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Abstract
We consider the question of how to predict whether a student is on
or off task while working on a computer programming assignment
using elapsed time since the last keystroke as the single indepen-
dent variable. In this paper we report results of an empirical study
in which we intermittently prompted CS1 students working on a
programming assignment to self-report whether they were engaged
in the assignment at that moment. Our regression model derived
from the results of the study shows power-law decay in the engage-
ment rate of students with increasing time of keyboard inactivity
ranging from a nearly 80% engagement rate after 45 seconds to
30% after 32 minutes of inactivity. We find that students remain
engaged in programming for a median of about 8 minutes before
going off task, and when they do go off task, they most often return
after 1 to 4 minutes of disengagement. Our model has application
in estimating the amount of engaged time students take to com-
plete programming assignments, identifying students in need of
intervention, and understanding the effects of different engagement
behaviors.
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1 Introduction
How long does it take a student to complete a computer pro-
gramming assignment? Instructors get answers from students that,
anecdotally, often seem inflated. Knowing how long students ac-
tually take to complete assignments is useful in assignment and
instruction design. Also of interest to practitioners, as well as to
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researchers, is the question of how long students remain on task
before becoming disengaged. Other questions include how long
students remain off task before returning, whether students get
distracted easily, and whether an instructor can count on students
engaging deeply with the code. Answering these questions is dif-
ficult, largely because measuring time-on-task is difficult and un-
common [18]. The study reported in this paper attempts to advance
our ability to make these various measurements of time.

Computer Science is a unique area of study because much of
what students are doing to complete assignments is measurable
by capturing keystrokes. As a result, some researchers have used
keystroke counts to measure effort on assignments [5]. Time can
be estimated from keystrokes: keystroke logs generally include a
millisecond-resolution timestamp, and so latencies (elapsed time
between keystrokes) can be summed together to estimate total time
taken. But the problem is that the keystroke logs do not indicate
when students become disengaged. A 12-hour latency between
keystrokes more than likely indicates that the student is taking a
break from the assignment, but what about a 10-minute latency or
a 30-second latency? How do we know which latencies represent
time working on the assignments and which do not?

Researchers have not come up with a good answer to this ques-
tion, though various disengagement thresholds have been sug-
gested. The need for an evidence-based model of engagement is
strikingly demonstrated by the lack of agreement between these
proposed thresholds, which range from 60 seconds [27] to 3 min-
utes [15] to 30 minutes [21] to one hour [12]. (We note that in every
case the authors have acknowledged that, to at least some degree,
the thresholds are arbitrary.) Of course, we can never know, just
from a separation of two keystrokes in time, whether a person is
engaged in or disengaged from a task. However, we suggest that an
empirically derived statistical model could allow us to make useful
estimates.

In this paper we present just such a model. Our model is built
on data obtained from student self reports of engagement while
working on a programming assignment. At intermittent times, a
student is shown a window that asks if they are engaged or not.
With careful sampling of times to prompt the student, we compile
responses that we then fit a regression curve to. Using this model we
can statistically estimate the probability that a student is engaged
in their assignment using elapsed time since their last keystroke as
the only independent variable.

Our objective in this study is to determine an empirically based
regression model for student engagement using keystroke latency
as the independent variable and with probability of engagement
as the dependent variable. We use this model to answer two re-
search questions: [RQ1] How long do CS1 students stay on task while
programming? and [RQ2] How long do students remain disengaged?
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In this paper we explore related work (Section 2); explain how
our data were collected (Section 3); present results, including the
regression model and answers to research questions (Section 4);
discuss results (Section 5); and conclude with implications of our
model and various avenues for follow-on work (Section 6).

