
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

Computer Science Student Research Computer Science Student Works

5-6-2022

Indexer++: Workload-Aware Online Index Tuning With Indexer++: Workload-Aware Online Index Tuning With

Transformers and Reinforcement Learning Transformers and Reinforcement Learning

Vishal Sharma
Utah State University, vishal.sharma@usu.edu

Curtis Dyreson
Utah State University, curtis.dyreson@usu.edu

Follow this and additional works at: https://digitalcommons.usu.edu/computer_science_stures

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vishal Sharma and Curtis Dyreson. 2022. Indexer++: Workload-Aware Online Index Tuning with
Transformers and Reinforcement Learning. In The 37th ACM/SIGAPP Symposium on Applied Computing
(SAC ’22), April 25–29, 2022, Virtual Event, . ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3477314.3507691

This Article is brought to you for free and open access by
the Computer Science Student Works at
DigitalCommons@USU. It has been accepted for
inclusion in Computer Science Student Research by an
authorized administrator of DigitalCommons@USU. For
more information, please contact
digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/computer_science_stures
https://digitalcommons.usu.edu/computer_science_student
https://digitalcommons.usu.edu/computer_science_stures?utm_source=digitalcommons.usu.edu%2Fcomputer_science_stures%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fcomputer_science_stures%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

Indexer++: Workload-Aware Online Index Tuning with
Transformers and Reinforcement Learning
Vishal Sharma

Utah State University
Department of Computer Science

vishal.sharma@usu.edu

Curtis Dyreson
Utah State University

Department of Computer Science
curtis.dyreson@usu.edu

ABSTRACT

With the increasing workload complexity in modern databases, the
manual process of index selection is a challenging task. There is
a growing need for a database with an ability to learn and adapt
to evolving workloads. This paper proposes Indexer++, an au-
tonomous, workload-aware, online index tuner. Unlike existing
approaches, Indexer++ imposes low overhead on the DBMS, is re-
sponsive to changes in query workloads and swiftly selects indexes.
Our approach uses a combination of text analytic techniques and
reinforcement learning. Indexer++ consist of two phases: Phase
(i) learns workload trends using a novel trend detection technique
based on a pre-trained transformermodel. Phase (ii) performs online,
i.e., continuous or while the DBMS is processing workloads, index
selection using a novel online deep reinforcement learning tech-
nique using our proposed priority experience sweeping. This paper
provides an experimental evaluation of Indexer++ in multiple sce-
narios using benchmark (TPC-H) and real-world datasets (IMDB).
In our experiments, Indexer++ effectively identifies changes in
workload trends and selects the set of optimal indexes.

CCS CONCEPTS

• Information systems→Autonomous database administra-

tion; Data management systems; Database design and mod-

els; Database management system engines.

KEYWORDS

Workload Trend Detection, Online Index Selection, Pre-trained
Transformers, Reinforcement Learning

ACM Reference Format:

Vishal Sharma and Curtis Dyreson. 2022. Indexer++: Workload-Aware
Online Index Tuning with Transformers and Reinforcement Learning. In
The 37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22), April
25–29, 2022, Virtual Event, . ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3477314.3507691

1 INTRODUCTION

Choosing an optimal set of configuration parameters is critical to
the performance of a DBMS. Among all configuration parameters,

SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8713-2/22/04.
https://doi.org/10.1145/3477314.3507691

the selection of indexes is arguably the most important and chal-
lenging [9]. The index selection problem is to select a set of indexes
that minimizes the cost of query evaluation. Although selecting the
right set of indexes is critical to achieving good performance [11],
the index selection problem is NP-hard [34]. With the growing num-
ber of database configuration parameters and increasing complexity
of query workloads, there is an upsurge of interest in self-managing
DBMSs, that is, in DBMSs that can automate their configuration
and adapt that configuration as needed in response to changes in
their environment. Previous research in self-managing databases
using Machine Learning (ML), has shown that automated index
selection can outperform manual index selection [46].

In a manual index selection process, a Database Administrator
(DBA) analyzes a representative workload selected from the work-
load history to perform experiments and create indexes. A manual
index selection process has several limitations. First, identifying a
representative workload from thousands of queries is a challenging
task, and random sampling may miss edge-case scenarios. Second,
the selected set of indexes does not generalize for complete his-
torical workloads. Third, the process does not address current or
future workload trends. Finally, the process has a latency concerns,
a DBA will usually modify the index set when individuals complain
about a drop in performance. A manual index selection is a static
and cumbersome process. In contrast, the workloads can change
frequently and the optimal set of indexes is a moving target [45].
The limitations of manual index selection can be overcome with an
index selection method that is a continuous/online decision making
process. To motivate this problem we share an example:

Example 1.1. App-X is a framework for trading on the stock
exchange, where users can check a stock ticker (abbreviation of stock
and current price), conduct chart analysis, and purchase and sell stocks.
Over a trading day, App-X could see a massive shift in database
query workloads. The value-based stock queries could be frequent at
the opening bell, but technology-based could gain traction near the
closing bell. App-X needs to change its indexes over the day to process
queries efficiently and respond quickly to end-users, but can only do
so if it can detect and respond to (patterns of) workload trends.

Previously automated index selection research has primarily
focused on offlinemethods. An offline indexer uses the current state
of the database and a representative queryworkload to determine an
optimal set of indexes. Offline indexers use heuristics [10, 15, 31, 44],
machine learning [1, 12, 21, 22], or reinforcement learning [3, 19,
39, 41] to recommend a set of indexes. The set of indexes generated
by an offline indexer can become stale if the workload changes.
A stale set can be refreshed by re-running the offline indexer to
recreate the indexes. But the cost of offline indexers can be high (on

372

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

https://doi.org/10.1145/3477314.3507691
https://doi.org/10.1145/3477314.3507691
https://doi.org/10.1145/3477314.3507691
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3477314.3507691&domain=pdf&date_stamp=2022-05-06

SAC ’22, April 25–29, 2022, Virtual Event, Vishal Sharma and Curtis Dyreson

the order of hours of computation time) since an algorithm may
re-run thousands of queries and re-build many indexes. An offline
indexer’s periodic runs degrade DBMS throughput and response
time. In contrast to offline index selection, the goal of online index
selection is to keep the set of indexes fresh. An online indexer initially
generates a set of indexes and then progressively adapts the set in
response to workload or database changes.

An online indexer faces several challenges not shared by their
offline counterparts.

(C1) Noise Resilience: An online indexer must react to shifting
trends while avoiding short-lived once that might harmDBMS
performance by updating the indexes frequently. A challenge
here is identifying how to recognize a trend, i.e., how many
and what kind of queries suggest a distinct pattern.

(C2) Overhead: The tuning process must be able to run concur-
rently with other DBMS operations without interfering with
processing. Low overhead ensures that an online indexer can
(in effect) run in parallel and respond to changing trends.

(C3) Trend Detection: An inability to detect trends quickly may
result in delayed index selection. A significant delay in trend
detection, in turn, reduces the utility of new indexes.

(C4) Responsiveness: The index tuning response should be quick,
on the order of minutes. If index selection takes many hours or
longer, the tuner may miss trends. An online indexer should
ideally be able to respond in real-time.

