present the single objective optimal solutions that
are included in the thinned PF to ensure full coverage
of the criteria values across the entire original PF.
Considering that the number of reduced solutions
depends on the choice of e and the shape and richness
of the original PF, we recommend exploring different
e values to select a desired density of the thinned PF
for subsequent solution selection.

Figure 2b shows the thinned PF (shown as the red
dots) for the full PF (shown in gray) from Figure 1a
for the K¼ 2 and N¼ 9 case. The thinned PF contains
20 solutions and was obtained by using algorithm 1
with e ¼ 0:02: Recall that the original PF contains
2508 solutions, which is impractical to consider for
individual examination. By using the proposed thin-
ning approach, the rich set of PF solutions is effect-
ively reduced to a small number of manageable
solutions that evenly spread over the original PF and
offers good coverage of the range of possible criterion
values for each of G- and I-efficiency. Note a larger
choice of e would result in a thinner PF, while a
smaller value of e produces a denser PF.

3.2. Design selection from a reduced set

After we have thinned the PF to a smaller manageable
set of solutions, the next step is to carefully examine
the individual solutions to understand their perform-
ance and tradeoffs to match the solutions to user pri-
orities. There are different methods for selecting the
final solutions. In this subsection, we describe a few
common options in multi-criterion optimization.

The simplest is the threshold approach which does
not require the PF to be thinned before selecting a
best design. In this case, we first identify a primary
criterion, considered most important among the con-
sidered objectives. We determine a poorest acceptable
value for this primary criterion. For example, with Ieff
as the primary criterion and a lower bound for per-
formance defined as 95%, the method selects the best
G-efficiency design subject to the constraint on the
acceptable I-efficiency. Hence the design with (Ieff,
Grel-eff) ¼ (95.0%, 95.3%) (shown as the orange point
in Figure 3a) would be selected based on the threshold
approach.

Another commonly used approach, which also does
not require the preliminary thinning step, is the
Utopia point approach (Marler and Arora 2004). The
idea is to select a best solution based on minimizing
its distance to the Utopia point, the theoretical
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solution (here, design) that simultaneously achieves
the best values for all criteria. Different distance meas-
ures, such as Lp-norm for p 
 1, could be used. One
of the common choices is the Euclidean distance, i.e.,
the L2-norm. The violet point in Figure 3a with the
criteria values at (Ieff, Grel-eff) ¼ (95.5%, 94.9%) is the
selected solution based on minimizing the Euclidean
distance to the Utopia point (on the scaled [0,1]
ranges). Note the Utopia point approach implicitly
assumes equal emphasis of both criteria under a
chosen distance measure and hence may not offer as
much control about the location of the point on the
PF or the best match of desired user priority.

The third and more sophisticated approach that
allows greater user control is to allow weights to rep-
resent different user priorities and their impact to be
explicitly evaluated and considered for selecting the
final solution. One way is to find optimal solutions
for a fine grid of all possible weights based on a
chosen desirability function (DF) (Derringer and

Suich 1980) and use graphical tools to examine the
solutions to different weight values (Lu, Anderson-
Cook, and Robinson 2011). Two of the commonly
used DFs are the additive and multiplicative forms.
Using the two-criteria as an example, the additive DF
is given by DFadd ¼ wd1 þ 1� wð Þd2, where dj
denotes the desirability value (scaled to [0,1]) for cri-
terion j ¼ 1, 2 and w represents the weight for criter-
ion 1. The multiplicative DF is expressed as
DFmulti ¼ dw1 d

1�w
2 : The choice between these DF forms

depends on how severely one wants to penalize poor
performance of a criterion. In general, the additive DF
allows the excellent performance of one criterion to
offset the poor performance of another, while the
multiplicative DF places a more severe penalty on
poor performance of any criterion.

Here we illustrate the method using the additive
DF. Figure 3b shows the selected designs (shown as
the blue points) from the thinned PF of 20 designs (in
Figure 2b). By examining 1000 weight combinations

Figure 3. (a) Selected designs based on the threshold approach (orange point) and minimizing the Euclidean distance to the
Utopia point (UP, violet point); (b) Selected designs based on the additive desirability function over 1000 evenly spread weight
combinations overall the entire range of possible values.

