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Preface

This book is designed for a one-semester course at Utah State University titled MAE
6570 Optimal Spacecraft Guidance. The class meets for 75 minutes, twice per week, for
14 weeks. There are no prerequisites other than graduate standing in engineering. Pro-
ficiency in calculus, differential equations, linear algebra, and computer programming is
required. Students find that previous experience in space dynamics, linear multivariable
control, or optimal control is helpful.

The goal of the book and course is for students to develop fundamental skills needed
to do professional work in the area of spacecraft guidance. After working through
the book, students should have an understanding of the linear quadratic framework,
E-guidance, Q-guidance, Apollo descent guidance, and more. To this end, the book
contains seven chapters. An approximate timeline for the course is the following.

• Chapter 1 | Week 1
• Chapter 2 | Weeks 2 and 3
• Chapter 3 | Weeks 4 and 5
• Chapter 4 | Weeks 6, 7, and 8
• Chapter 5 | Weeks 9 and 10
• Chapter 6 | Weeks 11 and 12
• Chapter 7 | Weeks 13 and 14

Three dynamical models are used throughout to illustrate the concepts. These models
are a nonlinear two-body model, a linear flat planet model, and a linear relative orbital
motion model. A key feature of the book is its integration of MATLAB implementations
into the text as early as possible. For example, Chapter 1 includes a Q-guidance imple-
mentation, Chapter 2 includes a polynomial guidance implementation, and so on. Each
chapter ends with a set of problems suitable for independent homework. Several of the
chapter problems require modification or extension of these implementations. The final
two chapters focus on descent guidance and ascent guidance. By this point, students
are expected to be coding independently.

Please email errors to matthew.harris@usu.edu. Book updates, MATLAB source
files, and errata are available at the following webpages.

https://profmattharris.wordpress.com/OptimalSpacecraftGuidance
https://github.com/profmattharris/OptimalSpacecraftGuidance

Matt Harris and Ben Rose

v

https://profmattharris.wordpress.com/OptimalSpacecraftGuidance
https://github.com/profmattharris/OptimalSpacecraftGuidance




Chapter 1

Introduction to Guidance

Chapter Learning Objectives

1. Understand the basic functions of guidance, navigation, and control.
2. Analyze and solve simple one-dimensional guidance problems.
3. Implement Q-guidance for an earth ascent in a “high-fidelity” simulation.

Optimal spacecraft guidance refers to the design of optimal trajectories and to op-
timal control of spacecraft. The subject emanated from contemporaneous advances in
computation, optimal control, and space exploration during the 1960s.1 The limited
computing power then demanded that problems, no matter how complicated, be solved
with simple algorithms.2 Some of these algorithms, such as E-guidance, Q-guidance,
Apollo descent guidance, and the linear tangent law, have withstood the test of time
and remain relevant today. These guidance laws and others are topics in this book.

Significant advances have been made in all elements of optimal spacecraft guidance.
Advances in computing hardware are evident to all with a desktop computer or smart-
phone. In fact, NASA’s Ingenuity Mars Helicopter uses a Samsung S5 processor. It
may come as a surprise then that the speedup achieved by algorithmic advances in
linear optimization has outpaced that due to hardware advances by a factor of two.3
Improvements in convex optimization and integer optimization are equally impressive.

The ability to solve optimization problems quickly means that modern guidance
algorithms can push the spacecraft to its performance limits. This is observed in the
SpaceX landings. Modern guidance laws are also topics in this book. A limiting factor,
however, is that flight computers are radiation-hardened and have limited computational
abilities relative to a desktop computer. Customized algorithms are being developed for
this purpose.4 Though the history of optimal spacecraft guidance is rich, much work
remains for the guidance engineer.

1Battin, Space Guidance Evolution – A Personal Narrative, 1982.
2Battin, Some Funny Things Happened on the Way to the Moon, 2002.
3Bixby, A Brief History of Linear and Mixed-Integer Programming Computation, 2012.
4Dueri, et al., Customized Real-Time Interior-Point Methods for Onboard Powered-Descent Guid-

ance, 2017.
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2 Chapter 1. Introduction to Guidance

1.1 The Role of Guidance

Most vehicles moving through air, space, or water include guidance, navigation, and
control (GN&C) systems that operate in real-time as the vehicle moves. The navigation
system consists of sensors to measure the state of the system as well as tools for filtering,
outlier detection, estimation, etc. The guidance system uses the current estimate of the
state provided by the navigation system along with the mission objectives to compute
state and control trajectories. The control trajectory is fed to the control system to
affect actuators such as engines and wing surfaces.

A person driving a car is part of all three systems. The person’s locational knowledge
is navigation. The person’s decision to stay straight or turn is guidance. The person’s
pressing of the pedals and turning of the wheel are control. Many “navigation” features
of modern cars and smartphones are useful because they serve as a guidance system –
“turn right in 25 feet” is guidance.

The three components of GN&C are obviously coupled. The guidance system should
not rely on state estimates unavailable from the navigation system. The guidance
system should not generate control commands beyond the actuator limits. And so on.
With that said, it is not uncommon for the three subsystems to be designed almost
independently with specification information shared between the design teams.

The guidance system may generate trajectories by using a reference trajectory (or
planned path), solving an optimization problem, interpolation, approximation, or other
means. In any case, the method must be quick and guaranteed to work. A good
GN&C system should be 1) robust to measurement noise, disturbances, and unmodeled
dynamics; 2) stable so that small errors do not cause large changes in results; and 3)
simple enough so that it can run in real-time.

Such a system is demonstrated in the YouTube video “Apollo 12 landing from PDI to
Touchdown”.5 The astronauts play an important role in this GN&C system. They can
be heard calling out state estimates, adjusting the throttle, etc. More recent GN&C sys-
tems for planetary descent are computer-based and rely upon mathematical algorithms.
With this as background, it is time for a first example.

Example 1.1. Consider a vehicle (block) that can slide in one dimension along a
horizontal plane as in Figure 1.1. The vehicle can thrust left or right (but not both
simultaneously). The goal is for the vehicle to pass through the target position on the
right.

blockthrusters

target position

m

Figure 1.1: One-dimensional sliding block with target position.

5https://youtu.be/kFSa6vUix70

https://youtu.be/kFSa6vUix70
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Because the vehicle does not have to stop at the target position, it is clear that
it should take one of two actions: 1) thrust left (move right) when left of the target
or 2) thrust right (move left) when right of the target. It should be clear that this
guidance solution requires having a target (the mission objective), knowing the current
position (the navigation system), and having thrusters that do as commanded (the
control system).

i How does the solution change if the vehicle is required to pass through the target
at a certain time? How does the solution change if the vehicle is required to stop at
the target? What additional features are required from navigation and control?

⋆

With the first, simple example done, a one-dimensional problem with dynamics is
investigated. The problem is representative of the final vertical descent phase of a
planetary landing.

Example 1.2. A lunar lander is 10 m above its landing site and has 1 m/s downward
velocity. The goal is to descend to the surface and touch down with 1 m/s velocity.
What thrust acceleration is needed to achieve the goal?

To analyze the problem, Newton’s laws are applied. Relative to the ground, the alti-
tude is measured by r. The vehicle mass is m. The constant gravitational acceleration is
g, and the thrust force is T . The ratio T/m is the thrust acceleration u. The free-body
diagram for the mass subjected to gravitational and thrust forces is in Figure 1.2.

m

T

mg

Figure 1.2: Free-body diagram of lunar lander.

The resulting equation of motion is mr̈ = T −mg. Because the given initial velocity
equals the desired final velocity, one approach is to descend at constant velocity. This
requires 0 = r̈ = u − g. Hence, one solution to this problem is to use constant thrust
acceleration u = g. The problem of landing vertically and minimizing fuel consumption
is studied in Section 6.1.

i Though the thrust acceleration is constant, will the thrust force be decreasing,
constant, or increasing? What role do the mission objective, navigation system, and
control system play in the solution?

⋆



4 Chapter 1. Introduction to Guidance

In the previous example, the required thrust acceleration was a constant function.
In more challenging circumstances, the required function may vary with time. It may
even be discontinuous. The guidance problem is to determine such a function so that
mission objectives are satisfied. Let t0 be the current time and tf be the final time.
The problem of finding a function

u : [t0, tf ] → R3

that optimizes a performance metric and satisfies some constraints is the optimal space-
craft guidance problem. The resulting formulas that dictate how to compute u are an
optimal guidance law. The function u and associated position and velocity functions
are the optimal spacecraft trajectories. In landing scenarios such as the one in Ex-
ample 1.2, common performance metrics are fuel consumption, flight time, and risk to
crew. Common constraints are thrust magnitude limits, target positions, and target
velocities.

Solving the guidance problem to obtain a guidance law and compute trajectories
requires knowledge of dynamical models (see Chapter 2), optimization (see Chapter 3),
optimal control (see Chapters 4 and 5), and numerical methods (discussed in every
chapter). Before delving into details, a simulation is coded to demonstrate guidance in
action.

1.2 MATLAB Implementation of Q-Guidance

Performance of a guidance law is studied through both analysis and simulation. A
simulation framework is now presented in MATLAB code that shows how a guidance
law can be tested. As you work through the book, it may be useful to revisit this
simulation and recall the fundamental role guidance plays. The guidance law used for
illustration purposes is Q-guidance, which is developed in Section 7.3. Assuming a
constant gravitational field, the problem is to ascend from a point on the surface r0
with initial velocity v0 to a pre-determined point in position space rf. The maximum
allowable control acceleration is umax. The flight time is set at tf. A vector of linearly
spaced times between 0 and tf is t. Standard units of meters and seconds are used.

1 % Data
2 r0 = [0;0]; % m
3 v0 = [0;0]; % m/s
4 rf = [90000; 45000]; % m
5 umax = 50; % m/s2
6 tf = 100; % s
7 t = linspace(0,tf,1e3)’;

With this data and a function ode to be specified shortly, a simulation can be run using
MATLAB’s built-in integrator ode45.

8 % Guidance Simulation
9 [~,x] = ode45(@ode,t,[r0;v0],[],tf,rf,umax);

10 figure, plot(x(:,1),x(:,2)), grid on
11 xlabel(‘Range (m)’)
12 ylabel(‘Altitude (m)’)
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Observe that the call to ode45 includes the time, initial state, desired final position,
and maximum acceleration. Lines 10-12 simply make a plot for visualization purposes.
The function to be integrated is now specified and called ode. Included in this function
are a navigation block, guidance block, control block, and dynamics block.

13 function [xdot,u,u_cmd] = ode(t,x,tf,rf,umax)
14 r = x(1:2);
15 v = x(3:4);
16 % placeholder
17

18 % Navigation Block
19 rhat = r;
20 vhat = v;
21

22 % Guidance Block
23 u_cmd = [0;0];
24 tgo = tf-t;
25 if tgo >= 1
26 vr = 1/tgo * ( rf - rhat - 1/2*tgo^2*[0;-9.81] );
27 vg = vr - vhat;
28 if norm(vg) >= 1
29 u_cmd = vg/norm(vg) * umax;
30 end
31 end
32

33 % Control Block
34 % placeholder
35 u = u_cmd;
36

37 % Dynamics Block
38 rdot = v;
39 vdot = u + [0;-9.81];
40 xdot = [rdot; vdot];

Lines 14 and 15 define the position and velocity state variables. The navigation block
outputs estimates of the position and velocity, rhat and vhat, respectively. For the time
being, the navigation estimates are equal to the true position and velocity. The estimates
are passed to the guidance block, which outputs a thrust acceleration command u_cmd.
The control block outputs the actual thrust achieved by the control system u. For
the time being, the actual thrust equals the commanded thrust. This thrust is passed
to the dynamics, which are integrated in the call to ode45. In this simulation, the
dynamics assume a constant gravitational field. A more complicated model could be
used and disturbances could also be included. As shown in Figure 1.3, the resulting
state trajectory begins in the lower left at the origin and rises until it terminates at the
desired position.
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Figure 1.3: State trajectory generated by Q-guidance.

In a more realistic simulation, navigation does not output exactly the state and
the commanded control is not exactly achieved. Though the intricacies of a navigation
system are beyond the scope of this book, the guidance law can be tested by simply
corrupting the state estimate from the navigation block. This is done by adding a
time-varying signal bounded by ±5% of the truth.

18 % Navigation Block
19 rhat = r + 0.05*r*cos(3*t);
20 vhat = v + 0.05*v*sin(2*t);

Rerunning the code with this new navigation block confirms that the guidance law
continues to achieve the mission objective even without perfect state information. Con-
trol actuators have inertia and cannot instantly change to achieve commanded values.
For this reason, actuators are modeled as dynamical systems. Actuator dynamics are
commonly modeled as first or second-order systems. The code below uses a first-order
model. As such, the control states need to be added.

16 u = x(5:6);

In the control block, first-order dynamics now appear.

33 % Control Block
34 sigma = 10;
35 udot = sigma*u_cmd-sigma*u;

The speed of the actuator response is affected by sigma. Larger values create a faster
response. The new states also need to be added to the output of ode.

40 xdot = [rdot; vdot; udot];
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With these changes, rerunning the code confirms that the guidance law continues to
achieve the mission objective without perfect state information and with actuator dy-
namics. As a final test of the guidance system, the “real” dynamical environment is
changed so that the environment assumed in the generation of the law is different from
the real environment. To do so, the real gravity is 75% of that on earth and a time-
varying disturbance is added.

37 % Dynamics Block
38 rdot = v;
39 vdot = u + 0.75*[0;-9.81] + 0.25*sin(5*t);
40 xdot = [rdot; vdot; udot];

Note that the guidance law still thinks the gravity is the same as that on earth and is
unaware of the time-varying disturbance. Rerunning the code again confirms the guid-
ance law continues to achieve the mission objective without perfect state information,
with actuator dynamics, and without good knowledge of the dynamical environment.
Actually, the final position target is missed by approximately 150 m. The percent error
is 0.16%.

Though we have undertaken this exercise for demonstration purposes, a similar
(and more extensive) exercise must be done before a guidance law is ever used onboard
a vehicle. The real purpose is to show that the GN&C system satisfies the three afore-
mentioned properties: 1) robust to measurement noise, disturbances, and unmodeled
dynamics; 2) stable so that small errors do not cause large changes in results; and 3)
simple enough so that it can run in real-time. With the code in its current form, spend
some time trying to “break” the guidance law. Things to try include adding a bias in
the navigation output, slowing the actuator response, making more dramatic changes
to the dynamical model, restricting the flight time or max acceleration, and so on. This
guidance law works well over a wide array of imperfections, but there is a point past
which it will fail. As a guidance engineer, it is important to know where this point is.

1.3 Resources and Nomenclature

As may be evident from the implementation exercise, the design and analysis of guidance
laws requires a healthy mix of theory, computation, and experience. To this end, the
chapter problems serve as a review of “theoretical” concepts from calculus, differential
equations, and linear algebra.6 Proficiency in each area is required. Any difficulties
encountered in the problem set should be resolved before moving ahead in the book.
Proficiency in computer coding is also required.7 MATLAB is not required. Free
software packages such as Octave, Julia, or Python are suitable alternatives; however,
all implementations in this book are written in MATLAB.

Throughout this book, “vectors” such as position and velocity are not bolded or
decorated with an arrow. The dimension of the variable is specified using the notation
r ∈ R3. This nomenclature is adopted because optimal spacecraft guidance problems
involve states, controls, costates, and Lagrange multipliers. These commonly have dif-
ferent dimensions. In this context, having bolded symbols tells nothing about whether
two bolded symbols can be added, dotted, or crossed. The magnitude of a vector is
denoted by double bars as ||r|| and is equal to

√
r⊤r =

√
r · r.

6Kreyszig, Advanced Engineering Mathematics, 2020.
7Gilat, MATLAB: An Introduction with Applications, 2014.
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The time derivative of a function is denoted with an overdot ẋ = dx
dt . A function of

time x : [t0, tf ] → R is absolutely continuous if it has a derivative ẋ almost everywhere
that is Lebesgue integrable and

x(t) = x(t0) +

∫ t

t0

ẋ(τ) dτ (1.1)

for every t ∈ [t0, tf ]. The meaning of “almost everywhere” is explained in Chapter 5.
A function is differentiable if all of its first derivatives exist. A function is continu-

ously differentiable if all of its first derivatives exist and are continuous. A function is
twice continuously differentiable if all of its second derivatives exist are continuous. The
following conventions regarding derivatives are adopted. Given a scalar-valued vector
function f : Rn → R, its gradient is

∂f

∂x
= ∇xf =


∂f

∂x1
...
∂f

∂xn

 , (1.2)

which is n× 1. Given a vector-valued vector function f : Rn → Rm, its gradient is

∂f

∂x
= ∇xf =


∂f1
∂x1

· · · ∂fm
∂x1

...
. . .

...
∂f1
∂xn

· · · ∂fm
∂xn

 , (1.3)

which is n×m.
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1.4 Chapter Problems

Problem 1.1. Solve (by hand) the following differential equations. Simulate numeri-
cally using a variable step integrator such as MATLAB’s ode45.

(a) ẍ+ x = 1, x(0) = 1, ẋ(0) = 1
(b) ẍ = t, x(0) = 1, ẋ(0) = 1
(c) ẍ+ ẋ+ x = 5, x(0) = 1, ẋ(0) = 1

Problem 1.2. The equation of motion for a mass-spring system is ẍ + x = u, where
u is a control function. From initial conditions x(0) = 1 and ẋ(0) = 1, compute the
position and velocity when t = 10 for the following control functions.

(a) u = −1
(b) u = 0
(c) u = +1

Problem 1.3. For the mass-spring system ẍ+x = u, find a control function that drives
the state to the origin asymptotically. Find a control function that drives the state to
the origin in finite time.

Problem 1.4. Let c, x ∈ Rn and f : Rn → R such that f(x) = c⊤x. Compute the
gradient and Hessian of f .

Problem 1.5. Let x ∈ Rn and f : Rn → R such that f(x) = x⊤x. Compute the
gradient and Hessian of f .

Problem 1.6. Consider a position vector r(t) = [sin(t), cos(t), 0]⊤. Compute the ve-
locity v(t), acceleration a(t), and radial velocity d

dt ∥r(t)∥.

Problem 1.7. Let r(t) ∈ R3 be a position vector. Show that r · v = ∥r∥ d
dt ∥r∥.

Problem 1.8. Define range space and null space for a matrix A ∈ Rm×n.

Problem 1.9. Determine the rank, range space, and null space for the following matrix.

A =


1 2 3

2 5 7

3 7 10


Problem 1.10. For the A matrix in the previous problem, determine all solutions to
the equation Ax = b where b = [6, 14, 20]⊤.

Problem 1.11. For x = [1, 2, 3, 4]⊤, compute ∥x∥1, ∥x∥2, and ∥x∥∞.

Problem 1.12. Compute the spectral norm of the following matrix.

A =

3 1

1 3
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Problem 1.13. Replicate the Q-guidance implementation in Section 1.2. Replace the
first-order actuator models with second-order actuator models of the form

ü+ 2ζωu̇+ ω2u = ω2ucmd.

With the damping ratio ζ = 0.7, examine the system response for values of ω between
0.1 and 20.



Chapter 2

Dynamical Models

Chapter Learning Objectives

1. Derive the two-body equation of orbital motion in Cartesian coordinates.
2. Derive the “flat planet” model describing motion in a constant gravitational field.
3. Derive the Clohessy-Wiltshire equations describing relative motion of spacecraft.
4. Implement polynomial guidance for descent and an autopilot for rendezvous.

Important in the development and testing of a guidance law are dynamical mod-
els. In developing a guidance law, simple dynamical models tend to be used because
they are more amenable to analysis. Simple models are obtained through assumptions
such as constant gravity and small relative motion. In simulation, higher-fidelity dy-
namical models tend to be used so that simulation results are representative of reality.
The development of higher-fidelity models that include non-spherical earth, multi-body
perturbations, wind gusts, and so on is beyond the scope of this book.8

The model used depends on the environment in which the vehicle is operating. In
spacecraft guidance, the fundamental equation of motion is called the two-body equation
of motion. From it, other models can be derived. These models include a relative
motion model for spacecraft in close proximity and a flat planet model for which the
gravitational field is constant in direction and magnitude. Another important part of
the dynamical model is the mass equation, which relates fuel consumption to thrust
used during the mission. These models are the topics of this chapter.

Physics-based models are continuous in time and described by ordinary differential
equations. It is sometimes convenient, however, to have models that are discrete in
time. Propagation of the state can then be done in a simple loop and any optimization
problem that includes dynamics as a constraint is finite-dimensional rather than infinite-
dimensional. There is a simple approach for discretizing linear systems using the state
transition matrix that is exact assuming the control is constant over the sampling period.
Discretization of nonlinear systems, on the other hand, is slightly more involved and
deferred until Chapter 4.

8Bond and Allman, Modern Astrodynamics: Fundamentals and Perturbation Methods, 1996.

11
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2.1 Orbital Motion

In the two-body setting, there are only two spherical masses in the universe that do
not touch. This is of course a great simplification of the universe, but experiments
and observation confirm this is a reasonable assumption for the purposes of developing
a guidance law. It may not be a reasonable assumption for developing a simulation
model, which may need to account for other massive bodies, non-spherical masses, and
more.

To understand the motion of the two masses in the universe, three assumptions are
made.

1. A fixed inertial frame exists.
2. The gravitational field adheres to an inverse square law.
3. Newton’s laws of motion apply.

With these assumptions in place, derivation of the equation of motion can begin. The
first mass is m1 and the second mass is m2. The position of the first mass measured
in the fixed inertial frame is R1 ∈ R3. The position of the second mass measured in
the fixed inertial frame is R2 ∈ R3. The relative position of m2 with respect to m1 is
r = R2 −R1. This configuration is shown in Figure 2.1.

O

m2

m1

R1

R2

r

Figure 2.1: Inertial frame with two masses.