Previous research in online index selection [7, 28, 33, 35, 36, 40]
focused on analyzing a query workload window to recommend a
set of indexes. These approaches do not adapt to changing work-
load patterns. They also suffer from high cost (computation and
responsiveness) and have a long delay between trend detection and
index selection. The high cost and delay reduces the overall utility
of having an online indexer.

This paper presents Indexer++, a workload-aware, online index
tuner and makes the following contributions.

• We propose and evaluate our novel workload embedding and
trend detection technique using a pre-trained transformer based
model, dimentionality reduction and clustering algorithm.

• We utilize deep reinforcement learning techniques to learn the
interactions between indexes [23] that helps improve perfor-
mance [37]. We design our reward function with a constraint on
the total storage cost of the selected set of indexes.

• We propose and evaluate a novel Priority Experience Sweeping
technique for online learning that extends the Deep Q-Network
(DQN) algorithm. For a command-based database interaction,
we design and build an OpenGym environment.

• We present an extensive evaluation of our framework on two
datasets (IMDB and TPC-H). The experiments demonstrate that
Indexer++ can identify workload trends and select indexes ef-
fectively while addressing challenges (C1)-(C4) listed above.

This paper is organized as follows. § 2 describes related work
and § 3 formulates the problem. In § 4 we describe Indexer++,
introduce a workload embedding technique, and use the technique
to detect change in workload patterns. The section also describes
our algorithm for online index selection. § 5 presents experiments,
and finally § 6 concludes the paper.

2 RELATEDWORK

Workload Embedding: In the realm of Natural Language Pro-
cessing (NLP), the technique of generating a vector representation
of a word (word embedding) has received tremendous attention.
Hinton et al. [16] pioneered the notion of vector representation.
Mikolov et al. [29] proposed word2vec a model that can learn latent
relationship between words from a text corpus. This advancement
led to addressing several challenging problems in NLP such as
semantic analogy [26], sentiment analysis [38], and document clas-
sification [27]. Theword2vecmodel was later expanded to sentences
and documents [24]. To improve the vector representation other
deep learning techniques were also employed such as CNN, RNN
and LSTM. The quality of word embeddings were significantly im-
proved by the introduction of Deep Bidirectional Transformers,
examples BERT, Transformer-XL, and XML.

Several previous attempts were made to embed a SQL workload.
Bordawekar et al. [5, 6] utilize pre-trained word2vec models for
query embedding. Jain et al. [18] performs error prediction and
workload summarization using vector representation learned by
training an LSTM-based autoencoder. Bandyopadhyay et al. [2]
propose a database column embedding using Bi-LSTM for drug-
drug interaction prediction. Cappuzzo et al. [8] propose data in-
tegration using graph-based representation. Günther et al. [14]
proposes enriching database queries using pre-trained word2vec
model. The word2vec embedding is a pioneer in text vector repre-
sentation. It does, however, generate static lower-dimensional and
non-contextual vectors. Indexer++ employs a pre-trained trans-
former based model (BERT, Transformer-XL) for query embedding,
which generates dense and context-dependent vectors that aids in
learning the semantic and syntactic relationship between queries.

Online index tuning: The study of the problem of online index
selection dates back to the 1970s. Hammer et al. [15] used heuristics
for index selection on a single table. Frank et al. [13] proposed an
online tuning method for single index selection using workload
statistics for change detection and using heuristics for index se-
lection. Kołaczkowski et al. [20] uses an evolution technique for
selecting indexes in a query execution plan. A solution using heuris-
tics may fail in scalability (Challenge C4). Bruno et al. [7] design
an ad-hoc approach for index selection. Their approach is fast and
scalable, but it lacks noise resilience (Challenge C1). For a small
DBMS application, such an approach may work, but it can worsen
the performance of a large system. Schnaitter et al. [36] proposed a
very effective online indexing solution that monitors the incoming
queries and minimizes the overhead cost. Their index selection
uses heuristics. However, it is slow for real-time online index selec-
tion (C4) and susceptible to noise (C1). Sadri et al. [35] proposed
an index tuning algorithm using deep reinforcement learning. As
described by the authors, their approach takes a long time for index
selection (C4). None of the previous approaches overcomes all of
the challenges. They mostly fail to address noise resilience (C1) or
scalability (C4). Furthermore, most previous approaches do not take
index disk storage cost into account as an optimization parameter.
The storage cost is very crucial for modern databases that place
a high priority on minimizing the cost of data storage. Unneces-
sary indexes can worsen the DBMS performance. Our proposed
approach overcomes all of the challenges (C1)-(C4).

373

Indexer++: Workload-Aware Online Index Tuning with Transformers and Reinforcement Learning SAC ’22, April 25–29, 2022, Virtual Event,

3 PROBLEM FORMULATION

The index selection problem is to select a set of indexes that mini-
mizes the time to evaluate a workload within a given storage size
constraint; it is a constrained combinatorial optimization problem.
The space constraint is very crucial because the selected set of
indexes should be parsimonious. In addition to straining disk space
and increasing database overhead, creating more indexes than re-
quired also slow down data modifications.

A workload,𝑊 , is a sequence of SQL queries, [𝑄1, 𝑄2, . . . , 𝑄𝑚].
An index configuration, 𝐼 , is a set of indexes. The cost of the eval-
uation of a workload on database 𝐷 is the sum of the cost of
the evaluation of each individual query in the workload given by
𝐶𝑜𝑠𝑡 (𝑄 𝑗 , 𝐼 , 𝐷) and can be described as follows.

Cost (𝑊, 𝐼, 𝐷) =
𝑚∑
𝑗=1

Cost (𝑄 𝑗 , 𝐼 , 𝐷)

Please note, that the workload cost gives the same weight to each
query in the workload, though weighted costs could be trivially
included by replicating individual queries. The index selection prob-
lem is to find a set of indexes 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 that minimizes the total cost
of a workload, Cost (𝑊, 𝐼, 𝐷), and has a storage cost of at most 𝐶 .

𝐼optimal = min
𝑆 (𝐼) ≤𝐶

Cost (𝑊, 𝐼, 𝐷)

In this equation 𝑆 (𝐼) is the total space cost of 𝐼 . The online in-
dex selection problem can be formulated as follows. Let a work-
load stream,𝑊 ∗, be a sequence of workloads, [𝑊1,𝑊2, . . . ,𝑊𝑘]. Let
Diff (𝑊1,𝑊2, . . . ,𝑊𝑘) be a metric that quantifies the difference be-
tween workloads in the stream. Then online index selection can be
defined as:

reindexconfig (𝐼optimal, 𝐷) = min
Diff (𝑊 ∗) ≥_

Cost (𝑊 ∗, 𝐼∗, 𝐷)

where, _ is a measure of the sensitivity to re-configure the indexes
based on the workload stream difference (_ is described in §4.2), 𝐼∗
is the set of indexes that changes with a change in workload trends,
and 𝐼optimal is the final optimal set of indexes.

4 INDEXER++

A DBMS should be workload-aware and self-tune indexes in re-
sponse to changing workloads [32], however developing such a
DBMS presents various challenges.