Figure 2. Illustration of thinned PF for (a) a toy example to demonstrate the concept and (b) the PF of 2508 solutions from
Figure 1a for the case of K ¼ 2 and N ¼ 9:
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(multiples of 0.001 over the range of [0,1]) for the
weight for Grel-eff, the method selects 12 designs which
are optimal for at least one set of explored weight
choice. The remaining 8 designs are never optimal for
any weight choice under the chosen DF form and
hence are discarded from further consideration.

By using the DF, we reduce the solutions from 20
on the thinned PF to 12 that are optimal for some
weight combinations. To further examine the per-
formance of the solutions and how they align with
user priorities (represented by the different weights),
Figure 4 shows several graphical tools for examining
the trade-offs of the solutions and their robustness to
the subjective weight choices. Figure 4a shows the
trade-off plot of the criterion values for all 12 solu-
tions from Figure 3b sorted from low to high Grel-eff.
The criterion values are plotted on the desirability
scale in [0,1] with their original Ieff and Grel-eff values
shown on the extended side axes. In this plot, we see
that the solutions on the far left and right represent
designs with near optimal performance on one criter-
ion but poor performance on the other. Designs in
the middle of the plot represent more balanced solu-
tions with good performance on both criteria.

The mixture plot in Figure 4b shows the best
designs for different weight combinations. The bottom
and top axes show the additive DF weight values for
Grel-eff and Ieff and the line segments in the middle
show the range of weights for which each of the 12
designs are optimal. For example, we can see the
design 1 is I-optimal and design 10501 is G-optimal,
respectively. Design 5502 is optimal when Ieff and
Grel-eff are equally important (w ¼ 0:5). The length of
each line segment indicates the robustness of that
solution to different weight choices. For example,
design 3307 is optimal for a large range of weights
between 0.62 and 0.8 for Ieff, while design 6124 is
optimal when w for Grel-eff is between 0.64 and 0.78.
This summary is useful when there is disagreement or
uncertainty about the desired w value, or to reach
consensus among different user priorities.

The last graphical summary shown in Figure 4c is
the synthesized efficiency plot (Lu and Anderson-
Cook 2012), which shows the expected performance
of each individual solution compared to the best pos-
sible design for different w values. In the plot, each
line segment represents the synthesized efficiency (i.e.,
the relative performance compared to the best possible
at a particular weight) of a design over the range of
all possible weights. The white-gray-black shades rep-
resent the highest to the lowest efficiency values with
each change in shade representing a drop of 5% in

efficiency. For example, design 5502, which is optimal
for w ¼ 0:5 is at least 95% efficient (white) for w
from 0.2 to close to 0.7 for Grel-eff. This indicates great
robustness of performance over a wide range of
weight values. So, if our range of interesting weights
fall into this region, then design 5502 offers excellent
performance. Note that design 5502 is also shown in
Figures 1a and 3a as the orange point on the PF and
its FDS curve is shown in Figure 1b. If one criterion
(say Ieff) was considered more important than the
other, then design 2500 (red point in Figure 1a and
red FDS curve in Figure 1b) might be preferred. The
combination of this set of graphical summaries allows
us to understand and compare individual solutions,
and judge how they match desired user priorities,
along with their robustness. This facilitates discussion
(Anderson-Cook and Lu 2018) and informs decision-
making during design selection.

3.3. Optional final step: Fine tuning for the final
choice

Once we have selected the best solution from the
thinned PF using one of the methods above, it can be
helpful to examine solutions from the original rich PF
around the selected one to see if any fine tuning of
the solution is desired. We could examine the actual
design structure, the FDS plot and the predicted vari-
ance profile throughout the input space to choose the
final winner. Another aspect that should be consid-
ered is the granularity of design factor levels that can
be implemented in a real experimental setting. Since
the selected designs are from a continuous input
space, rounding the factor levels to implementable lev-
els might lead to minor changes in the design per-
formance. Examining the performance of the actual
design(s) that can be implemented around the chosen
candidate could help us select a realistic best design.

