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A B S T R A C T   

This work proposes a stochastic multiscale computational framework for damage modelling in 3D woven 
composite laminates, by considering the random distribution of manufacturing-induced imperfections. The 
proposed method is demonstrated to be accurate, while being simple to implement and requiring modest 
computational resources. In this approach, a limited number of cross-sectional views obtained from micro- 
computed tomography (µCT) are used to obtain the stochastic distribution of two key manufacturing-induced 
defects, namely waviness and voids. This distribution is fed into a multiscale progressive damage model to 
predict the damage response of three-dimensional (3D) orthogonal woven composites. The accuracy of the 
proposed model was demonstrated by performing a series of finite element simulations of the un-notched and 
notched tensile tests (having two different hole sizes) for resin-infused thermoplastic (Elium®) 3D woven 
composites. Excellent correlation was achieved between experiments and the stochastic finite element simula-
tions. This demonstrates the effectiveness of the proposed stochastic multiscale model. The model successfully 
captured the stochastic nature of tensile responses (ultimate tensile strength and stiffness), damage modes 
(matrix damage and fibre failure), and initiation and propagation of transverse cracks in thermoplastic 3D woven 
composites, consistent with experimental observation. The stochastic computational framework presented in this 
paper can be used to guide the design and optimization of 3D textile composite structures.   

1. Introduction 

Accurate and fast predictive modelling of damage tolerance in fibre- 
reinforced composite materials has been an active topic of interest for 
researchers and industry for many decades [1,2]. A progressive damage 
model, which is realistic, easy to implement and computationally highly 
efficient, on one hand, can be used as a generative design tool for new 
product development and on the other, for creating digital twins for 
structural health monitoring and predictive maintenance. While signif-
icant success has been achieved for damage modelling of unidirection-
ally (UD) reinforced laminates as well as multidirectional stacks of UD 
lamina using conventional (single scale) continuum damage mechanics 
models [3,4]; major challenges still impede such development for 
composites with more complicated reinforcement architecture such as 
the 3D fabric composites. For example, due to the complexity of the 

architecture and the significantly different nature of progressive dam-
age, the progressive damage in each constituent must be simulated 
independently. To address this challenge researchers have often resorted 
to micromechanics-based models. In a pure micro-mechanics approach 
either an idealized or near to realistic [5], periodically repeating 
representative volume element (RVE) is considered and the elastic 
response, as well as strengths of the homogenized medium, are predicted 
based on this RVE model [6–8]. This approach is contentious because 
the damage growth process does not repeat periodically across the 
structure and therefore the damage growth response based on periodic 
homogenisation strategies is unrealistic. If a full-scale FE model of the 
entire structure is built using such approaches then that becomes 
computationally very demanding even for moderately sized parts due to 
the need for a very high mesh density. For example, the work done by 
Green et al. [5] reported a five-day running time of the model for a 
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27.8 × 9.9 × 5.3 mm3 RVE just with the baseline mesh. One could easily 
imagine the months of simulation time required for even a moderately 
sized part. To address these limitations a series of multiscale methods 
have been developed. One possible approach for multiscale modelling 
involves two finite element (FE) simulations – one at the microscale and 
the other at the macroscale for uni-directional composites [9] or at the 
meso-scale for multidirectional (textile) composites [9] – carried out in a 
nested manner, also called the FE2 method. This method is computa-
tionally very expensive, particularly for large-scale dynamic simulations 
[10,11]. To improve the efficiency of FE2 methods, some new ap-
proaches have been proposed recently, such as the work of Spahn et al. 
[12] and Huang et al. [13]. Other alternate multiscale modelling 
methodologies have also been presented and a summarised review of the 
various strategies for multiscale modelling of composites is presented in 
our earlier publication [14]. In that work, a new deterministic multi-
scale modelling framework for 3D composites was presented. In that 
approach [14] the global or part-level FE analysis is performed at the 
macro-scale, while the damage initiation was predicted at the meso-scale 
using an analytical meso-scale unit-cell/RVE model of a 3D woven 
composite. The damage evolution, in that case, was modelled separately 
in impregnated yarns and matrix regions. This approach provided a high 
level of computational efficiency at a reasonable level of accuracy. For 
example, a typical runtime for a tensile test simulation in [14] for a 
specimen size of 8000 elements is around 30 min (4 CPU cores). This 
approach can be easily extended to any part size. Although the approach 
efficiently solves the challenges of the heterogeneity and non-periodicity 
of damage progression, it is still limited in accuracy because the initial 
input elastic and geometric properties of RVE are assumed to be the 
same for every region of the global part model. This assumption is not 
completely true because even when one uses advance NDT techniques, 
like X-ray CT to accurately model the geometric microstructure for an 
RVE there will be local variations in effective mechanical properties 
from one unit-cell (RVE) to the other due manufacturing limitations and 
changing contours of part geometry. In practice, the geometrical 
imperfection or defects, such as matrix voids, resin-rich pockets, fibre 
spatial distribution, fibre misalignment, local variability in the fibre 
volume fraction, waviness in yarn’s cross-section, which mainly arise as 
a consequence of the manufacturing processes [15–20], cause local 
variations of effective mechanical properties of unit-cell (RVE). A better 
and more accurate modelling framework must take into account these 
manufacturing-induced variabilities, which are typically observed in 
real composites, while still keeping the computational cost low. Thus in 
this paper, our focus is presenting the development and validation of 
such a novel multiscale model that indirectly accounts for local and 
global variations in geometric and material property uncertainties 
without making the model significantly computationally demanding. 

In textile composites, the macro-scale variabilities in effective me-
chanical properties such as stiffness and strength are manifestations of 
commutative defects that exist at a sub-scale level, i.e., micro- and meso- 
scales [21–23]. The quantification of variabilities at the sub-scale level 
and subsequent propagation to the macro-scale (or component level) is 
crucial for the stochastic multiscale analysis of textile composite. With 
the advancement of micromechanics-based homogenization theories, 
researchers have now a better understanding of the relationships be-
tween sub-scale and macro-scale composites [24]. Zhang et al. [25] 
proposed a multiscale progressive damage model based on a local-
–global (mesoscale-macroscale) method to predict the flexural response 
of 3D hybrid composites. However, authors did not account 
manufacturing induced defects in the local (mesoscale) model. In recent 
years, it has enabled researchers to establish several stochastic predic-
tive models, to predict variabilities in mechanical properties by incor-
porating uncertainties at different length scales [10,19,26,27]. In this 
regard, a detailed review of the stochastic multiscale analysis of com-
posites is given by Zhou et al. [21]. The authors concluded that the 
existing multiscale models did not consider manufacturing defects and 
their resulting variabilities were not successfully implemented in a 

realistic way. 
Several authors proposed stochastic multiscale approaches to predict 