• There are various types of workloads, such as analytical, data
manipulation, and data definition. They have different function-
ality and execution cost. As a result, a workload-aware DBMS
should be able to distinguish between them while also learning
and adapting to heterogeneous workloads.

• In recent years the scale and volume of data has grown substan-
tially. A workload can consist of thousands of SQL queries. There-
fore, the workload trend can change in a relatively short amount
of time. Such rapid change in workload trends requires an online
process of representing and understanding queries.

• Workload representation is challenging. A workload-aware DBMS
needs to extract workload patterns in real-time. Understand-
ing the syntax and semantics of a workload requires it to be
represented in a standard form. It requires a pattern extraction
approach that must be able to learn the relationship among work-
loads and withstand the workload volume.

DQN Agent

Environment

Action ()
Reward ()

State ()

Online Index Selection

DQNDB Replay

ery 1
ery 2

ery n

Trend
Detection

Preprocessing
Dimension
Reduction

In
de

xe
r+

+

Workload Trend Detection

Figure 1: Indexer++ framework with two phases (i) Work-

load Trend Detection (left) (ii) Online Index Selection (right)

Indexer++ overcomes these challenges in two phases. The first
phase represents a workload using embedding techniques and iden-
tifies workload trends usingK-medoids clustering. The second phase
selects the set of indexes using online deep reinforcement learning.
The first phase communicates with the second, but they function
independently as shown in Figure 1 which depicts our framework.

4.1 Workload Embedding

Queries in a workload may vary depending on the user and the
application. From among the many workloads some workloads
are similar. Indexer++ has to recognize similarity in workloads to
detect trends and optimally select indexes. Representation learning
has been shown to be effective in learning the syntax and seman-
tics of text [4]. Representation learning uses a d-dimension vector
for each word from a corpus of text [6]. The vector encodes the
meaning of a word and captures its latent features in such a way
that relationships between words can be expressed using arithmetic
operations e.g., king to man is what to woman? Answer: queen [26].

Previous work on workload representation has proposed two
ways to represent a workload (i) using statistics generated by ex-
ecuting the workload [1], and (ii) training a deep learning model
on a large corpus of queries and performing inference [18]. Unfor-
tunately, both of these approaches have drawbacks. The former
technique may be impractical in an online tuning process since
it executes the workload, which may escalate database load and
interrupt existing operations, whereas the latter needs run-time
training, which is computationally intensive.

Indexer++ uses a third way: universal embedding. Universal
embedding is a form of transfer learning in which a model is pre-
trained on an extensive corpus of text. Universal embedding offers
several advantages. First, the inference time1 has no slack, which
makes it a feasible solution for online tuning. Second, universal
embedding has no workload evaluation-time overhead. It does not
collect any information from the database and does not interrupt
running processes or applications. Experimentally, we found uni-
versal embedding to be able to represent a workload effectively
and identify heterogeneous workloads (experimental results are
given in § 5). One drawback of a pre-trained model is that it may
have a minor bias [43]. However, we prioritize speed for workload
embedding in Indexer++, which is an advantage of a pre-trained
model, so a minor bias is less relevant.

1Time required to convert a word to a vector representation using a pre-trained model

374

SAC ’22, April 25–29, 2022, Virtual Event, Vishal Sharma and Curtis Dyreson

Exisiting

Trending

Diff (Existing,Trending)Exisiting

Trending

Figure 2: Visual description of trigger parameters _, cen-

troids 𝑋 , 𝑌 and 𝐷𝑖 𝑓 𝑓 (𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔,𝑇𝑟𝑒𝑛𝑑𝑖𝑛𝑔)

4.2 Workload Trend Detection

In the previous section, we discussed about transforming a work-
load to a vector representation. There are several applications of
such embedding, for example, workload summarization, cost esti-
mation, and query classification. In this section, we will introduce
another application, Workload Trend Detection.

Representation: Indexer++ performs dimensionality reduc-
tion on an embedded workload using t-distributed stochastic neigh-
bor embedding (t-SNE), a non-linear dimensionality reduction tech-
nique. The purpose is to reduce the embedding dimension for fur-
ther analysis (clustering), noise reduction, and visualization. The
feature space of t-SNE is found by searching for a low-dimensional
projection of data equivalent to the actual data using a stochastic
neighbor embedding. The neighbor embedding is constructed in
two steps: (i) determine a probability distribution such that similar
objects are assigned a similar probability, and (ii) construct a similar
distribution in a lower dimension while minimizing the entropy
using the KL divergence of the two distributions.

In our workloads, we assume there are two sets of queries: ex-
isting, which is the historical workload, and trending, which is the
forthcoming/current workload. In the reduced dataset, Indexer++
performs K-medoids clustering on the reduced dataset (after using
t-SNE) to locate the span of both workloads in vector space. The
dimensionality reduction is a standard preprocessing technique for
clustering algorithms to decrease noise in the data and to improve
quality of clusters [17]. Indexer++ uses the K-medoids clustering
algorithm due to the interpretability of the selected centroids. K-
medoids finds a centroid that is a sample from the dataset, while
other techniques like K-means may output a non-data point as a
centroid. The centroid selected by K-medoids can be traced back to
the actual query, which helps in interpretation and visualization.

Trend Detection: Indexer++ then determines if the trending
workload is sufficiently different than the existing workload. Work-
loads are represented as a cluster. The radius of the existing work-
load cluster is the euclidean distance between the furthermost point
(𝑥) and the cluster centroid (𝑋), which we designate as _. The value
of _ quantifies the span of the existing workload in vector space.
We also compute the euclidean distance between the two centroids
existing and trending. When this difference is not greater than _, the
trending workload is deemed to be similar to the existing workload
since the centroid of the trending workload lies within the span of
the existing workload. In this case, the trending workload is com-
bined with the existing workload and the centroid of the existing
workload and _ are recomputed. Otherwise, the trending workload
is different and Indexer++ triggers online index selection before
merging the trending workload with the existing.

(a) (b) (c) (d)

Figure 3: Workload Trend Detection on two workloads

(Workload 1, 2) of TPC-H Random query dataset where blue

hexagon indicates the centroids of clusters

(a) (b) (c) (d)

Figure 4: Workload Trend Detection on TPC-H Random

query dataset (Workload 1, 3). The trending queries are sim-

ilar to existing workload. The blue hexagon indicates the

centroid of the cluster. The existing workload is displayed

in orange circle and new queries in gray cross

Visual Description:We describe our notion ofWorkload Trend
Detection using a visual representation in Figure 2. In the figure, 𝑋
and 𝑌 represent the cluster centroids of the existing and trending
workloads, respectively. _ is the distance between the centroid (𝑋)
and furthest point (𝑥). In Fig 2 (𝑎), the euclidean distance between
𝑋 and 𝑌 is less than _, thus, the index set will not be recomputing
and workloads will be merged since they are relatively similar.
In scenario (𝑏), the distance is greater, and the index selection
is triggered before merging the workloads. The Workload Trend
Detection is triggered after 32 queries (batch size for the online
DQN algorithm presented in § 4.3) in the trending workload.