4. G- and I-efficient Pareto fronts for K5 2,
N5 6 through 12

In the previous section, we described approaches to
select a best design to match the goals of the experi-
ment for the case K¼ 2, N¼ 9. This same process can
be used for any design scenario where a PF is avail-
able with an identified suite of non-dominated solu-
tions for the chosen criteria of interest. In this section,
we provide the PFs for commonly used design sizes
for estimating the second order response surface
model for K¼ 2. We complement that with FDS plots
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Figure 4. Graphical tools to support further selection and comparison of promising designs from the thinned PF. (a) The tradeoff
plot of selected solutions based on the additive desirability function over a variety of possible weight choices; (b) the mixture plot
of optimal designs over a fine grid of all possible weights; (c) The synthesized efficiency plot of most promising designs compared
with the best possible over the entire range of possible weights.
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of five highlighted designs which span the breadth of
the PF for each scenario.

First, we consider the PFs shown in Figure 5 for the
K¼ 2 cases with design sizes of N¼ 6, 7, 8, 10, 11, 12.
These complement the PF summaries shown in Figure
1a for K¼ 2 and N¼ 9, and are common design sizes
for fitting a second-order response surface model and
match the design sizes shown in Borkowski (2003).
Table 1 shows some summarizes of the different PFs
and highlights that the degree of tradeoff between
G- and I-efficiency varies considerably depending
on the chosen size of the experiment. From Table 1,
we see that for the small design sizes (N¼ 6, 7 and 8),
there is a quite severe cost for pursuing the I-optimal
design without any consideration for the Grel-eff. In
each case the worst-case RPV is considerably inflated
with the I-optimal design, with it being 1/0.563¼ 1.776
to 1/0.650¼ 1.538 times larger than for the G-optimal
design. For the larger design sizes (N¼ 9 to 12) the
penalty for focusing just on I-optimality is not as
severe, but still leads to larger worst-case RPV that are
1/0.860¼ 1.163 to 1/0.720¼ 1.389 times larger than the
G-optimal design.

When we consider the degree of tradeoff from
looking at the Ieff of the G-optimal designs we see that
there is considerable variation in performance. For the
N¼ 6 case, we are able to achieve over 92% Ieff, or an
average RPV that is just 1/0.923¼ 1.083 times bigger
than the best possible for the I-optimal design.
Depending on the design size, the degree of sacrifice
for Ieff ranges from 71.4% (with the average RPV 1.4
times larger than the I-optimal design) to 92.3%. The
degree of tradeoff does not change monotonically
across design sizes, and so considering each scenario
separately to understand what is possible is important.
Some design size scenarios have nearly equal tradeoffs
between Ieff and Grel-eff (N¼ 12), while others have
substantial differences in the degree of sacrifice
needed to optimize one criterion. Finally, the last col-
umn of Table 1 shows whether the PF includes a
design that is at least 90% efficient for both Ieff and
Grel-eff simultaneously. These designs might be prom-
ising for easy team consensus.

Next, we consider the shapes of the PFs for the dif-
ferent cases. In the example shown in the
Introduction for K¼ 2 and N¼ 9, the PF was convex
up and curved toward the Utopia point. This is the
ideal shape for the PF as it suggests that it is possible
to find a design that performs well for both the crite-
ria simultaneously. Across the new scenarios shown in
Figure 5, we see that the shapes of the PFs vary con-
siderably, with N¼ 6, 7, 8, 12 showing some degree of

curvature toward the UP. The case with N¼ 10 shows
the most severe tradeoff between the two criteria as it
does not have intermediate points on the PF for
designs close to the UP. Some scenarios have disconti-
nuities, where one of the criteria drops sharply in
value as we improve the other criterion. The case with
N¼ 11 shows a dramatic discontinuity as we move to
further improve Ieff from Grel-eff close to 95%.

To fully understand what these tradeoffs mean in
practice, we now examine the FDS plots for the five
highlighted designs on each PF. The I-optimal (blue)
and G-optimal (green) designs represent the extremes
of what is achievable when we focus exclusively on
one criterion, while the other three designs (red, pur-
ple, and orange) show what is possible when both cri-
teria are considered and a suitable balance in
performance are sought. Figure 6 shows the comple-
mentary plot to Figure 1b for the design scenarios
summarized in Figure 5.

