
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

Computer Science Student Research Computer Science Student Works 

3-3-2023 

Accurate Estimation of Time-on-Task While Programming Accurate Estimation of Time-on-Task While Programming 

Kaden Hart 
Utah State University, kaden.hart@usu.edu 

Christopher M. Warren 
Utah State University, chris.warren@usu.edu 

John Edwards 
Utah State University, john.edwards@usu.edu 

Follow this and additional works at: https://digitalcommons.usu.edu/computer_science_stures 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Kaden Hart, Christopher M. Warren, and John Edwards. 2023. Accurate Estimation of Time-on-Task While 
Programming. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 
1 (SIGCSE 2023), March 15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages. 
https://doi.org/10.1145/3545945.3569804 

This Article is brought to you for free and open access by 
the Computer Science Student Works at 
DigitalCommons@USU. It has been accepted for 
inclusion in Computer Science Student Research by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/computer_science_stures
https://digitalcommons.usu.edu/computer_science_student
https://digitalcommons.usu.edu/computer_science_stures?utm_source=digitalcommons.usu.edu%2Fcomputer_science_stures%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fcomputer_science_stures%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Accurate Estimation of Time-on-Task While Programming
Kaden Hart

Utah State University
Logan, Utah

kaden.hart@usu.edu

Christopher M. Warren
Utah State University

Logan, Utah
chris.warren@usu.edu

John Edwards
Utah State University

Logan, Utah
john.edwards@usu.edu

Abstract
In a recent study, students were periodically prompted to self-report
engagementwhile working on computer programming assignments
in a CS1 course. A regression model predicting time-on-task was
proposed. While it was a significant improvement over ad-hoc es-
timation techniques, the study nevertheless suffered from lack of
error analysis, lack of comparison with existing methods, subtle
complications in prompting students, and small sample size. In this
paper we report results from a study with an increased number of
student participants and modified prompting scheme intended to
better capture natural student behavior. Furthermore, we perform
a cross-validation analysis on our refined regression model and
present the resulting error bounds. We compare with threshold
approaches and find that, in at least one context, a simple 5-minute
threshold of inactivity is a reasonable estimate for whether a stu-
dent is on-task or not. We show that our approach to modeling
student engagement while programming is robust and suitable for
identification of students in need of intervention, understanding
engagement behavior, and estimating time taken on programming
assignments.

CCS Concepts
• Social and professional topics → CS1.

Keywords
CS1, Keystrokes, Engagement, Vigilance
ACM Reference Format:
Kaden Hart, Christopher M. Warren, and John Edwards. 2023. Accurate
Estimation of Time-on-Task While Programming. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15–18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3545945.3569804

1 INTRODUCTION
Time-on-task is an important topic in computing education research
(CEdR) that is surprisingly under-studied [6]. With few exceptions,
researchers choose arbitrary thresholds to determine if a break
in activity indicates student disengagement or not, resulting in a
hodge podge of cutoff values, of which almost none are empirically
determined. Such haphazard methodologies are a concern, espe-
cially when considering the wide-ranging importance of estimating

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9431-4/23/03.
https://doi.org/10.1145/3545945.3569804

the amount of time a student (or any programmer, for that matter)
spends on a task: time-on-task can be used to determine difficulty of
concepts or assignments, identify struggling students, give students
an idea of how they’re performing relative to their peers, study
attention and engagement patterns, and compare contexts.

A recent study [1] resulted in a first-of-its-kind model that pre-
dicts time-on-task using keystroke logs. The innovation was both in
the model itself, a regression model instead of one that is threshold-
based, and in the methodology, the model being derived from empir-
ical data. Despite methodological shortcomings, the study resulted
in a viable estimation approach backed with material justification.
Our objective in this paper is to present results of two studies that
address methodological issues acknowledged in the original study
and that extend the work, including comparison with the seemingly
ubiquitous threshold approaches.

The study by Edwards et al. [1] showed how a statistical model
could be built to determine the probability of student engagement
by intermittently asking students if theywereworking on their com-
puter programming assignment or not. A plugin was installed in stu-
dents’ coding environments that would record their keystrokes and
when a predetermined amount of inactivity was detected, showed
students a window that asked if they were engaged or not. Re-
searchers built a regression model which could then be used to find
the probability that a student was engaged given a latency between
keystrokes.