Validation on TPC-H: To evaluate our workload trend detec-
tion approach, we experiment on the TPC-H Random dataset. We
split TPC-H Random queries into three workloads,Workload 1,Work-
load 2, and Workload 3 with 25 queries each. Each workload rep-
resents a set of queries and Workload 1 and Workload 3 are simi-
lar workloads, whereasWorkload 1 andWorkload 2 are dissimilar.
Workload 1 is assumed as the existing workload andWorkload 2 and
Workload 3 are introduced later as trending workloads to create two
different scenarios as shown in Figures 3 and 4. An inference on
Workload 1 SQL queries is performed using pre-trained RoBERTa
(§5 evaluates superiority of RoBERTa). The output of the inference
returns a high-dimensional vector. This high-dimensional vector
is reduced using t-SNE. A visualization ofWorkload 1 (orange cir-
cles) and a few queries from Workload 2 (gray cross) is shown in
Figure 3 (a). The number of dots may not be equal to the number
of queries due to overlapping. The K-medoids clustering on the
reducedWorkload 1 dataset returns the centroid as shown in a blue
hexagon. We introduce a few more queries fromWorkload 2 shown
in Figure 3 (b) and In Figure 3 (c), clustering is performed (in green)
and the trending workload (Workload 2) centroid is computed. Index
selection is triggered because the difference between the centroids
is greater than _. The workloads are then merged and a new cen-
troid is computed as shown in the final panel in Figure 3 (d). In a

375

Indexer++: Workload-Aware Online Index Tuning with Transformers and Reinforcement Learning SAC ’22, April 25–29, 2022, Virtual Event,

similar way, Workload 3 queries are introduced to Workload 1 as
shown in Figure 4. In this scenario, as the centroids are recomputed,
the workloads are similar and merged without new index selection.

Constraint: The final step in trend detection is to remove infre-
quent queries from the existing workload. Indexer++ sets a maxi-
mum threshold for the size of the existing workload (value varies
w.r.t. system configuration). When this threshold is exceeded, infre-
quent queries are removed. The centroid and _ are recomputed. The
intuition is that frequent queries are more likely to be re-evaluated
in the future so should be retained in the existing workload over
one-off queries. If the query frequency is the same, older queries are
removed from the existing workload in favor of younger queries.

4.3 Online Index Selection

A query optimizer may use a combination of indexes rather than
a single index to optimize a query. The choice of adding an index
to the set can be modeled as a Markovian Decision Processes (MDP)
where the selection of an index impacts future choices. Reinforce-
ment Learning (RL) is a popular technique to optimize MDPs and
has been used to discover directed acyclic graphs [47], and vehi-
cle routes [30]. In contrast to traditional machine learning, where
training requires a labeled dataset, an RL agent interacts with an
environment and learns from experiences. At a given time (t) and
state (𝑠𝑡) an agent performs an action (a) following a policy and
proceeds to the next state (𝑠𝑡+1). It receives a scalar reward during
the state transition. To model online index selection as an MDP,
Indexer++ extracts relevant information from a database to define
a state and has a pipeline where at a given time, 𝑡 there is a state𝑡
to action𝑡 mapping (state and action are deterministic). The goal of
an MDP is to reach the final state maximizing cumulative rewards
and identifying a policy that is, an optimal state-action mapping.

4.3.1 Online DQN Algorithm. A Deep Q-Networks (DQN) is a
popular offline RL based algorithm, where policy 𝜋 (𝑠, 𝑎) and val-
ues 𝑞(𝑠, 𝑎) are represented using multi-layer neural networks (NN).
The neural networks apply high-dimensional input data represen-
tation, generalizing similar experiences and unseen states. The
hyper-parameters of the neural networks are trained by gradient
descent minimizing a loss function. We use the mean squared error,
given below, as the loss function.

𝐿𝑜𝑠𝑠 (\) = E𝜋

1
2

𝑇𝑎𝑟𝑔𝑒𝑡︷ ︸︸ ︷
(𝐵𝑒𝑙𝑙𝑚𝑎𝑛 −

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒︷ ︸︸ ︷
𝑄 (𝑠, 𝑎;\))2

where, \ is a parameter for a nonlinear function, in our approach a
NN. We expand the equation using the Bellman Optimality [42]:

𝐿𝑜𝑠𝑠 (\) = E𝜋

1
2

©«(
𝑅𝑒𝑤𝑎𝑟𝑑︷ ︸︸ ︷
𝑅(𝑠, 𝑎) +

𝐹𝑢𝑡𝑢𝑟𝑒 𝑅𝑒𝑤𝑎𝑟𝑑︷ ︸︸ ︷
𝛽 max
𝑎′∈𝐴

𝑄 (𝑠 ′, 𝑎′;\)) −

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒︷ ︸︸ ︷
𝑄 (𝑠, 𝑎;\)

ª®®®¬
2

where, 𝛽 is the discount rate. In the above equation, we approach to
learn the weights of 𝑄 (𝑠, 𝑎;\) using stochastic gradient descent op-
timization. To learn the parameters a gradient update w.r.t𝑄 (𝑠, 𝑎;\)
can be performed as shown below:

𝑄 (𝑠, 𝑎;\) = 𝑄 (𝑠, 𝑎;\) − 𝛼
𝜕

𝜕𝑄 (𝑠, 𝑎;\) 𝐿𝑜𝑠𝑠 (\)

replacing 𝐿𝑜𝑠𝑠 (\) and taking a partial derivative yields:

𝑄 (𝑠, 𝑎;\) = 𝑄 (𝑠, 𝑎;\) + 𝛼

©«
𝑇𝐷 𝑇𝑎𝑟𝑔𝑒𝑡︷ ︸︸ ︷

𝑅(𝑠, 𝑎) + 𝛽 max
𝑎′∈𝐴

𝑄 (𝑠 ′, 𝑎′;\) −

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒︷ ︸︸ ︷
𝑄 (𝑠, 𝑎;\)︸ ︷︷ ︸

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 (𝑇𝐷) 𝐸𝑟𝑟𝑜𝑟

ª®®®®®®¬
rearranging the above equation gives:

𝑄 (𝑠, 𝑎;\) = (1 − 𝛼) 𝑄 (𝑠, 𝑎;\) + 𝛼

(
𝑅(𝑠, 𝑎) + 𝛽 max

𝑎′∈𝐴
𝑄 (𝑠 ′, 𝑎′;\)

)
We use above equation to generalize the approximation of the Q-
value function. A neural network training assumes that input data
are independent and sampled from similar distributions. A neural
network will overfit/underfit if such assumptions are not satisfied.
For Reinforcement Learning, we can observe that the target𝑄 value
depends on itself, making training on a neural network difficult
since it would chase a non-stationary target. To solve this problem,
we implement a target network \ ′, which stays stationary for a
certain period and later synchronizes with \ . The above equation
can be re-written using target network \ ′ as follows:

𝑄 (𝑠, 𝑎;\) = (1 − 𝛼)𝑄 (𝑠, 𝑎;\) + 𝛼

(
𝑅(𝑠, 𝑎) + 𝛽 max

𝑎′∈𝐴
𝑄 (𝑠 ′, 𝑎′;\ ′)

)
︸ ︷︷ ︸

𝑇𝐷 𝑇𝑎𝑟𝑔𝑒𝑡

A common problem occurs during the learning process when an
agent tends to forget experiences after a few epochs. To solve this
problem, we store a buffer called the Experience Replay to sample
from historical experiences. The buffer also breaks the temporal
dependency otherwise found in regular updates. However, due to
uniform data sampling Experience Replay can lead to slow conver-
gence. This is because a previous experience with a large estimated
error may not be in the sampled data. To solve this problem, we use
Priority Experience Replay (PER), where instead of sampling uni-
formly, samples are given weights. We use the Temporal Difference
(TD) Error as weights to prioritize experiences.