Applying the inverse square law and Newton’s laws of motion indicates that

m1R̈1 = +
Gm1m2

∥r∥3
r, (2.1a)

m2R̈2 = −Gm1m2

∥r∥3
r. (2.1b)

These are two, coupled, second-order differential equations. Given six initial conditions
for each, the system can be numerically integrated to find future state values. The
main challenge is that the state is measured relative to some inertial frame. Most
measurements are made from earth, a satellite in orbit, or other celestial body. It
should be clear that each of these objects is accelerating and cannot serve as the origin
of the assumed inertial frame. Thus, this system of differential equations is not much
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use in its current form. A more useful form is obtained by studying the motion of the
second mass with respect to the first. Recognizing that r̈ = R̈2 − R̈1 gives

r̈ = −G(m1 +m2)

∥r∥3
r. (2.2)

This is a single, second-order differential equation. Given an initial relative position
and velocity of the second mass with respect to the first, the system can be numerically
integrated to find future states. If one now thinks of the first mass as the earth and the
second mass as a spacecraft, it is very reasonable to have measurements of the position
and velocity required for integration. The gravitational parameter for the two-body
system is µ = G(m1 + m2). Whenever the second mass is very small compared to
the first µ ≈ Gm1. The two-body equation of motion and its initial conditions are
summarized below in the annotated equation.

r̈ = −
µ

∥r∥3
r , r( t0 ) = r0 , v(t0) = v0 . (2.3)

acceleration

gravitational parameter

initial velocityinitial time

initial position

Solutions to the two-body equation of motion are the standard circles, ellipses,
parabolas, and hyperbolas (depending on the initial conditions). Centuries of work
by bright people have led to nearly analytical solutions of the two-body problem using
Kepler’s equation, which reduces the problem of solving the differential equation to that
of solving a single-variable algebraic equation.9 This algebraic equation does not have
a closed-form solution and must be solved numerically.

In the presence of thrust acceleration u and disturbance acceleration ad, the equation
of motion becomes

r̈ +
µ

∥r∥3
r = ad + u, r(t0) = r0, v(t0) = v0. (2.4)

In first-order state-space formṙ
v̇

 =

 v

− µ
||r||3 r + ad + u

 . (2.5)

Because u is the control variable, which is to be designed in guidance, it is common to
isolate it as in the following form.ṙ

v̇

 =

 v

− µ
||r||3 r + ad

+

0
u

 (2.6)

With given initial conditions r0 and v0, known ad at each time, and known u at each
time, the nonlinear dynamical system can be numerically integrated. In many guid-
ance simulations, this model serves as the high-fidelity simulation model. Simplified
models appropriate for developing guidance laws can be attained by making simplifying
assumptions.

9Curtis, Orbital Mechanics for Engineering Students, 2021.
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2.2 Flat Planet Model

With the two-body setting in mind, it is now assumed that the position of the second
mass is near the surface of the first mass and does not move far from its initial location.
In this case, the gravitational acceleration can be assumed constant in magnitude and
direction, i.e., the quantity

g := − µ

||r||3
r ≈ − µ

||r0||3
r0 (2.7)

is constant where, again, r0 denotes the initial position. When atmospheric forces are
absent or negligible compared to gravitational and thrust forces, the flat planet model
in first-order form is

ṙ = v, r(t0) = r0, (2.8)
v̇ = g + u, v(t0) = v0. (2.9)

The obvious advantage of the flat planet model is that the equations of motion are linear
with a constant gravitational disturbance. Upon defining the state vector x = [r⊤, v⊤]⊤,
the flat planet equations of motion may be written in state-space form.

ẋ = Ax+Bu+Bg, A =

03 I3

03 03

 , B =

03
I3

 (2.10)

The matrix 03 is the 3× 3 zero matrix and I3 is the 3× 3 identity matrix.

Example 2.1. Consider the problem of guiding a vehicle to the surface of the earth.
Mathematically, the guidance problem is to compute the thrust acceleration u required
to drive the final position rf to zero at the final time tf . For the time being, assume
that u is constant. Then, integrating forward from the initial time gives

v = g(t− t0) + u(t− t0) + v0,

r =
1

2
g(t− t0)

2 +
1

2
u(t− t0)

2 + v0(t− t0) + r0.

By setting r(tf ) = 0, one can solve for the required u. Upon defining tgo = tf − t0, the
required thrust acceleration is

u = − 2

t2go

(
1

2
gt2go + v0tgo + r0

)
.

i What happens as tgo (called the time-to-go) approaches zero? Within any guid-
ance algorithm, care must be taken as tgo → 0. This is the reason for the if
statements within the guidance block implemented in Section 1.2.

Are there enough degrees of freedom to also hit a desired velocity target? How could
degrees of freedom be added?

⋆
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An answer to the last two questions is to assume a higher-order polynomial. This
approach is called polynomial guidance, and it leads to guidance laws such as E-guidance
and Apollo lunar descent guidance. These are discussed in more detail in Section 6.2.
For now, assume the desired position trajectory is a cubic function of time, i.e.,

r = r0 + v0(t− t0) + c2(t− t0)
2 + c3(t− t0)

3. (2.11)

Differentiation gives the quadratic velocity profile

v = v0 + 2c2(t− t0) + 3c3(t− t0)
2. (2.12)

Given a predetermined flight time tf , position target rf = r(tf ), and velocity target
vf = v(tf ), the unknown coefficients c2 ∈ R3 and c3 ∈ R3 can be resolved. In matrix
form, rf − r0 − v0tgo

vf − v0

 =

 t2goI3 t3goI3

2tgoI3 3t2goI3


c2
c3

 . (2.13)

Provided tgo ̸= 0, the linear system has a unique solution. Differentiating the velocity
gives the linear acceleration profile in terms of the now known coefficients.

a = 2c2 + 6c3(t− t0) = g + u (2.14)

Solving for the required thrust acceleration yields

u = 2c2 + 6c3(t− t0)− g. (2.15)

Within guidance, the time t0 serves as the time at which the guidance system is being
called. Care must be taken as tgo approaches zero. This phase of guidance is commonly
called the close-out phase. In the implementation below, the thrust is set to zero during
the close-out phase.

MATLAB Implementation of Polynomial Guidance

In this implementation, a planar landing scenario is simulated. The goal is to drive the
vehicle from an initial position r0 and velocity v0 to a final position rf and velocity vf
in a predetermined amount of time tf. For landing, rf and vf are zero.

1 % Data
2 r0 = [1000; 1000]; % m
3 v0 = [-25; 0]; % m/s
4 rf = [0;0]; % m
5 vf = [0;0]; % m/s
6 tf = 100; % s
7 t = linspace(0,tf,1e3)’;

With this data and a function ode to be specified shortly, a simulation can be run using
MATLAB’s built-in integrator ode45.

8 % Guidance Simulation
9 [~,x] = ode45(@ode,t,[r0;v0;0;0],[],rf,vf,tf);

10 figure, plot(x(:,1),x(:,2)), grid on
11 xlabel(‘Range (m)’), ylabel(‘Altitude (m)’)
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This block of code simply completes the integration and generates a plot of the trajectory
in position space. The function to be integrated is now specified and called ode. Included
in this function are a navigation block, guidance block, control block, and dynamics
block.

12 function [xdot,u,u_cmd] = ode(t,x,rf,vf,tf)
13 r = x(1:2);
14 v = x(3:4);
15 u = x(5:6);
16 g = [0;-9.81];
17

18 % Navigation Block
19 rhat = r + .02*r*sin(2*t);
20 vhat = v + .02*v*cos(3*t);
21

22 % Guidance Block
23 I = eye(2); tgo = tf-t;
24 if tgo >= .1
25 C = [tgo^2*I, tgo^3*I; 2*tgo*I, 3*tgo^2*I] \ ...
26 [rf-rhat-vhat*tgo; vf-vhat];
27 c2 = C(1:2); c3 = C(3:4);
28 u_cmd = 2*c2 + 6*c3*(t-t)-g;
29 else
30 u_cmd = [0;0];
31 end
32

33 % Control Block
34 sigma = 10;
35 udot = sigma*u_cmd - sigma*u;
36

37 % Dynamics Block
38 rdot = v;
39 vdot = u + g - 1/2*1*1.5*10*norm(v)*v/1000;
40 xdot = [rdot; vdot; udot];

Lines 13-15 define the position, velocity, and control states. Line 16 defines the gravity
vector. The navigation block provides a state estimate. It is not perfect; it has been
corrupted by a time-varying signal with magnitude ±2% of the true value. The guid-
ance block implements the polynomial guidance law and outputs a commanded thrust
acceleration u_cmd. When the time-to-go is less than 0.1 seconds, the engines shut off
and the commanded acceleration is zero. Note in line 28 that the linear term in the
control is zero because the c3 coefficient multiplies the difference between the simula-
tion time t and the time at which guidance is being called, which is also t. The control
block generates the actual thrust acceleration assuming a first-order actuator model.
Finally, the “high-fidelity” equations of motion appear in the dynamics block. See that
there is a perturbing acceleration modeled as quadratic drag. The drag term appears
in the dynamics block but is unknown to the guidance law. Additional gravitational,
atmospheric, and stochastic perturbations can be included in line 39.
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Running the code shows that the guidance law drives the state close to zero position
and velocity. This is seen in Figure 2.2. The state trajectory begins in the upper right
and descends until it terminates at the origin.
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Figure 2.2: State trajectory generated by polynomial guidance.

With the code in its current form, spend some time trying to “break” the guidance
law. Things to try include adding a bias in the navigation output, slowing the actuator
response, making more dramatic changes to the dynamical model, restricting the flight
time or max acceleration, and so on. Like Q-guidance, this guidance law works well
over a wide array of imperfections, but there is a point past which it will fail. As a
guidance engineer, it is important to know where this point is.

2.3 Relative Orbital Motion

The problem of two spacecraft orbiting near each other is now considered. By assuming
the spacecraft are sufficiently close, the equations describing their relative motion are
linear. Linearity is advantageous because it facilitates integration, analysis, and control
design. A subscript 0 was used previously to denote an initial condition. In this section,
a subscript 0 denotes the target spacecraft, i.e., r0 is the position of the target spacecraft
and v0 is the velocity of the target spacecraft. These values change with time because
the target spacecraft is orbiting the earth according to the two-body problem. The
position and velocity of the so-called chaser spacecraft are r and v, respectively. This
spacecraft is also orbiting the earth according to the two-body problem with thrust
acceleration u ∈ R3. The equations of motion for each spacecraft relative to the central
body are

r̈ = − µ

∥r∥3
r + u and r̈0 = − µ

∥r0∥3
r0. (2.16)
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Assuming that the masses of the spacecraft are much smaller than the mass of the earth,
the gravitational effects of the two spacecraft upon each other can be neglected. The
relative position of the chaser with respect to the target is δ = r − r0. The relative
position vector is shown in Figure 2.3.

earth center

chaser

target

r0

r

δ

Figure 2.3: Relative orbital position diagram.

The equation of motion for the chaser relative to the target is then

δ̈ = −r̈0 −
µ

||r||3
(r0 + δ) + u. (2.17)

Observe that

||r||2 = r · r = (r0 + δ) · (r0 + δ) (2.18a)
= r0 · r0 + 2(r0 · δ) + δ · δ (2.18b)

= ||r0||2 + 2(r0 · δ) + ||δ||2 (2.18c)

= ||r0||2
[
1 +

2(r0 · δ)
||r0||2

+

(
||δ||
||r0||

)2
]
. (2.18d)

It is assumed that ||δ||
||r0|| << 1 such that the last term can be neglected, i.e., the distance

between the spacecraft is much smaller than the distance between the target and the
center of the earth. Eq. (2.18) implies the following relations

=⇒ ||r||2 ≈ ||r0||2
[
1 +

2(r0 · δ)
||r0||2

]
(2.19a)

=⇒ ||r||−3 ≈ ||r0||−3

[
1 +

2(r0 · δ)
||r0||2

]− 3
2

. (2.19b)

Expanding Eq. (2.19b) using the binomial theorem and keeping only first-order terms
in δ yields

||r||−3 ≈ ||r0||−3

[
1− 3

||r0||2
(r0 · δ)

]
=

1

||r0||3
− 3

||r0||5
(r0 · δ). (2.20)
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Substituting Eq. (2.20) into the Eq. (2.17) gives

δ̈ ≈ r̈0 − µ

[
1

||r0||3
− 3

||r0||5
(r0 · δ)

]
(r0 + δ) + u. (2.21)

Expanding and keeping only first-order terms gives

δ̈ ≈ −r̈0 − µ
r0

||r0||3
− µ

||r0||3

[
δ − 3

||r0||2
(r0 · δ)r0

]
+ u. (2.22)

Assuming that r̈0 = − µ
||r0||3 r0, it follows that

δ̈ ≈ − µ

||r0||3

[
δ − 3

||r0||2
(r0 · δ)r0

]
+ u. (2.23)

The coordinate directions associated with δ and its derivates are inherited from the
inertial frame. By assuming that the target moves in a circular orbit and attaching
a local vertical local horizontal (LVLH) frame to the target, these equations can be
transformed into the Clohessy-Wiltshire (CW) equations of relative motion. The local
vertical direction is defined as

ı̂ =
r0

||r0||
, (2.24)

and the local vertical position and velocity are x ∈ R and ẋ ∈ R, respectively. The local
horizontal direction is

ȷ̂ =
v0

||v0||
. (2.25)

The local horizontal position and velocity are y ∈ R and ẏ ∈ R. The out-of-plane
direction is defined as

k̂ =
r0 × v0

||r0 × v0||
, (2.26)

and the out-of-plane position and velocity are z ∈ R and ż ∈ R. Given a δ whose
coordinate directions are aligned with those of the inertial frame, it can be transformed
to the LVLH frame using

x = δ · ı̂, (2.27a)
y = δ · ȷ̂, (2.27b)

z = δ · k̂. (2.27c)

The velocity transformation must account for the fact that the LVLH frame is rotating
with the target spacecraft with angular velocity Ω = ωk̂ where ω2 = µ

||r0||3 .

ẋ = (δ̇ − Ω× δ) · ı̂ (2.28a)

ẏ = (δ̇ − Ω× δ) · ȷ̂ (2.28b)

ż = (δ̇ − Ω× δ) · k̂ (2.28c)

The target is assumed to be in a circular orbit such that Ω̇ = 0 and the acceleration
transformation is given by the following equations.

ẍ =(δ̈ − Ω× δ̇) · ı̂+ (δ̇ − Ω× δ) · (Ω× ı̂) (2.29a)

ÿ =(δ̈ − Ω× δ̇) · ȷ̂+ (δ̇ − Ω× δ) · (Ω× ȷ̂) (2.29b)

z̈ =(δ̈ − Ω× δ̇) · k̂ + (δ̇ − Ω× δ) · (Ω× k̂) (2.29c)
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Plugging in Eq. (2.23) and simplifying terms yields the CW equations of relative motion

ẍ = 3ω2x+ 2ωẏ + ux (2.30a)
ÿ = −2ωẋ+ uy (2.30b)

z̈ = −ω2z + uz (2.30c)

where ux, uy, and uz are the external control, or thrust, accelerations in the ı̂, ȷ̂, and
k̂ directions, respectively. Upon defining the state vector s = [x, y, z, ẋ, ẏ, ż]⊤, the CW
equations may be written in state-space form.

ṡ = As+Bu, A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


, B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


(2.31)

The CW equations are linear and time-invariant. The out-of-plane z motion is decoupled
and a harmonic oscillator. The in-plane x-y motion is coupled. The control u appears
linearly. These equations have been derived by linearization.

A natural problem arises in physics as to whether or not there exists a function L
so that the Euler-Lagrange equations generate the CW equations. Such a problem is
referred to as the inverse problem of Lagrange. Choosing

U = −3

2
ω2x2 − 2ωẏx+

1

2
ω2z2 and T =

1

2
(ẋ2 + ẏ2 + ż2), (2.32)

it is a simple matter to show that L = T −U in the Euler-Lagrange equations generates
the correct equations of motion. Moreover, it can be shown that the CW equations
with zero control admit five constants of motion.10

ψ1 = −6ωx− 3ẏ (2.33a)

ψ2 = 4ẋ2 + (6ωx+ 4ẏ)2 (2.33b)

ψ3 = ω2z2 + ż2 (2.33c)

ψ4 = tan

(
ω

y − 2
ω ẋ

−6ωx− 3ẏ
− tan−1 6ωx+ 4ẏ

−2ẋ

)
(2.33d)

ψ5 = tan

(
tan−1 6ωx+ 4ẏ

−2ẋ
− tan−1 ż

−ωz

)
(2.33e)

10Sinclair and Hurtado, The Motion Constants of Linear Autonomous Dynamical Systems, 2013.
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Also in the zero control case, the CW equations can be integrated analytically to
arrive at the following formulas.

x = (4− 3 cosωt)x0 +
ẋ0

ω sinωt+ 2
ω (1− cosωt) ẏ0 (2.34a)

y = 6 (sinωt− ωt)x0 + y0 +
2
ω (cosωt− 1) ẋ0 +

1
ω (4 sinωt− 3ωt) ẏ0 (2.34b)

z = z0 cosωt+
ż0
ω sinωt (2.34c)

ẋ = 3ωx0 sinωt+ ẋ0 cosωt+ 2ẏ0 sinωt (2.34d)

ẏ = 6ω (cosωt− 1)x0 − 2ẋ0 sinωt+ (4 cosωt− 3) ẏ0 (2.34e)

ż = −ωz0 sinωt+ ż0 cosωt (2.34f)

Observe that most of the terms are periodic (constant, sin, or cos). However, the
y equation has two coefficients that drift with time. Purposeful selection of initial
conditions cancels the drift terms so that the resulting motion is periodic. By factoring
out the initial conditions in Eq. (2.34), the equations can be written in matrix form.

x

y

z

ẋ

ẏ

ż


=



Φrr(t) Φrv(t)

Φvr(t) Φvv(t)





x0

y0

z0

ẋ0

ẏ0

ż0


(2.35)

Each of the sub-matrices Φ∗∗ is 3× 3. The 6× 6 matrix

Φ(t) =

 Φrr(t) Φrv(t)

Φvr(t) Φvv(t)

 (2.36)

is called the state transition matrix for the CW system. The state transition matrix
concept of mapping the state at one time to the state at another time through a linear
matrix multiplication is true more generally. Consider the linear system ẋ = A(t)x
where A is a continuous function of time. For any t0, x0 there is a unique continuously
differentiable solution

x = Φ(t, t0)x0. (2.37)

Again, the matrix Φ is called the state transition matrix (STM) for A. Some texts refer
to this as the “fundamental” matrix.

There are many methods for computing the state transition matrix that can be
found in most books on linear system theory.11 It is commonly defined in terms of the

11Rugh, Linear System Theory, 1995.
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Peano-Baker series. When the system matrix A is constant, the series simplifies so that
the state transition matrix is simply the matrix exponential Φ(t, t0) = eA(t−t0). The
general state transition matrix also satisfies some interesting properties.

•
d

dt
Φ(t, t0) = A(t) Φ(t, t0) (2.38a)

• Φ(t0, t0) = I (2.38b)

• Φ(t, t0) = Φ−1(t0, t) (2.38c)

• Φ−A⊤(t, t0) = Φ−⊤
A (t, t0) = Φ⊤

A(t0, t) (2.38d)

• Φ(t2, t0) = Φ(t2, t1) Φ(t1, t0) (2.38e)

A controlled linear system may be written in the following standard form

ẋ = A(t)x+B(t)u (2.39)

where A is the system matrix, B is the control influence matrix, x is the state, and u is
the control. The general solution to the forced (controlled) linear system is given by

x = Φ(t, t0)x0 +

∫ t

t0

Φ(t, σ)B(σ)u(σ)dσ. (2.40)

To this point, only continuous-time systems have been discussed because these naturally
arise in physics. However, the nature of guidance is discrete because the guidance system
is called at some frequency. To discretize continuous-time systems, discretize time.

t0 < · · · < tk < tk+1 < · · · < tf (2.41)

Assuming that on every interval [tk, tk+1] the control is held constant at the initial value
u(tk), it follows that

x(tk+1) = Φ(tk+1, tk)x(tk) +

∫ tk+1

tk

Φ(tk+1, σ)B(σ) dσ u(tk). (2.42)

The state transition matrix Φ(tk+1, tk) is the discrete-time system matrix Ak. The
integral pre-multiplying u(tk) is the discrete-time control influence matrix Bk. With
xk = x(tk) and uk = u(tk), the discrete-time system is

xk+1 = Akxk +Bkuk. (2.43)

By using the state transition matrix, it is possible to convert continuous-time systems
to discrete-time systems. This discretization is exact under the assumption of piecewise
constant control functions. Discretization of nonlinear systems is discussed in Chapter 4.

MATLAB Implementation of LQR Guidance

To explore the discrete nature of guidance and the role of the discretized dynamics,
an orbital rendezvous problem is now considered. Relative motion in low earth orbit
(LEO) is unintuitive. With the chaser a short distance behind the target, thrusting
to accelerate in the forward (+y) direction increases energy, raises the semi-major axis
of the orbit, increases the orbital period, and has the effect of moving the chaser up
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and back relative to the target. For this reason, early attempts during the Gemini era
to pilot in a relative motion setting were unsuccessful. To illustrate this difficulty, a
simulation is built requiring manual (pilot) inputs. The initial state vector is x0. The
first three elements are relative positions (m) and the last three elements are relative
velocities (m/hr) in the LVLH frame.

1 % Data
2 x0 = [0;-10;0;0;0;0];

The simulation loop is the following. Lines 6-10 are initialization lines. Line 11 begins
the for loop, which then prints position and time information to the screen in lines 12
and 13, prompts the user for a thrust acceleration command in line 14, and integrates
in line 15. Lines 16-21 store information and generate an animated plot to see the result
of the user’s command.