The statistical model of engagement worked by querying stu-
dents at randomly selected times from a predetermined set of eight
break lengths: 45 seconds, and 1, 1.5, 2.5, 4.5, 8.5, 16.5, and 32.5
minutes. A shortcoming of this approach is that students may have
been on what would have been say, a 10 minute break, but after
noticing an engagement query at 8 minutes, they decided to return
to their task. This side-effect would artificially increase engagement
rates. A second shortcoming of this approach is that the yes or no
answers did not consider breaks where students were partially en-
gaged; the responses had to be all or nothing. While the proposed
model was based on empirical data, the lack of any error analysis
compromised confidence in its use. Nor was there any analysis of
existing threshold methods – despite the fact that thresholds are
generally arbitrary, some statistical justification should be made
before discontinuing their use.

This paper has five specific contributions to this line of inquiry:
C1 Reactive queries prompt students only after they have re-

turned to interaction with their coding environment. Reac-
tively querying students in this manner allows us to observe
the natural duration of a student’s inactivity without chang-
ing their behavior during the break.

C2 Queries allow students to respond with what percent of their
break they were engaged instead of just whether they were
engaged or not.

708

https://doi.org/10.1145/3545945.3569804
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3545945.3569804
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569804&domain=pdf&date_stamp=2023-03-03


SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Kaden Hart, Christopher M. Warren, & John Edwards

C3 Cross-validation error analysis shows us how well our meth-
ods model student engagement. We find that the model is
robust and can be relied on to estimate important measures
like time spent on assignments.

C4 We include a detailed comparison with threshold approaches
and, somewhat unexpectedly, empirical validation of a 5-
minute threshold in one context.

C5 We conducted our study with 92 participants, more than six
times the 15 participants in the original study.

We find that, even given the flaws of the original study, the
regression model was reasonably robust and accurate, though our
refined model has tighter error bounds. We also find that, in the
context of our CS1 course, a 5-minute threshold for determining
engagement is surprisingly reasonable, easing implementation for
educators who prefer something simpler than the regression model.

2 Background

2.1 Vigilance and Engagement
Central to our work are the psychological topics of vigilance and
engagement. Vigilance refers to a person’s capacity to maintain
attention on a task over time. Maintaining attention gets more
difficult as time goes on andmental resources are depleted, a decline
termed the “vigilance decrement” [2, 12, 16, 19]. Investing physical,
cognitive, and emotional energy on a task is task engagement [4,
15]. The recent regression model showed how longer periods of
inactivity in students’ programming assignments yielded lower
engagement rates [1]. Our engagement model shows the vigilance
decrement as a function of an inactive period of time.

2.2 Time-On-Task
Time-on-task is the amount of time a student spent working on an
assignment, and has been studied since the 1970’s [6]. Leinonen
et. al. [8] noted that time-on-task is one of the most important
metrics that contribute to learning and achievement. Leinonen
et. al. [8] also found that fine-grained metrics performed better
than course grained metrics; for example Munson’s [13] method of
calculating time-on-task by subtracting the time from a student’s
first compilation event from the last may not work as well as Toll
et. al.’s [20] method of using a combination of keystrokes, mouse
movements, and other events. Toll et. al. were able to use their
additional levels of granularity to estimate different activities as
well as time-on-task, such as periods of time with mouse movement
but not keystrokes suggests reading or navigating, but not editing.

A difficulty with time-on-task is the difference between time
taken, and time spent engaged [6]. Judd found that given a 15
minute study period, students only spent 10 minutes engaged [3].
As technology continues to be more accessible, distractions become
easier and students may spend even more time disengaged. Ko-
vanovic et. al. argue that “time-on-task estimation, its issues, limits,
and reliability challenges warrant further consideration.” [6].