4.3.2 DBMS representation: A state of a DQN agent represents
an environment. We use the existing set of indexes in a database
to represent its current state. The index set is represented in a one-
dimensional vector where a binary value indicates the presence (or
absence) of an index. The action space represents all possible index
configurations. An agent learns the optimal policy by maximizing
the reward function. We define our reward function as follows:

𝑟𝑡 =𝑚𝑎𝑥

(
𝐶𝑜𝑠𝑡 (𝑊, 𝐼𝑡0 , 𝐷)

𝐶𝑜𝑠𝑡 (𝑊, 𝐼𝑡𝑛−1 , 𝐷) −𝐶𝑜𝑠𝑡 (𝑊, 𝐼𝑡𝑛 , 𝐷)
− 1, 0

)
+ 𝑟𝑠𝑖𝑧𝑒 (1)

where, rsize =
(

1 total index size < max_allowed_size
−1 otherwise

)
where, the numerator is the workload cost with no index and the
denominator is the workload cost with the selected index for the
next step. We also introduce the reward for the disk size constraint,
where the total size of the selected indexes has an upper bound of
max_allowed_size, e.g., 100MB. Our reward function is generic and
can be modified for other constraints.

4.3.3 Priority Experience Sweeping (PES):. By nature, theDQN
algorithm is an online learning process. It interacts with an envi-
ronment and, by maximizing rewards, learns the optimal behavior.

376

SAC ’22, April 25–29, 2022, Virtual Event, Vishal Sharma and Curtis Dyreson

E
6

5
4

3
2

1 S

E
9
8
7 X
6 5 4 3

2
1 Sa

b
c
d
e
f
g
h

i ii iii iv v vi vii

E
11
10
9
8
7
6 5 4 3 2 1 S

Major ChangeMinor ChangeDefault

i ii iii iv v vi vii i ii iii iv v vi vii

Figure 5: A robot navigation in a warehouse from a start

point (in red) to end point (in green), blue boxes show an

optimal route and gray boxes are obstacles

Similarly, the index tuning process learns optimal behavior (select-
ing indexes) by reducing the query cost. However, when a workload
changes, the optimal policy of the environment will change, which
requires retraining of the DQN agent. The retraining process is
time consuming, and if it takes longer time, that will reduce the
utility of having online index tuning. To avoid retraining and to
handle this scenario, we introduce Priority Experience Sweeping.
The motivation for Priority Experience Sweeping is that the DQN
agent has already learned an optimal policy for the environment.
The state and action of the environment do not change. Instead,
there is a slight change in the behavior. Rather than retraining from
scratch how can we utilize previously learned behavior?

Example 4.1. To give the context, we describe Priority Experi-
ence Sweeping using an example of robot navigation in a warehouse.
Given a warehouse where a robot is required to navigate from a start
point (S) to an endpoint (E), avoiding obstacles (gray boxes) as shown
in Figure 5 (Default). A DQN agent can learn this behavior by trial
and error and discover the optimal navigation path (blue boxes with
step count). Consider a slight change in the environment with a new
obstacle as shown by X in Figure 5 (Minor Change). With this minor
change in the environment, the optimal path has changed. However,
the new optimal path holds similarities with the previously learned
path. The location of the endpoint, few initial steps, and direction
to navigate are the same. Instead of re-training a DQN agent, the
previously learned behavior from the Default environment can be
utilized, and the minor changes can be learned. A DQN agent stores
its previous experiences in a replay buffer. The neural network samples
data from this buffer for training. When a change is observed in the
environment, the previous experiences become irrelevant. The policy to
interact in the newer environment requires experiences from it. Using
this idea, when a change in the DBMS workload pattern is triggered,
we remove all experiences from the replay buffer. The replay buffer is
reloaded with the newer experiences. This allows the agent to sample
from newer experiences and learn the new optimal policy. If there are
Major changes to the environment, such an approach still (endpoint,
the direction of navigation, and initial step remain the same) works,
but this may take longer to adjust to the newer environment.

The change in query workload trends could be a minor or a
major change. Using Priority Experience Sweeping Indexer++ can
adjust to the changes without retraining from scratch. This process
makes Indexer++ a generic tool for online configuration tuning.
We evaluate Indexer++ in both minor and major changes in an
environment as described in § 5.2.2.

Algorithm 1 Random Query Generator
1: Initialize maximum number of columns in a query 𝐶 ⊲ 1-3
2: Initialize number of queries 𝑄 ⊲ 100
3: for each 𝑞 ∈ 𝑄 do ⊲ number of queries
4: for each 𝑐 ∈ 𝐶 do ⊲ number of columns
5: Randomly extract a distinct value
6: Randomly select operator [>, <, =, =>, <=]
7: Randomly select predicates [𝑎𝑛𝑑 , 𝑜𝑟]
8: Append 𝑞
9: end for

10: end for

5 EXPERIMENTS

We perform multiple experiments in different scenarios to evaluate
Indexer++. We also evaluate both phases of our framework indi-
vidually on multiple datasets. This section describes the datasets,
experimental objectives, results, and conclusion.

5.1 Dataset Description

(1) IMDB [25] is a real-world movie database. The dataset has 21
tables and 33 query sets consisting of 2-4 queries each (a total
of 112 queries). We divide the set of queries into 3 workloads.
The first ten sets with 37 queries create Workload 1, sets 11-20
with 38 queries are Workload 2 and sets 21-33 with 37 queries
form Workload 3. The purpose of splitting query sets into 3
workloads is create multiple scenarios and to analyze the perfor-
mance of our framework for both trigger detection and online
index recommendation with (potentially) changing workloads.

(2) TPC-H is an industrial benchmark for databases. TCP-H does
not have a fixed set of queries, rather it has 22 query templates
that can be used to generate queries. We use a custom template
to create a random query generator; as shown in Algorithm 1.

We will refer to randomly generated queries as TPC-H Random, tem-
plate queries as TPC-H Template and the IMDB queries as IMDB.

5.2 Experimental Setup and Results

All experiments were performed on a computer with Intel i7 5820k,
Nvidia 1080ti, 32GB of RAM on Ubuntu 18.04 OS. We used Python
3.7 and its libraries. The models were trained using an Nvidia 1080ti
with CUDA and cuDNN support for performance enhancement.

5.2.1 Experiment Objective 1: What is the most effective com-
bination of universal embedding, clustering, and dimensionality re-
duction methods for SQL workload representation?