the mechanical properties of two-dimensional (2D) textile composites 
[27–34]. In these models, uncertainties in material properties were 
introduced in a micro-scale unit-cell model and the FE simulations were 
performed at meso-scale, which makes these approaches computation-
ally expensive for large-scale or component-level simulation. Patel et al. 
[32,33] developed a multiscale progressive damage model to predict the 
tensile and compressive responses of hybrid 3D textile composites. The 
authors generated a mesoscale FE model using µCT data; thus, the model 
considers manufacturing-induced defects. However, the mesoscale 
model is directly generated from µCT data, which is computationally 
inefficient and not practical for component-level analysis. Recently, Wei 
et al. [16] proposed a stochastic multiscale model considering local 
variabilities of material properties at the micro- and meso-scales to 
predict the macroscopic response of 3D composites. In the proposed 
approach, the macro-scale analysis was performed using the shell model, 
which is not suitable to predict the through-thickness damage response 
of 3D textile composites. Han et al. [17] developed a multiscale model 
using the probabilistic distribution of fibre modulus and voids to predict 
the stochastic response of 3D braided textile composites. The authors did 
not consider waviness in individual impregnated yarns caused during 
manufacturing processes. Similarly, Lei et al. [18] and Huang et al. [35] 
proposed a stochastic multiscale model for 3D textile composites by 
considering voids defects only. In recent years, researchers have also 
proposed coupled data-driven multiscale uncertainty quantification and 
propagation frameworks, to predict the mechanical performance of 
textile composites [16,36–38]. Additionally, several authors proposed a 
computational framework based on coupled unit-cell/RVE homogeni-
zation and the Monte-Carlo method to predict the effect of uncertainties 
on the effective properties of fibre-reinforced composites (FRCs) 
[26,39–41]. 

This review of literature highlighted that for 3D composites, there is 
a need to develop a strategy for component-level multiscale damage 
simulations that can account for manufacturing-induced variability in 
part quality and while doing so is also computationally less demanding 
and easy to set up. Thus in this paper we aim to address this dual 
challenge and propose a strategy that involves (a) realistic statistical 
quantification of manufacturing induced random geometrical variabil-
ities (i.e., localized geometrical imperfection or defects) at the sub-scale 
level, (b) propagating this statistical information in the virtual sub-scale 
model (i.e., at the two-scales (micro-scale and meso-scale)) and generate 
stochastic material properties for the macro model), (c) perform sto-
chastic multiscale progressive damage analysis to predict damage 
response of textile composites and d) carry out a global part level finite 
element simulation of the test case in a reasonable time frame. In this 
paper, we demonstrate the use of this strategy for both un-notched and 
notched 3D composites with excellent correlation with experimental 
results. 

This paper is organised as follows. In Section 2, we explain the details 
of the stochastic multiscale progressive damage model for textile com-
posites. In Section 3, we discuss the experimental evaluations of the un- 
notched and notched response of 3D woven composites. In Section 4, we 
explain the FE implementation of the framework and show how it is 
applied to simulate the damage response of un-notched and notched 
composites. In Section 5, we establish the predictive capabilities of the 
proposed modelling framework by comparing it with the experiments 
described in Section 2. Finally, we summarise the conclusions in Section 
6. 

2. Stochastic multiscale progressive damage model 

Fig. 1 shows the overall flowchart of the proposed stochastic multi-
scale progressive damage model. The model consists of four main steps, 
i.e., (a) a stochastic material model to generate a normal distribution of 
waviness in impregnated yarns and voids in a polymer matrix; (b) a 
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stochastic analytical micromechanics model to generate a corresponding 
normal distribution of elastic constants and strength properties of 
impregnated yarns, using fibre volume fraction, elastic constants and 
strength properties of fibre and polymer matrix. These normal distri-
butions are fed into the meso-model to evaluate the damage state of each 
constituent; (c) a stochastic constitutive meso-model of 3D woven com-
posites to evaluate for each unit-cell a unique stiffness matrix corre-
sponding to the unique set of parameters (elastic constants and 
waviness) obtained in steps a and b; and (d) a macro-scale explicit dy-
namic FE model of 3D woven composites to determine homogenized 
macro-stresses on the component being virtually tested in a global co-
ordinate system (GCS). The models in steps c and d have a bidirectional 
flow of information. Thus, the macro-model (step d) is used to provide 
the strain increment for each material integration point within the FE 
mesh to the unit-cell model (step c). The macro model is then updated by 
evaluating the meso-stresses and damaged state of each constituent in a 
local coordinate system (LCS) using the unique stiffness matrix for that 
unit cell. The process is repeated for each unit cell within the macro 
model for each time increment. 

All the sub-models (steps a–c) used to describe the stochastic varia-
tion in material properties are coupled to the macro-model (step d) for 
finite element implementation through a user-defined material subrou-
tine. In this study, we have achieved this using a vectorized user material 
(VUMAT) subroutine in Abaqus/explicit. The approach, however, is 
generic and may be implemented in other FE software that allows for 
user-defined material behaviour. Details of each of these sub-models are 
presented in the following sections. 

2.1. Characterisation of manufacturing uncertainties for material model 

The development of a stochastic material model required accurate 
identification of geometric uncertainties present in fabricated compos-
ites. Therefore, µCT was undertaken to quantify inherent geometric 
uncertainties produced by the composite manufacturing process. Using 
µCT it is possible to generate detailed 3D model of a localised region 
within the composite and several researchers have used this to directly 
create the 3D micro and meso-level unit cell [42–44]. This approach is 
not pursued in this study because the unit cell generated from a single 
scanned region is not necessarily representative of the variations in the 

entire sample. In order to obtain a better representation of the random 
distribution of defects within the entire specimen, we have used multiple 
cross-sectional views from randomly selected sampling points from 
various locations in a representative test piece. Thus, Fig. 2 shows a 
typical cross-sectional µCT images of 3D orthogonal woven composites 
used in this study. The resolution and filter used during to are 28 µm and 
LE2 (Low Energy filter 2), respectively. These images were used to 
manually determine the mean (μ) and standard deviation (S) of waviness 
in impregnated warp yarn (θ), weft yarn (φ) and binder yarn (ψ), 
respectively, as summarised in Table 1. The S of yarn waviness is ob-
tained from seven different cross-sections along the warp and fill di-
rection. The waviness along the warp and weft directions is measured 
using the same method. The void content of fabricated 3D orthogonal 
woven composites is measured using the burn-off method [45]. The 
variabilities in the void content among ten different samples are also 
given in Table 1. 

The stochastic material model was implemented within the VUMAT 
subroutine and was called at every time increment for each unit cell in 
the macro-FE model to generate a uniform, random distribution of 
waviness in impregnated yarns and voids in the matrix and to evaluate 
the corresponding stochastic distribution in the elastic constants and 
strength properties. Fig. 3 depicts the proposed algorithm’s pseudo- 
code, which generates a stochastic distribution of elastic constants and 
strength properties for the meso-scale model. The code requires inputs of 
the number of unit-cells (n) in the macro-model, and the mean (μ) and 
standard deviation (S) of the waviness of warp, weft, and fill yarns, and 
void content (see Table 1). The Box-Muller (BM) transformation algo-
rithm [46] is then employed to obtain the Gaussian distribution of 
random material properties. The BM algorithm generates an indepen-
dent random variable (Z) with a standard normal distribution, given by 
Eq. (1). 