Recall that for the FDS plots (Zahran, Anderson-
Cook, and Myers 2003), the effect of changing the G-
efficiency is observed at the far-right side of the plot,
where the worst-case RPV is shown. Changes in the Ieff
are captured with the average height of the curve across
the entire left-to-right range. We see varied patterns in
the differences between the five FDS curves for each
scenario. For N¼ 6, the curves look very similar for
most of the range, with separation only occurring to the
extreme right of the plot for the worst-case. For many of
the other scenarios, the range of the five lines at different
fractions of the design space can be substantial, high-
lighting that there are strong differences in performance
throughout the design space depending on which design
is selected. For most of the plots, the green G-optimal
design rises steadily in near linear fashion from early on
the left side of the plot but then has a more moderate
worst-case variance. Alternately, the I-optimal design
stays flatter longer on the left side of the plot, with a
larger proportion of the design space with good predic-
tion performance. However, this comes with the dra-
matic upturn in the curve at the right slide of the plot,
with a small fraction having substantially worse RPV.

The three designs from the middle of the PF repre-
sent opportunities to mitigate the worst features of
either the G- or I-optimal designs. In general, they have
larger ranges of better prediction performance (lower
values from the left through the middle of the FDS pro-
portions) than the G-optimal design, and less severe
worst-case prediction performance (smaller maximum
values) than the I-optimal design. Depending on the
experimenter’s preferences, how to emphasize these two
aspects of the RPV will vary, but the five FDS curves
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Figure 5. Pareto fronts for the K¼ 2 cases with design sizes of N¼ 6 through 12 to complement Figure 1a. The five highlighted
design solutions represent the I-optimal (blue) and G-optimal (green) designs, as well as three promising solutions (red, purple
and orange) from the thinned Pareto front.
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show a diverse set of alternatives for each scenario from
which to understand basic patterns.

Table 2 shows details about the 5 designs selected
for each scenario with the Ieff and Grel-eff values for
each choice. The spreadsheets for K¼ 2 scenarios in
the SM contain complete information for all the PF
designs.

Another aspect to consider is the absolute magni-
tude of the RPV between scenarios. The summarizes
in the PFs of Figures 1a and 5 are scaled to show
what is possible relative to the best attainable within
that design size, with 100% representing either the G-
or the I-optimal design performance. However, with
the FDS plots in Figures 1b and 6, we can make direct
comparisons between design sizes. The vertical axis
shows the RPV (defined in Section 2.1), which is
comparable between scenarios. The vertical axes for
each of the plots fills the range of values for that scen-
ario, but to compare between design sizes, actual RPV
values should be noted.

When we compare performance across the design
sizes, we see that increasing the design size from
N¼ 6 to N¼ 9 and then up to N¼ 12, yields an
improvement in the worst-case RPV from 1.334 to
0.792 to 0.567 times the natural variation (these are
largest RPVs of the G-optimal designs for each N).
This disproportionate improvement shows how the
extreme values of the prediction performance improve
with more experimental runs. When we examine the
average RPVs for the I-optimal designs, we see that
RPV improves from 0.763 to 0.427 to 0.304 for the
same three scenarios, showing improvements in the
average RPV as sample size increases.

Across the different design sizes for K¼ 2, we see
different degrees of tradeoff between G- and I-effi-
ciency, differently shaped PFs and substantial changes
in the absolute prediction variance magnitude.

5. G- and I-efficient Pareto fronts for K5 3,
N5 10 through 16 and K5 4, N5 15, 17
and 20

In the previous section, we considered designs for two
continuous factors. In this section we explore designs

that include three or four continuous input factors.
All of the designs on each of the PFs for all cases
described are provided in the repository in the SM.

First, consider K¼ 3. With an intercept, 3 main
effects, 3 quadratic terms and 3 two-factor interac-
tions, the N¼ 10 design is saturated. We consider
larger designs (N ¼ 11 to 16Þ that allow for better
estimation of the model terms, and hence also
improved prediction variance throughout the input
space. For brevity, we only show plots of the even
sized designs (N¼ 10, 12, 14 and 16) in the main
paper, with the odd sized cases (N¼ 11, 13, 15) pre-
sented in Part 3 of the SM. Table 3 shows comparable
summaries for all 7 scenarios (as in Table 1 for the 2-
factor case) and highlights that the degree of tradeoff
between G- and I-efficiency varies considerably
depending on the chosen size of the experiment.
Detailed discussion about differences in performance
and alternative solutions are provided in Part 4 of
the SM.