On the TPC-H Random and IMDB datasets, we perform exper-
iments using several popular methods. We specifically evaluate
pre-trained models based on BERT, ALBERT, RoBERTa, XLM, and
Transformer-T5 bidirectional transformers. We use the prominent
dimensionality reduction techniques Principal Component Anal-
ysis (PCA), t-Stochastic Neighborhood Embedding (t-SNE), and
Uniform Manifold Approximation and Projection (UMAP), as well
as the clustering methods K-Means, K-Means++, and K-Medoids.

The chosen NLP models are trained over word tokens and use
a specific set of rules to parse a given text. We employ the learnt
tokenizer from the pre-trained models for initial preprocessing.

377

Indexer++: Workload-Aware Online Index Tuning with Transformers and Reinforcement Learning SAC ’22, April 25–29, 2022, Virtual Event,

Vector

With SQL Keyword

BERT 0.77
ALBERT 0.70
RoBERTa 0.85
XLM 0.57
T5 0.80

Representation

No SQL Keyword

BERT 0.66
ALBERT 0.57
RoBERTa 0.82
XLM 0.48
T5 0.71

Dimentionality

With SQL Keyword

UMAP 0.79
PCA 0.77
TSNE 0.80

Reduction

No SQL Keyword

UMAP 0.74
PCA 0.70
TSNE 0.73

Clust

With SQL Keyword

K-Mn 0.78
K++ 0.79
K-Md 0.79

ering

No SQL Keyword

K-Mn 0.72
K++ 0.72
K-Md 0.73

Table 1: Average accuracies on TPC-H Random and IMDB on Dimentional-

ity Reduction, Vector Representation and Clustering

The tokenization of a workload returns a high-dimensional tensor
representation.We also reduce the dimensionality and build clusters
from the tensor representation. For TPC-H Random, we randomly
select three columns and generate 25 queries for each column,
totalling 75 queries. The TPC-H Random and IMDB datasets are pre-
labeled with respective clusters. The labeling on IMDB is based on
the workload set and for TPC-H Random is based on the columns
fetched in the queries. We measure the accuracy of the computed
clusters (sorted w.r.t IDs) as follows:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦′, 𝑦) = 1
𝑛

1
𝑚

𝑛−1∑
𝑖=0

𝑚−1∑
𝑗=0

(𝑦′𝑖 𝑗 == 𝑦𝑖 𝑗)
{
1, if, 𝑒𝑞𝑢𝑎𝑙
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where𝑛 is the number of clusters and𝑚 is the number of data points
in the cluster. We also conduct our experiment by maintaining and
removing SQL keywords (e.g., SELECT). The average accuracy is
reported in Table 1. Overall, we observe the following.

• The average cluster detection performance with SQL keywords
is 8.9% better than without SQL keywords in terms of accuracy.

• The average accuracy of RoBERTa out-performed other pre-
trained models both with and without SQL keywords.

• K-Means++ performs best with keywords and K-Medoids with-
out keywords. Taking the average of both (with and without
keyword) K-Medoids performs better than K-Means++.

• t-SNE and UMAP perform better than the other dimensional-
ity reduction techniques. Taking the average of both (with and
without keyword) t-SNE overall performs best.

To visually observe the workload representation with and with-
out SQL keywords we plot the reduced data in Figure 6 using
RoBERTa and t-SNE. The visual representation for TPC-H Template
queries has no major distinction. In general all queries are equally
set apart. It shows that the queries are different from each other.
This analysis is validated from the actual queries. The workload
designed by QGEN using TPC-H Template represents 22 different
queries. They retrieve different parts of the data and can be clearly
distinguished. However, in the representation for TPC-H Random
and IMDB, we observe similarities. The data can be observed in nat-
ural clusters. When comparing the visual quality of clusters, they
are quite similar before and after pre-processing. Overall, in our
experiments we observe RoBERTa, t-SNE, and K-Medoids to be an
effective combination for SQL workload representation.

5.2.2 Experiment Objective 2: Can DQN with priority experi-
ence sweeping learn and identify workload trends?

To evaluate our DQN algorithm we simulate two different sce-
narios: future workloads that are entirely different from the existing
workload (whichwe call amajor change) using IMDB, andworkloads

TPCH TPCH Random IMDB

Workload embedded using RoBERTa

TPCH TPCH Random IMDB

SQL keywords are removed and embedded using RoBERTa

Figure 6: TPC-H Template (TPC-H T), TPC-HRandom (TPC-

H Ra), and IMDB workload representation using t-SNE (per-

plexity = 30, iterations = 5000) with and without keywords.

The style of marker represents different workloads

that are slightly different (a minor change) using TPC-H Random
dataset. In this experiment, we aim to measure the online efficacy
of the workload trend detection. We divided the queries from both
datasets into three workloads as described in § 5.1. Our generated
random queries from TPC-H-Random consists of three workloads,
where Workload 1 is queries on a single column, Workload 2 on ex-
actly two columns and Workload 3 on three columns. Some sample
queries from each workload are shown below:

SELECT COUNT(∗) FROM LINEITEM WHERE L_PARTKEY = 30217
SELECT COUNT(∗) FROM LINEITEM WHERE L_SUPPKEY = 17438 AND L_PARTKEY < 356077
SELECT COUNT(∗) FROM LINEITEM WHERE L_SUPPKEY > 16616 AND L_TAX < 0.06 AND

L_PARTKEY > 82374

The cumulative rewards graph for both datasets is shown in Fig-
ure 7 where each experiment has 15,000 episodes, and Workloads
2 and 3 are introduced at 5,000 and 10,000 episodes, respectively.
We compare cumulative rewards generated by a DQN algorithm,
DQN with PER (Priority Experience Replay), and DQN with PER
and PES (Priority Experience Sweeping). We observe a sharp de-
cline for IMDB in cumulative rewards at episodes 5,000 and 10,000,
followed by a gradual increase. The sharp decline helps understand
the change in workload and the ability of workload trend detection
to identify the change and trigger a re-indexing. The indexes se-
lected initially for Workload 1 were not as effective for Workload 2.
This result aligns with the dataset as all three workloads of IMDB
queries represent a major change. In the TPC-H Random the query
workloads represent minor changes. As shown in Figure 7, both
Workloads 2 and 3 improved their performance as a result of the

378

SAC ’22, April 25–29, 2022, Virtual Event, Vishal Sharma and Curtis Dyreson

0 2500 5000 7500 10000 12500 15000

0

6000

12000

18000

24000

30000

R
ew

ar
d

s

Group 1 Group 2 Group 3
T

re
n

d
D

et
ec

t

T
re

n
d

D
et

ec
t

TPC-H Random

DQN DQN-PER DQN-PER-PES

0 2500 5000 7500 10000 12500 15000
Episodes

−1000
0

1000
2000
3000
4000

R
ew

ar
d

s

Group 1 Group 2 Group 3T
re

n
d

D
et

ec
t

T
re

n
d

D
et

ec
t

IMDB

Figure 7: Cumulative Rewards on IMDB and TPC-H Ran-

dom. The workloads are introduced in three stages starting

with Workload 1 as the initial workload then 2 and 3

previous set of indices. When comparing all three forms of DQN,
we observe that in TPC-H Random dataset cumulative rewards for
DQN and DQN-PER saturates after a certain time. However, with
DQN-PER-PES, the rewards collection is slow but consistent. The
rewards are lower in Workloads 1 and 2; however, the change (Δ)
in the rewards collection is greater. It shows the ability of the DQN
model with PES to gradually learn the environment. With the help
of the sweeping technique, the growth of cumulative rewards is
progressive rather than saturated. We observe a similar behavior on
IMDB dataset. Overall, the experiments show that Indexer++ was
able to detect both major and minor workload changes and was
also able to learn and select appropriate indexes (as evidenced by
the increase in cumulative rewards). This experiment evaluates the
efficacy of our framework on two datasets in different scenarios.