Z(0, 1) = sin(2πR1)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− 2ln(R2)

√
(1) 

where, R1 and R2 are uniformly distributed random numbers on a 
unit interval [0, 1]. The uniformly distributed random variable (Z) is 
then scaled based on the mean (μ) and standard deviation (S) of prop-
erties (elastic constants and strength properties) in a specific range, i.e., 

RQn
ij,p(μ,S) or RCn

ij,p(μ, S) = μij ± Sij × Z1(0, 1) (2) 

Fig. 1. Stochastic multiscale progressive damage model. x, y, z = Dimension of unit-cell (UC); p = Impregnated warp, weft, and binder yarns; Vp = Volume pro-
portions of the constituent; θ,φ,ψ = Waviness in impregnated yarns (see Table 1 and Fig. 2); Vv= Void content; RCp,RCm,RQp= Random numbers (R) for stiffness (C) 
& strength (Q); Δε = Macro-strains in GCS; σ = Macro-stresses in GCS; Δεp= Meso-strains in LCS; σp= Meso-stresses in LCS. 
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where Qn
ij,p and Cn

ij,p each represents a value of randomly generated 
strength properties and elastic constants (Youngs’s moduli, shear moduli 
and Poisson’s ratios) in the three principal directions. The python code 
assigns these properties (Qn

ij,p and Cn
ij,p) to the nth unit cell in the model, 

which in this study corresponds to the nth finite element in the mesh. 
This process is repeated until random properties were assigned to all the 
unit cells defining the part (i.e., the entire finite element mesh), 
consistent with our previous work [47]. It should be pointed out that in 
this study the choice of Gaussian distribution to represent yarn waviness 
was based on a previous study [48]. The close correlation with the re-
sults in later sections, however, further demonstrates that this was a 
reasonable assumption. Had this proved insufficient to capture the 
strength distribution at the global level then the model could have been 
improved by first identifying the appropriate distribution from a sta-
tistical test like Kolmogorov-Smirnov or Shapiro-Wilk. 

2.2. Stochastic analytical micro-model 

The impregnated warp, fill, and binder yarns were treated as trans-
versely isotropic materials, which means that their elastic response 
could be described by five elastic constants. The elastic constants and 
their corresponding strength properties can be evaluated either using a 
FE micro-mechanics model or an analytical micro-mechanical model. In 
the proposed stochastic multiscale model a unique set of elastic con-
stants and strength properties of impregnated yarns were determined for 
each unit-cell corresponding to the stochastic distribution of void vol-
ume fraction Vv in the unit cell. This was done by using uniformly 
distributed random numbers generated by the stochastic material model 
(Section 2.1) to represent the changing values of void volume fraction 

(Vv) in the Chamis model (Eq. (3)) [49]. In doing so, it was assumed that 
the elastic constants and strength properties of the polymer matrix were 
degraded linearly with void volume fraction. These properties were then 
used by the meso-model to evaluate a unique stiffness matrix, meso-stress 
and the damaged state of each impregnated yarn. 

Fig. 2. Cross-sectional µCT images of 3D-FRC with waviness along the warp yarn (θ) and the binder yarn (ψ).  

Table 1 
Mean and standard deviation of waviness in impregnated yarn and voids.  

Scale Uncertainty sources Mean value 
(μ) 

Standard deviation 
(σ) 

Meso- 
scale 

Waviness in the warp yarn 
“θ” 

0◦ 7.3◦

Waviness in the fill yarn “φ” 90◦ 7.5◦

Waviness in the binder yarn 
“ψ” 

90◦ 30.5◦

Micro- 
scale 

Voids “Vv” 2.7 %  1.1%  

Fig. 3. Sudo-code algorithm for stochastic material property generation 
and assignment. 
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where Vf ,p, Vm, and Vn
v each denotes the fibre volume fraction of 

impregnated yarns, matrix volume fraction, voids volume fraction of nth 

element; vf , Ef , and Gf indicates Poisson’s ratio, elastic modulus, and 
shear modulus of the fibres, while vm, Em, and Gm are those for the 
matrix; En

11,p, En
22,p, En

33,p, Gn
12,p, Gn

13,p, Gn
23,p, vn

12,p, and vn
23,p represent the 

effective (bulk) elastic and shear moduli, and Poisson’s ratio of the 
impregnated yarns for nth element in a local coordinate system (LCS). 
Similarly, the strength properties of impregnated yarns are estimated 
using the Chamis model [49] given by Eq. (4). 
⎧
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(4) 

where XT,n
11,p, X

C,n
11,p, X

T,n
22,p, X

C,n
22,p and Sn

12,p represents longitudinal tensile 
strength, longitudinal compressive strength, transverse tensile strength, 
transverse compressive strength, and in-plane shear strength, respec-
tively, of the impregnated yarns for nth element in LCS. XT

f and XC
f each 

denotes the tensile and compressive strength of the fibre. Tm, Cm and Sm 

refers to the tensile, compressive and shear strength of the matrix, 
respectively. 

2.3. Stochastic constitutive meso-model (unit-cell model) 

The stochastic constitutive meso-model is the most important part of 
the stochastic, multiscale, progressive damage modelling framework. It 
takes the normal distributions of impregnated yarn and polymer matrix 
properties from the micro-model and the normal distribution of wavi-
ness in each impregnated yarn from the stochastic material model as an 
input. These inputs are utilized in evaluating the unique stiffness matrix 
and meso-stresses of each constituent of the meso-model using appro-
priate transformation equations. The meso-stresses are then used to 
determine the damage response of impregnated yarns and the polymer 
matrix using appropriate failure criteria. The proposed stochastic meso- 
model was developed to address the limitations of our previous deter-
ministic meso-model [14] of 3D woven composite (Fig. 4), i.e., (a) 
impregnated yarns are not necessarily perfectly perpendicular to each 

other, (b) each impregnated yarn contains waviness and (c) there are 
voids in the resin-rich pockets. Therefore, the proposed stochastic meso- 
model is a non-idealised unit-cell model and represents the actual in-
ternal architecture of a 3D woven composite. 

To mimic the physical reality, each element in the macro-FE model is 
associated with a stochastically unique meso-model (or unit-cell) in the 
multiscale model. The uniqueness of the meso-model is a consequence of 
the differences in the yarn waviness and voids in resin-rich pockets for 
each unit cell. Thus, each impregnated yarn in the meso-model is 
assigned with unique elastic constants and strength properties from the 
stochastic analytical micro-model (Eqs. (3) and (4)), which results in 
unique effective elastic and strength constants for each instance of the 
unit-cell model. This means that, unlike a traditional FE mesh where 
only one set of material properties is assigned initially to the macro- 
model mesh, the elastic response and damage state of each element in 
the macro-model for the stochastic multi-scale model are different. 
Similarly, the damage also develops independently in each unit-cell and 
the constitutive meso-model is called by the macro-model explicit FE 
solver at each integration point to update the damage index of the 3D- 
FRC part being virtually simulated. 