Similar to the K¼ 2 cases, the shapes of the PFs for
the different cases for K¼ 3 show considerable differ-
ences across the range of scenarios (shown in Figure 7
for the even sized cases, and in the SM for the odd
sized cases). The ideal shape for the PF of convex up
and curved toward the Utopia point occurs for several
cases (N¼ 12 and 13). This suggests that it is possible
to find a design from the interior of the PF that per-
forms well for both criteria simultaneously. The case
with N¼ 10 shows the most severe tradeoff between
the two criteria as the PF curves away from the UP
with few intermediate points on the PF for designs
which balance the two criteria well. For N¼ 11, the
PF is relatively straight with nearly proportional trade-
off between criteria across the range of designs.
Several scenarios have substantial discontinuities
(N¼ 10, 14, 15, 16), where one criterion drops sharply
as we improve the other criterion (Table 4).

To understand more fully what these tradeoffs
mean for the distribution of the RPV, we consider the
FDS plots in Figure 8 (for the even sized designs) and
the SM (for the odd sized designs) for the five high-
lighted designs on each PF in Figure 7. The I-optimal
(blue) and G-optimal (green) designs represent the

Table 1. Summary of Pareto Fronts for K¼ 2 and N¼ 6 to 12 with the spreadsheets provided in SM.
Design Size Number of Designs on PF Grel-eff of I-optimal design Ieff of G-optimal design Existence of 90þ% Grel-eff & 90þ% Ieff
6 2334 57.7 92.3 Y
7 1590 56.3 75.1 Y
8 2107 65.0 81.2 N
9 2508 70.2 80.2 Y
10 605 86.1 74.4 N
11 580 78.9 71.4 N
12 950 71.6 72.6 N

QUALITY ENGINEERING 15



Figure 6. FDS plots for the K¼ 2 cases with design sizes of N¼ 6 through 12 to complement Figure 1b. The five curves represent
the I-optimal (blue) and G-optimal (green) designs, as well as three promising solutions (red, purple and orange) from the thinned
Pareto front.
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Table 2. Summary of performance for five selected designs in Figures 5 and 6 for K¼ 2 and N¼ 6 to 12.
Design size I-optimal (Blue) Red Purple Orange G-optimal (Green)

6 (100,57.7) (99.4,69.9) (98.2,78.9) (96.1,90.3) (92.3,100)
7 (100,56.3) (99.0,70.0) (95.0,85.3) (90.1,95.6) (75.1,100)
8 (100,65.0) (98.3,79.8) (93.3,87.4) (87.8,97.9) (81.2,100)
9 (100,70.2) (99.2,84.4) (97.3,92.9) (95.0,95.3) (80.2,100)
10 (100,86.1) (93.5,88.4) (83.9,93.4) (79.9,96.7) (74.4,100)
11 (100,78.9) (93.8,83.9) (89.5,89.4) (85.5,94.4) (71.4,100)
12 (100,71.6) (95.8,80.0) (91.3,86.5) (83.6,96.6) (72.6,100)

The results shown are (I-efficiency, relative G-efficiency).

Table 3. Summary of Pareto Fronts for K¼ 3 and N¼ 10 to 16.
Design Size Number of Designs on PF Grel-eff of I-optimal design Ieff of G-optimal design Existence of 90þ% Grel-eff & 90þ% Ieff
10 258 68.0 81.3 N
11 319 60.8 69.3 N
12 197 57.6 73.6 N
13 155 52.4 72.0 N
14 511 58.9 92.0 Y
15 160 96.8 67.3 Y
16 246 90.8 67.2 Y

Figure 7. Pareto fronts for the K¼ 3 cases with design sizes of N¼ 10, 12, 14 and 16. The five highlighted design solutions repre-
sent the I-optimal (blue) and G-optimal (green) designs, as well as three promising solutions (red, purple and orange) from the
thinned Pareto front.
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extremes of the distributions of RPV if we focus
exclusively on one criterion. The other three designs
(red, purple and orange) show possibilities when a
balance between the two criteria is sought.