2 Related work

2.1 Vigilance and engagement
Two inter-related psychological constructs are relevant when con-
sidering student work habits while completing programming assign-
ments: vigilance and engagement. Vigilance is defined as the ability
to sustain attention to a task over a period of time, and the vigilance
decrement describes how vigilance declines over time [7, 17, 25, 32].
Task engagement refers to the investment of physical, cognitive
and emotional energy into a task [11, 23]. Though tasks used in
vigilance studies typically involve passively monitoring a predomi-
nantly constant stimulus for change (e.g., a night security officer
monitoring surveillance video of empty hallways), explanations of
the vigilance decrement may have broader applicability. For exam-
ple, maintaining attention to a task gets inherently more difficult
over time as the mental resources required for the task become
depleted [32], but at the same time, the effort required to main-
tain attention on a task is lessened by more engaging (interesting)
tasks. All else being equal, more difficult tasks are associated with
a greater vigilance decrement [9], and all else being equal, more
engaging tasks are associated with a lower vigilance decrement [3].
This suggests that though the vigilance decrement is inevitable
for any task, it can be mitigated by promoting task engagement,
and in turn, task engagement can be inferred from the steepness
of the vigilance decrement. In our study, we deviate from typical
investigations of the vigilance decrement. Rather than examining
how task performance decreases as a function of time on task, we
examine how the probability of a student being on task decreases
with time.

2.2 Engagement in CS education
Prior work in student engagement has largely been at the scale of
the semester. For example, the National Student Survey of Engage-
ment [1] asks questions like, “During the current school year, about
how often have you asked questions or contributed to course dis-
cussions in other ways?” Other, similar surveys are used to gauge
quality of education, in terms of engagement, from student reflec-
tion [31]. In studies of engagement in Computer Science Education,
engagement generally isn’t explicitly defined, and it is measured
using indirect observation. For example, Ibanez et al. [10] study
the effect of gamification on engagement. They measure engage-
ment by whether students continue working on assignments after
completing the requirements, as well as student reports of which
assignments students preferred. Another example is the report of
an ITiCSE working group on the effect of visualization on student
engagement [22] where measurement of engagement is based on
surveys and academic outcomes. The authors do note that time on
task could be an instrument for evaluating engagement, though
nothing more is said about it. Other studies are similar [30]. The
majority of the literature seems to study engagement as defined

by Axelson and Flick: “The phrase ’student engagement’ has come
to refer to how involved or interested students appear to be in
their learning and how connected they are to their classes, their
institutions, and each other” [2].

In our study we explore a different type of engagement. A good
theoretical definition of engagement for the purposes of our study
is given by Kahn, who defined it, in the context of work roles, as
“the harnessing of organization members’ selves to their work roles;
in engagement, people employ and express themselves physically,
cognitively, and emotionally during role performances” [11]. We
formalize this definition for our study to be: “a student is engaged
at a given moment if, when asked if they are on task, their honest
and self-aware answer would be ’yes.’”

2.3 Predicting state from keystrokes
Some work has been done looking at activity while programming.
Munson [20] calculated time taken on a programming assignment
simply by subtracting the time of the first compilation event from
the last. Toll et al. [34] used a combination of keystrokes, mouse
movements, and other events to estimate student activity at dif-
ferent levels of granularity and used different events to estimate
different activities, e.g., using mouse movements but not keystrokes
suggests reading or navigating activity but not editing. Other works
simply sum elapsed time between keystroke, compile, or other
events as long as the elapsed time doesn’t exceed an arbitrary
threshold beyond which students are considered disengaged [12,
14, 15, 21, 27].

Other studies have investigated prediction of emotional state
using keystrokes. Bixler and D’Mello [4] asked participants to label
their emotional state at different times while watching a video of
themselves writing a natural language essay. Tiam-Lee and Sumi
[33] used a similar approach to find that computer science students
were significantly more likely to be modifying code while they
were engaged. Epp et al. [6] periodically prompted participants to
answer 15 questions on their emotional state and Kołakowska [13]
used a controlled study to predict, using keystroke features, stress
among students.

3 Methods
We conducted a study in which we asked CS1 students to self-
report whether they were engaged in working on the programming
assignment at the moment they are prompted.