2.3.1. Damage modelling of impregnated yarn 
The 3D orthogonal woven composites ideally consist of three 

perpendicular impregnated yarns (warp, weft and binder). In this work, 
each yarn was locally treated as a transversely isotropic material and 
analytically modelled according to their orientation and volume fraction 
in a unit cell (Fig. 4). The constitutive model of impregnated yarns was 
transformed from local (123) to a global (XYZ) coordinate system, using 
Eq. (5). 

σG
ij =

[
Tn,G|L

p

]T
σL

ij (5)  

εG
ij =

[
Tn,G|L

p

]T
εL

ij  

Cn,G
ij =

[
Tn,G|L

p

]− 1[
Cn,L

ij
][

Tn,G|L
p

]− T 

where ij are 1, 2, and 3, and p = warp, weft, and binder yarns. σL
ij, εL

ij, 
and Cn,L

ij represents the stress vector, strain vector, and stiffness tensor in 
the local coordinate system (123), respectively. σG

ij , εG
ij , and Cn,G

ij each 
denotes the stress vector, strain vector, and stiffness tensor in the global 
coordinate system (XYZ). Tn,G|L

p depicts the unique transformation matrix 
for each impregnated yarn from the local to the global coordinate sys-
tem, defined as yarn orientations, i.e., θn, φn, and ψn. The transformation 
matrix for the warp and weft yarn is given by Eq. (6). 

[
Tn,G|L

p

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos2ωn

sin2ωn

0

sin2ωn

cos2ωn

0

0

0

1

0

0

− cosωnsinωn

0

0

cosωnsinωn

0

0

0

0

0

0

0

0

0

2cosωnsinωn

− 2cosωnsinωn

0

cosωn

sinωn

0

− sinωn

cosωn

0

0

0

cos2ωn − sin2ωn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6) 

where omega ωn is the angle of warp and weft yarns, between global 
and local coordinate systems, which is ideally ωn =θn =0◦ and ωn =φn=

90◦ counter-clockwise, respectively. The transformation matrix for 
binder yarn is given by Eq. (7). 
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[
Tn,G|L

p

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos2ψn

0

sin2ψn

0

1

0

sin2ψn

0

cos2ψn

0

− cosψnsinψn

0

0

0

0

0

cosψnsinψn

0

0

0

0

2cosψnsinψn

0

− 2cosψnsinψn

0

0

0

cosψn

0

sinψn

0

cos2ψn − sin2ψn

0

− sinψn

0

cosψn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7) 

where, angle ψn is the angle binder yarn angle, between global and 
local coordinate systems, which is ideally ψn =− 90◦ (clockwise). There 
are two main differences between our previous damage model in [14] 
and the current work: (1) θn, φn, and ψn are no longer constant param-
eters and instead vary in accordance with the values computed from Eqs. 
(2) and (2)) the impregnated yarn failure initiation strengths also exhibit 
stochastic variations as explained earlier (Eqs. (3) and (4)). This ensures 
that the stochastic variation of these parameters as observed in real 
composites is captured and thus the model is more realistic as compared 
to our earlier model [14]. 

The damage response of impregnated yarns was modelled as linear 
elastic until damage initiation, followed by linear damage evolution. 
Modified 3D quadratic failure criteria [14] were employed to predict 
damage initiation in each impregnated yarn. On the onset of damage, 
the stiffness of damaged yarns was degraded according to the linear 
damage evolution law (see Fig. 5a), given by Eq. (8), which is used to 
update the damage stiffness matrix of impregnated yarns. 

di,T =

(
εf

i,T

εf
i,T − εini

i,T

)(εi,T − εini
i,T

εi,T

)

(8)  

di,C =

(
εf

i,C

εf
i,C − εini

i,C

)(εi,C− εini
i,C

εi,C

)

where, εini
i,T, ε’

i,T, and εf
i,T represent the strain value at damage initia-

tion, current strain and strain at the final damage state under tensile (T) 
load, respectively. εini

i,C, ε’
i,C, and εf

i,C represent the strain value at damage 

initiation, current strain and strain at the final damage state under 
compressive (C) load, respectively. The subscript i = 1, 2, and 3 repre-
sents the longitudinal, in-plane transverse, and out-of-plane transverse 
directions. The micro-stresses σf

ij in individual yarns were updated using 

the damaged stiffness matrix CD,f
ij and micro-strains εf

ij, given by Eqn. (9). 

σf
ij = CD,f

ij εij (9)  

2.3.2. Damage modelling of polymer matrix 
The polymer matrix was considered an isotropic material. The tensile 

and compressive yield strengths of the polymer matrix may be different 
due to the dependency of yielding on the hydrostatic components of the 
applied stress state. Therefore, a modified von Mises failure criteria in 
terms of tensile and compressive strength is given by Eq. (10). 

σ2
v

CmTm
+

(
1

Tm
−

1
Cm

)

I1 = 1 (10) 

where Cm, Tm, σv, and I1 represent the compressive and tensile 
strengths of the polymer matrix, von Mises stress and the first stress 
invariant, respectively. Prior to damage initiation, the response of pure 
matrix is treated as linear elastic, followed by elastoplastic deformation 
occurring as a result of damage growth (Fig. 5b). The matrix damage 
evolution used in this work is based on the multi-linear damage evolu-
tion law proposed by Xu et al. [50], where yield stress and equivalent 
strain relationship are used to evaluate the damage state for each step, 
given by Eq. (11). 

dq
m =

σq− 1
y

(
εq

y − εeq

)
+ σq

y

(
εeq − εq− 1

y

)

E0,mεeq(εq
y − εq− 1

y )(1 − Vv)
(11) 

where εq
y, εq− 1

y , σq
y, σq− 1

y and εeq represent yield strain at the damage 
stage q, yield strain at the damage stage q-1, yield stress at the damage 
stage q, yield stress at the damage stage q-1, and equivalent strain in ith 
damage stage (εq− 1

y < εeq ≤ εq
y), respectively. E0,m is the undamaged 

stiffness of a polymer matrix. The matrix damage is evaluated in each 
stage and the final matrix damage Dm at each integration, the point is 

Fig. 4. Idealized 3D woven composite unit-cell model. The dotted lines in the figures represent yarn waviness.  
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evaluated based on the maximum matrix damage achieved, given by 
Dm = Max(1 − dq

m). The micro-stresses in the polymer matrix region are 
updated based on the damaged stiffness matrix CD,m

ij and micro-strain εij, 
given by Eq. (12). 

σm
ij = (1 − Vv)CD,m

ij εij (12) 

This damage model proposed for matrix failure is more realistic than 
the ones proposed in our earlier work [14] because it accounts for sto-
chastic variation in matrix failure strength based on the stochastic 
variation of void content (Vv). 

2.4. Macro-model (FE Model) 

To evaluate macro-strains at each integration point due to applied 
load, FE analysis was conducted at the macro-scale using Abaqus/ 
Explicit software. The macro-strains were used to evaluate the damage 
state of the FE model in the next time increment. The homogenized 
macro stresses σ at each integration, points were determined using a 
volume averaging method, by adding the individual contributions of all 
constituents according to their volume proportion in the unit-cell, i.e., 
Eq. (13). 