2.3 Thresholds
Thresholds are a popular way to make time-on-task estimates. In
keystroke data, thresholds work by including any latencies less
than the threshold in the time-on-task estimate, and ignoring any

latencies longer than the threshold. Using thresholds to determine
time-on-task estimates from keystroke data is a common practice;
however, what threshold is best is not straightforward, and may
be context dependant [8]. Kovanovic et. al. noted that many re-
searchers use a threshold and do not address the consequences of
that threshold [6]. Nevertheless, these approaches are as common
as their threshold values are haphazard. Suggested threshold values
range from 60 seconds [18] to 3 minutes [10] to 5 minutes [7] to 30
minutes [14] to one hour [5], and none of them were determined
from empirical data. Indeed, authors acknowledge this fact using
language such as “reasonable picture” [18], “assuming” [14], and
“would seem reasonable” [9].

Only one work has proposed a threshold even loosely based on
empirical data. Leinonen et al. [9] produced a curve showing the
number of work sessions given different threshold values and use
an argument somewhat akin to the elbow method to support a
10-minute threshold, though they nevertheless acknowledge signif-
icant uncertainty.

2.4 Empirically Determined Model of
Engagement

In a recent study, Edwards et al. installed software on students’
PyCharm IDEs that would periodically ask students if they were
working on their assignments when inactivity was detected [1].
Installing software directly on student computers allowed data
to be collected in a student’s natural working environment and
recorded behaviors as they happened. To query students, after each
keystroke a timer was started to count down from one of a set
of eight predetermined query times and if the timer reached zero
before the student pressed another key, the studentwas immediately
prompted to answer if they were working on their assignment or
not.

Edwards et al. built rates of engagement from student responses
for each query time, and then fit a generalized logistic curve to
yield an engagement function for the probability of engagement
given time since last keystroke. With this function, time-on-task
for an assignment could be estimated. To estimate time-on-task for
an assignment, for each latency between keystrokes in a student’s
assignment, if a randomly generated number is smaller than the
probability given by the engagement function for that latency, add
that latency to the time a student spent engaged with their assign-
ment. This method to estimate time-one-task was novel because
the probability of engagement was data driven and not arbitrary.

With their model they discovered many previously unknown
student behaviors. They found that after about 3 1/2 minutes of in-
activity, half of the students had disengaged from their assignments.
Students on average worked for 8.5 minutes on their assignments
before disengaging and half of the time returned to work after
between 1 to 4 minutes.

3 METHODS
This paper reports on two studies. In the first, which we call the
Reactive study, CS1 students were periodically prompted while
working on their computer programming assignments to self-report
if they were working on their assignment at the moment they
were prompted (Figure 1a). In the second, which we call the Slider

709



Accurate Estimation of Time-on-Task While Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

(a) Reactive study

(b) Slider study

Figure 1: Screenshots of the prompts used in the studies.

study, CS1 students were similarly prompted but were given the
ability to report how long ago they thought their last keystroke
was, what percentage of that reported time was spent working on
their assignment, and how important any non-assignment related
thing they did during that reported time was (Figure 1b).

3.1 Prompts
PyCharm is the IDE required for students to use in the CS1 classes
we investigated. A plugin was developed for PyCharm that partici-
pating students installed that logged their keystrokes and prompted
them to answer questions about their engagement. After a random
period of inactivity (see Section 3.2), students were shown awindow
that prompted them to respond. In the Reactive study, the window
asked “What were you doing immediately before this appeared?”
Students would then choose one of the two responses to continue
their work: “Working on something related to my assignment” or
“Doing something else.” In the Slider study, the window gave three
sliders to respond and asked three questions: “Please estimate the
number of minutes since your last keystroke”, “Of those X minutes,
please estimate the percent that was spent working on your as-
signment”, and “How important do you consider the activities that
you did that were unrelated to the assignment?” Responses were
recorded within the same log as the keystrokes. Data was collected
in a student’s normal working environment rather than in a lab
setting which could change their behavior.

In the Reactive study, 96% of responses occurred within 10 sec-
onds of the prompt appearing, and 99% occurred within 60 seconds.
In the Slider study, 58% of responses occurred within 10 seconds
of the prompt appearing, and 99% occurred within 60 seconds. We
do not consider the time a student took to respond to a prompt
important because the prompt was asking what they had been do-
ing during the break that they had just finished, and not what they
were doing after being prompted. Response time to our prompts
is likely more indicative of student familiarity with the prompts
than engagement; the first time a student saw a prompt they may

100 101 102

Elapsed Time (min)

0.2

0.4

0.6

0.8

1.0

D
il

li
ge

n
ce

ra
te

Edwards Data

Reactive Data

Slider Data

All/None Slider Data

Figure 2: Comparison of Edwards et al.’s [1], our Reactive,
our Slider, and our all/none Slider data (section 4). Elapsed
time uses a log scale.

take more time to understand what it was asking them to do. In
the Slider study, students may have taken longer because of the
additional work of adjusting the sliders.