5.2.3 Experiment Objective 3: Are selected indexes efficient and
reduce the overall workload execution cost?

In this experiment, we evaluate the efficacy of selected indexes
on the overall workload execution cost. To measure the effect of the
selected indexes, we execute the benchmark datasets and estimate
execution cost after materializing every index. The results of this
experiment are displayed in Fig 8. We compare execution cost from
DQN, DQN-PER, DQN-PER-PES algorithms. We observe an ideal
behaviour where the execution cost in reduced with every index
created. We also observe it is critical to get the first optimal index
for the overall reduction of cost. In experiments with IMDB, we
observe Indexer++ with PES to be most effect for Workloads 1 and
2. In TPC-H Random, our framework was effective in all workloads.

5.2.4 Overcoming Challenges: In § 1, we introduced several
challenges for achieving online index tuning. Indexer++ addresses
all of the challenges as described below.

(C1) Noise Resilience: Trend detection has a minimum query
threshold (batch size of DQN 𝑛 = 32) for a workload. This
ensures that a few outliers do not trigger index selection.
The clustering of workload embedding helps to reduce the
impact of outliers. Finally, Indexer++ also learns a sensitivity
parameter, _, to help mitigate noise.

1 2 3 4 5
Index Number

24

28

32

36

T
ot

al
T

im
e

(S
ec

)

IMDB Group 1

1 2 3 4 5
Index Number

50

55

60

65

IMDB Group 2

1 2 3 4 5
Index Number

0

80

160

240

320
IMDB Group 3

1 2 3 4 5
Index Number

0.23

0.24

0.25

0.26

0.27

T
ot

al
T

im
e

(S
ec

)

TPC-H Ra Group 1

1 2 3 4 5
Index Number

0.26

0.27

0.28

0.29
TPC-H Ra Group 2

1 2 3 4 5
Index Number

0.204

0.210

0.216

0.222

0.228

TPC-H Ra Group 3

DQN DQN-PER DQN-PER-PES

Figure 8: Workload execution cost with selected indexes on

TPC-H Random and IMDB dataset

(C2) Overhead: Unlike other approaches Indexer++ uses hypo-
thetical indexes2, rather than creating an actual index. Index
creation is expensive and if Indexer++ were to create many
indexes during index selection (as do other approaches) then
the overhead would be very high, but hypothetical indexes
are not physically materialized. This dramatically lowers the
cost of index selection and ensures that the cost of tuning
does not affect DBMS performance. Indexer++ can be used
concurrently with other DBMS activities without impacting.

(C3) Trend Detection: We perform workload embedding and an-
alytics using pre-trained NLP models. A pre-trained model
can infer a trend quickly, and without incurring the high cost
of training while Indexer++ is selecting indexes.

(C4) Responsiveness: We eliminate the cost of re-training of the
DQN agent using Priority Experience Sweeping, further improv-
ing the response time. Our framework can analyze workload
and select indexes in a short period of time (∼15min).

6 CONCLUSION

In this paper, we propose Indexer++ a real-time solution for online
index selection using pre-trained NLP models and Reinforcement
Learning. We describe our novel approach for detection of a change
in workload pattern. In our extensive experiments, we observe SQL
workload embedding to be effective using a combination of t-SNE,
K-Medoids and RoBERTa. We propose a novel priority experience
sweeping as an extension to DQN for online index selection. We
evaluate our approach in multiple experiments using both real-
world and benchmark datasets. In our experiments, we observe that
Indexer++ is able to address all the existing challenges for an online
index tuning namely, noise resilience, overhead cost, trend detection
time, and response time, and respond to changingworkload patterns
by selecting an optimal set of indexes. In the future, we plan to
extend our workload trend detection to predict runtime, cardinality
estimate and workload errors. We also intend to investigate the
impact of SQL operators on workload representation.

2https://github.com/HypoPG

379

Indexer++: Workload-Aware Online Index Tuning with Transformers and Reinforcement Learning SAC ’22, April 25–29, 2022, Virtual Event,

ACKNOWLEDGMENTS

This workwas supported in part by the National Science Foundation
under Award No. DBI-1759965, Collaborative Research: ABI Devel-
opment: Symbiota2: Enabling greater collaboration and flexibility for
mobilizing biodiversity data. Opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect those of the National Science
Foundation. We would like to extend our appreciation to all of the
manuscript reviewers who provided us with valuable feedback that
helped us to significantly improve the overall quality of our work.

REFERENCES

[1] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-scale Machine
Learning. Proceedings of the 2017 ACM International Conference on Management
of Data (2017).

[2] Bortik Bandyopadhyay, Pranav Maneriker, Vedang Patel, Saumya Yashmohini
Sahai, Ping Zhang, and Srinivasan Parthasarathy. 2020. DrugDBEmbed : Semantic
Queries on Relational Database using Supervised Column Encodings. ArXiv
abs/2007.02384 (2020).

[3] Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo, Zihong Yuan, Pierre
Senellart, and Stéphane Bressan. 2015. Cost-Model Oblivious Database Tuning
with Reinforcement Learning. In DEXA. 253–268.

[4] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35, 8 (2013), 1798–1828.

[5] Rajesh R. Bordawekar, Bortik Bandyopadhyay, and Oded Shmueli. 2017. Cog-
nitive Database: A Step towards Endowing Relational Databases with Artificial
Intelligence Capabilities. ArXiv abs/1712.07199 (2017).

[6] Rajesh R. Bordawekar and Oded Shmueli. 2017. UsingWord Embedding to Enable
Semantic Queries in Relational Databases. Proceedings of the 1st Workshop on
Data Management for End-to-End Machine Learning (2017).

[7] Nicolas Bruno and Surajit Chaudhuri. 2007. An Online Approach to Physical
Design Tuning. 2007 IEEE 23rd International Conference on Data Engineering
(2007), 826–835.

[8] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020.
Creating Embeddings of Heterogeneous Relational Datasets for Data Integra-
tion Tasks. Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (2020).

[9] Surajit Chaudhuri and Vivek Narasayya. 1998. AutoAdmin “What-If” Index
Analysis Utility. SIGMOD Rec. 27, 2, 367–378. https://doi.org/10.1145/276305.
276337

[10] Surajit Chaudhuri and Vivek R Narasayya. 1997. An efficient, cost-driven index
selection tool for Microsoft SQL server. In VLDB, Vol. 97. Citeseer, 146–155.