σ = σmVm(1 − Vv)+ σwarpVwarp + σfillVfill + σbinderVbinder (13) 

where σm, σwarp, σfill and σbinder represent micro stresses in the matrix, 
warp yarn, weft yarn, and binder yarn, respectively. Vm , Vwarp, Vfill and 
Vbinder denotes the volume fraction of pure matrix, warp yarn, fill yarn 
and binder phases, respectively in the unit-cell model. These volume 
fractions were obtained from CT-scan images of warp, fill and z-binder 
cross-sections, more details can be found in the reference [14]. 

3. Experimental evaluations 

3.1. Material used 

3D orthogonal E-glass woven fabrics (3D-9871, TexTech® Industries, 
USA) were used in this study. The thickness and areal density of the 3D 
fabric were 4.3 mm and 5200 GSM. The fabric had 49%, 49%, and 2% 
fibres along the warp, fill and through-thickness directions, respectively. 
The fabric had a warp count of 2.8 ends per centimetre (EPCM) and a fill 
count of 1.9 picks per centimetre (PPCM). The Elium® (188x0, Arkema, 
France) thermoplastic resin was used to manufacture thermoplastic 3D- 
FRC using a vacuum-assisted resin infusion process (VARI). More details 

on the complete 3D-FRC fabrication process can be found in the refer-
ences [51–53]. The fibre volume fraction and nominal thickness of cured 
3D-FRC were 52% and 4 mm, respectively. 

3.2. Testing methods 

The notched and unnotched tensile tests were carried out along the 
warp (0◦) and fill (90◦) directions, according to ASTM D5766 [54] and 
D3039 [55] standards, respectively. Note that the ASTM standards 
recommend an un-notched tensile of 250 × 25 mm2 and a notched 
tensile test specimen of 200 × 36 mm2 with a 6 mm hole diameter, 
leading to hole diameter (d)-to-width (w) ratio dr = 0.166. Fig. 6(a) 
shows six testing configurations (i.e., three warp loaded and three fill 
loaded), divided into the unnotched (Case-A) and notched (Case-B and 
Case-C) 3D-FRC specimens. In this study, 250 × 25 mm2 samples were 
used for both notched and un-notched configurations. In notched con-
figurations, a 4.1 mm diameter hole was drilled to maintain dr = 0.166 
in Case-B, whereas a 10 mm diameter hole was drilled in Case-C with dr 
= 0.4, as shown in Fig. 6(b). Table 2 shows the details of six testing 
configurations, along with dimension, hole size, intact area and dr. A 
total of eighteen samples were tested including six for un-notched 
configuration (Case-A) and twelve for notched configurations (Case-B 
and Case-C). All tests were carried out at a displacement-controlled load 
rate of 2 mm/minute using a ZwickRoell hydraulic-driven load frame 
equipped with a 50 kN load cell (Fig. 6(c)). A minimum of three repeat 
tests were performed for each configuration investigated in this study. 
Tensile strains were measured using an axial extensometer (50 mm 
gauge length) and digital image correlation (DIC). The schematic dia-
gram of boundary conditions is shown in Fig. 6(b). 

3.3. Evaluation method 

The un-notched and notched performance of resin-infused thermo-
plastic 3D-FRCs is evaluated using global load (P) versus deflection (δ) 
curves obtained from load-frame, gross ultimate tensile strength σgross

yy , 
net axial tensile strength σnet

yy , maximum tensile strains obtained from an 
extensometer. The gross strength was evaluated by dividing the applied 
load by gross cross-sectional area i.e., σgross

yy = P
Agross

, whereas the net 
strength was calculated by dividing the applied load by the net cross- 
sectional area, i.e., σnet

yy = P
Anet

= P
t(w− d). The maximum tensile failure 

strain was obtained from a 50 mm gauge length extensometer. 
In this study, the notch sensitivity was evaluated using dr and 

Fig. 5. Damage initiation and evolution laws: (a) impregnated yarns and (b) polymer matrix. Note that σini
i , σ’

i , and E0 represent stress at failure initiation, 
instantaneous stress, and undamaged stiffness matrix of impregnated yarn, respectively. E0,m, σ0

y and ε0
y each refers to the undamaged stiffness matrix, yield strength, 

and corresponding yield strain damage initiation of the matrix. 
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normalized strength σgross
nn , similar to the work by Muñoz et al. [56]. 

Here, the normalized strength indicates a ratio between axial gross 
strength and axial net strength, i.e., σgross

nn = σgross
yy /σnet

yy . To evaluate the 
notch sensitivity of 3D-FRC at a specific dr, notched axial ultimate tensile 
strength is normalized with un-notched axial ultimate tensile strength 
measured experimentally. The normalised value was then compared to 
the ideally ductile “notch insensitive” and ideally brittle “notch sensitive” 
curves. The ideal notch insensitive (for a ductile material) and sensitive 

(for a brittle material) response is given by Eqs. (14) and (15) [57,58], 
respectively. 

σgnet
yy

σgross
yy

= 1 −
(

d
w

)

(14)  

σgnet
yy

σgross
yy

=

[

1 −
(

d
w

)]/

KT (15a)  

KT = 2+ [1 − (d/w) ]3 (15b) 

where d and w refer to hole diameter and specimen width. 

4. Numerical simulation 

4.1. Numerical implementation of the stochastic progressive damage 
model 

The overall algorithm of the stochastic multiscale progressive dam-
age model is implemented through a VUMAT subroutine. Fig. 7 explains 
how different length-scale models (described in Section 2) interact with 
each other for damage prediction within a stochastic, multiscale 
modelling framework. At the start of the analysis before the application 
of loads (time = 0), a function within the VUMAT generates uniformly 
distributed random numbers (for yarn waviness and voids) for each 
integration point/element (representing unit-cell) in the FE model, 

Fig. 6. Tensile specimens along with the experimental setup. (a) specimen configurations along the warp and fill directions, (b) a schematic diagram of specimen 
dimensions along with boundary conditions applied during testing, and (c) experimental setup. 

Table 2 
3D-FRC tensile specimen configurations.  

Configurations Details Hole 
diameter 
(mm) 

Dimensions 
l× w(mm) 

Intact 
area Ai 

(mm2) 