3.1 Prompts
Participating students were asked to install a plugin to the PyCharm
IDE and to complete their Python programming assignments using
PyCharm. The PyCharm plugin both collects keystroke logs and
prompts students to self-report engagement as follows: after vary-
ing periods of inactivity, or “query times,” of .75, 1, 1.5, 2.5, 4.5, 8.5,
16.5, and 32.5 minutes, the plugin shows a window to the student
that asks the question: “What were you doing immediately before
this appeared?” The window has two button responses, “Working
on something related to my assignment” and “Doing something
else.” The prompt window is modal, so the student is required to
respond before continuing work on their assignment. The student’s
response is logged in the keystroke log file. The prompt is intended
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to be as non-intrusive as possible, with between 2 and 5 prompts
per assignment. Our approach is similar to the Experience Sampling
Method [8] in that we collect samples in situ, with participants in
their own environment working on their own time rather than in a
lab setting or being asked about engagement after the fact.

Students may not respond to the prompt window immediately,
especially if they are using another computer application, on their
phone, or away from their computer when the prompt appears. We
considered an optimization of closing the prompt and marking the
student off task if the student didn’t respond within a few seconds.
This idea was discarded, however, because students may still be
engaged even if they are not working in the programming IDE –
they may be searching for help on the internet or consulting the
textbook.

3.2 When to prompt
Our approach to determine when to show the query window is as
follows: after each keystroke, use probability 0.7 to determine if
the keystroke will start a query timer. If the keystroke is chosen
to start a timer, determine the amount of time for the timer using
a Cumulative Density Function (CDF). If the timer expires before
another keystroke is executed then we prompt the student. See
Algorithm 1.

Algorithm 1 Algorithm for determining when to prompt

f u n c t i o n onKeys t roke :
c a n c e l a c t i v e t ime r
i f rand ( ) < 0 . 7

t ime = CDF ( rand ( ) )
t ime r ( t ime , c a l l b a c k )

f u n c t i o n c a l l b a c k :
show prompt window

We desire to prompt evenly between the different query times,
e.g., we wish to prompt students after 32 minutes of inactivity
roughly the same number of times that we prompt students after 45
seconds of inactivity. Sampling query times uniformly would result
in far more prompts after short times of inactivity. The reason is
because of the distribution of keystroke latencies (the periods of
time between pairs of keystrokes): the large majority of keystrokes
are executed within a couple of seconds of the preceding keystroke
(Figure 1a). If we start a timer for two seconds, there’s a good chance
it will complete but if we start a timer for 32 minutes, there is very
little probability of its completion before another key is pressed.
Thus, to achieve uniform sampling of times at which students are
prompted, we must allocate far more keystroke timers to larger
query times than to smaller.

To calculate a sampling function for the different query times
we start with a histogram of keystroke latencies calculated from
keystroke data from a previous study (citation elided for double-
blind review). See Figure 1a. We crop the histogram at a minimum
of 30 seconds and then bin into query times. We then compute
the cumulative sum in reverse and normalize it. We then take the
multiplicative inverse of the probability mass function, normalize,
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Figure 1: (a) Histogram of elapsed time between keystrokes.
Note that the y axis is on the log scale. (b) Sampling func-
tion used to determine elapsed time to set the timer for. The
goal is to get a distribution of prompts that is uniform across
elapsed times.
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Figure 2: Distribution of responses across query times.

and once more take the cumulative sum to compute the Cumulative
Density Function (CDF) that we use to sample times for the prompt
timer. The CDF probabilities are given in Figure 1b and Table 1. We
simulated times at which students are prompted using our existing
keystroke data and achieved a nearly uniform distribution.

3.3 Participants
Participants in this study are students in a CS1 course from a mid-
sized university in the United States. Students were given the oppor-
tunity to opt in or out with no benefit or penalty. Of the 36 students
that opted in to our study, 15 installed the PyCharm plugin. Data
was collected over the course of 6 programming assignments. The
study was conducted under IRB protocol (ID elided for double-blind
review).