3.2 When to Prompt
Both of our studies used the same method to determine when to
prompt a student: after each keystroke, apply a 70% chance that the
keystroke will qualify to show a prompt. If the keystroke qualifies
then use the amount of time since the previous keystroke to find the
probability that a prompt should be shown using the Cumulative
Density Function (CDF) used by Edwards et al. [1]. Then randomly
generate a number, and if it is lower than the probability, query the
student. Informally, after a student does not type for a while they
may be prompted after their next keystroke.

3.3 Participants
Students in a mid-sized university in the United States were given
the opportunity to participate in our study. Students were not of-
fered any compensation. In the Reactive study, 62 students par-
ticipated in our study across 8 assignments. In the Slider study,
30 students participated across 10 assignments. This represents a
six-fold increase in the number of participants over Edwards et
al.’s study. Both the Reactive and the Slider studies were conducted
under review and approval of our university’s ethics review board.

4 RESULTS
In the Reactive study, 365 assignment submissions were collected
from our 62 participants. On task, engaged, responses to the queries
totaled 970. Off task, disengaged responses to the queries totaled 951.
In the Slider study, 271 assignment submissions were collected from
our 30 participants. The estimated break duration slider defaulted
to 0 minutes. If the student did not change this slider, the response
was discarded. We collected 883 responses and discarded over half,
leaving 396 usable responses.

710



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Kaden Hart, Christopher M. Warren, & John Edwards

When comparing engagement rates between our Reactive study
and Edwards et al.’s [1] we found a higher rate of engagement in
general. See Figure 2. A possible reason for the higher engagement
rate is student misunderstanding because of our revised prompting
methodology. In the original study [1], students would be prompted
at the query time, and may not see or respond to the query very
quickly. In our Reactive study the prompt was only shown after
the student began typing again, which means the student would be
interrupted immediately after pressing a key and see the prompt as
soon as it was shown. An interrupted student may feel that since
they had just typed a key that they were obviously on task. Our
prompts asked what students were doing immediately before they
saw the prompt, and students may have responded with what they
had literally just done – pressed a key – and not with what we were
interested in – what they did during their break. Our second study,
Slider, asked students to estimate the percentage of time they were
on task. When students were given the chance to estimate how
long their break was, they may have understood our intent better.
The slider study data shows a lower engagement overall, but shows
more noise due to a smaller sample size.

4.1 Model of Engagement Rate
A difference between our model and prior work is the continuous
elapsed time variable of queries instead of a discrete set of query
times. A continuous elapsed time variable gives us many options
to use when determining the vigilance decrement curve (Figure 2):
time scaling bins (e.g 1 minute, 2 minute, 4 minute), rolling averages,
or equisized bins. Time scaling bins defined arbitrary times to bin,
and led to bins with wildly varying observation counts. Rolling
averages introduced noise when used with binary responses. Ten
equisized bins were used for the Reactive study because they limited
noise and provided equal support for each bin. Six equisized bins
were used for the Slider study because of the reduced sample size.
Each query response fits in the nearest bin that has a smaller or
equal elapsed time than the query.

Conceptually, as elapsed time increases, the engagement rate
should start at 100% and go to 0%. That is, after zero seconds from
the last keystroke, the student would have a 100% probability of
being on task, and after infinite time, the probability of engagement
would be 0%. Student responses may be biased towards higher en-
gagement rates as discussed in Section 5.2. Edwards et al. suggested
an adjustment for bias and used a generalized logistic curve to fit
the corrected data because it has a higher and lower asymptote. We
also use the generalized logistic function, but instead of correcting
the data we define the top asymptote as 1.0 and the bottom asymp-
tote as 0.0. We then fit the curve to our sampled data. See Figure 3.
The generalized logistic function fit to our data is

𝑦 (𝑥) = 1
(1 +𝑄𝑒−𝐵 (𝑥−𝑀) )1/𝑣

(1)

with 𝑄 = 6604, 𝐵 = −4.99, 𝑀 = 0.01, 𝑣 = 58.32, and x equal to the
keystroke latency in minutes. With this model we can probabilisti-
cally classify a latency as engaged or disengaged.