Hole dia. 
to width 
ratio dr 

Case-A 3D- 
Warp 

——— 250 × 25 100 ——— 

3D-Fill ——— 250 × 25 100 ———  

Case-B 3D- 
Warp 

4.1 250 × 25 83.6 0.164 

3D-Fill 4.1 250 × 25 83.6 0.164  

Case-C 3D- 
Warp 

10 250 × 25 60 0.4 

3D-Fill 10 250 × 25 60 0.4  
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using the Box-Muller transformation algorithm. These random numbers 
are stored in the state variables (SDVs) and remain constant for each 
increment to perform stochastic FE analysis. The stochastic micro-
mechanics model evaluates the unique effective elastic constants and 
strength properties for each unit-cell element in GCS using the stochastic 
distribution of defects obtained from µCT. The effective elastic constants 
are used to evaluate meso-stresses in the pure matrix σ(t)

n,m and impreg-
nated yarns σ(t)

n,p for each integration point in GCS. These meso-stresses 
are then transformed with respect to their orientations (yarn orientation 
and its stochastic distribution) to get meso-stresses in LCS. The meso- 
stresses are used to evaluate the damage state of each constituent and 
update meso-stresses at the end of the current time increment. The 

updated meso-stresses are then transformed back into GCS, using Eq. (5). 
Lastly, the homogenised macro-stresses at each integration point are 
calculated using the micro-stresses in GCS and the volume fraction of 
each unit cell constituent. These macro-stresses are fed back into Abaqus 
to calculate strain increment for the subsequent time increment. The FE 
simulation has been conducted at a macro-scale using a hexahedral solid 
element (i.e., C3D8R in Abaqus), with each element representing a full 
unit cell of 3D orthogonal woven composites. The proposed framework 
is computationally efficient firstly because the micro-mechanics model 
for yarn and matrix as well as the meso-scale model for the unit-cell is 
analytical and thus does not require high computational cost associated 
with FE-based micro and meso- models. Secondly, the global macro 

Fig. 7. Overall algorithm for stochastic, multiscale, progressive damage prediction in 3D woven composite.  
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model uses explicit dynamic FE simulation which is inherently more 
stable and quicker to converge for damage growth modelling simula-
tions as compared to implicit models. The framework is also easy to 
implement as part modelling can take place using the existing solid 
geometry modelling tools available in finite element software like 
Abaqus or Ansys and does not require third-party tools for explicit 
modelling of textile geometry and matrix regions. Another thing that 
should be pointed out is that although we have used X-ray µCT to obtain 
the variation in yarn waviness, traditional stereo microscopy of carefully 
prepared cross-sections may also be used as a suitable alternative if µCT 
equipment is not available. 

4.2. Finite element model of the notch and un-notch tests 

To evaluate the performance of the stochastic, multiscale, progres-
sive damage model, notched and un-notched tensile tests are simulated 
on 3D-FRCs along the warp (0◦) and fill (90◦) directions. Fig. 8 shows the 
geometry, boundary conditions and FE mesh for un-notched (Case-A) 
and notched (Case-B and Case-C) configurations. The geometry and 
boundary conditions used in the finite element analysis of the notch and 
un-notched tensile coupon are shown in Fig. 8(a) and 8(b), respectively. 
For each configuration, 10 stochastic FE simulations were performed to 
show variations in ultimate strengths, stress/strain curves and damage 
responses. 

4.3. Material properties 

The elastic constants and strength properties of E-Glass fibre and 
Elium matrix of E-Glass/Elium composites used in the stochastic mul-
tiscale progressive damage model are summarized in Table 3. 

The critical energy release rates of E-Glass/Elium in longitudinal 
directions (G1+

1c , G1−
1c ), in-plane transverse direction (G2+

2c , G2−
2c ), and out- 

of-plane transverse direction (G3+
3c , G3−

3c ), are given in Table 4. 

5. Results and discussion 

To demonstrate the effectiveness of the proposed stochastic, multi-
scale, progressive damage model, this section presents three different 

types of results. First, the notched and un-notched damage responses of 
3D-FRC obtained experimentally are discussed in terms of load/deflec-
tion curves, gross strength, net strength, and notched sensitivity. Sec-
ond, deterministic FE simulation results obtained using the multiscale 
model proposed in our previous work [14] are compared with experi-
mental data, to highlight the limitations of the existing model. Finally, to 
overcome the limitations of the existing (deterministic) multiscale 
model notched and un-notched responses and corresponding damage 
states predicted by the proposed stochastic FE simulations are compared 
with experimental data. 

Fig. 8. Schematic of geometry, boundary conditions and FE mesh. (a) un-notched and (b) notched tensile specimens.  

Table 3 
Elastic constants and strength of E-Glass fibre and Elium matrix.  

Materials Material Properties  

E-Glass fibre Elastic constants [59] Modulus of Elasticity Ef (GPa) 73 
Modulus of Rigidity Gf (GPa) 30 
Poisson’s Ratio vf 0.22 

Strength properties  
[60] 

Fiber tensile strength (MPa) 2000 
Fiber compressive strength 
(MPa) 

1350  

Elium 
matrix 

Elastic constants Modulus of Elasticity Em (GPa) c 3.10 
Modulus of Rigidity Gm (GPa) 1.13 
Poisson’s Ratio vm 

a 0.37 
Strength properties Matrix tensile strength (MPa) c 70 

Matrix compressive strength 
(MPa) c 

130 

Matrix shear strength (MPa) 42  

a Reported in literature [59], b Reported in literature [61], c Reported in 
literature[60]. 

Table 4 
The critical energy release rate of impregnated yarns used in the present study.  

The critical 
energy release 
rate 

G1+
1c 

(N/ 
mm) 

G1−
1c (N/ 

mm) 
G2+

2c 
(N/ 
mm) 

G2−
2c 

(N/ 
mm) 

G3+
3c 

(N/ 
mm) 

G3−
3c 

(N/ 
mm) 

E-Glass/Elium  
[62] 

60  39.15  1.5 4  1.5 4  

S.Z.H. Shah et al.                                                                                                                                                                                                                               



Composite Structures 318 (2023) 117109

11

Fig. 9. Load-deflection responses of un-notched and notched 3D-FRC specimens: (a) warp loaded un-notched specimen, (b) warp loaded notched specimen, (c) warp 
loaded notched specimen, (d) fill loaded un-notched specimen, (e) fill loaded notched specimen, and (f) fill loaded notched specimen. 

Fig. 10. Comparison of un-notched and notched tensile performance of 3D-FRC: (a) gross strength along the warp and fill direction, (b) net strength along the warp 
and fill direction, (c) failure strains along the warp and fill direction, and (d) notch sensitivity plot of 3D-FRC with different notch size. 
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5.1. Experimental un-notched and notched tensile response of 3D-FRC 

Fig. 9 shows the un-notched (Case-A) and notched (Case-B and Case- 
C) load/displacement responses of 3D-FRC along the warp (0◦) and fill 
(90◦) directions. A good agreement was achieved in the load/deflection 
curves obtained from three sets of samples for each (un-notched and 
notched) configuration. The warp and fill configurations showed nearly 
identical peak load and load/displacement curves due to similar fibre 
volume fraction (~49%) in both directions. However, because of the 
increased waviness induced by the binder yarn, the fill loaded specimens 
had slightly lower strength. The un-notched configuration showed the 
highest peak load (48.7 kN). For the notched configurations, the peak 
load was observed to decrease with an increase in the notch size (e.g., 
32.1 kN in Case-B and 24.3 kN in Case-C). All the load/deflection curves 
showed a nearly linear-elastic response, in the beginning, followed by 
some nonlinearity at higher loads. The slight reduction in the tensile 
stiffness of samples can be partially due to 1) the deformation in the 
ductile Elium matrix and 2) the glass fibre’s straightening effects 
explained by Warren et al. [63]. 