4 Results
We collected 81 submissions from the 15 participants, for an average
of 5.4 submissions per student. The distribution of responses to the
engagement query across inactivity times is shown in Figure 2 and
Table 1. In the table we see that the prompts were reasonably well
spread across query times from 38 prompts after 16.5 minutes to 68
prompts at each of 1 and 2.5 minutes. Of the 424 total responses to
the engagement query, 239 reported being on task and 185 reported
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Elapsed Engagement
(min) CDF Off On N rate

0.75 0.03 13 38 51 0.75
1.0 0.06 20 48 68 0.71
1.5 0.11 14 43 57 0.75
2.5 0.18 26 42 68 0.62
4.5 0.31 32 24 56 0.43
8.5 0.49 30 17 47 0.36
16.5 0.72 26 12 38 0.32
32.5 1.00 24 15 39 0.38

Table 1: Student responses to the engagement query. Elapsed
is the number of minutes elapsed since the last keystroke at
the time of the query. CDF are the values of the CDF sam-
pling function. Off/On are the number of off task/on task re-
sponses andN is the total number of responses. Engagement
rate is On/N.
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Figure 3: Engagement rate from 45 seconds to 32.5 min-
utes of inactivity. The curve from the sampled data and the
power-law curve, with curves at ±1𝜎 , are shown.

being off task. Students were queried, on average, about 5 times
per assignment.

4.1 Model of engagement rate
Table 1 reports engagement rate for each query time. Engagement
rate is the ratio of on task responses to engagement events. Figure 3
shows a plot of the sample data along with the least squares best fit
power-law curve using the Levenberg-Marquardt algorithm [16].
The curve is given as

𝑃 (𝑡) = 0.73𝑡−0.25 (1)

where 𝑡 is elapsed time since the last keystroke and 𝑃 (𝑡) is the
probability that the student is engaged. Standard deviations are
0.039 for the coefficient 𝑎 and 0.043 for the exponent 𝑏. The 50%
threshold, according to the model curve, is at 3:41. In other words,
according to this model, after about 3 1/2 minutes of inactivity
we can expect about half of the students to have directed their
engagement away from the programming assignment.
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Figure 4: Distribution of the power-law curve coefficient and
exponent given 10,000 randomizations of student responses.
Values from the empirically sampled data aremarked as red
points on the charts at 𝑎 = 0.73 and 𝑏 = −0.25.

The data are consistent with the hypothesis that engagement
rate decreases with increasing times of inactivity. We tested the
hypothesis as follows: we fit a power-law curve to the data (Fig-
ure 3). We then, using a uniform distribution, randomly assigned
Off and On responses to the sampled data and fit a new curve to the
randomized data. We performed this randomization 10,000 times
and fit a power-law curve 𝑃 (𝑡) = 𝑎𝑡𝑏 to each. Across the model
curves, the constant 𝑎, as expected, has a mean of 0.50 and is normal
(D’Agostino-Pearson statistic=0.69, p=0.71). Similarly, the exponent
𝑏 has a mean of 0.00 and, because it is a nonlinear term, is not nor-
mally distributed (D’Agostino-Pearson statistic=15.58, p=0.0004).
See Figure 4. Even after 10,000 random reassignments, our model
constant 𝑎 and exponent 𝑏 that were fit on the sample data are both
outside the range of 𝑎 and 𝑏, suggesting that we can reject the null
hypothesis that on task and off task responses from students are
randomly distributed relative to time of inactivity.

Equation (1) is a regression model for probability of engage-
ment that is easily implementable, even in situ, using only a single
independent variable, that of time since the last keystroke. We
emphasize that our model is one of regression, not classification.
Rather than predicting if a student is on or off task, it predicts the
probability that the student is on task. We use this approach for two
reasons. The first is that the model itself lends insight into student
behavior. For example, we can now say things like, “according to
the model, if a student hasn’t pressed a key in 2 minutes then they
are 40% likely to be disengaged.” The other reason to use regression
rather than classification is to avoid firm separating hypersurfaces
and allow randomness. If we used, say, logistic regression, then
every pause of 45 seconds would be classified as on task and every
pause of 4 minutes would be off task. As our model is designed, we
can use the probabilities to randomly determine engagement. That
way, 80% of 45-second pauses will be predicted to be on task and
20% will be predicted to be off.