4.2 Time-On-Task
Time-on-task for an assignment is determined using the following
method: for every keystroke, add the latency to the assignment’s

0.8 23.0 59.3 197.2

Elapsed time (min)

0.00

0.25

0.50

0.75

1.00

E
n

g
a
ge

m
en

t
ra

te

Sampled data

Generalized
logistic curve

Figure 3: Generalized logistic curve. The curve is fit using the
Levenberg-Marquardt algorithm [11]. Sampled data is from
the Reactive study.

time-on-task if the latency is less than 45 seconds (the lower bound
of our prompts) or if a randomly generated number between 0 and 1
is lower than the probability given by Equation 1. Using this method
with the 365 submissions we collected in the Reactive study, we
found similar statistics as Edwards et al.[1].

In the Reactive study, in which students could give only a yes
or no response as to whether they were on task, we found that
participants had a median engagement time of 9.6 minutes, or
209 keystrokes, before becoming disengaged. Our study shows
an increase from 8.5 minutes of engagement, or 163 keystrokes,
found in Edwards et al.’s study, possibly due to students only being
prompted after they begin typing after a break. Our study found
the same statistic as Edwards et al.’s study that most breaks last 1 to
4 minutes. An interesting statistic found in Edwards et al.’s study,
as well as ours, was that on average, students take breaks over 20
times during the course of a programming assignment. This pattern
of working and taking short breaks is an interesting phenomenon,
and what students do during such short breaks is an important
question for future work.

4.3 Partially On-Task Responses From Slider
Study

In the Slider study, we found that some breaks that are mixed i.e.
students were on task for part of the time; however, most responses
– 65% – were either 0% or 100% engaged, which we call an all/none
response. Figure 2 shows the difference between using all responses
compared to using just the all/none responses. The default value for
the percentage of on time-on-task was 50%. Of the 396 responses
in the Slider study, 11% left the slider at the default value. Keepring
their responses had the effect of smoothing the engagement rate
curve towards 50% probability of being on task (Figure 2). As we
show in Section 4.4, removing all responses that weren’t all/none,
resulted in engagement curves within error bounds of using all of
the Slider study data.

4.4 Error Bounds
Determining how well an individual’s engagement is modeled can-
not be done directly with keystroke data. We instead determine
how well different groups are modeled using a method known as
cross validation. Cross validation is commonly used in machine

711



Accurate Estimation of Time-on-Task While Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

100 101 102

Elapsed Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
n

ga
ge

m
en

t
ra

te

Edwards Data

Reactive Data

Figure 4: Comparison of the standard deviation of error be-
tween Reactive study and Edwards et al.’s data. The Reactive
study results in smaller error.

learning where data is divided into two groups, usually called the
training and test groups. A model is built on the training set and
tested on the test set. Data division and model building is done
multiple times and an error estimate can be determined either by
how much the model changes or by how well the model fits the test
data across trials. For our purposes we randomly removed half the
students from the data and then determined how well that half of
the students fit the entire data set to measure the error. Repeating
this many times showed how sensitive the engagement rates are
to individual differences in behavior. After repeating this process
1,000 times on our Reactive data and Edwards et al.’s [1] data, we
were able to see that our Reactive data had significantly less error.
See Figure 4. We collected 1,921 responses where Edwards et al.
collected 424; we suggest our larger sample size accounts for the
improved error bounds.

Students are more likely to be on task with very short breaks and
more likely to be off task with very long breaks. At engagement
rates near 50% is where we expect to see the most error. Standard
deviations show where most student’s engagement rates will be
and an inspection of the size of the standard deviation indicates that
error increases as the engagement rate nears 50%, and decreases as
engagement approaches 100% or 0%. See Figure 4. Most students’
behavior will be within 10% of the sampled data. On occasion a
student may exhibit outlier behavior, but this is to be expected with
human behavior.