Across the design sizes for K¼ 3, we see a variety of
degrees of tradeoff between G- and I-efficiency, different

shapes of PFs and improvements in the absolute relative
prediction variance magnitude as the design gets larger.
Next, consider K¼ 4. With the full second-order model
including an intercept, 4 main effects, 4 quadratic terms
and 6 two-factor interactions, the N¼ 15 design is satu-
rated. The larger N¼ 17 and 20 cases allow for better
estimation of the model terms, and hence also improved
prediction variance throughout the input space. Table 5
shows PF summaries for the three design scenarios and
highlights the degree of tradeoff between G- and I-effi-
ciency. Figure 9 shows the PFs for each of the cases and
illustrates the degree of tradeoff required to balance the
two objectives. Note that the number of solutions on the
PF has again diminished relative to the smaller dimension
cases. The curse of dimensionality becomes stronger for
the K¼ 4 larger design cases as the PSO search algorithm
has a dramatically harder task to thoroughly explore the

Table 4. Summary of performance for five selected designs in
Figures 7 and 8 for K¼ 3 and N¼ 10 to 16.

Design size
I-optimal
(Blue) Red Purple Orange

G-optimal
(Green)

10 (100,67.9) (98.5,76.0) (89.3,89.7) (87.0,97.2) (81.3,100)
11 (100,60.8) (92.5,78.7) (86.6,86.7) (77.8,97.0) (69.3,100)
12 (100,57.6) (95.0,79.4) (91.2,87.6) (82.4,94.0) (73.6,100)
13 (100,52.4) (98.6,72.8) (92.0,89.0) (82.9,97.1) (72.0,100)
14 (100,58.9) (99.8,62.3) (99.4,65.6) (97.6,99.5) (92.0,100)
15 (100,96.8) (94.1,98.1) (91.7,99.1) (88.6,99.9) (67.3,100)
16 (100,90.8) (95.4,93.4) (86.9,97.3) (81.5,98.6) (67.2,100)

The results shown are (I-efficiency, relative G-efficiency).

Figure 8. FDS plots for the K¼ 3 cases with design sizes of N¼ 10, 12, 14 and 16 to complement Figure 7. The five curves repre-
sent the I-optimal (blue) and G-optimal (green) designs, as well as three promising solutions (red, purple and orange) from the
thinned Pareto front.
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possibilities. This results in Pareto fronts that are less
rich. However, there are still numerous choices from
which to select a tailored design. Detailed discussion

about differences in performance and alternative solutions
are provided in Part 5 of the SM.

The FDS plots for the five highlighted designs on each
PF allow us to more fully understand what these tradeoffs
mean for the distribution of the RPV. In Figure 10, the
FDS plots are shown for the five designs highlighted in
each scenario of Figure 9. The extremes of the RPV dis-
tribution if we focus only on one criterion are denoted
by the blue (I-optimal) and green (G-optimal) curves.
The other three designs (red, purple, and orange) show
some of the compromises that are possible (Table 6).

Table 5. Summary of Pareto Fronts for K¼ 4 and N¼ 15, 17, and 20.
Design Size Number of Designs on PF Grel-eff of I-optimal design Ieff of G-optimal design Existence of 90þ% Grel-eff & 90þ% Ieff
15 492 52.1 69.4 N
17 201 69.8 61.1 Y
20 120 64.4 68.4 N

Figure 9. Pareto fronts for the K¼ 4 cases with design sizes of N¼ 15, 17 & 20. The five highlighted design solutions represent the I-
optimal (blue) and G-optimal (green) designs, as well as three promising solutions (red, purple and orange) from the thinned Pareto front.

Figure 10. FDS plots for the K¼ 4 cases with design sizes of N¼ 15, 17 and 20 to complement Figure 9. The five curves represent
the I-optimal (blue) and G-optimal (green) designs, as well as three promising solutions (red, purple and orange) from the thinned
Pareto front.

Table 6. Summary of performance for five selected designs in
Figures 9 and 10 for K¼ 4 and N¼ 15, 17, and 20.