[11] SudiptoDas,Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R.
Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri.
2019. Automatically Indexing Millions of Databases in Microsoft Azure SQL
Database. Proceedings of the 2019 International Conference on Management of
Data (2019).

[12] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R. Narasayya. 2019. AI Meets AI: Leveraging Query Executions to Improve
Index Recommendations. Proceedings of the 2019 International Conference on
Management of Data (2019).

[13] Martin R. Frank, Edward Omiecinski, and Shamkant B. Navathe. 1992. Adaptive
and Automated Index Selection in RDBMS. In EDBT ’92. 277–292.

[14] Michael Günther. 2018. FREDDY: Fast Word Embeddings in Database Systems.
Proceedings of the 2018 International Conference on Management of Data (2018).

[15] Michael Hammer and Arvola Chan. 1976. Index Selection in a Self-Adaptive Data
Base Management System. In SIGMOD ’76. 1–8.

[16] Geoffrey E Hinton et al. 1986. Learning distributed representations of concepts.
In Eighth annual conference of the cognitive science society, Vol. 1. 12.

[17] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. 1999. Data clustering: a
review. ACM computing surveys (CSUR) 31, 3 (1999), 264–323.

[18] Shrainik Jain, Bill Howe, Jiaqi Yan, and Thierry Cruanes. 2018. Query2Vec: An
Evaluation of NLP Techniques for GeneralizedWorkload Analytics. arXiv preprint
arXiv:1801.05613 (2018).

[19] Herald Kllapi, Ilia Pietri, Verena Kantere, and Yannis E Ioannidis. 2020. Automated
Management of Indexes for Dataflow Processing Engines in IaaS Clouds. In EDBT.

[20] Piotr Kołaczkowski and Henryk Rybiński. 2009. Automatic index selection in
RDBMS by exploring query execution plan space. In Advances in Data Manage-
ment. Springer, 3–24.

[21] Jan Kossmann and R. Schlosser. 2019. A Framework for Self-Managing Database
Systems. 2019 IEEE 35th International Conference on Data Engineering Workshops

(ICDEW) (2019), 100–106.
[22] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume

Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019. SageDB: A
Learned Database System. In CIDR.

[23] Hai Lan, Zhifeng Bao, and Yuwei Peng. 2020. An Index Advisor Using Deep
Reinforcement Learning. Proceedings of the 29th ACM International Conference
on Information & Knowledge Management (2020).

[24] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. ArXiv abs/1405.4053 (2014).

[25] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9 (2015), 204–215.

[26] Omer Levy and Yoav Goldberg. 2014. Linguistic Regularities in Sparse and
Explicit Word Representations. In CoNLL.

[27] Joseph Lilleberg, Yun Zhu, and Yanqing Zhang. 2015. Support vector machines
and Word2vec for text classification with semantic features. 2015 IEEE 14th Inter-
national Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)
(2015), 136–140.

[28] Martin Lühring, Kai-Uwe Sattler, Karsten Schmidt, and Eike Schallehn. 2007.
AutonomousManagement of Soft Indexes. 2007 IEEE 23rd International Conference
on Data Engineering Workshop (2007), 450–458.

[29] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. In ICLR.

[30] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác.
2018. Reinforcement learning for solving the vehicle routing problem. In NIPS.
9839–9849.

[31] Priscilla Neuhaus, Julia M. Colleoni Couto, Jonatas Wehrmann, Duncan Dubu-
gras Alcoba Ruiz, and Felipe Meneguzzi. 2019. GADIS: A Genetic Algorithm for
Database Index Selection (S). In SEKE.

[32] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. 2017. Self-
Driving Database Management Systems.. In CIDR, Vol. 4. 1.

[33] Wendel Góes Pedrozo, Júlio Cesar Nievola, and Deborah Carvalho Ribeiro. 2018.
An Adaptive Approach for Index Tuning with Learning Classifier Systems on
Hybrid Storage Environments. In Hybrid Artificial Intelligent Systems. 716–729.

[34] Gregory Piatetsky-Shapiro. 1983. The optimal selection of secondary indices is
NP-complete. SIGMOD Rec. 13 (1983), 72–75.

[35] Zahra Sadri, Le Gruenwald, and Eleazar Leal. 2020. Online Index Selection Using
Deep Reinforcement Learning for a Cluster Database. 2020 IEEE 36th International
Conference on Data Engineering Workshops (ICDEW) (2020), 158–161.

[36] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. 2006. COLT:
continuous on-line tuning. Proceedings of the 2006 ACM SIGMOD international
conference on Management of data (2006).

[37] Karl Schnaitter, Neoklis Polyzotis, and Lise Getoor. 2009. Index Interactions
in Physical Design Tuning: Modeling, Analysis, and Applications. Proc. VLDB
Endow. 2, 1 (Aug. 2009), 1234–1245. https://doi.org/10.14778/1687627.1687766

[38] Aliaksei Severyn and Alessandro Moschitti. 2015. Twitter Sentiment Analysis
with Deep Convolutional Neural Networks. Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(2015).

[39] Ankur Kumar Sharma, Felix Schuhknecht, and Jens Dittrich. 2018. The Case for
Automatic Database Administration using Deep Reinforcement Learning. ArXiv
abs/1801.05643 (2018).

[40] Vishal Sharma. 2021. Deep Learning Data and Indexes in a Database. (2021).
https://doi.org/10.26076/62bf-44a1

[41] Vishal Sharma, Curtis E. Dyreson, and Nicholas S. Flann. 2021. MANTIS: Multiple
Type and Attribute Index Selection using Deep Reinforcement Learning. 25th
International Database Engineering & Applications Symposium (2021).

[42] Richard S. Sutton and Andrew G. Barto. 2005. Reinforcement Learning: An
Introduction. IEEE Transactions on Neural Networks 16 (2005), 285–286.

[43] Yi Chern Tan and L. Elisa Celis. 2019. Assessing Social and Intersectional Biases
in Contextualized Word Representations. In NeurIPS.

[44] Gary Valentin, Michael Zuliani, Daniel C. Zilio, Guy M. Lohman, and Alan
Skelley. 2000. DB2 advisor: an optimizer smart enough to recommend its own
indexes. Proceedings of 16th International Conference on Data Engineering (Cat.
No.00CB37073) (2000), 101–110.

[45] Hannes Voigt, Thomas Kissinger, and Wolfgang Lehner. 2013. SMIX: Self-
Managing Indexes for Dynamic Workloads. In SSDBM. Article 24, 12 pages.

[46] Ji Zhang, Ke Zhou, Guoliang Li, Yu Liu, Ming Xie, Bin Cheng, and Jiashu Xing.
2021. CDBTune+: An efficient deep reinforcement learning-based automatic
cloud database tuning system. The VLDB Journal (2021).

[47] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. 2020. Causal Discovery with
Reinforcement Learning. In ICLR.

380

https://doi.org/10.1145/276305.276337
https://doi.org/10.1145/276305.276337
https://doi.org/10.14778/1687627.1687766
https://doi.org/10.26076/62bf-44a1

	Indexer++: Workload-Aware Online Index Tuning With Transformers and Reinforcement Learning
	Recommended Citation