3 %-------------------------%
4 % Loop with ‘pilot’ input %
5 %-------------------------%
6 X = [];
7 T = [];
8 x(1,:) = x0.’;
9 fprintf(‘\nHuman Pilot Scenario \n\n’)

10 figure
11 for i = 1:10
12 fprintf(‘Current pos. is [%4.2f,%4.2f] m. ’,x(end,1),x(end,2));
13 fprintf(‘Time is %4.2f s. ’,i-1);
14 u = input(‘u = ’); % Input as column [ux;uy;uz]
15 [t,x] = ode45(@ode,[i-1,i],x(end,:),[],u);
16 X = [X; x];
17 T = [T; t];
18 for j = 1:length(t)
19 plot(x(j,2),x(j,1),‘ko’,‘MarkerSize’,5), hold on, grid on
20 axis([-20 20 -20 20])
21 pause(0.01)
22 end
23 end

The simulation is simply an integration of the CW equations in Eq. (2.31). The ode
function is given below with a mean motion of ω = 4 rad/hour corresponding to a
circular orbit with period π/2 hours suitable for LEO.

48 function xdot = ode(t,x,u)
49 w = 4; % rad/hr
50 A = [0, 0, 0, 1, 0, 0;
51 0, 0, 0, 0, 1, 0;
52 0, 0, 0, 0, 0, 1;
53 3*w^2, 0, 0, 0, 2*w, 0;
54 0, 0, 0, -2*w, 0, 0;
55 0, 0, -w^2, 0, 0, 0];
56 B = [zeros(3,3); eye(3,3)];
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57 xdot = A*x+B*u;
58 end

Running the code prompts the user for a control input of the form [ux;uy;uz]. Try
several times to pilot the state to the origin for rendezvous. If successful, change the
initial state and try again. The simulation terminates after ten inputs.

To run the simulation with a guidance system or “autopilot”, add the following lines
of code. Line 24 simply pauses the run requiring the user to hit enter to proceed.
Lines 28-33 are initialization lines. The loop begins on line 34. The user is no longer
prompted for a thrust acceleration command. A function is used on line 35 to generate
the command. The loop then proceeds as before by completing the integration, storing
information, and animating a plot.

24 keyboard
25 %-----------------------%
26 % Loop with ‘autopilot’ %
27 %-----------------------%
28 clear x
29 X = [];
30 T = [];
31 x(1,:) = x0.’;
32 fprintf(‘\n\nAuto Pilot Scenario \n\n’)
33 figure
34 for i = 1:10
35 u = getControl( x(end,:).’ );
36 fprintf(‘Current pos. is [%4.2f,%4.2f] m. ’,x(end,1),x(end,2));
37 fprintf(‘Time is %4.2f s. ’,i-1);
38 fprintf(‘u = [%4.2f,%4.2f,%4.2f].\n’,u(1),u(2),u(3)); pause(2)
39 [t,x] = ode45(@ode,[i-1,i],x(end,:),[],u);
40 X = [X; x];
41 T = [T; t];
42 for j = 1:length(t)
43 plot(x(j,2),x(j,1),‘ko’,‘MarkerSize’,5), hold on, grid on
44 axis([-20 20 -20 20])
45 pause(0.01)
46 end
47 end

How exactly the getControl function works is left for later discussion on discrete op-
timal control in Chapter 4. Notwithstanding, the function is below.

59 function u = getControl(x)
60 w = 4; % rad/hr
61 A = [0, 0, 0, 1, 0, 0;
62 0, 0, 0, 0, 1, 0;
63 0, 0, 0, 0, 0, 1;
64 3*w^2, 0, 0, 0, 2*w, 0;
65 0, 0, 0, -2*w, 0, 0;
66 0, 0, -w^2, 0, 0, 0];
67 B = [zeros(3,3); eye(3,3)];



2.4. Mass Dynamics 25

68 Q = diag([10;1;1;10;1;1]);
69 K = lqrd(A,B,Q,eye(3),1);
70 u = -K*x;
71 end

Included in the function are the mean motion w, system matrix A, control influence
matrix B, weight matrix Q, gain matrix K, and commanded thrust acceleration u. The
built-in MATLAB function lqrd generates the linear quadratic regulator (LQR) gain
matrix for the discrete-time system assuming a one-second discretization and constant
hold on the control. Running the code shows that the autopilot has no trouble achieving
rendezvous for various initial conditions as seen in Figure 2.4. The trajectory starts on
the left and moves to the right terminating at the origin. The vertical position never
deviates beyond ±1 m.
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Figure 2.4: State trajectory generated by LQR guidance.

2.4 Mass Dynamics

Thus far, state variables have been positions and velocities. Another key state is mass,
m. Throughout the book, mass dynamics are modeled with the equation

ṁ = −
∥T∥

Isp g0
. (2.44)

thrust force magnitude

engine’s specific impulse (sec) sea-level acceleration of gravity on Earth

For any of the previous examples and guidance implementations, this differential equa-
tion can be appended to the others to compute the fuel mass consumed using the
guidance law. The specific impulse depends upon the propellant type. Typical values
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are about 50 seconds for cold gas, 300 seconds for solid and monoprop, and 3000 seconds
for ion propulsion.

i Note that the equation is nonlinear in the thrust vector because

∥T∥ =
[
T 2
x + T 2

y + T 2
z

]1/2
. (2.45)

Moreover, because

u =
T

m
, (2.46)

problems with mass dynamics are nonlinear.

Solid rockets provide a constant thrust magnitude. In this case, the mass varies linearly
with time

m = m0 −
∥T∥
Isp g0

t. (2.47)

This is useful because the ṁ equation can be eliminated and the T
m terms now appear

linearly.
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2.5 Chapter Problems

Problem 2.1. The initial state of the International Space Station (ISS) is given below.

[1622.39; 5305.10; 3717.44; -7.29977; 0.492357; 2.48318];

The first three elements are positions (in km). The last three elements are velocities
(in km/s). Simulate the uncontrolled, undisturbed trajectory for five orbital periods by
integrating Eq. (2.6) using a fixed-step RK4 integrator with 10-second step. Provide a
three-dimensional plot of the ISS position to see that the solution is an elliptical orbit.

Problem 2.2. The initial state of a spacecraft in proximity to the ISS is given below.

[1612.75; 5310.19; 3750.33; -7.35321; 0.463856; 2.46920];

As in the previous problem, units are km and km/s. Using the same parameters from
Problem 2.1, simulate the uncontrolled, undisturbed two-body motion of the spacecraft.
Provide a three-dimensional plot of the spacecraft position and the ISS position on the
same figure.

Problem 2.3. Building upon the previous two problems, consider the ISS as the target
and the spacecraft as the chaser.

a) Compute the relative position and velocity in the inertial frame. Provide three-
dimensional plots of the relative position and velocity.

b) Using Eq. (2.23), integrate the linearized differential equations for relative position
and velocity. Overlay the linearized plots on those from part a).

c) Transform the linearized relative position and velocity to the LVLH frame using
Eqs. (2.27) and (2.28). Note that the angular velocity vector is given by ω =

0.00115697 k̂ rad/s. Provide three-dimensional plots of the relative position and
relative velocity in the LVLH frame.

d) Use the analytical solutions to the CW equations in Eq. (2.34) to calculate the
linearized relative position and velocity in the LVLH frame. Overlay the CW
solutions on those from part c).

Problem 2.4. Consider two spacecraft in low earth orbit (LEO) in close proximity
such that a linearized relative motion model is appropriate. The mean motion of the
target orbit is ω = 4 rad/hr. The chaser spacecraft is 1 km behind the target and has
no relative velocity.

a) Show that the chaser spacecraft’s initial state is a stationary point in the CW
equations given by Eq. (2.31).

b) For a time step of one hour, compute the state transition matrix.
c) Compute a two-impulse maneuver so that the chaser spacecraft rendezvous with

the target spacecraft at one hour. That is, at the initial and final times determine
the instantaneous change in velocity required to drive the state to the origin.

Problem 2.5. Compute the discrete-time system matrices for the CW equations in
Eq. (2.31) with ω = 4 rad/hr. Use a step size of one second.

Problem 2.6. Compute the discrete-time system matrices for the flat planet model in
Eq. (2.10). Use a step size of one second.
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Problem 2.7. A lunar lander is at 200 m altitude and descending at 1 m/s. The flat
planet model given by Eq. (2.10) is applicable. The goal is to impact the lunar surface
with downward velocity of 1 m/s.

a) Assuming no thrust, at what speed will the lander impact the lunar surface?
b) What thrust acceleration can be applied to hit the surface with downward velocity

of 1 m/s? How much time is required to achieve touchdown?
c) Simulate the descent using i) continuous-time dynamics and ii) discrete-time dy-

namics with one-second step. For each case, provide two-dimensional plots of the
velocity as a function of altitude.

Problem 2.8. By differentiation, show that the general solution to the forced linear
system given by Eq. (2.40) satisfies the differential equation ẋ = Ax+Bu.

Problem 2.9. For what matrix A(t) is the state transition matrix given by

Φ(t, τ) = e−(t2−τ2)

cos(t− τ) − sin(t− τ)

sin(t− τ) cos(t− τ)

 .
Problem 2.10. Show that the linear time-varying system ẋ = A(t)x can be trans-
formed to a time-invariant system if and only if the state transition matrix for A(t) can
be written as Φ(t, 0) = T (t)eRt where R is a constant matrix and T (t) is an invertible
matrix.

Problem 2.11. Verify the state transition matrix properties specified in Eq. (2.38) for
the following matrix.

A =

 0 1

−1 −2


Problem 2.12. Replicate the polynomial guidance implementation beginning on page 15.
Replace the first-order actuator models with second-order actuator models of the form

ü+ 2ζωu̇+ ω2u = ω2ucmd.

With the damping ratio ζ = 0.7, examine the system response for values of ω between
0.1 and 20.

Problem 2.13. Replicate the LQR guidance implementation beginning on page 22.

(a) Practice your piloting skills in the manual entry loop.
(b) Change the positive values used on code line 68 and observe how the system

response changes.
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Optimization

Chapter Learning Objectives

1. Motivate the study of optimization with a discrete-time control problem.
2. Understand optimality conditions for unconstrained and constrained optimization.
3. Understand the role convexity plays in strengthening optimality conditions.
4. Apply optimality conditions to solve optimization problems.

Having now an appreciation for dynamical systems in space applications, the topic
of optimization is introduced so that the problems of designing optimal spacecraft tra-
jectories and performing optimal spacecraft control can be solved. This chapter serves
primarily as introductory material so the reader becomes familiar with the elements of
an optimization problem, how to analyze it, and how to solve it. These carry over to
discrete optimal control and continuous optimal control discussed in Chapters 4 and 5,
respectively. The mathematical presentation is rigorous, but the theory of optimization
is beyond the scope of this book.12

The elements of an optimization problem are an objective function, optimization
(or decision) variable, inequality constraints, and equality constraints. Problems in this
chapter are finite-dimensional meaning the decision variable is in Rn. First, problems
without constraints are considered. The reader may recall from calculus how to solve
such problems: set the derivative equal to zero to find candidate points and pick the
best candidate. Problems with inequality and equality constraints are then considered.

After discussing general problems and theories, convexity and convex optimization
are introduced. It turns out that convex optimization problems are the ones “easily”
solved. The optimality conditions are necessary and sufficient, and efficient algorithms
exist for solving convex problems numerically. Convexity in optimal spacecraft guidance
is playing an ever-increasing role for these reasons. It is the engineer’s responsibility
to formulate the spacecraft guidance problem intelligently so that it can be solved
efficiently. This often means, at the very least, recognizing convexity so a convex solver
is used and, more ambitiously, transforming a nonconvex problem into a convex one.

12Berkovitz, Convexity and Optimization in Rn, 2002.

29
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3.1 Motivating Problem

In Section 2.3 on linearized relative orbital motion, it was shown how to discretize a
continuous-time linear system using the state transition matrix and assuming piecewise
constant controls. The result is a discrete-time linear system of the form

xk+1 = Axk +Buk, k = 0, ..., N − 1. (3.1)

The state at time index k is xk ∈ Rn. The control at time index k is uk ∈ Rm. By
writing out a few terms, it can be seen how the final state at time index N depends on
the initial state and control inputs.

x1 = Ax0 +Bu0, (3.2a)

x2 = Ax1 +Bu1

= A2x0 +ABu0 +Bu1, (3.2b)

x3 = Ax2 +Bu2

= A3x0 +A2Bu0 +ABu1 +Bu2, (3.2c)
...

xN = ANx0 +

N−1∑
k=0

A(N−1−k)B uk. (3.2d)

By stacking all of the controls into a tall (Nm× 1) vector

U =



u0

u1

...

uN−1


, (3.3)

and defining the n×Nm matrix

C =
[
AN−1B, AN−2B, · · · , AB, B

]
, (3.4)

Eq. (3.2d) can be written as
xN −ANx0 = CU. (3.5)

For this linear algebraic equation to be solvable, it is required that the point X =
xN − ANx0 be in the range or image space of C, i.e., X ∈ im(C). Let Up be some
particular solution to the equation. Then the controls in Up will drive the discrete-time
system from its initial condition x0 to the final condition xN in N time steps. Suppose
further that the matrix C has a non-trivial null space. If there is one solution to the
equation, then there are infinitely many solutions. Let L be a matrix such that

im (L) = null (C) . (3.6)
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Then for any vector V with dimension equal to that of the null space, the vector

U = Up + LV, (3.7)

solves the system X = CU . That is, any such U drives the discrete-time system from
x0 to xN in N steps.

i If there are infinitely many control trajectories to drive x0 to xN , how should
one be chosen? The answer, given away by the title of this chapter, is optimization.
Common quantities to optimize in spacecraft guidance are fuel consumed, control
effort, and flight time. In discrete-time settings, the flight time cannot be minimized
directly because that time is associated with the fixed value of N .

3.2 Unconstrained Optimization

To optimize means to minimize or maximize. Graphically, the concepts of minima and
maxima are intuitive and self-evident as seen in Figure 3.1.

x

y

f (x)

y1

x1

y2

x2

Local Maximum

Local Minimum

Global Maximum

Global Minimum

Figure 3.1: Graphical example of local and global maxima and minima.

Mathematically, the following nomenclature is used.

x1 ∈ argmin f, y1 = min f, (3.8)

x2 ∈ argmax f, y2 = max f. (3.9)

argument that minimizes minimum value

argument that maximizes maximum value

These words have global meaning–not local.

The argmin and argmax operators return sets, hence the ∈ symbol. Generally speaking,
it is global optima that are of interest. However, local optima also satisfy the optimality
conditions presented herein. Care must be taken to correctly identify global optima.
By drawing a few pictures, the following facts are evident.

argmin f = argmax −f , (3.10)
min f = −max −f . (3.11)
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That is, points that minimize a function are the same points that maximize the negated
function, and the minimum value of the function is related to the maximum value of
the negated function. Therefore, only a theory for minimization problems is needed.
From calculus, recall the following theorem.

Theorem 3.1. Let f : R → R be differentiable. If x ∈ argmin f , then f ′(x) = 0.

i Any points that satisfy f ′(x) = 0 are called candidates. All optimal points are
candidates, but not all candidates are optimal points.

The theorem is a necessary condition that transforms the optimization problem into
a root-finding problem. The following examples, all of which involve a single variable
and an analytic function, show the many pitfalls one may encounter in trying to solve
optimization problems. Think carefully about each example and draw a picture of the
function to help.

Example 3.1.
minimize f(x) = x2

f ′(x) = 2x = 0 =⇒ x = 0

There is one candidate that globally minimizes the function. ⋆

Example 3.2.
minimize f(x) = x3

f ′(x) = 3x2 = 0 =⇒ x = 0

There is one candidate that does not minimize (locally or globally) the function. ⋆

Example 3.3.
minimize f(x) = e−x

f ′(x) = −e−x ̸= 0

There are no candidates and hence no minima for the function. ⋆

Example 3.4.
minimize f(x) = (x− 2)

2
(x+ 2)

2

Setting f ′(x) = 0 implies that there are 3 candidates −2, 0, +2. Two of them are global
minima. ⋆

Example 3.5.
minimize f(x) = sin (x)

f ′(x) = cos(x) = 0 =⇒ x = π
2 + πk

There are countably infinite candidates. The points π
2 + 2πk are global maxima. The

points 3π
2 + 2πk are global minima. There are countably infinite minima. ⋆

Example 3.6.
minimize f(x) = 1

f ′(x) = 0 for all x ∈ R

There are uncountably many candidates that are global minima and global maxima. ⋆
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The examples demonstrate cases in which the theory does not tell everything one
would want to know. This fact is exacerbated in higher-dimensional problems and
problems with constraints. There is a class of optimization problems for which the
theory does identify global minima. These are convex problems, which are discussed in
Section 3.5.

3.3 Constrained Optimization

Most of the problems arising in optimal spacecraft guidance have constraints arising
from physics, thrust limits, and boundary conditions. Therefore, general nonlinear
constrained optimization problems are now introduced.

minimize f (x) (objective) f : Rn → R
subject to g (x) ≤ 0 (inequality constraints) g : Rn → Rp

h (x) = 0 (equality contraints) h : Rn → Rq

(3.12)

The problem is to find an x ∈ Rn that satisfies the p inequality constraints, q equality
constraints, and minimizes the objective function f . The constraint set is defined to be

X = {x ∈ Rn : g(x) ≤ 0, h(x) = 0} . (3.13)

The optimization problem may now be written in compact forms.

min
x∈X

f and x ∈ argmin
x∈X

f (3.14)

It is evident that the constraint set is a subset of Rn and any optimal point must be a
feasible point. As with unconstrained problems, there are necessary conditions to help
identify candidate points, and these candidates may or may not correspond to minima.
The Lagrangian for the problem is defined to be

L(x, λ0, λ, ν) = λ0f(x) + λ⊤g(x) + ν⊤h(x). (3.15)

Now the optimality conditions for the problem in Eq. (3.12) can be stated.

Theorem 3.2 (Optimality Conditions for Nonlinear Optimization). Let f , g, and h
be continuously differentiable. If the problem attains a minimum at x, then there exist
multipliers λ ∈ Rp and ν ∈ Rq such that the following equations are satisfied.

g(x) ≤ 0 (3.16a)
h(x) = 0 (3.16b)

(λ0, λ, ν) ̸= 0 , λ0 ∈ {0, 1} , λ ≥ 0 (3.16c)

λ⊤g(x) = 0 (3.16d)

∇xL(x, λ0, λ, ν) = 0 (3.16e)

non-triviality condition

abnormal multiplier

complementarity condition
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Solutions with λ0 = 0 are “abnormal” solutions and those with λ0 = 1 are “nor-
mal” solutions. Abnormality implies that the neighborhood of points surrounding the
candidate is degenerate. The complementarity condition implies that either λi = 0 or
gi(x) = 0 for every i = 1, ..., p. What looks like one equation is actually p equations.
This is a useful fact when solving problems by hand. The general strategy for solving
problems is to set λ0 = 1 and solve the remaining equations to arrive at normal candi-
dates, set λ0 = 0 and solve the remaining equations to arrive at abnormal candidates,
and then determine minima by comparing objective values of all candidates. Several
examples are now worked to illustrate the process.

Example 3.7.

minimize x2

subject to (x− 1)
2
= 0

It is obvious that x = 1 is the answer since it is the only feasible point. To use the
optimality conditions, the solution procedure is to first write down the Lagrangian

L = λ0x
2 + ν (x− 1)

2
,

and compute its gradient

∇xL = 2λ0x+ 2ν (x− 1) = 0.

Suppose λ0 = 1. From the gradient condition,

2x (1 + ν) = 2ν =⇒ x =
ν

ν + 1
.

To be feasible, x must be equal to 1. Therefore,

ν = ν + 1 =⇒ 0 = 1.

The obvious contradiction implies that there are no normal solutions. Suppose λ0 = 0.
From the gradient condition,

2ν (x− 1) = 0.

The non-triviality condition requires ν ̸= 0. Thus, x = 1. The global minimum is an
abnormal solution. ⋆

Example 3.8.

minimize x21 + x22 + x1x2 − 3x1

subject to x1 ≥ 0

x2 ≥ 0

The Lagrangian is

L = λ0
(
x21 + x22 + x1x2 − 3x1

)
− λ1x1 − λ2x2.

Components of the gradient are

∂L

∂x1
= 2λ0x1 + λ0x2 − 3λ0 − λ1 = 0, (a)

∂L

∂x2
= 2λ0x2 + λ0x1 − λ2 = 0. (b)
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The complementarity conditions are

λ1x1 = 0, λ2x2 = 0.

From these complementarity conditions, there are four cases to investigate correspond-
ing to the four ways in which they are satisfiable.

1 Suppose x1 = x2 = 0.

(a) =⇒ 3λ0 = −λ1.
(b) =⇒ λ2 = 0.

If λ0 = 0, then λ1 = 0 violating the non-triviality condition. If λ0 = 1, then
λ1 = −3 ≱ 0. Case 1 is ruled out.

2 Suppose λ1 = λ2 = 0. The non-triviality condition tells us that λ0 = 1.

(a) =⇒ 2x1 + x2 = 3.

(b) =⇒ x1 + 2x2 = 0.

Solving this linear system gives x1 = 2, x2 = −1. This point is not feasible. Case 2
is ruled out.

3 Suppose x1 = 0 and λ2 = 0.

(a) =⇒ λ0x2 − 3λ0 − λ1 = 0.

(b) =⇒ 2λ0x2 = 0

=⇒ λ0 = 0 or x2 = 0.

If λ0 = 0, then (a) gives λ1 = 0 violating the non-triviality condition. If x2 = 0, then
λ1 = −3 ≱ 0. Case 3 is ruled out.

4 Suppose λ1 = 0 and x2 = 0.

(a) =⇒ 2λ0x1 − 3λ0 = 0.

(b) =⇒ λ0x1 − λ2 = 0.

If λ0 = 0, (b) gives λ2 = 0 violating the non-triviality condition. If λ0 = 1, then
x1 = 3

2 = λ2 ≥ 0. Case 4 yields a candidate. The optimality conditions are
necessary. They are not sufficient. If there is a solution, this is it.

⋆

After all that work, it would be nice to have a conclusive answer. A useful tool in
this regard is the Weierstrass Theorem.

Theorem 3.3 (Weierstrass Theorem). If f is continuous and X is closed and bounded,
then f attains a minimum and maximum on X .