4.5 Thresholds Vs. Regression Model
Thresholds, i.e., “a student is on task if their inactivity is below
t seconds.” are common in the time-on-task estimation literature.
Figure 5 shows how much student time-on-task predictions change
when using different thresholds. The chosen threshold can greatly
affect the time on task estimate, emphasizing Kovanoic et. al.’s call
for “more caution when using time-on-task measures” [6]. If a re-
searcher chooses a short threshold, they will find significantly lower
time-on-task estimations than if they used a longer threshold. What

Thresh1 Thresh3 Thresh5 gLogistic Thresh30 Thresh60

Estimation method

0

200

400

600

800

E
la

p
se

d
T

im
e

(m
in

)

Figure 5: Time-on-task estimates for Reactive data using dif-
ferent estimation methods. Thresh1 uses a 1-minute thresh-
old, Thresh3 uses a 3-minute threshold, etc. gLogistic uses
the Reactive model described in section 4.2.

surprised us the most was the similarity between our model and
the 5-minute threshold. We found that our model and the 5-minute
threshold predict similar time on task with no significant difference.
We suggest that educators consider using the 5-minute threshold
for time-on-task estimates instead of our probabilistic model be-
cause of its simplicity. For research, our model is more suitable as
it provides probabilities that students were engaged during a break,
giving greater flexibility for analysis. We do caution that our model
was built with data from CS1 classes at our university, and we do
not know how well our model or the 5-minute threshold generalize
to other contexts.

5 DISCUSSION

5.1 Sampling
We used the same CDF as the Edwards et al. [1] study to achieve
uniform sampling across time. With our error bounds in the Re-
active study we can also show that individual behaviors are most
different when the average engagement rate approaches 50%. We
discovered that data when engagement rates are nearing 100% or
0% are not as varied; the error is small, showing most students are
behaving similarly.

5.2 Bias of Responses
In the Edwards et al. [1] study an adjustment to the data was sug-
gested due to the non-zero asymptote found in their data, which
should be zero. In our Reactive study, we similarly found a lower
asymptote of around 10%. Rather than correct the data, we fixed
a lower asymptote of zero to the regression curve and then fit it
to the data. We argue that this adjustment is appropriate because,
conceptually, the lower asymptote should be zero, and so student
responses are not completely accurate. We consider two cases in
which student responses are likely not accurate: (1) students may
not answer honestly or (2) students may have only worked a short
time just before they answered the query. First, students answer-
ing dishonestly should not come as a surprise; some students may
want to appear diligent and hardworking, and answer in a way that
makes them seem that way. For example, in the Reactive study, we

712



SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada Kaden Hart, Christopher M. Warren, & John Edwards

found 15 students who responded on task to a prompt after a break
over an hour, including 3 that never once responded as being off
task after an hour. Second, students may have been disengaged for
most of their break, but before they began typing they re-engaged.
When seeing the question, “What were you doing immediately
before this appeared?“, the answer is obvious: they had just done
something for their assignment – they pressed a key! The goal of
our prompt is to discover if they were engaged during the break,
and these students may have misunderstood. For example, in the
Slider study, when given the ability to respond with what ratio of
their break was spent engaged or not, some students still responded
as 100% engaged even after very long periods of time.

It is impossible to tell which responses were dishonest and which
were misunderstood. In either case, at low latencies of around 45
seconds, students were probably on task anyways and did not bias
the data much, requiring little correction; however, at higher la-
tencies, around 30 minutes, inaccurate answers likely biased the
data more because students were most likely not on task when
they answered as being on task. We currently have no suitable
way to determine how much to correct our data so we defined the
lower asymptote as zero and let the model determine the correc-
tion automatically. We considered other possible corrections, but
ultimately decided that any other correction we made would be
asserting arbitrary opinions onto the model.

5.3 Study Fatigue
We found that over the course of the semester students interacted
less with the sliders (closing the dialog without adjusting the break
duration). At the beginning of the semester students interacted
with 74% of the dialogs. Over the course of the semester students
continually interacted with less of the dialogs shown, and at the
end only interacted with 26% of the dialogs. This decline in partici-
pation may show that the sliders became either too annoying or
burdensome as the course progressed. Our prompts were designed
to not distract students too much, but the decline in participation
may show that giving students sliders to respond to dialogs is too
distracting.