4.2 Length of engagement
Using our model we are able to analyze how long students are
engaged in their assignments before going off task. We gather all
keystrokes from a student submission and compute digraph laten-
cies, or elapsed time between keystrokes. We then use our model
to determine the probability that, given the latency, the student
remained engaged following a keystroke. Because of considerations
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Figure 5: Statistics on length of assignment and length on
task, as measured in keystrokes and minutes.
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Figure 6: Distribution of length of time students remain off
task after disengaging from programming.

discussed in Section 5, we assign a probability of 1 if the latency is
less than 45 seconds and 0 if greater than 2 hours. Once probabilities
are assigned, we assign the attribute onTask to keystrokes, with a
value of true assigned if a random number is less than the proba-
bility, and false otherwise. After assigning the onTask attribute to
all keystrokes in all submissions we can compute various statistics.
See Figure 5. In our data, the median number of keystrokes for an
assignment is 3803. With our model we can compute the number
of minutes students worked on their assignments more accurately
than just adding up all the latencies: by excluding latencies for
keystrokes that were modeled as off task we get a median of 184
minutes, or just over 3 hours, of actual (though not necessarily
continuous) time on task for each assignment.

The most interesting statistic, and answer to research question
RQ1, is the median length of time students remain engaged be-
fore going off task, which is 8.5 minutes, or about 163 keystrokes.
This means that students generally work on their programming
assignments for only 8-9 minutes before becoming distracted or
otherwise disengaged. This means that over the course of the 3
hours of programming, students go off task over 20 times. In Fig-
ure 6 we see how long students are off task, answering research

question RQ2. Among the lengths shown in the figure (binned in
powers of two), the most common length of time for a student to
be off task is between one and two minutes and 51% of students
remain off task for between 1 and 4 minutes.

5 Discussion

5.1 Sampling bounds
We sampled student engagement after at least 45 seconds of inac-
tivity. In order to achieve our uniform sampling rate (see Figure 2)
we are required to sample far more of the long inactivity rates
than the short (Section 3.2), and so adding shorter inactivity rate
sampling would require a much larger number of keystrokes to
sample from. Our participant pool of 15 students didn’t admit a
large enough number of keystrokes to sample at times lower than
45 seconds. However, we expected most of the range of probabilities
to be covered between 45 seconds and 32 minutes, and this was
indeed the case, with 45 seconds sampling at about 80% engagement
rate down to about 30% engagement rate at 32 minutes. Sampling
at lower than 45 seconds should give insight into behaviors near
100% engagement rate, though we expect that sampling at higher
than 32 minutes may not add much insight as the behavior appears
asymptotic beyond 32 minutes.

5.2 Adjustment for bias
There are reasons to consider our model an upper bound of engage-
ment. The first reason is student bias toward reporting as being
engaged, even if they aren’t. This could be caused by students an-
swering dishonestly and also by lack of self-awareness resulting in
the likelihood that more students were disengaged than reported.
Another reason to consider the model an upper bound is participant
reactivity, discussed in Section 5.3. Because students knew they
were being observed they may have stayed on task more than they
normally would have. As discussed in Section 5.3, we expect this
effect to be somewhat low. Note that answer bias and reactivity
remain even with large sample sizes, so the model would need to
be corrected for these effects, if possible, no matter the sample size.
We propose a possible correction based on the observation that the
sampled data appears to have a non-zero lower asymptote of about
30% in our data (see Figure 3) when the engagement rate should
actually approach zero with increasing time. In sampling longer
inactivity times, some percentage of students may still respond
as being on task even if they are not. We suggest the following
correction: if the asymptote is at, say, 30% then we could say that
𝑓 = 0.3, or 30% of students will always say that they are engaged.
We can correct the sampled engagement rate 𝑅 for a given query
time 𝑡 as

𝑅(𝑡) = 𝑅(𝑡) − 𝑓

1 − 𝑓
(2)

where 𝑅(𝑡) is the corrected engagement rate. Applying the correc-
tion to our model yields the curve in Figure 7. After correction, the
asymptote correctly appears to be near zero while behavior at small
times of keyboard inactivity is close to the original data.
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Figure 7: Engagement rate modeled with a generalized logis-
tic function on the adjusted data. Note the upper asymptote
at engagement rate of 1.0.