In the previous example, the domain is not closed and bounded. It can be made so
by adding the artificial constraints

x1 ≤ σ, x2 ≤ σ, σ > 3
2 . (3.17)

These constraints do not change the candidate points. The Weierstrass Theorem ensures
that the candidate point ( 32 , 0) is optimal for any σ ∈ ( 32 ,∞). By placing the problem in
a large, but finite box, a definite conclusion can be drawn. This artificial construction
can be useful theoretically and numerically.



36 Chapter 3. Optimization

Example 3.9.

maximize (x− 1)2 −→ minimize − (x− 1)2

subject to x ≤ 2 subject to x ≤ 2

The Lagrangian and its gradient are

L = −λ0 (x− 1)
2
+ λ (x− 2) , (3.18)

∇xL = −2λ0 (x− 1) + λ = 0. (3.19)

If λ0 = 0, the gradient condition implies λ = 0 violating the non-triviality condition.
Thus, λ0 = 1. If λ = 0, then x = 1 ≤ 2. If x = 2, then λ = 2 ≥ 0. There are two
candidates.

i Neither candidate is optimal because f(x) → −∞ as x → −∞. This example
illustrates difficulties that can arise when the hypotheses of the Weierstrass Theorem
fail to hold. It is important to always keep in mind the following. If a solution exists,
the solution is a candidate. If a solution does not exist, no candidate is a solution.

⋆

Example 3.10.

minimize (x1 − 1)
2
+ x2 − 2

subject to x1 + x2 − 2 ≤ 0

x2 − x1 − 1 = 0

The Lagrangian is

L = λ0 (x1 − 1)
2
+ λ0x2 − 2λ0 + λ (x1 + x2 − 2) + ν (x2 − x1 − 1) .

Components of the gradient are

∂L

∂x1
= 2λ0 (x1 − 1) + λ− ν = 0, (a)

∂L

∂x2
= λ0 + λ+ ν = 0. (b)

The complementarity condition is

λ (x1 + x2 − 2) = 0.

Suppose that λ0 = 0.

(a) =⇒ λ = ν.

(b) =⇒ λ = −ν.

Thus, λ = ν = 0. This violates the non-triviality condition. Therefore, λ0 = 1.
Suppose λ = 0.

(a) =⇒ 2 (x1 − 1) = −1 =⇒ x1 =
1

2
.

(b) =⇒ ν = −1.
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The equality constraint gives x2 = 3
2 . Substituting into the inequality constraint gives

1
2 + 3

2 − 2 = 0 ≤ 0. Therefore, (x1, x2) =
(
1
2 ,

3
2

)
is a candidate.

Suppose that x1 + x2 − 2 = 0. Together with the equality constraint,

x1 + x2 = 2,

x2 − x1 = 1.

The solution to this system is again (x1, x2) =
(
1
2 ,

3
2

)
. There is one candidate. ⋆

Example 3.11.

minimize x21 + 4x22

subject to x21 + 2x22 ≥ 4

The Lagrangian is
L = λ0x

2
1 + 4λ0x

2
2 + λ

(
−x21 − 2x22 + 4

)
.

Components of the gradient are

∂L

∂x1
= 2λ0x1 − 2λx1 = 0, (a)

∂L

∂x2
= 8λ0x2 − 4λx2 = 0. (b)

The complementarity condition is

λ
(
−x21 − 2x22 + 4

)
= 0.

Suppose that λ0 = 0. Then λ ̸= 0, or else it would violate the non-triviality condition.
Therefore, x1 = x2 = 0. But this does not satisfy the inequality constraint. Therefore,
λ0 = 1.

Suppose λ = 0. Then again, x1 = x2 = 0 which is impossible. Therefore, x21+2x22 =
4.

(a) =⇒ 2x1 (1− λ) = 0.

(b) =⇒ 4x2 (2− λ) = 0.

If λ = 1, then x2 = 0 and x1 = ±2. The objective value at these points is f = 4. If
λ = 2, then x1 = 0 and x2 = ±

√
2. The objective value at this point is f = 8. There

are two candidates: (x1, x2) = (±2, 0). ⋆

Example 3.12.

minimize x2 − (x1 − 2)
3
+ 3

subject to x2 ≥ 1

The Lagrangian is

L = λ0x2 − λ0 (x1 − 2)
3
+ 3λ0 + λ (1− x2) .
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Components of the gradient are

∂L

∂x1
= −3λ0 (x1 − 2)

2
= 0, (a)

∂L

∂x2
= λ0 − λ = 0. (b)

It is evident from Eq. (b) that λ0 = λ = 1, or else the non-triviality condition would
be violated. Eq. (a) then gives x1 = 2. The complementarity condition λ (1− x2) = 0
gives x2 = 1. The candidate is (x1, x2) = (2, 1) giving an objective value of 4.

For fixed x2, however, the objective is unbounded in x1. The problem does not have
a minimum. ⋆

Example 3.13.

minimize (x1 − 2)
2
+ (x2 − 1)

2

subject to x2 − x21 ≥ 0

2− x1 − x2 ≥ 0

x1 ≥ 0

The Lagrangian is

L = λ0 (x1 − 2)
2
+ λ0 (x2 − 1)

2

+ λ1
(
x21 − x2

)
+ λ2 (x1 + x2 − 2) + λ3 (−x1) .

Components of the gradient are

∂L

∂x1
= 2λ0 (x1 − 2) + 2λ1x1 + λ2 − λ3 = 0, (a)

∂L

∂x2
= 2λ0 (x2 − 1)− λ1 + λ2 = 0. (b)

Suppose the first two constraints are active. Then

x21 = x2 =⇒ x1 = 1,

x1 + x2 = 2 x2 = 1.

Since x1 = 1 > 0, λ3 = 0.

(a) =⇒ 2λ0 (−1) + 2λ1 + λ2 = 0.

(b) =⇒ λ1 = λ2.

Thus,
−2λ0 + 3λ1 = 0.

If λ0 = 0, then λ1 = λ2 = λ3 = 0, which violates the non-triviality condition. Therefore,
λ0 = 1, λ1 = λ2 = 2

3 , λ3 = 0. The candidate is (x1, x2) = (1, 1). ⋆
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3.4 Convex Functions and Sets

The challenge of finding candidate solutions and determining which, if any, of those are
minima is exacerbated in higher dimensions. The problems described in Chapters 4, 5,
6, and 7 can easily have hundreds or thousands of variables. Numerical methods for
general nonlinear optimization problems are sensitive to initial guesses, and providing
good initial guesses is yet another challenge. All of these challenges are avoidable when
the optimization problem is convex. A convex optimization problem is one with a convex
objective function and a convex constraint set.

Convex functions are linear or bowl-shaped. Examples appear in Figure 3.2.

convex convex convex

nonconvex nonconvex

Figure 3.2: Examples of convex and nonconvex functions.

Convex sets have no holes or indentations. Examples appear in Figure 3.3.

convex convex convex

nonconvex nonconvex nonconvex

Figure 3.3: Examples of convex and nonconvex sets.
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Definition 3.1. A function f : Rn → R is convex if for every x, y ∈ Rn and θ ∈ [0, 1]

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.20)

That is to say, the line connecting any two points on the function is not below the
function between those two points. This “line above the curve” feature is illustrated in
Figure 3.4.

Figure 3.4: Illustration of the definition of a convex function.

Linear functions are convex because linearity requires that for every x, y ∈ Rn and every
α, β ∈ R

f(αx+ βy) = αf(x) + βf(y), (3.21)

which is the definition of convexity restricted to equality.

Example 3.14. Show that the function f(x) = x1x2 is nonconvex. Take two points in
R2 as

x =

1
2

 and y =

2
1

 .
Then

θx+ (1− θ) y = θ

1
2

+ (1− θ)

2
1

 =

2− θ

1 + θ

 .
Evaluating the function at this point gives

f(θx+ (1− θ) y) = (2− θ) (1 + θ) = 2 + θ − θ2.

Evaluating the linear approximation gives

θf(x) + (1− θ) f(y) = 2θ + 2 (1− θ) = 2.

The required inequality 2 + θ − θ2 ≤ 2 is not satisfied for all θ ∈ [0, 1]. With θ = 1
2

2 +
1

2
− 1

4
=

9

4
> 2.

Therefore, the function is nonconvex. ⋆
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Example 3.15. Show that f(x) = x2 is convex. To begin, the left and right-hand sides
of Eq. (3.20) are computed.

f(θx+ (1− θ) y) = (θx+ (1− θ) y)2

= θ2x2 + 2θ (1− θ)xy + (1− θ)
2
y2.

θf(x) + (1− θ) f(y) = θx2 + (1− θ) y2.

Applying the inequality in the definition gives the following.

θx2 + (1− θ) y2 − θ2x2 − 2θ (1− θ)xy − (1− θ)
2
y2 ≥ 0

=⇒ θx2 + y2 − θy2 − θ2x2 − 2θ (1− θ)xy −
(
1− 2θ + θ2

)
y2 ≥ 0

=⇒ θ (1− θ)x2 − 2θ (1− θ)xy + θ (1− θ) y2 ≥ 0

=⇒ θ (1− θ) (x− y)
2 ≥ 0

The colored lines highlight terms that are grouped together. The last inequality is true
for every x, y ∈ R and every θ ∈ [0, 1]. Therefore, f(x) = x2 is convex. ⋆

As experienced in the previous examples, determining convexity using the definition
can be cumbersome for even simple functions. Under some smoothness requirements,
convexity can be tested based on derivatives.

Theorem 3.4. Let f : Rn → R be twice continuously differentiable. The function f is
convex if and only if for every x ∈ Rn the Hessian ∇2f(x) is positive semi-definite.

Example 3.16. Determine if f(x) = x2 is convex.

∇f = 2x,

∇2f = 2 ≥ 0 =⇒ convexity.

⋆

Example 3.17. Determine if f(x) = x3 on [0,∞) is convex.

∇f = 3x2,

∇2f = 6x ≤ 0 on (−∞, 0] =⇒ nonconvexity.

⋆

Example 3.18. Determine if f(x) = x21 − x22 is convex.

∇f = [2x1, −2x2]

∇2f =

 2 0

0 −2


The eigenvalues of the Hessian are ±2. The Hessian is not positive definite and the
function is not convex. ⋆
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Definition 3.2. A set S is convex if the line segment between any two points in S lies
in S, i.e., if for every x1, x2 ∈ S and θ ∈ [0, 1]

θx1 + (1− θ)x2 ∈ S. (3.22)

Some examples of nonconvex sets and the violating line segment are shown in Fig-
ure 3.5.

nonconvex nonconvex nonconvex

Figure 3.5: Nonconvex sets and the violating line segments.

Example 3.19. Show that the line segment S = {x ∈ R : 0 ≤ x ≤ 1} is convex. Let
x1 and x2 be any two points in S. Without loss of generality, let x1 ≤ x2. Then,
for any θ ∈ [0, 1], the point θx1 + (1− θ)x2 is bounded below by x1 and above by
x2. These are, in turn, bounded below and above by 0 and 1, respectively. Therefore,
θx1 + (1− θ)x2 ∈ S and the set is convex. ⋆

Example 3.20. Show that the boundary of a square given by S = {x ∈ R2 : ||x||∞ = 1}
is nonconvex. Let x1 = (1, 0), x2 = (−1, 0), and θ = 1

2 . Then θx1 + (1− θ)x2 = (0, 0),
which is not in the set. The set is nonconvex. ⋆

There are many fascinating properties about convex functions and sets that are
beyond the scope of this book.13

3.5 Convex Optimization

With knowledge about convex functions, it is time to return to the optimization prob-
lem in Eq. (3.12). This problem is convex if the objective function is convex and the
constraint set in Eq. (3.13) is convex. Sufficient conditions for the constraint set to
be convex are that the inequality functions g be convex and the equality functions h
be linear meaning h(x) = Ax − b. Because most of the constraint functions arising in
optimal spacecraft guidance applications are twice continuously differentiable, testing
the functions for convexity using Theorem 3.4 is easier than testing the constraint set
for convexity.

Before stating the optimality conditions for convex optimization problems, a defini-
tion is given.

Definition 3.3. A point x̂ is strictly feasible if h(x̂) = 0 and g(x̂) < 0.

Any problem that has a feasible point but no strictly feasible point can be changed
by an arbitrarily small ϵ > 0 so that it does by rewriting g(x) − ϵ ≤ 0. As a result,
every feasible problem has or almost has a strictly feasible point.

13Boyd and Vandenberghe, Convex Optimization, 2004.
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The Lagrangian for convex optimization problems is

L(x, λ, ν) = f(x) + λ⊤g(x) + ν⊤h(x), (3.23)

which is the same as before except there is no λ0 pre-multiplying f(x). In other words,
λ0 = 1. The necessary and sufficient conditions for convex optimization problems are
now stated.

Theorem 3.5 (Optimality Conditions for Convex Optimization). Let f and g be convex
and differentiable and h(x) = Ax − b. Suppose a strictly feasible point exists. The
problem attains a minimum at x if and only if there exist multipliers λ ∈ Rp and ν ∈ Rq

such that the following equations are satisfied.

g(x) ≤ 0 (3.24a)
Ax = b (3.24b)
λ ≥ 0 (3.24c)

λ⊤g(x) = 0 (3.24d)
∇xL(x, λ, ν) = 0 (3.24e)

The equations of the theorem are the same as those in Theorem 3.2 with λ0 = 1. For
this reason, the non-triviality condition is always satisfied and removed as a condition.
Most importantly, Theorem 3.5 is necessary and sufficient. The “if” of Theorem 3.2 has
been strengthened to “if and only if”. Even so, interesting cases still occur in convex
optimization.

i The following convex problems have no solution, one solution, and infinitely
many solutions.

minimize e−x minimize x2

subject to 0 ≤ x <∞ subject to − 1 ≤ x ≤ 1

minimize 0x

subject to − 1 ≤ x ≤ 1

The steps for solving convex optimization problems are the same as those used in pre-
vious problems. The first example of convex optimization illustrates the importance of
having a strictly feasible point.

Example 3.21.

minimize x2

subject to (x− 1)2 ≤ 0

The objective function and inequality constraint function are convex. Hence, the prob-
lem is convex. The constraint set contains only one point, x = 1, which is therefore the
global minimizer. No strictly feasible point exists, and the optimality conditions should
not be applied. Ignoring this fact momentarily, the Lagrangian is

L = x2 + λ(x− 1)2.
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The gradient of the Lagrangian is

∇xL = 2x+ 2λ(x− 1) = 0.

Substituting x = 1 implies that 2 = 0, an obvious contradiction. All hypotheses of
Theorem 3.5 must be checked before using it. ⋆

Example 3.22.

minimize
1

2
x⊤Px+ q⊤x+ r, P = P⊤ ≥ 0

subject to Ax = b

The objective function is convex because of the positive semi-definiteness of P . The
equality constraint is linear. Hence, the problem is convex. The requirement for strict
feasibility is trivially satisfied because there are no inequality constraints. The La-
grangian is

L =
1

2
x⊤Px+ q⊤x+ r + ν⊤ (Ax− b) .

The gradient of the Lagrangian is

∇xL = Px+ q +A⊤ν = 0.

Therefore, the solution to this problem is obtained by solving the linear system P A⊤

A 0


 x

ν

 =

 −q

b

 .
Any solution of this matrix equation is a global minimizer. ⋆

3.6 Solution to the Motivating Problem

We are now prepared to consider again the motivating problem of Section 3.1. The
problem of driving the system from its initial state x0 to a final state xN in N steps
was reduced to the linear algebra problem

X = CU, (3.25)

which has infinitely many solutions when it is feasible and the null space of C is non-
trivial. Consider the following quadratic objective given by

1

2

∑
k

∥uk∥22 =
1

2

∑
k

u⊤k uk =
1

2
U⊤U =

1

2
∥U∥22 . (3.26)

The resulting constrained optimization problem is the following.

minimize
1

2
U⊤U

subject to X = CU
(3.27)
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The optimization variable here is U , the objective function is convex, the equality
constraint is linear, and the requirement for strict feasibility is trivially satisfied because
there are no inequality constraints. The Lagrangian is

L =
1

2
U⊤U + ν⊤ (CU −X) . (3.28)

The gradient of the Lagrangian is

∇uL = U + C⊤ν = 0. (3.29)

Assuming that C is full rank, one can solve for ν by pre-multiplying with C

CU + CC⊤ν = 0 =⇒ ν = −
(
CC⊤)−1

CU, (3.30a)

=⇒ ν = −
(
CC⊤)−1

X . (3.30b)

from the equality constraint

Substituting this back into the gradient condition gives the candidate solution

U = C⊤(CC⊤)−1X. (3.31)

This is the global minimizer. By definition of optimality, no other feasible control can
have lower objective while driving the state of the system from x0 to xN in N steps.
The controls at each discrete time can be extracted from U and substituted into the
discrete-time system to generate the associated states. The sequence of controls uk is
the optimal control trajectory. The sequence of states xk is the optimal state trajectory.

MATLAB Implementations including Direct Transcription

There are multiple ways of solving the problem in MATLAB for a specific data instance.
These ways include typing in the analytic solution, using pinv, using quadprog, and
using YALMIP to parse the problem. The use of YALMIP is inordinate for this small ex-
ample, but as will be demonstrated, doing so allows one to easily solve more challenging
problems.

To demonstrate the numerical implementations, the CW equations 2.31 are used.
For a low earth orbit, the mean motion is set to 4 rad/hour and converted to rad/sec.
The continuous-time system matrices are as follows.

1 % Continuous-time CW System
2 w = 4 / 3600;
3 A = [0, 0, 0, 1, 0, 0;
4 0, 0, 0, 0, 1, 0;
5 0, 0, 0, 0, 0, 1;
6 3*w^2, 0, 0, 0, 2*w, 0;
7 0, 0, 0, -2*w, 0, 0;
8 0, 0, -w^2, 0, 0, 0];
9 B = [zeros(3,3); eye(3,3)];

Conversion to a discrete-time system is done using MATLAB’s built-in c2d command
with a time step dt of one second. An alternative approach is to use the state transition
matrix for the CW system to compute the discrete-time matrices.
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10 % Discretization
11 dt = 1;
12 sysc = ss(A,B,[],[]);
13 sysd = c2d(sysc,dt);
14 A = sysd.A;
15 B = sysd.B;

The analytical approach outlined above is now implemented. The initial and final
conditions are specified in x0 and xF, respectively. The number of steps is N. The
optimal solution is U.

16 % Analytical Implementation
17 x0 = [0;-1;0;-.1;.1;0];
18 xF = [0;0;0;0;0;0];
19 N = 5*60;
20 X = xF - A^N*x0;
21 C = [];
22 for k = 0:N-1
23 C = [C, A^(N-1-i)*B];
24 end
25 U = C.’*inv(C*C.’)*X;

To simulate the system, the tall U is reshaped into u where each column of u represents
a control. The discrete-time system is simulated using a for loop.

26 % Simulation
27 u = reshape(U,3,N);
28 x(:,1) = x0;
29 for k = 1:N
30 x(:,k+1) = A*x(:,k) + B*u(:,k);
31 end
32

33 figure, plot(x(2,:),x(1,:)), grid on

Running the code at this point solves the optimization using the analytical solution,
simulates the discrete-time system, and generates a plot of the vertical and horizontal
positions. The solution in line 25 can also be calculated using the pseudoinverse.

25 U = pinv(C)*X;

Yet another approach is to solve a quadratic program.

25 U = quadprog(eye(3*N),zeros(3*N,1),[],[],C,X);

A different approach is to use YALMIP to parse the problem and Gurobi to solve the
problem. In Chapter 4, such an approach is called direct transcription. If the Gurobi
solver is not available, the SDPT3 solver also works on this problem. To get started
with YALMIP, some options and optimization variables are defined. The command
sdpsettings requires YALMIP to be installed.14

14Löfberg, YALMIP : A Toolbox for Modeling and Optimization in MATLAB, 2004.
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33 % YALMIP
34 opts = sdpsettings;
35 opts.solver = ‘gurobi’;
36

37 yalmip(‘clear’)
38 x = sdpvar(6,N+1);
39 u = sdpvar(3,N);

Note that in code, the time index starts at 1 rather than 0. The constraints of the
problem are accumulated in con and the objective is obj. In direct transcription, the
problem is input in its discrete-time form. Never are the C and X matrices used.

40 con = [x(:,1) == x0];
41 obj = 0;
42 for k = 1:N
43 con = [con, x(:,k+1) == A*x(:,k) + B*u(:,k)];
44 obj = obj + u(:,k).’*u(:,k);
45 end
46 con = [con, x(:,N+1) == xF];
47 % placeholder
48 % placeholder
49 sol = solvesdp(con,obj,opts);

Running the YALMIP portion of the code generates optimal controls and states consis-
tent with those calculated from the analytical solution.

A key benefit of this approach is that it is now easy to impose other constraints on
the problem. For example, if it is desired to restrict the state trajectory to ±3.5 km,
constraints can be added to lines 47 and 48.

47 con = [con, -3.5 <= x(1,:) <= 3.5];
48 con = [con, -3.5 <= x(2,:) <= 3.5];

Running the code now generates an optimal control that transfers the state from its
initial condition to the desired final condition in N steps and keeps the state in its 3.5
km box. The state trajectories for the unconstrained and constrained cases are shown
in Figure 3.6.
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Figure 3.6: Unconstrained and constrained state trajectories.

The remaining chapters investigate discrete-time and continuous-time optimal con-
trol problems. While the theory for continuous-time problems is significantly more
advanced, a sound numerical approach for solving them is often the same: discretize,
parse using YALMIP, and solve using Gurobi. A MATLAB implementation of this
procedure for an orbit transfer problem begins on page 77.
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3.7 Chapter Problems

Problem 3.1. Solve the following problem analytically and numerically using fmincon.

minimize x21 + x22

subject to x2 + x1 − 2 ≤ 0

x21 − x2 − 4 ≤ 0

Problem 3.2. Solve the following problem analytically and numerically using fmincon.

minimize x21 + x22

subject to x1 − 10 ≤ 0

x1 − x22 − 4 ≥ 0

Problem 3.3. Solve the following problem analytically and numerically using fmincon.

minimize x21 + x22

subject to 4− x1 − x22 ≤ 0

3x2 − x1 ≤ 0

− 3x2 − x1 ≤ 0

Problem 3.4. Solve the following problem analytically and numerically using fmincon.

minimize x1x2

subj. to x1 + x2 ≥ 2

x2 ≥ x1

Problem 3.5. Solve the following problem analytically and numerically using fmincon.

minimize − x1

subject to − x1 ≤ 0

− x2 ≤ 0

x2 + (x1 − 1)3 ≤ 0

Problem 3.6. Solve the following problem analytically and numerically using fmincon.

minimize 2x21 − x22

subject to x21x2 − x32 = 0

Problem 3.7. Why is convexity important in optimization?