The notched specimens in Case-B (Fig. 9(b) and (e)), showed the first 

small drop in load at higher displacement (~6 mm in warp and fill 
specimens), caused by the initiation of transverse matrix cracks. These 
cracks were subsequently arrested by the ductile matrix and resisted 
further crack growth along the transverse direction. As a result, the load 
recovered and reached the second final peak load, followed by the 
sudden large drop in load upon further propagation of transverse cracks. 
In comparison, the notched specimens in Case-C (Fig. 9(c) and (f)) 
exhibited sudden failure due to a small load-bearing area (due to a large 
notch size), which accrues rapid propagation of transverse cracks. Thus, 
due to the discontinuous crack propagation and higher load-bearing 
area, the Case-B samples withstood a high load of 32.1 kN compared 
to 24.3 kN in Case-C. 

Fig. 10 compares gross ultimate tensile strength, tensile failure 
strain, and notch sensitivity of 3D-FRC considered in this work. The 
reduction in the gross ultimate tensile strength is almost constant along 
the warp and fill direction (i.e., up to 35% for Case-B and 51% for Case- 
C), as shown in Fig. 10(a). This is due to the similar fibre content along 
both directions, as mentioned earlier. However, in the case of the net 
ultimate tensile strength (Fig. 10(b)), Case-B and Case-C show up to 21% 
and 19% reduction. In addition, the presence of a notch affects the 
failure strain in both directions, each showing up to 27% and 40% 
reduction in Case-B and Case-C (Fig. 10(c)). Fig. 10(d) shows the notch 
sensitivity plot for E-Glass/Elium composite, obtained by normalizing 
the gross strength by the net strength, plotted against dr. As can be seen 
in the figure, the normalized strength values are below the blue line 
representing net strength equal to gross strength. This indicates that the 
stress concentration (due to the presence of a hole) affects the failure 
strength of 3D-FRC. Nevertheless, this strength reduction is not signifi-
cant in a ductile matrix [64], and is partially due to through-thickness 
reinforcement in 3D fabric architecture. The ultimate tensile load, 
gross tensile strength, net tensile strength and localized failure strains up 
to a complete failure in each case along with the standard deviations are 
summarized in Table 5. 

Table 5 
Summary of un-notch and notch tensile performance of 3D-FRC.  

Configurations/ 
Property 

Warp specimens Fill specimens 

Case-A Case-B Case-C Case-A Case-B Case-C 

Fmax(kN) 48.7 
(±3.5) 

31.6 
(±4.0) 

23.7 
(±3.1) 

46.5 
(±2.4) 

32.1 
(±10.0) 

24.3 
(±5.1) 

σgross
yy (MPa) 487 

(±3.5) 
316 
(±4.0) 

237 
(±3.1) 

465 
(±2.4) 

321 
(±10.0) 

243 
(±5.1) 

σnet
yy (MPa) 487 

(±3.5) 
382 
(±4.0) 

395 
(±3.1) 

465 
(±2.4) 

394 
(±10.0) 

406 
(±5.1) 

εmax(%) 2.48 
(±8.8) 

1.74 
(±7.0) 

1.48 
(±3.03) 

2.35 
(±4.3) 

1.72 
(±8.5) 

1.68 
(±9.1) 

Note: the values in the bracket represent the standard deviation (in percentage) 
from three specimens for each configuration. 

Fig. 11. Experimental and deterministic model prediction for un-notched and notched 3D-FRC tensile specimens: (a) warp loaded un-notched specimen, (b) warp 
loaded notched specimen, (c) warp loaded notched specimen, (d) fill loaded un-notched specimen, (e) fill loaded notched specimen, and (f) fill loaded 
notched specimen. 
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5.2. Comparison of un-notched and notched tensile response 
(experimental vs. deterministic FE simulation) 

Fig. 11 compares un-notched and notched tensile stress/strain curves 
obtained from experiments and deterministic FE simulations using the 
multiscale progressive damage model proposed in our earlier publica-
tion [14]. The FE simulation was performed along the warp and fill 
directions. The multiscale model successfully predicted the key char-
acteristics of un-notched and notched tensile stress/strain curves, i.e., 

tensile modulus, and initial linear region followed by nonlinear region. 
The nonlinear region starts approximately from 0.6 to 0.75% tensile 
strains (see point “a” in Fig. 11). The transition from linear to nonlinear 
region corresponds to damage initiation in the matrix. At the onset of 
matrix damage, the stiffness of the 3D-FRC starts to decrease. Such 
nonlinear behaviour is also explained by Callus et al. [65], for un- 
notched specimens. The un-notched specimens undergo a sudden fail-
ure after reaching the ultimate tensile strength. In contrast, the notched 
specimens show progressive failure due to the propagation of the 

Table 6 
Un-notched and notched ultimate tensile strength from experiments and deterministic multiscale models.  

Specimen Notch size 
d (mm) 

Warp specimens (0◦) Fill specimens (90◦) 

Exp. Sim. % Diff Exp. Sim. % Diff 

Unnotched Case-A ————— 487 (±3.5) 507 4.1 465.0 (±2.4) 502 7.9 
Notched Case-B 4.1 319 (±4.0) 350 9.7 321.0 (±10.0) 345 7.5 

Case-C 10 237 (±3.1) 262 10.5 243.0 (±5.1) 258 6.2 

Note: the values in the bracket represent the standard deviation from three specimens for each configuration. 

Fig. 12. Un-notched and notched ultimate tensile strength predicted by the stochastic multiscale model and the deterministic multiscale model (ideal model) and 
their comparison with experimental data: (a) warp specimen, (b) fill specimen, (c) warp specimen, (d) fill specimen, (e) warp specimen, and (d) fill specimen. 
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transverse matrix cracking in 3D-FRC. In the current study, the trans-
verse matrix crack initiated roughly at 1.3–1.4% tensile strains for case- 
B, and 1.1–1.2% tensile strain for case-C. The initiation of transverse 
cracks corresponds to the initiation of fibre failure, highlighted by the 
slight dip in the stress/strain curve (see point “b” in Fig. 11). These 
transverse cracks propagate upon further loading, which leads to the 
complete failure of specimens. 

The deterministic, multiscale model over-predicted the un-notched 
and notched ultimate tensile strength by 5–10 %. This over-prediction 
is primarily due to the idealised unit-cell model, i.e., the impregnated 
yarns perpendicular to each other, no waviness in impregnated yarns, 
and no voids in resin rich-pockets. All these factors significantly affect 
the elastic constants and strength properties of FRC, which accrue 
inaccuracies in the predicted ultimate tensile strength. Table 6 sum-
marizes the comparison of experimental and FE simulation results, along 
with the relative percentage difference in the predicted notch and un- 
notched ultimate tensile strength. 