5.4 Threats to Validity
As discussed in sections 5.2 and 5.3, bias of responses and study
fatigue may skew our results. Our studies required students to
opt-in and may suffer from self-selection bias. As noted in our
discussion on generalizability, our data was drawn from one school
over the course of two terms of CS1. Thus, we encourage replication
in other courses and institutions. Also, students may have felt that
they were being observed through logged keystrokes and queries,
and exhibited different behaviors than they otherwise would, the
so-called Hawthorne effect [17].

5.5 Time-On-Task Estimates
Wehave shown that for time-on-task estimates in the CS1 courses in
our study, our regressionmodel and the 5-minute threshold perform
similarly. Replications of our study in different contexts could show
how well the 5-minute threshold performs in different contexts,
and to what extent it is generalizable for time-on-task estimates.
Assignment length may be a context that changes student behavior

– shorter assignments may encourage student to stay on task longer
to ”just get it done“ – and changes the appropriate threshold to use.

Kovanovic et. al. called for researchers to take caution when
choosing time-on-task measures, and we have given a method to
help researchers choose the appropriate threshold or model for their
context [6]. To help researchers gather data easier, we have pub-
lished the Time On Task plugin to the JetBrains plugin marketplace
for use in JetBrains products like PyCharm and IntelliJ. Also avail-
able is the Python code to build the model and compare thresholds
at https://edwardsjohnmartin.github.io/Scripts/index.html

6 CONCLUSIONS

Measuring time-on-task of computer programming students no
longer needs to be the irksome task that so often uses glossed-
over methods. This study, combined with that of Edwards et al. [1],
gives evidence that we can accurately and robustly measure the on-
task behavior of students while programming. These studies have
focused on CS1 students at a mid-sized university in the United
States, but the techniques and software used to collect data can
be used in any context by any researchers interested in creating
models specific to their context or, better yet, finding generalized
models.

A past criticism of using keystroke data for measuring time-
on-task is that students are often on task even when they’re not
physically programming. Students may be reviewing notes, de-
signing a solution, or searching the internet for help. This study
models those behaviors as well, since students self-report engage-
ment of any kind. The non-programming on-task behavior likely
increases the error in our model, but as we’ve shown in this paper
(see Figure 4) our regression model is reasonably robust. Among
this paper’s contributions, we consider the error analysis particu-
larly important. It puts time-on-task modeling on a firm statistical
footing that can only improve with refinements from future studies.
As importantly, it will hopefully inspire researchers and educators
to confidently use empirically based models. We caution that our
model may not be the right choice, as it has only been tested in our
context, but at least we have the tools to generalize.

We further caution that our model is not designed to model a
single student. Because of insufficient sample size, we have not done
an analysis of how the model varies across individual students. It
seems intuitive that behavior will vary across students, as some
students will spend more time thinking, others will tinker with the
code, others will design on paper, and others will consult notes and
the internet. While our model cannot resolve individual student
behaviors (an important task for future work), it can give reasonable
and reliable estimates in the aggregate.

We conclude by revisiting the happy finding that a 5-minute
threshold performs reasonably well in our context in the aggregate.
If all this paper has done has been to return back to an existing
approach, one could ask what value our work adds. The answer is
that we are no longer blindly using an arbitrary threshold. Rather,
we can now confidently use a threshold (among the many proposed
thresholds) that is based on empirical evidence.

713



Accurate Estimation of Time-on-Task While Programming SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada

References
[1] John Edwards, Kaden Hart, and Christopher Warren. 2022. A practical model of

student engagement while programming. In Proceedings of the 2022 ACM SIGCSE
technical symposium on computer science education.

[2] Judith P Frankmann and Jack A Adams. 1962. Theories of vigilance. Psychological
Bulletin 59, 4 (1962), 257.

[3] Terry Judd. 2014. Making sense of multitasking: The role of Facebook. Computers
& Education 70 (2014), 194–202.

[4] William A Kahn. 1990. Psychological conditions of personal engagement and
disengagement at work. Academy of management journal 33, 4 (1990), 692–724.

[5] Ayaan M Kazerouni, Stephen H Edwards, and Clifford A Shaffer. 2017. Quantify-
ing incremental development practices and their relationship to procrastination.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research. 191–199.