Problem 3.8. Prove that the following set is convex.

S = {u ∈ Rm : ∥u∥2≤ 2}

Problem 3.9. Prove that the following set is nonconvex.

S = {u ∈ Rm : 1 ≤ ∥u∥2≤ 2}
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Problem 3.10. Consider a lunar lander in close proximity to the lunar surface such
that the flat planet model in Eq. (2.10) is valid. The initial downrange, crossrange,
altitude, and associated rates are given below in meters and meters per second.

r0 = [1000; 50; 1000]; % m
v0 = [-25; 0; 0]; % m/s

The goal is to land at the origin of the coordinate system with downward velocity of
1 m/s. The flight time is two minutes. Design a nominal continuous-time descent
trajectory using polynomial guidance as described in Section 2.2.

Problem 3.11. Building upon the previous problem, design a nominal discrete-time
descent trajectory using direct transcription. An implementation of direct transcription
for the motivating problem begins on page 46. Recognize that the dynamics in that
implementation are not based on the flat planet model. Discretize the system using a
time step of one second. Use the same objective function given in code line 44.



Chapter 4

Discrete Optimal Control

Chapter Learning Objectives

1. Derive optimality conditions for discrete optimal control problems.
2. Develop and implement optimal control, regulation, and tracking algorithms.
3. Apply these algorithms to relative orbital motion and descent problems.
4. Develop and implement Chebyshev discretization of nonlinear systems.
5. Solve an optimal orbit transfer problem using direct transcription.

The motivating problem of Chapter 3 was to drive a discrete-time system from an
initial condition to a final condition in N steps. By recursively writing out the state
equation, the problem was “reduced” to one with a quadratic objective function and
linear constraint. The problem was solved numerically several ways at the end of the
chapter. Three of those ways used the “reduced” form. The final way, using YALMIP
and Gurobi, left the problem in its original form with discrete-time dynamics. The
original form of the problem is called a discrete optimal control problem.

The first objective is to derive optimality conditions that apply directly to problems
written in a form with discrete-time dynamics. One reason for doing so is that the
presence of nonlinear dynamics severely complicates the “reduction” process. Another
is that the natural structure of discrete-time dynamics imposes a dual structure on
the multipliers; they now also evolve according to discrete-time dynamics. Lastly, fu-
ture chapters consider continuous-time optimal control problems in which the dynamics
are described by ordinary differential equations. The resulting optimization conditions
mirror their discrete-time counterparts in this chapter.

A linear quadratic framework is explored extensively. Algorithms for control, regula-
tion, and tracking are applied to the relative orbital motion model to achieve rendezvous
and circumnavigation. The regulation idea is applied to follow a nominal descent trajec-
tory based on polynomial guidance. The chapter concludes by investigating nonlinear
systems, presenting a discretization technique using Chebyshev polynomials, and im-
plementing direct transcription to solve an optimal orbit transfer problem.

51
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4.1 A General Discrete Optimal Control Problem

A general form for a discrete optimal control problem is given below. Like all previ-
ous optimization problems, it includes an objective function that is scalar-valued and
constraint functions.

minimize J = ϕ(xN ) +

N−1∑
k=0

ℓk(xk, uk) ,

subject to xk+1 = fk(xk, uk) , k = 0, . . . , N − 1

x0 is specified , ψ(xN ) = 0 .

(4.1)

terminal cost running cost

dynamics of the system

initial state terminal state constraint

The terminal cost function ϕ(xN ) is a penalty on the states only at the final time. For
example, if it is desired to drive the system close to the origin, one may choose

ϕ(xN ) = x⊤NxN . (4.2)

The running cost function ℓk(xk, uk) penalizes states and controls all along the trajec-
tory (except at the final time). For example, if it is desired to keep the states and
controls close to zero, one may choose

ℓk(xk, uk) =
1

2
x⊤k xk +

1

2
u⊤k uk. (4.3)

The dynamics of the system are xk+1 = fk(xk, uk). The initial condition of the system
is fixed at x0, and the final state of the system xN is not fixed, but constrained by
ψ(xN ) = 0. At present, the controls are unconstrained, i.e., uk ∈ Rm.

Though it may look more complicated than previous optimization problems, it is
not. What is different is that the objective and constraint functions have specific forms.
The optimality conditions of either Theorem 3.2 or Theorem 3.5 can be specialized to
arrive at conditions specific to this problem. The multiplier λ was previously associated
with inequality constraints and ν with equality constraints. The standard usage in
optimal control is to associate λ with the dynamics and ν with the terminal constraint.

i To not confuse the abnormal multiplier (previously λ0) with a value of λ at time
index 0, the abnormal multiplier is now denoted λ0.

Consistent with its definition for the nonlinear optimization problem in Eq. 3.12,
the Lagrangian is

L = λ0ϕ(xN ) + λ0
N−1∑
k=0

ℓk(xk, uk) +

N−1∑
k=0

λ⊤k+1

(
fk(xk, uk)− xk+1

)
+ ν⊤ψ(xN ). (4.4)

see that there are N λ’s: λ1, . . ., λN

Before moving on to computing components of the gradient, it is convenient to define
the Hamiltonian function

Hk
(
xk, uk, λ

0, λk+1

)
= λ0ℓk(xk, uk) + λ⊤k+1f

k(xk, uk), (4.5)
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for k = 0, . . . , N−1. The Lagrangian may then be rewritten in terms of the Hamiltonian
as

L = λ0 ϕ(xN ) + ν⊤ψ(xN ) +

N−1∑
k=0

Hk
(
xk, uk, λ

0, λk+1

)
−

N∑
k=1

λ⊤k xk (4.6a)

= λ0 ϕ(xN ) + ν⊤ψ(xN ) +H0
(
x0, u0, λ

0, λ1
)
− λ⊤NxN

+

N−1∑
k=1

(
Hk

(
xk, uk, λ

0, λk+1

)
− λ⊤k xk

)
. (4.6b)

Computing components of the gradient with respect to all the u’s and all the x’s (except
x0 because it is fixed) and setting them equal to zero gives rise to the specialized form
of optimality conditions.

∂L

∂xN
= λ0

∂ϕ

∂xN
+

∂ψ

∂xN
ν − λN = 0 (transversality condition) (4.7)

∂L

∂uk
=
∂Hk

∂uk
= 0 (stationarity condition)

k=0, ..., N−1
(4.8)

∂L

∂xk
=
∂Hk

∂xk
− λk = 0 (costate equation)

k=1, ..., N−1
(4.9)

xk+1 =
∂Hk

∂λk+1
= fk (xk, uk) (state equation)

k=0, ..., N−1
(4.10)

The state equation is not one generated from the gradient condition. By writing it, how-
ever, it is seen that the state equation and costate equation share a similar Hamiltonian
form. For cases where the final state is fixed, computing the gradient with respect to
xN is not required, and the transversality condition is removed from the set of opti-
mality conditions. Lastly, the non-triviality condition stating that not all multipliers
be zero remains one of the optimality conditions and is useful for sometimes ruling out
the abnormal case.

i When the problem is convex and differentiable with a strictly feasible point,
λ0 = 1 and the optimality conditions are necessary and sufficient as in Theorem 3.5.
Because the discrete-time dynamics and terminal state constraint are equality con-
straints, convex problems have linear dynamics and linear terminal constraint.

Connecting Optimization and Discrete Optimal Control

To make the connection between optimization and discrete optimal control clearer,
consider the following one-dimensional problem. The goal is to move an object from
its starting position x0 = 2 to a final position x2 = 0 in two steps. This means that
at time 0 the object can be moved and at time 1 the object can be moved. After this
second move, the object should be at zero as illustrated in Figure 4.1.
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x

0 1 2

initial position

desired final position

Figure 4.1: Illustration of the one-dimensional discrete optimal control problem.

The amounts to be moved are denoted by u0 and u1. Thus, the object moves according
to

x1 = x0 + u0, (4.11)
x2 = x1 + u1. (4.12)

Combining the equations gives

x2 = x0 + u0 + u1. (4.13)

Since x2 and x0 are known, they are grouped together

x2 − x0 = −2 = u0 + u1. (4.14)

Any movements u0, u1 that add to −2 are feasible movements. Of all the feasible
movements, the objective is to minimize the quadratic function

J =
1

2

(
u20 + u21

)
. (4.15)

The problem is solved in three ways. Though the problem is convex, the abnormal
multiplier is kept for the sake of practice.

In the first approach, the x variables are eliminated and Theorem 3.2 is used.

minimize
u0,u1

1

2

(
u20 + u21

)
subject to u0 + u1 + 2 = 0

(4.16)

The Lagrangian is

L =
λ0
2

(
u20 + u21

)
+ ν (u0 + u1 + 2) . (4.17)

Components of the gradient are

∂L

∂u0
= λ0 u0 + ν = 0, (4.18)

∂L

∂u1
= λ0 u1 + ν = 0. (4.19)

If λ0 = 0, then ν = 0 violating non-triviality. Thus, λ0 = 1 and u0 = u1 = −ν. Since
u0 + u1 = −2 and u0 = u1, it is concluded that u0 = u1 = −1.
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In the second approach, the x1 variable is kept and Theorem 3.2 is used.

minimize
u0,u1,x1

1

2

(
u20 + u21

)
subject to x1 = 2 + u0

0 = x1 + u1

(4.20)

The Lagrangian is

L =
λ0
2

(
u20 + u21

)
+ λ1 (2 + u0 − x1) + λ2 (x1 + u1 − 0) . (4.21)

Components of the gradient are

∂L

∂u0
= λ0 u0 + λ1 = 0, (4.22)

∂L

∂u1
= λ0 u1 + λ2 = 0, (4.23)

∂L

∂x1
= −λ1 + λ2 = 0. (4.24)

If λ0 = 0, then λ1 = λ2 = 0 violating non-triviality. Thus, λ0 = 1. It is again seen that
u0 = u1 and u0 + u1 = −2. Thus, u0 = u1 = −1.

In the final approach, conditions from discrete optimal control are used. Write the
Hamiltonian

Hk =
1

2
λ0 u2k + λk+1 f

k(xk, uk), (4.25a)

⇓

H0 =
1

2
λ0 u20 + λ1 (x0 + u0) , (4.25b)

H1 =
1

2
λ0 u21 + λ2 (x1 + u1) . (4.25c)

The stationarity conditions are

∂H0

∂u0
= λ0u0 + λ1 = 0, (4.26)

∂H1

∂u1
= λ0u1 + λ2 = 0. (4.27)

The costate equation is

λ1 =
∂H1

∂x1
= λ2. (4.28)

If λ0 = 0, then λ1 = λ2 = 0 violating non-triviality. Thus, λ0 = 1. The optimality
conditions again require u0 = u1 and u0 + u1 = −2. Thus, u0 = u1 = −1. The three
formulations give the same answer. This is expected because the three approaches are
equivalent ways of enforcing the optimality conditions in Theorems 3.2 and 3.5
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4.2 Scalar Linear Quadratic Control

The linear quadratic framework is now introduced. The problem is to minimize a
quadratic control objective while driving a scalar linear system from its given initial
condition to given final condition.

minimize J =
1

2

N−1∑
k=0

u2k

subject to xk+1 = axk + buk, x0, xN given

(4.29)

It is assumed that b ̸= 0 so that the control affects the state. As in the motivating
example from Section 3.1, the goal is to find the control sequence u0, u1, . . ., uN−1

to drive the state from x0 to xN in N steps. Unlike regular optimization problems for
which the first step is to write the Lagrangian, the first step is to write the Hamiltonian.

Hk =
1

2
λ0u2k + λk+1 (axk + buk) (Hamiltonian) (4.30)

From the Hamiltonian, the costate equation and stationarity condition may be formed.

λk = aλk+1 (costate equation) (4.31)

0 = λ0uk + bλk+1 (stationarity condition) (4.32)

Suppose λ0 is zero. The stationarity condition implies that all λ’s are zero. Because the
final state is fixed, the transversality condition and its multiplier ν can be done away
with. Hence, all the multipliers are zero violating the non-triviality condition.

i If you want to write the fixed final point using the constraint ψ(x) = 0, the
multiplier ν remains. However, the gradient of ψ is full rank and the transversality
condition implies ν is zero, which again leads to a violation of the non-triviality
condition.

Yet another realization is that the problem is convex, lacks inequality constraints, and
trivially satisfies the requirement for a strictly feasible point. Hence, the optimality
conditions for convex optimization should be used. In any case, setting λ0 = 1 and
solving for uk in the stationarity condition gives

uk = −bλk+1. (4.33)

Once λk+1 is known, the optimal control is known. To find λk+1, eliminate uk in the
state equation resulting in

xk+1 = axk − b2λk+1. (4.34)

The costate equation is a simple recursion with the solution

λk = aN−kλN , (4.35)

such that
xk+1 = axk − b2aN−k−1λN . (4.36)



4.2. Scalar Linear Quadratic Control 57

The problem has now been reduced to finding λN . Written in terms of the initial state
x0, the solution to the above equation is

xk = akx0 − b2aN+k−2λN

k−1∑
j=0

a−2j . (4.37)

The summation is a geometric series whose sum can be written explicitly. Another
approach will be taken later.

xk = akx0 − b2aN+k−2λN

(
1− a−2k

)
(1− a−2)

(4.38a)

= akx0 − b2aN−kλN

(
1− a2k

)
(1− a2)

(4.38b)

Evaluating at the final time yields

xN = aNx0 − b2λN

(
1− a2N

)
(1− a2)

(4.39a)

= aNx0 − ΛλN (4.39b)

where

Λ = b2
(
1− a2N

)
(1− a2)

. (4.40)

Provided Λ ̸= 0, solving for λN gives

λN =
1

Λ

(
aNx0 − xN

)
. (4.41)

Substituting this back into the costate equation gives

λk =
1

Λ

(
aNx0 − xN

)
aN−k. (4.42)

At last, the optimal control is

uk = −bλk+1 = − b

Λ

(
aNx0 − xN

)
aN−k−1. (4.43)

This control drives the (a, b) system from x0 to xN in N steps and minimizes the
quadratic control objective.

To obtain the above expression, a formula for a geometric series was used. This was
not required. Starting back at

xk = akx0 − b2aN+k−2λN

k−1∑
j=0

a−2j (4.44)

and replacing k with N , then

xN = aNx0 − b2a2N−2λN

N−1∑
j=0

a−2j . (4.45)
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By redefining

Λ = b2a2N−2
N−1∑
j=0

a−2j , (4.46)

the final state can be written as

xN = aNx0 − ΛλN . (4.47)

Solving for λN gives

λN =
1

Λ

(
aNx0 − xN

)
. (4.48)

And from here, the analysis is the same. The geometric formula was used only because
it provides a clean formula for Λ that is easier to implement. Note that when |a| > 1,
the numerical values explode quickly leading to numerical issues.

MATLAB Implementation

For an implementation in MATLAB, define the system a and b, the boundary conditions
x0 and xN, and the number of steps N. The problem is to drive the state from 1 to 0 in
10 steps.

1 % Data
2 a = 1.1;
3 b = 1;
4 x0 = 1;
5 xN = 0;
6 N = 10;

Compute Λ and the optimal control at each time index. Indices in MATLAB start at
one rather than zero.

7 % Optimal Control
8 L = b^2*( 1-a^(2*N) ) / (1-a^2);
9 for k = 0:N-1

10 u(k+1) = -b/L * (a^N*x0-xN)*a^(N-k-1);
11 end

With the optimal control known, the system can be simulated and the result plotted.

12 % Simulation
13 x(1) = x0;
14 for k = 1:N
15 x(k+1) = a*x(k) + b*u(k);
16 end
17 figure, plot(0:N,x), grid on
18 xlabel(‘k’), ylabel(‘x’)

Figure 4.2 shows the state evolving in time from 1 to 0 as required.



4.3. Linear Quadratic Control 59

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

index k

x(
k)

Figure 4.2: State trajectory for scalar discrete optimal control.

4.3 Linear Quadratic Control

The matrix-vector version of the problem in Section 4.2 is called the linear quadratic
control (LQC) problem. The state is xk ∈ Rn and the control is uk ∈ Rm.

minimize
1

2

N−1∑
k=0

u⊤k Ruk, R > 0

subject to xk+1 = Axk +Buk, x0, xN given

(4.49)

Because R is positive definite and the dynamics are linear, the problem is convex.
Without inequality constraints, the requirement for a strictly feasible point is satisfied
and λ0 = 1. Begin by writing the Hamiltonian and optimality conditions.

Hk =
1

2
u⊤k Ruk + λ⊤k+1 (Axk +Buk) (Hamiltonian) (4.50)

λk = A⊤λk+1 (costate equation) (4.51)

0 = Ruk +B⊤λk+1 (stationarity condition) (4.52)

Solving for the control in the stationarity condition gives

uk = −R−1B⊤λk+1. (4.53)

Substitute this into the state dynamics to get

xk+1 = Axk −BR−1B⊤λk+1. (4.54)

The costate equation can be rewritten in terms of λN as

λk = A⊤(N−k)λN , (4.55)

such that the state equation can be written in terms of λN also.

xk+1 = Axk −BR−1B⊤A⊤(N−k−1)λN (4.56)
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Writing out a few terms in the sequence gives

x1 = Ax0 −BR−1B⊤A⊤(N−1)λN , (4.57a)

x2 = Ax1 −BR−1B⊤A⊤(N−2)λN (4.57b)

= A2x0 −ABR−1B⊤A⊤(N−1)λN −BR−1B⊤A⊤(N−2)λN . (4.57c)

From here, the following form is deduced.

xk = Akx0 −
k−1∑
i=0

Ak−i−1BR−1B⊤A⊤(N−i−1)λN (4.58)

Set k = N to find an expression for xN .

xN = ANx0 −
N−1∑
i=0

AN−i−1BR−1B⊤A⊤(N−i−1)λN (4.59)

Defining the summation to be Λ gives

xN = ANx0 − ΛλN . (4.60)

Solving for λN (provided Λ−1 exists) gives

λN = Λ−1
(
ANx0 − xN

)
. (4.61)

Thus,
λk = A⊤(N−k)Λ−1

(
ANx0 − xN

)
, (4.62)

and the optimal control is

uk = −R−1B⊤λk+1 (4.63a)

= −R−1B⊤A⊤(N−k−1)Λ−1
(
ANx0 − xN

)
. (4.63b)

The above solution requires that Λ−1 exists. The meaning of this requirement is clear
after writing Λ in matrix form.

Λ = AN−1BR−1B⊤A⊤(N−1) +AN−2BR−1B⊤A⊤(N−2)

+ · · · +A0BR−1B⊤A⊤(0), (4.64a)

=
[
B, AB, · · · , AN−1B

]

R−1 0

. . .

0 R−1


[
B, AB, · · · , AN−1B

]⊤
. (4.64b)

The matrix
C =

[
B, AB, · · · , AN−1B

]
(4.65)

is called the controllability matrix. The matrix Λ is invertible when the controllability
matrix has rank n. A linear time-invariant system is controllable if and only if the
controllability matrix has rank n. Thus, the (A,B) system can be driven from x0 to xN
in N steps with the above optimal control provided the system is controllable. Most
engineered systems are designed to be controllable.
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i What is a weaker condition than having Λ−1 exist? Recall conditions for a linear
system being solvable in terms of range space.

A variation of the problem removes the fixed final point xN and instead adds it to
the objective. The optimal control now seeks some balance between minimizing control
usage and minimizing the magnitude of the final state.

minimize
1

2
x⊤NSNxN +

1

2

N−1∑
k=0

u⊤k Ruk, R > 0, S ≥ 0

subject to xk+1 = Axk +Buk, x0 given

(4.66)

The problem remains convex. The Hamiltonian and optimality conditions are the fol-
lowing.

Hk =
1

2
u⊤k Ruk + λ⊤k+1 (Axk +Buk) (Hamiltonian) (4.67)

λk = A⊤λk+1 (costate equation) (4.68)
λN = SNxN (transversality condition) (4.69)

0 = Ruk +B⊤λk+1 (stationarity condition) (4.70)

Solving for the control in the stationarity condition gives

uk = −R−1B⊤λk+1. (4.71)

Substituting this into the state equation gives

xk+1 = Axk −BR−1B⊤λk+1. (4.72)

Following the same logic as before, we arrive at

xN = ANx0 − ΛλN . (4.73)

The final point xN is unknown in this problem. Impose the transversality condition in
Eq. (4.69) to get

xN = ANx0 − ΛSNxN =⇒ (I + ΛSN )xN = ANx0. (4.74)

Provided the inverse exists, one can solve for the final state.

xN = (I + ΛSN )
−1
ANx0 (4.75)

With the final state known, the optimal control can be written in terms of the problem
data.

uk = −R−1B⊤A⊤(N−k−1)Λ−1
(
I − (I + ΛSN )

−1
)
ANx0 (4.76)

When SN = 0, the final state becomes unimportant and xN = ANx0, which arises from
uncontrolled motion. The system simply drifts for N steps.

Control laws that depend on x0 and xN are called open-loop; they lack independence
on the current state of the system. Control laws that depend on the current state of the
system are called closed-loop control laws. Both have their place in guidance. Open-
loop solutions are commonly used as nominal trajectories. Closed-loop systems are
commonly used for tracking nominal trajectories.
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MATLAB Implementation of Relative Orbit Control

To demonstrate linear quadratic control, the linearized CW equations (2.31) are used.
The problem is to perform a rendezvous, i.e., drive a given initial state to the origin
in N steps. The mean motion is 4 rad/hr and the time step for discretization is one
second. Units used in MATLAB are meters and seconds. In code, the first step is to
write the continuous-time system and discretize it. MATLAB’s c2d command is used
for discretization.