Design size
I-optimal
(Blue) Red Purple Orange

G-optimal
(Green)

15 (100,52.1) (96.6,69.9) (90.4,83.0) (82.9,97.2) (69.4,100)
17 (100,69.8) (97.9,78.9) (91.7,92.3) (74.7,97.4) (61.1,100)
20 (100,64.4) (95.6,81.9) (89.5,93.8) (85.9,98.7) (68.4,100)

The results shown are (I-efficiency, relative G-efficiency).
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6. Conclusions

In this article, we provide suites of designs that allow
experimenters to understand the tradeoff between
focusing on minimizing the average or worst-case pre-
diction variance performance of designs of different
sizes for 2, 3 and 4 continuous input factors.
Historically, experimenters were presented with the
choice of selecting one of G- or I-optimality, and pro-
vided with little information about how the specified
design performs for the other metric relative to what
was possible. Based on the results from these different
scenarios, we have demonstrated that if we focus nar-
rowly on only one of G- or I-optimality, we often get
quite poor performance on the other criterion. But if
we prioritize good, but not optimal, performance for
both criteria it is often possible to find a design that
performs well. The Pareto front approach allows each
experimenter to see numerous available alternatives
and find the right balance between the two objectives
for their study.

The incorporation of the particle swarm optimiza-
tion algorithm for constructing Pareto fronts allows
for the exploration of continuous design spaces and
the efficient population of these PFs with ample
choices across the range of emphases of the two
objectives. We acknowledge that the algorithm that
generated the provided solutions has the potential to
be refined to further improve efficiency and the dens-
ity of choices available, particularly as the size and
dimension of the designs increase. This is a priority
for future research.

We selected the 17 scenarios (7 for K¼ 2, 7 for
K¼ 3 and 3 for K¼ 4) to show that the degree of
tradeoff, the severity of consequence for focusing on a
single criterion and the shape of the PF are dependent
on design size. For 9 of the 17 scenarios (5 for K¼ 2,
3 for K¼ 3, 1 for K¼ 4), it is possible to identify at
least one design with at least 90% efficiency for both
criteria. With just a small compromise in one of the
criteria away from the optimal design, it is often pos-
sible to realize a disproportionate improvement in the
other criterion.

With the methodology outlined for selecting
between the alternatives, the experimenter has flexibil-
ity to match the design to their priorities. As we dem-
onstrated via the examples, the degree of tradeoff
between the two objectives varies for different scen-
arios. Hence it is important to see the options for the
particular designed experiment of interest in order to
make the best decision. This article offers a structured
process for making such a decision based on finding
the Pareto set of solutions, reducing choices, and

selecting the final best match with experimental goals.
We hope that the sets of designs provided for all the
scenarios in the SM facilitate the practical application
of this approach and allow for more robust designs to
be utilized that have good prediction variance per-
formance across the majority of the design space
(with a good average and high I-efficiency) as well as
at the edges (where the worst-case often occurs).

The methodology outlined is flexible and can be
easily adapted to other situations. For example, if the
experimenter wishes to focus on estimation of the
model parameters, then D- or A-optimality could be
used and the process of constructing the Pareto fronts
and then selecting a best design could be easily imple-
mented. Changes to the PSO search algorithm when
using any pair of optimality criteria is straightforward.
Similarly, if the experimenter wished to consider more
than two criteria (say, G-, I- and D-optimality), the
method could be easily adapted. The PSO search algo-
rithm would need to be expanded to include a set of
weights to cover the space of desired weights
(Lu, Anderson-Cook, and Lin 2014) combining all of
the criteria. After construction of the PF, the graphical
tools would also need to be adapted (Lu, Chapman,
and Anderson-Cook 2017) for the larger space of sol-
utions. We caution against using too many criteria
simultaneously as balancing multiple objectives can
often lead to mediocre performance on several of
them. Finally, the methodology could also be
expanded beyond designs with all continuous factors
to consider those scenarios with categorical design
factors, see for example Chen et al. (2014). In this
case, the PSO search would need to be adapted to
accommodate this new design region. Once the PF is
constructed, the remainder of the selection process
would match what has been illustrated in this article.

By acknowledging that not all experimental situa-
tions require the same solution, we hope to empower
experimenters to be easily able to compare alternatives
and then choose the design that is the best fit for their
priorities.
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