5.3. Improvements in predictive accuracy through stochastic model 

Fig. 12 compares the un-notched and notched ultimate tensile 
strength predicted by the proposed stochastic multiscale model with 
both the experimental data and the deterministic multiscale simulation. 
A total of 10 stochastic FE simulations were performed for each spec-
imen configuration and predicted notched and un-notched ultimate 
strength is included in the figure. The deterministic multiscale model, 
named as an ideal model in the figure, over-predicted the ultimate 
tensile strength in all cases. Meanwhile, the stochastic model success-
fully predicted the notched and un-notched ultimate tensile strength 
(represented by black dots), which is within the experimental bounds 
(represented by a grey colour region). Table 7 summarizes the ultimate 
tensile strength obtained from the experiment and FE simulations, along 
with their coefficient of variance (COV) and percentage difference. The 
maximum COV in the ultimate tensile strength predicted from the sto-
chastic model is 1.7, 1.6, and 2.3 % for Case-A, Case-B and Case-C, 
respectively. This is within the experimental bounds. The maximum 
relative percentage of difference in the predicted tensile strength is 
<3%. These results elucidate that the proposed stochastic multiscale 

Table 7 
Un-notched and notched ultimate tensile strength from experiments and stochastic models.  

Specimen Notch size d, (mm) Warp specimens (0◦) Fill specimens (90◦) 

Exp. Sim. % Diff Exp. Sim. % Diff 

Unnotched Case-A ————— 487 (±3.5) 481.0 (±1.4) 1.2 465.0 (±2.4) 471.0 (±1.7) 1.3 
Notched Case-B Dia 4.1 319 (±4.0) 320.5 (±1.6) 0.5 321.0 (±10.0) 323.3 (±1.5) 0.7 

Case-C Dia 10 237 (±3.1) 244.0 (±2.0) 2.9 243.0 (±5.1) 241.0 (±2.3) 0.9 

Note: the values in the bracket represent the standard deviation from three specimens for each configuration. 

Fig. 13. Comparison between experiment and stochastic model prediction of the tensile stress–strain curve, along with damage index distribution at different stress 
levels: (a) warp-loaded notched specimen (Case-B) and (b) warp-loaded notched specimen (Case-C). 
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model significantly improved the prediction accuracy over the deter-
ministic multiscale model based on ideal unit-cell. 

5.4. Comparison of damage evolution states (experimental vs. Stochastic 
FE simulation) 

The stress/strain curves and corresponding damage index (state) 
distributions obtained from stochastic FE simulation of notched speci-
mens (Case-B and Case-C) at different stress levels are shown in Fig. 13. 
In the figure, the damage index distributions (points a-d) are taken from 
a 25 × 25 mm2 section of a typical simulated notched specimen and the 
damage variable (SDV26) indicates the extent of combined longitudi-
nal/transverse fibre failure. Note that the stochastic model prediction 
varies from specimen to specimen, consistent with a specimen-to- 
specimen variation in actual testing. The stress/strain curve depicts a 
linear response until 0.75 % strains, followed by the nonlinear region 
due to damage growth. The first damage state distributions (at points 1a 
and 1b) show the initiation of a transverse crack, at the highly stress- 
concentration area (i.e., at a circular notch) in the form of longitudi-
nal fibre failure due to tensile load. The second damage state distribu-
tion (at points 2a and 2b) shows the proportion of transverse cracks 
(fibre damage) until it reaches the peak stress value, i.e., 324 MPa (Case- 
B) and 242 MPa (Case-C). In the third damage state distribution (at 
points 3a and 3b), the transverse cracks reach the maximum crack 
length, which immediately results in the sudden failure of the 3D-FRC 
(at points 4a and 4b). 

The final damage state of notched specimens obtained from experi-
ments and stochastic FE simulation is compared in Fig. 14. The notched 
specimens failed due to the propagation of transverse cracks initiated 
due to intensive fibre failure in a near-circular notch. The 3D-FRC failed 
in the form of through cracks upon extensive fibre failure. The stochastic 

multiscale model successfully captured the final damage states observed 
experimentally. 

Fig. 15 compares the damage index distributions (at failure) ob-
tained from the deterministic multiscale model (reference) and five 
consecutive runs of the proposed stochastic multiscale models. Each 
image is taken from a 25 × 25 mm2 section of the simulated specimen. 
The final failure in un-notched and notched specimens occurs when fibre 
failure has progressed across the width of the specimen. Although the 
deterministic model predicted the ideally desired damage patterns in 
both the un-notched and notched specimens, i.e., matrix and fibre fail-
ure in the guage section, along the width of the specimens as well as 
symmetric nature of damage owing to the same elastic constants and 
strength properties of all elements. The reference model was unable to 
fully capture a specimen-to-specimen variation, meaning that the 
simulated specimens from several simulations fail exactly at the same 
location and with the same pattern. In contrast, the damage index dis-
tribution at failure predicted by the stochastic model was somewhat 
unsymmetric, thus being more consistent with experimental observa-
tion. The discrete damage patterns in Fig. 15 are associated with the 
stochastic distribution of yarn waviness and voids, which are expected to 
appear during the manufacturing process. The presence of these in-
homogeneities locally improves or degrades the elastic constants and 
strength properties of 3D-FRC. As a result, the initial transverse crack 
(upon fibre failure) and subsequent propagation depend on a local 
variation in the inhomogeneities. Such discrete damage patterns are 
consistent with experimental observations in all configurations tested in 
this study. Again, these results elucidate that the stochastic, multiscale, 
progressive damage model significantly improves the prediction accu-
racy over the deterministic multiscale model. 

Fig. 14. Comparison between digital image correlation (DIC) measurement and stochastic FE simulation at failure: (a) DIC (Case-B), (b) DIC (Case-C), (c) simulation 
(Case-B), and (d) simulation (Case-C). 
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6. Conclusion 

A novel stochastic, multiscale, progressive damage model is proposed 
to predict the damage response of a three-dimensional (3D) orthogonal 
woven composite. The spatial distribution of manufacturing-induced de-
fects (waviness in impregnated yarn and voids) was obtained from a 
limited set of micro-computed tomography (µCT) images. This informa-
tion was used to calculate the stochastic distribution of material properties 
at the micro- and meso-levels, which consequently results in a local vari-
ation of the stress and strain within the macro-model. The model pre-
dictions were validated with experimental results and were also compared 
with our earlier deterministic multiscale model. Excellent correlation was 
achieved between experiments and stochastic FE simulations. The pre-
dicted ultimate tensile strength from the stochastic model was within 3% 
of the actual average ultimate strength from physical experiments. Our 
proposed stochastic, multiscale, progressive damage model provides a 
more accurate estimate of tensile response and corresponding damage 
evolution in both un-notched and notched 3D woven composites. 

The experiments and stochastic FE simulations revealed that un- 
notched specimens failed abruptly after reaching the peak load. In 
contrast, notched specimens failed progressively due to the propagation 
of transverse cracks, i.e., failure starts with the initiation of transverse 
cracks upon fibre failure (at the notch tip) and subsequent crack prop-
agation of the crack across the width of the specimen. The FE simulation 
results elucidate that the proposed stochastic multiscale progressive 
damage model, developed based on a combination of stochastic 
manufacturing defects, multiscale model, and continuum damage me-
chanics, can effectively predict the ultimate tensile strength, crack 
propagation, and final failure of notched 3D woven composites. The 
developed model will be beneficial in designing robust composite 
structures and achieving better usage of textile composites as it is ac-
curate as well as computationally efficient. The proposed framework is 
expected to solve large parts of 50,000 elements in around 3 h. 
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