1 % Continuous-time CW matrices
2 w = 4 / 3600;
3 A = [0, 0, 0, 1, 0, 0;
4 0, 0, 0, 0, 1, 0;
5 0, 0, 0, 0, 0, 1;
6 3*w^2, 0, 0, 0, 2*w, 0;
7 0, 0, 0, -2*w, 0, 0;
8 0, 0, -w^2, 0, 0, 0];
9 B = [zeros(3,3); eye(3,3)];

10

11 % Discretization
12 dt = 1;
13 t = 0:dt:600;
14 N = length(t)-1;
15 sysc = ss(A,B,[],[]);
16 sysd = c2d(sysc,dt);
17 A = sysd.A;
18 B = sysd.B;

For a given final state and control weighting matrix, the matrix Λ can be computed
as L in code lines 21-24. Then for a given initial state, the optimal control and state
trajectories are computed on lines 27-31.

19 xN = [0;0;0;0;0;0];
20 R = eye(3);
21 L = 0;
22 for i = 0:N-1
23 L = L + A^(N-i-1)*B*inv(R)*B.’*A.’^(N-i-1);
24 end
25

26 x0 = [100;0;0;0;5;0];
27 x(:,1) = x0;
28 for k = 1:N
29 u(:,k) = -inv(R)*B.’*A.’^(N-k)*inv(L)*(A^N*x0-xN);
30 x(:,k+1) = A*x(:,k) + B*u(:,k);
31 end

The resulting trajectory in x-y space and control time histories are shown in Figure 4.3.
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Figure 4.3: Relative orbit control trajectories.

4.4 Linear Quadratic Regulation

The linear quadratic regulation (LQR) problem has a running cost that penalizes state
and control deviations from zero. A terminal cost penalizes state deviations at the final
point.

minimize
1

2
x⊤NSNxN +

1

2

N−1∑
k=0

x⊤k Qxk + u⊤k Ruk

subject to xk+1 = Axk +Buk

(4.77)

It is assumed that SN = S⊤
N ≥ 0, Q = Q⊤ ≥ 0, R = R⊤ > 0. The matrices A, B, Q,

and R could be time-varying. Not much changes in the analysis and they are assumed
constant only for notational simplicity. As before, the problem is convex and trivially
satisfies the requirement for strict feasibility such that λ0 = 1.

To analyze this problem, write the Hamiltonian.

Hk =
1

2

(
x⊤k Qxk + u⊤k Ruk

)
+ λ⊤k+1 (Axk +Buk) (4.78)

The optimality conditions are

λk = Qxk +A⊤λk+1, (4.79)
λN = SNxN , (4.80)

0 = Ruk +B⊤λk+1. (4.81)

Solving for the control gives
uk = −R−1B⊤λk+1. (4.82)

The techniques used before no longer work because the recursion for λk is no longer
homogeneous. The technique to use is called the sweep method in which it is assumed,
based on the form in Eq. (4.80), that there are matrices Sk such that

λk = Skxk. (4.83)

Formulas for Sk are needed. Substituting into the state equation gives

xk+1 = Axk −BR−1B⊤Sk+1xk+1. (4.84)
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Solving for xk+1 gives

xk+1 =
(
I +BR−1B⊤Sk+1

)−1
Axk, (4.85)

which is a forward, homogeneous recursion for the state. Substituting Eq. (4.83) into
Eq. (4.79) gives

Skxk = Qxk +A⊤Sk+1xk+1 (4.86a)

= Qxk +A⊤Sk+1

(
I +BR−1B⊤Sk+1

)−1
Axk. (4.86b)

Since this must hold for all xk, it is concluded that

Sk = Q+A⊤Sk+1

(
I +BR−1B⊤Sk+1

)−1
A. (4.87a)

Another way to write this (using the matrix inversion lemma) is

Sk = Q+A⊤
(
Sk+1 − Sk+1B

(
B⊤Sk+1B +R

)−1
B⊤Sk+1

)
A. (4.87b)

The above equation is known as the Riccati equation. Since SN is known, all Sk can be
found. The optimal control is

uk = −R−1B⊤Sk+1xk+1, (4.88)

which depends upon a future state. Eliminate xk+1 by substituting in the state equation.

uk = −R−1B⊤Sk+1 (Axk +Buk) (4.89)

=⇒
(
I +R−1B⊤Sk+1B

)
uk = −R−1B⊤Sk+1Axk (4.90)

Pre-multiplying by R and inverting gives

uk = −
(
R+B⊤Sk+1B

)−1
B⊤Sk+1Axk. (4.91)

Define the Kalman gain as

Kk =
(
R+B⊤Sk+1B

)−1
B⊤Sk+1A (4.92)

so that the control is simply
uk = −Kkxk. (4.93)

The Kalman gain is time-varying even though A, B, Q, and R are time-invariant. This
is a feedback, or closed-loop, control law because it depends on the current state xk –
not the initial state x0.

While simple to implement, a sequence of gain matrices must be stored. This storage
begs the question: Is it possible to come up with a single matrixK to control the system?
One approach to answering the question is to consider very long time horizons where
N −k → ∞. If the Sk recursion reaches steady state, then Sk = Sk+1 ≡ S. The Riccati
equation (4.87) becomes the Algebraic Riccati Equation (ARE)

S = Q+A⊤
(
S − SB

(
B⊤SB +R

)−1
B⊤S

)
A. (4.94)

The Kalman gain is then constant. There are of course serious questions such as con-
vergence of the limit, dependence of S on SN , and performance of the resulting system.
The control is no longer optimal but it may still regulate the system. For this all to
work, there are control-centric requirements related to stabilizability and observability
of the system. Details are omitted here. Assuming the limit converges, a technique for
finding the steady state value is to pick an SN and iterate backward until steady state
is reached. The feedback control now uses a constant gain and no storage is required.
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MATLAB Implementation of Relative Orbit Regulation

To demonstrate LQR, the linearized CW equations (2.31) are used. The problem is to
regulate the state and control close to zero. The mean motion is 4 rad/hr and the time
step for discretization is one second. As such, lines 1-18 of the previous implementation
remain the same here.

Lines 19-21 fix the objective matrices. Lines 23-27 back propagate to store the
feedback gains. Lines 29-34 compute the optimal control and state trajectories.

19 SN = eye(6);
20 Q = 1e-1*eye(6);
21 R = 1e+6*eye(3);
22

23 S = SN;
24 for k = N:-1:1
25 K(:,:,k) = inv(R+B’*S*B)*B’*S*A;
26 S = Q + A’*S*inv(eye(6)+B*inv(R)*B’*S)*A;
27 end
28

29 x0 = [100;0;0;0;5;0];
30 x(:,1) = x0;
31 for k = 1:N
32 u(:,k) = -K(:,:,k)*x(:,k);
33 x(:,k+1) = A*x(:,k) + B*u(:,k);
34 end

The resulting trajectory in x-y space and control time histories are shown in Figure 4.4.
Because the LQR objective penalizes state deviations from zero, the state trajectory
remains closer to zero than it does in LQC. For this reason, the scale of the left graph
in Figure 4.4 is smaller than that in Figure 4.3.
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Figure 4.4: Relative orbit regulation trajectories.

A constant gain solution can be tried by replacing the gain K(:,:,k) in line 32 with
its value at the initial time K(:,:,1).
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4.5 Linear Quadratic Tracking

Yet another variation of the problem is the linear quadratic tracking (LQT) problem.
The goal is to now have the state track a reference trajectory. The results of this section
reduce to those of the previous section when the reference trajectory is zero. The given
reference trajectory rk is one that may not depend on all states such that the goal is to
balance the use of control and having

Cxk ∼= rk. (4.95)

The linear quadratic tracking problem is the following.

minimize
1

2
(CxN − rN )

⊤
P (CxN − rn)

+
1

2

N−1∑
k=0

[
(Cxk − rk)

⊤
Q (Cxk − rk) + u⊤k Ruk

]
subject to xk+1 = Axk +Buk

(4.96)

To begin analyzing the problem, write the Hamiltonian.

Hk =
1

2
(Cxk − rk)

⊤
Q (Cxk − rk) +

1

2
u⊤k Ruk + λ⊤k+1 (Axk +Buk) (4.97)

The abnormal multiplier has again been set to one because of convexity and satisfaction
of the strictly feasible requirement. The costate equation is

λk = A⊤λk+1 + C⊤QCxk − C⊤Qrk. (4.98)

The stationarity condition is

0 = Ruk +B⊤λk+1, (4.99)

=⇒ uk = −R−1B⊤λk+1. (4.100)

The transversality condition is

λN = C⊤P (C xN − rN )

= C⊤P C︸ ︷︷ ︸
SN

xN − C⊤P rN︸ ︷︷ ︸
vN

. (4.101)

As done before, use the sweep method whereby it is assumed that

λk = Skxk − vk. (4.102)

The control equation is then

uk = −R−1B⊤ (Sk+1xk+1 − vk+1) , (4.103)

=⇒ xk+1 = Axk −BR−1B⊤Sk+1xk+1 +BR−1B⊤vk+1. (4.104)

Solving for xk+1 gives

xk+1 =
(
I +BR−1B⊤Sk+1

)−1 (
Axk +BR−1B⊤vk+1

)
. (4.105)
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Using this in the costate equation (4.98) gives

Sk xk − vk = C⊤QC xk − C⊤Qrk +A⊤ (Sk+1 xk+1 − vk+1)

= C⊤QC xk − C⊤Qrk −A⊤vk+1

+A⊤Sk+1

(
I +BR−1B⊤Sk+1

)−1 (
Axk +BR−1B⊤vk+1

)
.

(4.106)

Grouping all of the xk terms and non-xk terms gives[
−Sk + C⊤QC +A⊤Sk+1

(
I +BR−1B⊤Sk+1

)−1
A
]
xk

+
[
vk − C⊤Qrk −A⊤vk+1 +A⊤Sk+1

(
I +BR−1B⊤Sk+1

)−1
BR−1B⊤vk+1

]
= 0.

(4.107)

Since this must hold for all xk, both terms need to be zero. The first term determines
Sk as a function of Sk+1. The second term determines vk as a function of Sk+1 and
vk+1. The optimal control is then

uk = −R−1B⊤λk+1 (4.108a)

= −R−1B⊤ (Sk+1xk+1 − vk+1) (4.108b)

= −R−1B⊤Sk+1 (Axk +Buk) +R−1B⊤vk+1. (4.108c)

Pre-multiplying by R and solving for uk gives

uk =
(
R+B⊤Sk+1B

)−1
B⊤ (−Sk+1Axk + vk+1) . (4.109)

Two gain matrices are now defined

Feedback Gain : Kk =
(
R+B⊤Sk+1B

)−1
B⊤Sk+1A (4.110)

Feedforward Gain : Kv
k =

(
R+B⊤Sk+1B

)−1
B⊤ (4.111)

such that

uk = −Kkxk +Kv
kvk+1. (4.112)

One can again look for sub-optimal constant feedback gains. Satisfaction of control-
centric requirements implies that the recursions for Kk and Kv

k reach steady state as
N − k → ∞. The constant gains and control are

K =
(
B⊤S∞B +R

)−1
B⊤S∞A, (4.113)

Kv =
(
B⊤S∞B +R

)−1
B⊤, (4.114)

uk = −Kxk +Kvvk+1. (4.115)

It appears that storing the vk sequence is required, but it is not. Instead, store v0 and
propagate forward using

vk+1 = (A−BK)
−⊤

vk − (A−BK)
−⊤

C⊤Qrk. (4.116)
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MATLAB Implementation of Relative Orbit Tracking

To demonstrate LQT, the linearized CW equations (2.31) are used and lines 1-18 of
the previous implementations remain the same. The problem is to traverse two circular
relative orbits with radius of 100 meters and period of 5 minutes. Such a reference
trajectory is created in lines 19-23. The objective matrices are specified in lines 25-
29. The feedback and feedforward recursions are computed by backward propagation
in lines 31-45. Finally, in lines 47-52, the optimal control and state trajectories are
computed.

19 % Create a reference trajectory to follow...
20 W = 2*pi/300;
21 rx = 100*cos(W*t);
22 ry = 100*sin(W*t);
23 r = [rx; ry; 0*t];
24

25 % Define the data for the LQT problem...
26 C = [eye(3) zeros(3)];
27 P = eye(3);
28 Q = 1e2*eye(3);
29 R = eye(3);
30

31 % Compute the feedback and feedforward gains...
32 S = C’*P*C;
33 V = C’*P*r(:,N+1);
34

35 Ss(:,:,N+1) = S;
36 Vs(:,:,N+1) = V;
37 for k = N:-1:1
38 K(:,:,k) = inv(R+B’*S*B)*B’*S*A;
39 Kv(:,:,k) = inv(R+B’*S*B)*B’;
40 V = C’*Q*r(:,k) + A’*V ...
41 - A’*S*inv(eye(6)+B*inv(R)*B’*S)*B*inv(R)*B’*V;
42 S = C’*Q*C + A’*S*inv(eye(6)+B*inv(R)*B’*S)*A;
43 Ss(:,:,k) = S;
44 Vs(:,:,k) = V;
45 end
46

47 % Implement the control and simulate the system...
48 x0 = [100;0;0;0;5;0];
49 x(:,1) = x0;
50 for k = 1:N
51 u(:,k) = -K(:,:,k)*x(:,k) + Kv(:,:,k)*Vs(:,:,k+1);
52 x(:,k+1) = A*x(:,k) + B*u(:,k);
53 end

The resulting trajectory in x-y space and control time histories are shown in Figure 4.5.
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Figure 4.5: Relative orbit tracking trajectories.

The figures do not show well the time element of the tracking performance. To
better visualize the simulation, add the following code to your script. In the generated
animation, the blue dot is the reference position and the red dot is the actual position.

53 colorMap = [0,0,1; 1 0 0];
54 xylim = [-100 100 -100 100];
55 t_now = linspace(t(1),t(N+1),100);
56 figure
57 for i = 1:length(t_now)
58 rx_now = interp1(t,rx,t_now(i));
59 ry_now = interp1(t,ry,t_now(i));
60 x_now = interp1(t,x(1,:),t_now(i));
61 y_now = interp1(t,x(2,:),t_now(i));
62 scatter([ry_now; y_now], [rx_now; x_now], ...
63 [200;100], colorMap, ‘filled’), grid on
64 axis(xylim)
65 title(‘Blue = Reference, Red = Tracker’)
66 pause(.1)
67 end

4.6 Trajectory Following using LQR

The linear quadratic framework requires dynamics of the form xk+1 = Akxk + Bkuk,
which excludes nonlinear systems of the form xk+1 = fk(xk, uk) and even linear systems
with a disturbance of the form xk+1 = Akxk+Bkuk+Ekwk. Even so, the LQR problem
remains relevant. To see this, consider the flat planet model in discrete-time

xk+1 = Axk +Buk +Bg, (4.117)

where A and B are the discrete-time versions of those presented in Eq. (2.10). Let
u∗k be a nominal control generating the nominal state trajectory x∗k. This nominal
trajectory can be designed by any means, for example, polynomial guidance discussed
in Section 2.2. An off-nominal control uk generates an off-nominal state trajectory xk.
The control and state perturbations are defined to be δuk = uk−u∗k and δxk = xk−x∗k,
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respectively. The evolution of δxk is given by

δxk+1 = Aδxk +Bδuk. (4.118)

Obviously, dynamics of the perturbed trajectory fit in the linear quadratic framework.
The problem of following the nominal trajectory, or regulating the perturbed state close
to zero, is an LQR problem in the δ variables. A MATLAB implementation for planetary
descent is given next.

MATLAB Implementation of Descent Trajectory Following

To begin the implementation, data must be specified and the nominal trajectories com-
puted. The nominal initial position and velocity are r0 and v0. The desired final
position and velocity are r1 and v1. Units are m and m/s, respectively. The final
time is t1, and for discretization purposes N is set to 1000. Other constants used in
subsequent analysis are the gravitational acceleration vector g, the identity matrix I,
and zero matrix Z.

1 % Nominal boundary conditions and time
2 r0 = [1000; 1000];
3 v0 = [-25; 0];
4 r1 = [0;0];
5 v1 = [0;0];
6

7 t1 = 100;
8 N = 1e3;
9 t = linspace(0,t1,N);

10

11 % Other constants
12 g = [0;-9.81];
13 I = eye(2);
14 Z = zeros(2);

Nominal control and state trajectories are computed using polynomial guidance as de-
scribed in Section 2.2. The nominal control is stored in u_nom and the nominal state
trajectories are stored in x_nom. The first row is range, the second is altitude, the third
is range rate, and the fourth is altitude rate.

15 % Nominal trajectory
16 C = [t1^2*I, t1^3*I; 2*t1*I, 3*t1^2*I] \ [r1-r0-v0*t1; v1-v0];
17 c2 = C(1:2); c3 = C(3:4);
18 u_nom = 2*c2 + 6*c3*t-g;
19 v_nom = v0 + 2*c2*t + 3*c3*t.^2;
20 r_nom = r0 + v0*t + c2*t.^2 + c3*t.^3;
21 x_nom = [r_nom; v_nom];

The flat planet model equations of motion given in Eq. (2.10) are discretized.

22 % Discretization
23 A = [Z, I; Z Z];
24 B = [Z; I];
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25 sysc = ss(A,B,[],[]);
26 sysd = c2d(sysc,t(2)-t(1));
27 A = sysd.A;
28 B = sysd.B;

The discrete-time LQR problem is set up by defining the weighting matrices SN, Q, and
R. This is followed in lines 34-38 by a backward recursion for the feedback gain matrix
K.

29 % Compute the feedback gain
30 SN = eye(4);
31 Q = eye(4);
32 R = 1e3*eye(2);
33

34 S = SN;
35 for k = N:-1:1
36 K(:,:,k) = inv(R+B’*S*B)*B’*S*A;
37 S = Q + A’*S*inv(eye(4)+B*inv(R)*B’*S)*A;
38 end

With these elements in place, the simulation can be conducted. Line 40 specifies the
perturbation in the state at the initial time. The actual state of the system at the initial
time is specified in line 41 as x. Once in the simulation loop, line 43 calculates the state
perturbation, the control perturbation on line 44, the actual control on line 45, and the
next state on line 46. For simplicity, the constant, steady-state gain matrix K(:,:,1)
is used at all times.

39 % Simulation
40 dx0 = [50; 75; -20; -5];
41 x(:,1) = x_nom(:,1)+dx0;
42 for k = 1:N-1
43 dx(:,k) = x(:,k) - x_nom(:,k);
44 du(:,k) = -K(:,:,1)*dx(:,k);
45 u(:,k) = u_nom(:,k)+du(:,k);
46 x(:,k+1) = A*x(:,k) + B*u(:,k) + B*g;
47 end

A plot of the nominal and actual position trajectories is shown in Figure 4.6. The
shape of the actual trajectory and amount of control used are influenced by the choice of
weighting matrices. The actual state trajectory can be driven back to the nominal more
quickly by reducing R. The amount of control usage can be driven down by increasing
R.
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Figure 4.6: Nominal and actual planetary descent trajectories.

4.7 Discretization of Nonlinear Systems

Having given a thorough treatment of discrete optimal control problems with linear
dynamics, attention is now turned to nonlinear systems. Discretization of linear systems
was described in Chapter 2 by assuming the control is piecewise constant and using the
state transition matrix. A different idea is needed for nonlinear systems.

Given a nonlinear function f : R → R, it may be possible to decompose it into linear
combinations of basis functions Ti, i.e.,

f(t) =

∞∑
i=0

aiTi (t) . (4.119)

The idea of decomposing a quantity into a weighted sum of basis components is familiar
from linear algebra. For example, the vector 2

3

 = 2

 1

0

 + 3

 0

1

 . (4.120)

basis vectors

Just as there are many bases for R2, and hence many ways of decomposing the vector,
there are many bases for a function space. An important difference, however, is that
function spaces are infinite-dimensional. One such basis is the Chebyshev polynomials.
These polynomials are defined on the domain [−1, 1] and given by the formulas

T0(t) = 1, (4.121a)
T1(t) = t, (4.121b)

Tn+1(t) = 2tTn(t)− Tn−1(t). (4.121c)
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Example 4.1. Compute T1(t) and T2(t).

T2(t) = 2tT1(t)− T0(t)

= 2t (t)− 1

= 2t2 − 1,

T3(t) = 2tT2(t)− T1(t)

= 2t
(
2t2 − 1

)
− t

= 4t3 − 2t− t

= 4t3 − 3t.

⋆

A related basis uses Chebyshev polynomials of the second kind given by the formulas

U0(t) = 1, (4.122a)
U1(t) = 2t, (4.122b)

Un+1(t) = 2tUn(t)− Un−1(t). (4.122c)

Both kinds of Chebyshev polynomials form an orthogonal basis. The two kinds of
polynomials are related by

2Tn(t) = Un(t)− Un−2(t), (4.123)
Tn(t) = Un(t)− tUn−1(t). (4.124)

They satisfy a number of interesting properties.

Tn(1) = 1 (4.125a)
Tn(−1) = (−1)

n (4.125b)
Un(1) = n+ 1 (4.125c)

Un(−1) = (−1)
n
(n+ 1) (4.125d)

Their derivatives are also related.

Ṫi(t) = iUi−1(t) (4.126)

U̇i(t) =
(i+ 1)Ti+1(t)− tUn(t)

t2 − 1
(4.127)

Suppose the time interval [−1, 1] is discretized into N + 1 nodes t0, t1, . . ., tN . The
function values at the nodes are f(tk). One can then use the first N + 1 polynomials
to approximate the function.

f(t) ∼=
N∑

k=0

akTk(t) . (4.128)
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This requires first solving for the ak values.

f(t0)

f(t1)

...

f(tN )


︸ ︷︷ ︸

f

=



T0(t0) T1(t0) · · ·

T0(t1) T1(t1) · · ·
...

...