5.3 Hawthorne effect
An additional consideration in this research is the phenomenon
of participant “reactivity,” or the Hawthorne effect. Studies have
shown that research subjects change their behavior when they
know they are being observed [19, 24, 26, 29]. The Hawthorne effect
may be exhibited in our study through higher rates of engagement.
Note that this is different from students answering that they were
on task when they were actually off task. The Hawthorne effect in-
dicates that students may actually have been on task more than they
would have had they not been observed. However, the Hawthorne
effect is fleeting. One cannot indefinitely improve productivity
merely by letting the subjects know they are being watched. An
advantage of the sampling approach used in our study is that it is
less intrusive than other approaches – students are not required to
be in a lab, they use their own computers, they work on their own
schedule, and they aren’t required to be recorded by a camera, thus
lessening the effects of the Hawthorne effect.

5.4 Model curve
We use a power-law regression curve to model engagement. One
issue with this curve is that it doesn’t have an upper asymptote,
and so smaller times of inactivity will result in probabilities of
engagement greater than 1. This is not a problem in the scope of
the present work since we clamp the engagement probability to 1
at times below 45 seconds of inactivity, but for generalizability a
more suitable curve should be used. A curve that may be a good
candidate is the generalized logistic curve or Richards’ curve [28].
We didn’t use this curve for our model because of the non-zero
lower asymptote in our data. However, after applying the bias
correction (Equation 2) the generalized logistic curve fits nicely
using Richards’ equation

𝑦 =
1

(1 +𝑄𝑒−𝐵 (𝑥−𝑀) )1/𝑣
(3)

with 𝑄 = 50, 𝐵 = −17, 𝑀 = 0.01, and 𝑣 = 57. See Figure 7.

5.5 Threats to validity
Participants in our study were drawn from a CS1 course taught in
Spring 2021. The course was taught online because of COVID-19, so
irregularities in instruction may have been present. Students opted
into the study knowing that their keystrokes would be recorded, so
behavior may have been influenced by the Hawthorne effect (Sec-
tion 5.3), and students who did not opt into the study may exhibit
different engagement behavior. Sample size should be considered
when generalizing our results.

6 Conclusions

Our approach to modeling student engagement is easily imple-
mentable using recorded keystrokes and not only allows us to
predict student engagement, but the model itself gives insights
into students’ allocation of attention while programming. We have
proposed a model for analyzing how long students actually take
on their assignments (useful to instructors), how long students re-
main engaged before going off task (useful to instructors, language
designers, and researchers) and how long students are disengaged
once they go off task (useful to researchers). We find that students
remain on task for about 8 minutes at a time (RQ1) and return
to engagement after 1-4 minutes in most cases (RQ2). These mea-
sures are useful to students who can gain improved self-awareness
by seeing a model of their engagement behavior, especially when
compared to that of their peers.

Predicting disengagement will allow us to not only assess student
performance after the fact, but allow us to design interventions that
can help students proceed when they get stuck. Simply adding a
prompt when keystroke analysis suspects a student going off-task
could be beneficial. And if the prompt were context-aware, specific
help could be given, such as a short practice activity if a student is
stuck on a particular syntactic construct.

Our model is likely an upper bound of engagement. We expect
that the median time-on-task is less than 8 minutes. While con-
trolling for honesty, self-awareness, and the Hawthorne effect is
difficult, the model itself, with its non-zero lower asymptote, can
give direction for correcting for measurement error. Until such a
correction can be studied in more detail, our model as given here is
a reasonable first approximation.

In this paper we have presented a model for engagement as
well as derived statistics, such as the median time-on-task. What is
absent from our discussion is whether engagement behavior follow-
ing this model is conducive to learning or not. Such a discussion
is outside the scope of our work, but it is important to address
when designing and implementing instructional changes based on
the model. One straightforward way to determine the benefits of
different engagement behaviors would be to correlate assignment
and course grades with average time-on-task and similar features.
Our work presented in this paper gives a model and empirical
techniques that may be useful in such studies.

Our work may be generalizable to other disciplines. For example,
keystroke logs of essay writing in literature courses [4] could be
used to model engagement. While the parameters of the engage-
ment curvewould likely be different, the techniques for determining
and interpreting the model could be the same.
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