[6] Vitomir Kovanovic, Dragan Gašević, Shane Dawson, Srećko Joksimovic, and
Ryan Baker. 2015. Does time-on-task estimation matter? Implications on validity
of learning analytics findings. Journal of Learning Analytics 2, 3 (2015), 81–110.

[7] Antti Leinonen, Henrik Nygren, Nea Pirttinen, Arto Hellas, and Juho Leinonen.
2019. Exploring the applicability of simple syntax writing practice for learning
programming. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. 84–90.

[8] Juho Leinonen, Francisco Enrique Vicente Castro, and Arto Hellas. 2022. Time-
on-Task Metrics for Predicting Performance. In Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education. 871–877.

[9] Juho Leinonen, Francisco Enrique Vicente Castro, Arto Hellas, et al. 2021. Fine-
Grained Versus Coarse-Grained Data for Estimating Time-on-Task in Learning
Programming. In Proceedings of The 14th International Conference on Educational
Data Mining (EDM 2021). The International Educational Data Mining Society.

[10] Juho Leinonen, Leo Leppänen, Petri Ihantola, and Arto Hellas. 2017. Comparison
of time metrics in programming. In Proceedings of the 2017 acm conference on

international computing education research. 200–208.
[11] Kenneth Levenberg. 1944. A method for the solution of certain non-linear

problems in least squares. Quarterly of applied mathematics 2, 2 (1944), 164–168.
[12] Norman H Mackworth. 1948. The breakdown of vigilance during prolonged

visual search. Quarterly Journal of Experimental Psychology 1, 1 (1948), 6–21.
[13] Jonathan P Munson. 2017. Metrics for timely assessment of novice programmers.

Journal of Computing Sciences in Colleges 32, 3 (2017), 136–148.
[14] Christian Murphy, Gail Kaiser, Kristin Loveland, and Sahar Hasan. 2009. Retina:

helping students and instructors based on observed programming activities. In
Proceedings of the 40th ACM technical symposium on Computer Science Education.
178–182.

[15] Daniel W Newton, Jeffery A LePine, Ji Koung Kim, Ned Wellman, and John T
Bush. 2020. Taking engagement to task: The nature and functioning of task
engagement across transitions. Journal of Applied Psychology 105, 1 (2020), 1.

[16] Raja Parasuraman. 1979. Memory load and event rate control sensitivity decre-
ments in sustained attention. Science 205, 4409 (1979), 924–927.

[17] H Mcllvane Parsons. 1974. What Happened at Hawthorne?: New evidence
suggests theHawthorne effect resulted from operant reinforcement contingencies.
Science 183, 4128 (1974), 922–932.

[18] Thomas W Price, Neil CC Brown, Dragan Lipovac, Tiffany Barnes, and Michael
Kölling. 2016. Evaluation of a frame-based programming editor. In Proceedings of
the 2016 ACM Conference on International computing education research. 33–42.

[19] David R Thomson, Derek Besner, and Daniel Smilek. 2015. A resource-control
account of sustained attention: Evidence from mind-wandering and vigilance
paradigms. Perspectives on psychological science 10, 1 (2015), 82–96.

[20] Daniel Toll, Tobias Olsson, Morgan Ericsson, and Anna Wingkvist. 2016. Fine-
grained recording of student programming sessions to improve teaching and time
estimations. In International journal of engineering education, Vol. 32. Tempus
Publications, 1069–1077.

714


	Accurate Estimation of Time-on-Task While Programming
	Recommended Citation

	Abstract
	1 INTRODUCTION
	2 Background
	2.1 Vigilance and Engagement
	2.2 Time-On-Task
	2.3 Thresholds
	2.4 Empirically Determined Model of Engagement

	3 METHODS
	3.1 Prompts
	3.2 When to Prompt
	3.3 Participants

	4 RESULTS
	4.1 Model of Engagement Rate
	4.2 Time-On-Task
	4.3 Partially On-Task Responses From Slider Study
	4.4 Error Bounds
	4.5 Thresholds Vs. Regression Model

	5 DISCUSSION
	5.1 Sampling
	5.2 Bias of Responses
	5.3 Study Fatigue
	5.4 Threats to Validity
	5.5 Time-On-Task Estimates

	6 CONCLUSIONS
	References