T0(tN ) T1(tN ) · · ·


︸ ︷︷ ︸

T



a0

a1

...

aN


︸ ︷︷ ︸

a

(4.129)

=⇒ a = T −1f. (4.130)

After computing each Ṫk(t), one can also approximate the derivative of f using

ḟ(t) ∼=
N∑

k=0

akṪk(t). (4.131)

With the same matrix notation as above, evaluation at the nodes gives

ḟ = Ṫ a

= Ṫ T −1︸ ︷︷ ︸
D

f

= Df.

(4.132)

That is, there is a matrix D that maps the function values at nodes to derivative values
at nodes. This matrix is called the differentiation matrix.

Placement of the nodes is done to minimize the approximation error. The optimally
placed nodes are called the Chebyshev nodes.

tk = − cos

(
π

2

(2k + 1)

N + 1

)
, k = 0, . . . , N (4.133)

It is common for these polynomials to be used in optimization and boundary value
problems. However, the Chebyshev nodes do not occupy the interval endpoints -1 and
1. Therefore, they are sometimes approximated as

tk = − cos

(
πk

N

)
, k = 0, . . . , N (4.134)

so that t0 = −1 and tN = 1. The differentiation matrix depends on the node selection.

Example 4.2. Using the approximate Chebyshev nodes, compute T , Ṫ , and D with
N = 2. Eq. (4.134) gives nodes t0 = −1, t1 = 0, and t2 = +1. The T matrix is

T =


T0(t0) T1(t0) T2(t0)

T0(t1) T1(t1) T2(t1)

T0(t2) T1(t2) T2(t2)

 =


1 −1 1

1 0 −1

1 1 1

 .
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Its derivative is

Ṫ =


Ṫ0(t0) Ṫ1(t0) Ṫ2(t0)

Ṫ0(t1) Ṫ1(t1) Ṫ2(t1)

Ṫ0(t2) Ṫ1(t2) Ṫ2(t2)

 =


0 1 −4

0 1 0

0 1 4

 .
The differentiation matrix is

D = Ṫ T −1 =
1

2


−3 4 −1

−1 0 1

1 −4 3

 .
⋆

MATLAB Implementation of Chebyshev Discretization

Numerical implementations are straightforward because MATLAB has built-in func-
tions chebyshevT and chebyshevU. Lines 1-4 define the number of time steps N and
associated node times tk denoted t. Lines 6-10 calculate T . Lines 11-15 calculate Ṫ .
Finally, the differentiation matrix is computed in line 18.

1 % N and node times
2 N = 10;
3 k = 0:N;
4 t = -cos(pi*k/N)’;
5

6 % Calculate T
7 for k = 1:N+1
8 T(:,k) = chebyshevT(k-1,t);
9 end

10

11 % Calculate Tdot
12 Tdot(:,1) = zeros(N+1,1);
13 for k = 1:N
14 Tdot(:,k+1) = k*chebyshevU(k-1,t);
15 end
16

17 % Calculate the differentiation matrix
18 D = Tdot*inv(T);

Consider now the function f(t) = sin(t) + 1
2 t

2. The goal is to use the differentiation
matrix to approximate its derivative at the node times. Because the function is simple,
the analytical derivative is f ′(t) = cos(t) + t. In MATLAB, we evaluate the function at
the node times and approximate the derivative.

19 % Function evaluation and derivative approximation
20 f = sin(t)+.5*t.^2;
21 df = D*f;
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The error in the approximation is the difference between the analytical solution and the
approximation.

22 % Error computation
23 fp = cos(t)+1.0*t;
24 error = fp-df;

For the data given, the error is on the order 1e-9. If the domain of interest is not [−1, 1],
the node times and formulas need to be adjusted. Suppose the interval of interest is
[0, tf ]. The original domain needs to be translated one unit to the right and stretched
by tf/2. New time nodes s are related to the old time nodes t using s = tf/2*(t+1).
The new differentiation matrix E is related to the old differentiation matrix D using E
= (2/tf)*D.

Lastly, the differentiation matrix can be used to discretize a nonlinear dynamical
system. Consider the following nonlinear differential equations.

ẋ1(t) = f1(t, x1(t), . . . , xn(t)) (4.135a)
...

ẋn(t) = fn(t, x1(t), . . . , xn(t)) (4.135b)

In code, stack the node times in a vector t as done before. The vector containing values
of the state xi evaluated at node times is denoted Xi. The vector containing values of
the function fi evaluated at node times is denoted Fi. As such, the objects t, Xi, and Fi
are all column vectors of dimension N + 1. Enforcement of the ith differential equation
is approximated through the algebraic equation D*Xi = Fi. When the function fi is
nonlinear in the states, this equality constraint is nonlinear in the states. This process
is demonstrated in Section 4.8.

4.8 Maximal Orbit Raise

In this section, the problem of transferring from a sun-centered circular orbit to the
largest possible circular orbit with fixed thrust magnitude and fixed flight time is con-
sidered. The control variable is the thrust angle. The controlled two-body equation of
motion in radial and tangential coordinates is used. The dynamics are described by the
following ordinary differential equations and boundary conditions.

ṙ = u, r (0) = r0

u̇ =
v2

r
− µ

r2
+

F sin θ

m0 − ṁt
, u (0) = 0, uf = 0

v̇ = −uv
r

+
F cos θ

m0 − ṁ t
, v (0) =

√
µ

r0
, vf =

√
µ

rf

(4.136)

radial distance

radial velocity

tangential velocity

thrust force

thrust angle

initial mass fuel burn rate
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The objective is to maximize the final radius rf . To be solved as a discrete opti-
mal control problem, the nonlinear dynamics need to be discretized. Because of the
numerous nonlinearities, analytical analysis is difficult. Solution of the problem is more
easily attained using numerical optimization and a technique known as direct transcrip-
tion. In direct transcription, the problem is discretized and both states and controls are
considered optimization variables. These topics are covered in the following subsection.

MATLAB Implementation of Direct Transcription

In numerical optimization, it is important to use units so that the problem data are
similar in magnitude. Units used in MATLAB are astronomical units (AU), days, and
kilograms. The scaling information, problem data, and initial conditions are specified
below.

1 % Unit scalings
2 MU = 1 / 1;
3 DU = 1 / 149.6e9;
4 TU = 1 / 86400;
5

6 % Data
7 F = 4 * MU*DU/TU^2;
8 m0 = 4500 * MU;
9 mdot = 7e-5 * MU/TU;

10 mu = 1.327e20 * DU^3/TU^2;
11 tf = 193;
12

13 % Initial conditions
14 r0 = 1;
15 u0 = 0;
16 v0 = sqrt(mu/r0);
17 x0 = [r0;u0;v0];

With this information, the node times and differentiation matrix can be computed using
Chebyshev polynomials.

18 % Node times and differentiation matrix
19 N = 50;
20 k = 0:N;
21 t = -cos(pi*k/N)’;
22

23 % Calculate T
24 for k = 1:N+1
25 T(:,k) = chebyshevT(k-1,t);
26 end
27

28 % Calculate Tdot
29 Tdot(:,1) = zeros(N+1,1);
30 for k = 1:N
31 Tdot(:,k+1) = k*chebyshevU(k-1,t);
32 end
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33

34 % Calculate the differentiation matrix
35 D = Tdot*inv(T);
36

37 % Scale the nodes and differentiation matrix
38 t = tf/2*(t+1);
39 D = 2/tf*D;

To solve the problem using MATLAB’s fmincon, an initial guess must be provided. The
initial guess is important and can have dramatic effects on the solver performance. Our
initial guess is simply a linear interpolation between the initial and final points. The
final radius is not known but guessed to be 2 AUs. Neither the initial nor final control
value is known. They are guessed to be 30 and 300 degrees, respectively. The guessed
states and control are then stacked into a long vector to be passed to the solver.

40 % Initial guess
41 rguess = linspace(1,2,N+1)’;
42 uguess = linspace(0,0,N+1)’;
43 vguess = linspace(sqrt(mu/r0),sqrt(mu/2),N+1)’;
44 thguess = linspace(30,300,N+1)’ * pi/180;
45 xguess = [rguess; uguess; vguess; thguess];

For fmincon, objective and constraint functions must be specified. On line 66, the
optimization variable is reshaped into four columns. The first column contains r values,
the second contains u values, the third contains v values, and the fourth contains θ
values. This is consistent with the construction of our initial guess. On line 67, the
objective function is the negative of the final radius because the problem is to maximize.

64 % Objective function
65 function J = obj(x,N)
66 x = reshape(x,N+1,4);
67 J = -x(N+1,1);
68 end

The constraint function enforces the discretized differential equations and boundary
conditions. As on line 66 of the objective function, line 71 reshapes the optimization
variable into four columns and the variables are extracted on line 72. The right-hand
sides of the differential equations are coded on lines 73-75. Initial conditions are enforced
on line 77. The discretized differential equations are enforced on line 78. The terminal
constraints are enforced on line 79. There are no inequality constraints such that cin
= [] on line 76.

69 % Constraint function
70 function [cin,ceq] = con(x,r0,u0,v0,m0,mdot,F,mu,t,D,N)
71 x = reshape(x,N+1,4);
72 r = x(:,1); u = x(:,2); v = x(:,3); theta = x(:,4);
73 rdot = u;
74 udot = v.^2./r - mu./r.^2 + F*sin(theta) ./ (m0-mdot*t);
75 vdot = -u.*v./r + F*cos(theta) ./ (m0-mdot*t);
76 cin = [];
77 ceq = [r(1)-r0; u(1)-u0; v(1)-v0];
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78 ceq = [ceq; D*r-rdot; D*u-udot; D*v-vdot];
79 ceq = [ceq; u(N+1)-0; v(N+1)-sqrt(mu/r(N+1))];
80 end

Finally, the optimization problem can be solved by calling fmincon.

46 % Optimize
47 ops = optimoptions(‘fmincon’,‘Display’,‘iter’,...
48 ‘EnableFeasibilityMode’,true,...
49 ‘SubproblemAlgorithm’,‘cg’,...
50 ‘MaxFunEvals’,5e4);
51 pobj = @(x) obj(x,N);
52 pcon = @(x) con(x,r0,u0,v0,m0,mdot,F,mu,t,D,N);
53 x = fmincon(pobj,xguess,[],[],[],[],[],[],pcon,ops);

The solver converges to a solution and the maximized final radius is approximately 1.56
AU. MATLAB code to generate plots is below.

54 % Extract the solution
55 x = reshape(x,N+1,4);
56 r = x(:,1); u = x(:,2); v = x(:,3); theta = x(:,4);
57

58 % Plot the solution
59 figure, plot(t,r), grid on
60 xlabel(‘t (days)’), ylabel(‘r (AU)’)
61

62 figure, plot(t,theta*180/pi), grid on
63 xlabel(‘t (days)’), ylabel(‘theta (deg)’)

A plot of the radius as a function of time is shown in Figure 4.7. The trajectory begins
in the lower left and rises to a maximum radius in the top right.
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Figure 4.7: Orbit radius as a function of time.
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The thrust angle, intuitively, starts by pointing in an outward direction to increase
the radius and terminates pointing inward to circularize. This is shown in Figure 4.8.
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Figure 4.8: Thrust angle as a function of time using indirect shooting.
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4.9 Chapter Problems

Problem 4.1. Consider the generic discrete optimal control problem in Eq. (4.1). All
other things the same, include in the problem a control constraint of the form

∀k = 0, . . . , N − 1, uk ∈ Ω = {ω ∈ Rm : g(ω) ≤ 0},

where g : Rm → Rp is continuously differentiable. Derive the optimality conditions for
this problem. The optimality conditions include the transversality condition, stationar-
ity condition, and costate equation.

Problem 4.2. Consider the discrete scalar problem with objective

J =
1

2
(xN − x∗)2 +

r

2

N−1∑
k=0

u2k

and linear dynamics

xk+1 = axk + buk, k = 0, . . . , N − 1.

The system starts at a fixed point x0. It does not have any terminal boundary condi-
tions. The objective is, however, trying to push the final state close to x∗. Solve for the
optimal control uk as a function of the problem data (a, b, x0, r, x∗, N). What happens
as r → ∞?

Problem 4.3. Consider the following linear quadratic problem with mixed cost.

minimize 1
2x

⊤
NSNxN +

1

2

N−1∑
k=0

xk
uk


⊤ Qk Tk

T⊤
k Rk


xk
uk


subject to xk+1 = Akxk +Bkuk, x0 given

Each of the matrices Qk, Rk, SN is symmetric and positive definite. This is a matrix-
vector problem with xk ∈ Rn and uk ∈ Rm. Solve the problem by developing a feedback
control law of the form uk = −Kkxk.

Problem 4.4. A chaser spacecraft is in close proximity to a target spacecraft in circular
orbit with mean motion ω = 4/3600 rad/s. Use LQT as described in Section 4.5 to
circumnavigate the target on the following reference trajectory. Position is given in
meters and time is given in seconds.

W = 2*pi/300;
rx = 100*cos(W*t).*cos(W*t);
ry = 100*cos(W*t).*sin(W*t);
rz = 100*sin(W*t);

Problem 4.5. Recall Problems 3.10 and 3.11. A lunar lander is in close proximity to
the lunar surface with the following initial position (m) and velocity (m/s).

r0 = [1000; 50; 1000]; % m
v0 = [-25; 0; 0]; % m/s
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The goal is to land at the origin of the coordinate system with downward velocity of 1
m/s. The flight time is two minutes.

a) Use direct transcription to design an optimal trajectory with objective J =∑
||uk||2 and control constraints ||uk|| ≤ 3.5 m/s2.

b) Use direct transcription to design an optimal trajectory with objective J =∑
||uk|| and control constraints ||uk|| ≤ 3.5 m/s2.

Compare and contrast the solutions.

Problem 4.6. Building upon the previous problem, solve the free final time versions of
a) and b) by conducting a line search for the N that minimizes the objectives. Compare
and contrast the solutions.

Problem 4.7. Building upon the previous problem, use discrete LQR to follow the
nominal lunar descent trajectories. Incorporate into the simulation navigation errors
and disturbances. Recall that trajectory following using LQR was implemented in
Section 4.6.

Problem 4.8. Use direct transcription to solve the maximal orbit raise problem de-
scribed in Section 4.8 with a flight time of 365 days.
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Optimal Control

Chapter Learning Objectives

1. Understand optimality conditions for optimal control problems.
2. Develop optimal feedback laws for linear quadratic and minimum time problems.
3. Develop and implement a constant tangent law for ascent.
4. Implement indirect shooting, direct shooting, and global control parameterization

to solve an optimal orbit transfer problem.

The performance of continuous-time systems can be optimized using optimal control.
An optimal control problem (typically) has as objective an integral and as constraints
differential equations, control limits, and boundary conditions. The optimization vari-
ables are control functions. Again, the mathematical presentation herein is rigorous,
but the theory of optimal control is beyond the scope of this book.15,16

After stating the general optimal control problem and associated optimality con-
ditions, several small problems are solved to cement a solution procedure and get fa-
miliarized with the “almost everywhere” concept. Applied to a linear quadratic control
problem, the solution procedure follows very closely that from discrete optimal con-
trol. A minimum time problem is analyzed and solved in state feedback form. These
linear quadratic and minimum time problems set up for descent guidance presented in
Chapter 6.

A minimum time pursuit/ascent problem is solved leading to the constant tangent
law. This sets up the linear tangent law for ascent guidance in Chapter 7. The optimal
orbit transfer problem is revisited and solved using indirect shooting, direct shooting,
and global control parameterization. The indirect shooting method is simply a technique
for satisfying the optimality conditions. The method is sensitive to the initial guess,
and a continuation procedure is introduced to facilitate making a good initial guess.
Direct shooting and global control parameterization, on the other hand, are approximate
techniques that do not use the optimality conditions.

15Berkovitz and Medhin, Nonlinear Optimal Control Theory, 2012.
16Liberzon, Calculus of Variations and Optimal Control Theory, 2012.

83
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5.1 A General Optimal Control Problem

A standard optimal control problem is

minimize J = ϕ(tf , xf ) +

∫ tf

t0

ℓ(t, x, u) dt

subject to ẋ = f(t, x, u) , x(0) = x0

ψ(tf , xf ) = 0 , u(t) ∈ Ω

(5.1)

terminal or Mayer cost running or Lagrange cost

dynamics of the system initial state

terminal constraint control constraint

As in discrete optimal control: ϕ is the terminal or Mayer cost, ℓ is the running or
Lagrange cost, f is the system dynamics with initial condition x0, and ψ is the terminal
constraint. The key differences are that in optimal control the running cost is measured
by an integral (not a sum) and the dynamics are specified as ordinary differential equa-
tions (not discrete-time equations). The set Ω is the control constraint. The control
function must take values in the set. For example, if the magnitude of the control is
bounded by ρ then Ω = {u ∈ Rm : ||u|| ≤ ρ}. Control constraints are important in
optimal control, especially minimum time problems, because the control may become
unbounded otherwise.

The optimality conditions are conveniently stated in terms of the Hamiltonian and
endpoint functions.

H(t, x, u, λ0, λ) = λ0ℓ(t, x, u) + λ⊤f(t, x, u) (Hamiltonian) (5.2)

G(tf , xf , λ0, ν) = λ0ϕ(tf , xf ) + ν⊤ψ(tf , xf ) (endpoint function) (5.3)

If x and u are minimizing functions, then there exist a scalar λ0 ∈ {0, 1}, an absolutely
continuous function λ, and constant ν such that the following hold.

λ̇ = −∂H
∂x

(costate equation) (5.4)

Ḣ =
∂H

∂t
(Hamiltonian equation) (5.5)

λf =
∂G

∂xf
(transversality condition) (5.6)

Hf = − ∂G

∂tf
(transversality condition) (5.7)

u
ae
∈ argmin

ω ∈Ω
H(t, x, ω, λ0, λ) (pointwise minimum condition) (5.8)(

λ0, λ
)
̸= 0 (non-triviality condition) (5.9)

Of course, the state equation, initial condition, and terminal constraint must also be
satisfied. The pointwise minimum condition is the analog of the stationarity condition.
These necessary conditions are the optimality conditions to be satisfied when searching
for candidate solutions. This particular statement of optimality conditions assumes that
the gradient of ψ has linearly independent columns.
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In other texts, the abnormal multiplier λ0 is required to be in {0,−1} and the
pointwise condition is changed to a maximum. Either approach is fine and none of the
other conditions changes. Unlike in the discrete optimal control setting, the authors are
unaware of any a priori conditions to ensure λ0 ̸= 0. The strategy is to explore both
abnormal and normal cases.

i It is preferable to use a letter to denote a function, e.g., u is a function, and to
denote the value of the function at time t as u(t). Doing so consistently results in
long, difficult-to-read equations. For this reason alone, the (t) is typically dropped.
To be specific, it would be better to write the non-triviality condition as ∀t ∈ [0, tf ],
(λ0, λ(t)) ̸= 0. Similarly, in the pointwise minimum condition, the quantity on the
left side of the inclusion is the value of the control at time t and the quantity on the
right side of the argmin is the value of the Hamiltonian with all arguments evaluated
at time t.

The costate and Hamiltonian differential equations indicate that λ and H are abso-
lutely continuous functions with respect to time. Thus, these quantities do not exhibit
discontinuities in time. The transversality conditions specify the respective boundary
conditions.

Our goal in solving the optimal control problem is to find the optimal control function
u. Amazingly, the pointwise minimum condition says that this can be done pointwise in
time. The notation a.e. means almost everywhere, which is a precise measure-theoretic
term. Most importantly here, two functions u1 and u2 that are not equal but equal
almost everywhere generate the same state equation and objective function because
they appear only in integration.

i Within this book, readers need know only six facts from measure theory.

1. A condition holds almost everywhere if the set on which it fails has zero measure.
2. A countable set has zero measure.
3. An analytic function has at most countable zeros or is identically zero.
4. A point p ∈ R is isolated in I if there exists an ϵ > 0 such that (p−ϵ, p+ϵ)∩I = {p}.
5. A set of isolated points is countable and has zero measure.
6. There are sets of positive measure that do not contain an interval.

Example 5.1. Consider a simple car on a straight track trying to reach the finish line
as quickly as possible.

minimize tf

subject to ẋ = u, x0 = 0, xf = 1

− 1 ≤ u ≤ 1

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λu

G = λ0tf + ν(xf − 1)
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The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇ = 0, λf = ν

Ḣ= 0, Hf = −λ0 = λf uf

It is immediately deduced that λ and H are constants, from which it follows that u is
constant. The pointwise minimum condition yields

u
ae
∈ argmin

−1≤ω≤ 1
λω =⇒ u

ae
=


−1, λ > 0

+1, λ < 0

singular, λ = 0

.

If λ = 0, then λ0 = 0 violating non-triviality. Thus, “singular” solutions cannot
occur. The optimal control is either always −1 or always +1. If u = −1, then x = −t.
Since t ≥ 0, the terminal constraint xf = 1 cannot be satisfied. If u = +1, then x = t.
The terminal constraint is satisfied when tf = 1. The candidate optimal control is
u(t) = 1 on the time domain [0, 1]. ⋆

Example 5.2. Consider the related problem of moving the car from start to finish with
a quadratic control objective and no control constraint. The final time is fixed at t̄f .

minimize
1

2

∫ tf

0

u2 dt

subject to ẋ = u, x0 = 0, xf = 1, tf = t̄f

The solution procedure is to first form the Hamiltonian and endpoint functions.

H =
1

2
λ0u

2 + λu

G = ν1 (xf − 1) + ν2 (tf − t̄f )

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇ = 0, λf = ν1

Ḣ= 0, Hf = −ν2 =
1

2
λ0u

2
f + λfuf

It is immediately deduced that λ and H are constants, from which it follows that u is
constant. The pointwise minimum condition yields

u
ae
∈ argmin

ω

1

2
λ0ω

2 + λω =⇒ λ0u+ λ
ae
= 0.

Having λ0 = 0 implies λ = 0, which violates non-triviality. With λ0 = 1, u = −λ. A
constant control that drives the system state from 0 to 1 in time t̄f is u = 1/t̄f . All the
optimality conditions are satisfied, and this is a candidate optimal control.

The objective value is
1

2

∫ t̄f

0

1

t̄2f
dt =

1

2

1

t̄f
.

By extending the final time, the objective can be driven to zero in the limit. However,
the control becomes zero in the limit. Zero control does not drive the state from 0
to 1. Hence, one should expect that the free final time version of the problem lacks a
solution.
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i The infimum of the free final time objective is zero but a minimum does not
exist. This is the equivalent of trying to minimize e−x. Although motivated by a
real problem, the mathematical problem is ill-posed.

⋆

Example 5.3. Consider now the problem with an absolute value control objective.

minimize

∫ tf

0

|u| dt

subject to ẋ = u, x0 = 0, xf = 1, tf = t̄f > 1

− 1 ≤ u ≤ 1

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λ0 |u|+ λu

G = ν1 (xf − 1) + ν2 (tf − t̄f )

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇ = 0, λf = ν1

Ḣ= 0, Hf = −ν2

It is immediately deduced that λ and H are constants. Constancy of u cannot be
deduced in this problem. If λ0 = 0, then the pointwise minimum condition yields

u
ae
∈ argmin

−1≤ω≤ 1
λω =⇒ u

ae
=


−1, λ > 0

+1, λ < 0

singular, λ = 0

.

The abnormal singular case cannot occur because it violates non-triviality. Also, u ae
= −1

and u ae
= +1 do not steer to the final conditions. Thus, λ0 = 1. To satisfy the pointwise

minimum condition in the normal case, one needs to solve the following problem almost
everywhere.

minimize |u|+ λu

subject to − 1 ≤ u ≤ 1

The absolute value prevents application of the theories presented in Chapter 3. Breaking
the problem into subcases resolves the issue.

• If λ > 1, then u ae
= −1. This control does not steer to the final conditions.

• If −1 < λ < 1, then u ae
= 0. This control does not steer to the final conditions.

• If λ < −1, then u ae
= 1. This control does not steer to the final conditions.

• If λ = ±1, the minimizing control is not determined by the condition.

This is the singular case meaning the pointwise minimum condition does not uniquely
specify the control. In this problem, the normal singular case is the only feasible option.
It must be that λ = −1.
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Any feasible control taking values in the interval [0, 1] is a candidate optimal control.
Two options are:

u =
1

t̄f
, −→ J = 1,

u =

{
1 t ∈ [0, 1)

0 t ∈ [1, t̄f ]
−→ J = 1.

There are many more candidates. Like regular optimization problems, optimal control
problems may have no solutions, one solution, or infinitely many solutions. In the event
that the optimality conditions generate multiple candidates, the optimal solution can be
determined by computing the objective of each candidate and picking the best one(s).

i Optimal controls need not be differentiable or even continuous. It is not un-
common in optimal spacecraft guidance for the control to be bang-bang (switching
between extreme limits) or bang-off-bang (switching between extreme limits and
zero). A general theory of optimal control permits a large class of control functions
called measurable functions or even generalized measure-driven functions.

⋆

5.2 Scalar Linear Quadratic Control

The continuous-time scalar linear quadratic control problem is now investigated.

minimize
1

2

∫ tf

0

u2 dt

subject to ẋ = ax+ bu, x0 = x̄0, xf = x̄f , tf = t̄f

(5.10)

The barred quantities are given constants. The solution procedure is to first form the
Hamiltonian and endpoint functions.

H =
1

2
λ0u

2 + λ (ax+ bu) (5.11)

G = ν1 (xf − x̄f ) + ν2 (tf − t̄f ) (5.12)

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇ = −aλ, λf = ν1 (5.13)

Ḣ = 0, Hf = −ν2 (5.14)

It is immediately deduced that H is constant. Also, from the homogeneity of the costate
equation, λ being zero somewhere implies it is zero everywhere. The pointwise minimum
condition yields

u
ae
∈ argmin

ω

1

2
λ0ω

2 + bλω =⇒ λ0u+ bλ
ae
= 0. (5.15)
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Having λ0 = 0 implies λ = 0, which violates non-triviality. With λ0 = 1, the optimal
control is u ae

= −bλ. Though not required to do so, we choose u = −bλ. Substituting
into the state equation gives

ẋ = ax− b2λ. (5.16)

Since the costate is homogenous, its solution is given by

λ = ea(tf−t)λf , (5.17)

making the state equation

ẋ = ax− b2ea(tf−t)λf . (5.18)

The solution to this equation is

x = ea(t−0)x0 −
∫ t

0

ea(t−τ)b2ea(tf−τ)λf dt. (5.19)

Evaluating at the final time gives

xf = eatfx0 −
∫ tf

0

ea(tf−τ)b2ea(tf−τ)λf dτ (5.20a)

= eatfx0 − Λλf . (5.20b)

Provided Λ ̸= 0, which is again related to controllability of the system, we can now
solve for λf as

λf =
1

Λ

(
eatfx0 − xf

)
. (5.21)

Substituting this back into the costate equation gives

λ =
1

Λ
ea(tf−t)

(
eatfx0 − xf

)
. (5.22)

The candidate optimal control is

u = − b

Λ
ea(tf−t)

(
eatfx0 − xf

)
. (5.23)

Using an existence theorem, it can be shown that an optimal solution exists making
this candidate the optimal solution. This control drives the (a, b) system from x0 to
xf in tf time and minimizes the quadratic control objective. This optimal control is
open-loop because it depends on the initial state rather than the current state.

The solution process for this continuous-time problem follows very closely the process
for the discrete-time problem. After writing the optimality conditions, solve for the
optimal control in terms of the costate, back propagate the costate, forward propagate
the state, and satisfy the boundary conditions. A sufficient condition for the optimality
conditions to be solvable is that the system is controllable, which guarantees that Λ is
non-zero. Analysis of all the linear quadratic variants LQC, LQR, and LQT is similar.
Analysis of each is left as a problem for the reader.
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MATLAB Implementation

For an implementation in MATLAB, define the system a and b, the boundary conditions
x0 and xf, and the final time tf. The problem is to drive the state from 1 to 0 in 1
second.

1 % Data
2 a = 1.1;
3 b = 1;
4 x0 = 1;
5 xf = 0;
6 tf = 1;

Compute Λ, which can then be used to compute the optimal control.

7 L = b^2/(2*a)*( exp(2*a*tf)-1 )

The function to be integrated is then coded. Note the extra parameters being passed
into the integration.

12 function xdot = ode(t,x,a,b,x0,xf,tf,L)
13 u = -b/L*exp( a*(tf-t) )* (exp( a*(tf) )*x0 - xf);
14 xdot = a*x+b*u;
15 end

The system can be simulated and the result plotted.

8 % Simulation
9 [t,x] = ode45(@ode,[0,tf],x0,[],a,b,x0,xf,tf,L);

10 figure, plot(t,x), grid on
11 xlabel(‘t’), ylabel(‘x’)

Figure 5.1 shows the state evolving in time from 1 to 0 as required.
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Figure 5.1: State trajectory for scalar linear quadratic optimal control.



5.3. Optimal Thrust Angle Control 91

5.3 Optimal Thrust Angle Control

Vehicle p is pursuing vehicle e, which is evading by moving to the right with constant
velocity ve. This is illustrated in Figure 5.2

x

y

ve

ℓ

h

p

e

Figure 5.2: Illustration of vehicle p pursuing vehicle e.

The pursuer starts at rest at the origin. The evader starts at the point (ℓ, h). The
dynamics of the pursuer are

ẋ = u, u̇ = τ cos θ, x(0) = u(0) = 0, (horizontal motion) (5.24a)
ẏ = v, v̇ = τ sin θ, y(0) = v(0) = 0. (vertical motion) (5.24b)

The known constant thrust acceleration magnitude is τ . The control variable is the
thrust angle θ. The pursuer wants to intercept the evader as quickly as possible.

minimize tf

subject to (5.24a) − (5.24b),
yf = h, xf = ℓ+ vetf

(5.25)

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λxu+ λyv + λuτ cos θ + λvτ sin θ (5.26)
G = λ0tf + νx (xf − ℓ− vetf ) + νy (yf − h) (5.27)

The costate and Hamiltonian differential equations are the following.

λ̇x = 0 =⇒ λx constant (5.28)

λ̇y = 0 =⇒ λy constant (5.29)

λ̇u = −λx =⇒ λu = −λx (t− tf ) + λuf (5.30)

λ̇v = −λy =⇒ λv = −λy (t− tf ) + λvf (5.31)

Ḣ = 0 =⇒ H constant (5.32)

The transversality conditions specify terminal boundary conditions on the costates and
Hamiltonian.

λxf = νx, λuf = 0 (5.33)
λyf = νy, λvf = 0 (5.34)
Hf = −λ0 + νxve = νxuf + νyvf (5.35)
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Using the costate and transversality conditions together gives

λu = −νx (t− tf ) , (5.36)
λv = −νy (t− tf ) . (5.37)

The pointwise minimum condition yields

θ
ae
∈ argmin

ω
λuτ cosω + λvτ sinω =⇒ −λu sin θ + λv cos θ

ae
= 0, (5.38)

which determines the thrust angle θ except when λu and λv are both zero. This singular
case is negligible if it occurs on a set of zero measure. Suppose, on the other hand, it
occurs on a set of positive measure, i.e., λu and λv are both zero on a set of positive
measure. Because they are linear (analytic) functions of time, they are zero everywhere.
This implies that λx = νx and λy = νy are also zero. The Hamiltonian is zero and the
Hf condition implies λ0 = 0, which violates non-triviality. The singular case cannot
occur on sets of positive measure. It is deduced that

tan θ
ae
=
λv
λu
. (5.39)

Though not required, the ae
= is replaced with =. Substituting in the costate expressions

gives

tan θ =
−νy (t− tf )

−νx (t− tf )
=
νy
νx
. (5.40)

That is, the optimal thrust angle is constant. The state equations can be integrated.

u = τt cos θ, x =
1

2
τt2 cos θ (5.41)

v = τt sin θ, y =
1

2
τt2 sin θ (5.42)

At the final time, the terminal constraints yield

1

2
τt2f cos θ = ℓ+ vetf

1

2
τt2f sin θ = h

 =⇒ tan θ =
h

ℓ+ vetf
. (5.43)

The only thing remaining is to find the optimal final time. One way to do this is to
square both sides in the above equations and add.

1

4
τ2t4f

(
sin2 θ + cos2 θ

)
= h2 + (ℓ+ vetf )

2 (5.44)

=⇒ 1

4
τ2t4f = h2 + ℓ2 + 2ℓvetf + v2et

2
f . (5.45)

Solving this quartic equation gives four possible values of tf . Choose the least real value
from the four. This is the minimum intercept time.
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MATLAB Implementation

For MATLAB implementation, specify the initial altitude h and range L of the evader,
its speed ve, and the thrust acceleration of the pursuer a.

1 % Data
2 h = 50; % m
3 L = 100; % m
4 ve = 25; % m/s
5 a = 10; % m/s2

Compute the final time by solving the quartic polynomial and selecting the real positive
root.

6 % Solve for the final time
7 tf = roots([-1/4*a^2,0,ve^2,2*L*ve,h^2+L^2]);
8 tf = tf(1);

Compute the optimal thrust angle.

9 % Solve for the thrust angle
10 theta = atan( h/(L+ve*tf) );

Lastly, verify that the final positions of the pursuer and evader are equal.

11 % Final position of the evader
12 xe = L+ve*tf;
13 ye = h;
14

15 % Final position of the pursuer
16 xp = 1/2*a*tf^2*cos(theta);
17 yp = 1/2*a*tf^2*sin(theta);
18

19 % Position error
20 error = norm([xe-xp,ye-yp])

A simulation involving integration could also be created. For this problem, however,
the differential equations can be analytically integrated to compute the final positions.

5.4 Minimum Time Control

Drive the double integrator system to the origin in minimum time with bounded control.
All quantities are scalars.

minimize

∫ tf

0

1 dt

subject to ẋ1 = x2, x1(0) = x10, x1f = 0

ẋ2 = u, x2(0) = x20, x2f = 0

|u| ≤ 1

(5.46)
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The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λ0 + λ1x2 + λ2u (5.47)
G = ν1 (x1f − 0) + ν2 (x2f − 0) (5.48)

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇1 = 0, λ1f = ν1 (5.49)

λ̇2 = −λ1, λ2f = ν2 (5.50)

Ḣ = 0, Hf = 0 (5.51)

It is immediately deduced that H is constant and zero. The costate λ1 is constant. The
costate λ2 is constant or varying linearly in time. The pointwise minimum condition
yields

u
ae
∈ argmin

|ω| ≤ 1

λ2ω =⇒ u
ae
=


−1 , λ2 > 0

+1 , λ2 < 0

singular, λ2 = 0

. (5.52)

The singular case is negligible if it occurs on a set of zero measure. Suppose, on the
other hand, it occurs on a set of positive measure, i.e., λ2 is zero on a set of positive
measure. Because it is a linear (analytic) function of time, it is zero everywhere. Having
λ2 = 0 everywhere implies λ1 = 0 everywhere. The Hamiltonian being zero implies that
λ0 = 0, which violates non-triviality. The singular case cannot occur on sets of positive
measure.

As a result, the control can be chosen to take only values of ±1. Because λ2 is a
linear function of time, it can switch signs at most one time. Denote such a switch time
as t1. There are four possible control solutions.

u =


+1 ∀t ∈ [t0, tf ]

−1 ∀t ∈ [t0, tf ]

+1 ∀t ∈ [t0, t1), −1 ∀t ∈ [t1, tf ]

−1 ∀t ∈ [t0, t1), +1 ∀t ∈ [t1, tf ]

(5.53)

Integrating the state equations with u = ±1 gives

x2 = ±t+ a, (5.54)

x1 = ±1

2
t2 + at+ b, (5.55)

where a = x20 and b = x10. Eliminating t gives

x1 = +
1

2
x22 + c for u = +1, (5.56)

x1 = −1

2
x22 + d for u = −1. (5.57)

The constants c and d are functions of a and b. One can then plot the parabolas for
various values of c and d as seen in Figure 5.3.
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d = 0 d > 0d < 0

Figure 5.3: Plot of the parabolas for various values of c and d.

These graphs provide a map of how to move throughout the state space. The
parabolas are one-way roads upon which the system can travel. If starting in the first
quadrant, applying u = +1 moves the state farther from the origin. Applying u = −1
moves the state into the fourth quadrant. As soon as the green (u = +1) curve is hit in
the fourth quadrant, switching to u = +1 drives the state to the origin. This motivates
the following switching curve x1 = − 1

2x2 |x2|, which is shown in Figure 5.4.

x1

x2

u = −1

u = +1

Figure 5.4: Plot of the switching curve.

If the current state is above the switching curve, apply u = −1. If the current state
is below the switching curve, apply u = +1. If the current state is on the switching
curve and x2 is positive, apply u = −1. If the current state is on the switching curve
and x2 is negative, apply u = +1.

This optimal strategy is in closed-loop form because it depends on the current state.
It does, however, require perfect knowledge of the state. In the presence of any error in
state knowledge or integration, the control will chatter as it switches between ±1. Care
must be taken to prevent this in practice.



96 Chapter 5. Optimal Control

5.5 Maximal Orbit Raise

Consider a spacecraft in a circular orbit and the problem of using continuous thrust
to transfer to the largest possible circular orbit in a specified time. The thrust force
is a known constant. The control variable is the thrust angle θ. The optimal control
problem is the following.

maximize rf , tf = t̄f

subject to ṙ = u, r (0) = r0

u̇ =
v2

r
− µ

r2
+

T sin θ

m0 − ṁt
, u (0) = 0, uf = 0

v̇ = −u v
r

+
T cos θ

m0 − ṁ t
, v (0) =

√
µ

r0
, vf =

√
µ

rf

(5.58)

radial distance

radial velocity

tangential velocity

thrust force

thrust angle

initial mass fuel burn rate

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λru+ λu

(
v2

r
− µ

r2
+

T sin θ

m0 − ṁt

)
+ λv

(
−uv
r

+
T cos θ

m0 − ṁt

)
(5.59)

G = λ0rf + ν1uf + ν2

(
vf −

√
µ

rf

)
+ ν3(tf − t̄f ) (5.60)

The costate equations are

λ̇r = −∂H
∂r

= −λu
(
−v

2

r
+

2µ

r3

)
− λv

(uv
r2

)
, (5.61)

λ̇u = −∂H
∂u

= −λr + λv
v

r
, (5.62)

λ̇v = −∂H
∂v

= −λu
2v

r
+ λv

u

r
. (5.63)

The transversality conditions are

λrf =
∂G

∂rf
= λ0 +

ν2
√
µ

2r
3/2
f

, (5.64)

λuf =
∂G

∂uf
= ν1, (5.65)

λvf =
∂G

∂vf
= ν2. (5.66)

The pointwise maximum (because the problem is to maximize) condition yields

θ
ae
∈ argmax

ω
λu sinω + λv cosω =⇒ λu cos θ − λv sin θ

ae
= 0, (5.67)
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which determines the thrust angle θ except when λu and λv are both zero. This singular
case is negligible if it occurs on a set of zero measure. Suppose, on the other hand, it
occurs on a set of positive measure, i.e., λu and λv are both zero on a set of positive
measure. Note that λu and λv satisfy differential equations that depend on the states
and the states depend on the control. Hence, they may not be analytic functions of
time. For non-analytic functions, being zero on a set of positive measure does not imply
being zero everywhere. A deeper analysis is required.

Let s be a point in the supposed set such that λu(s) = λv(s) = 0. Observe that
the costate equations are homogeneous. If λr(s) = 0, then all three functions are zero
everywhere and the λrf condition then requires λ0 = 0, violating non-triviality. Hence,
λr(s) ̸= 0. A formula for λu is obtained by integrating its derivative.

λu(t) = λu(s) +

∫ t

s

−λr(τ) + λv(τ)
v(τ)

r(τ)
dτ (5.68)

The λu(s) term is zero. The integrand has a value of −λr(s) at s. Because the integrand
is absolutely continuous, the integrand has the sign of −λr(s) on [s, t] for t sufficiently
close to s. That is, there exists a neighborhood around s on which the only zero of λu
is at s. This implies that all zeros of λu are isolated. A set of isolated points has zero
measure. The singular case cannot occur on sets of positive measure. The non-singular
optimal control satisfies the equation

tan θ =
λu
λv
. (5.69)

Note that some papers, especially those in the engineering literature, investigate sin-
gular cases by supposing an interval exists rather than a set of positive measure. This
simplifies the analysis, and one could argue it is the “practical” thing to do. It leaves
open, however, the possibility that the optimal control is singular on a set of positive
measure that contains no intervals.

With the optimal control given above, it is impossible to integrate the resulting
equations analytically. The indirect shooting method can be used to numerically solve
the problem.

i There are six differential equations (three states and three costates). The three
initial conditions for the states are known. The strategy in indirect shooting is
to guess the three initial conditions for the costates. Integrate all six differential
equations to the final time. Check if the three terminal constraints are satisfied.

uf = 0, vf =

√
µ

rf
, λrf = λ0 +

λvf
√
µ

2 r
3/2
f

(5.70)

If so, terminate. Otherwise, iterate using Newton’s Method. MATLAB’s built-in
Newton solver is fsolve. This procedure reduces the optimal control problem to a
root-finding problem.

MATLAB Implementation of Indirect Shooting

For numerical implementation, the initial radius around the sun is 149.6·109 m or 1 AU.
The initial mass is 4500 kg. The constant thrust force is 4 N. The mass burn rate is
7·10−5 kg/s. The final time is 193 days. Units used in MATLAB are kg, days, and AU.
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1 % Unit scalings
2 MU = 1 / 1;
3 DU = 1 / 149.6e9;
4 TU = 1 / 86400;
5

6 % Data
7 T = 4 * MU*DU/TU^2;
8 m0 = 4500 * MU;
9 mdot = 7e-5 * MU/TU;

10 mu = 1.327e20 * DU^3/TU^2;
11 tf = 193;
12

13 % Initial conditions
14 r0 = 1;
15 u0 = 0;
16 v0 = sqrt(mu/r0);
17 x0 = [r0;u0;v0];

A guess for the initial costates is made. How to make such a good guess is discussed
shortly.

18 % Initial guess
19 % placeholder
20 % placeholder
21 s=1; unk=[2.1455405424997; 61.7825876741792; 136.3528303294001];

A function to integrate the state/costate system is specified.

34 function xdot = ode(t,x,m0,mdot,T,mu)
35

36 % States and costates
37 r = x(1); u = x(2); v = x(3);
38 lr = x(4); lu = x(5); lv = x(6);
39

40 % Optimal thrust angle
41 theta = atan2(lu,lv);
42

43 % State equations
44 rdot = u;
45 udot = v^2/r - mu/r^2 + T*sin(theta)/(m0 - mdot*t);
46 vdot = -u*v/r + T*cos(theta)/(m0 - mdot*t);
47

48 % Costate equations
49 lrdot = -lu*(-v^2/r + 2*mu/r^3) - lv*(u*v/r^2);
50 ludot = -lr + lv*v/r;
51 lvdot = -lu*2*v/r + lv*u/r;
52

53 xdot = [rdot; udot; vdot; lrdot; ludot; lvdot];
54 end
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MATLAB’s built-in function fsolve is used to perform Newton’s method and converge
to an initial costate such that all terminal constraints are satisfied. In this light, a
function is created to specify the three terminal constraints. Note that integration is
performed in this function so it can be evaluated in Newton’s method.

55 function F = shooting(unk,x0,m0,mdot,T,mu,tf,s)
56

57 lambda0 = 1;
58

59 % Initial costates
60 lr = unk(1);
61 lu = unk(2);
62 lv = unk(3);
63

64 % Integrate state/costate system
65 [~,x] = ode45(@ode,[0,tf],[x0;lr;lu;lv],[],m0,mdot,T,mu);
66

67 % Terminal states and costates
68 rf = x(end,1); uf = x(end,2); vf = x(end,3);
69 lrf = x(end,4); luf = x(end,5); lvf = x(end,6);
70

71 % Terminal constraints
72 F(1) = uf;
73 F(2) = vf - sqrt(mu/rf);
74 F(3) = ( lrf - lambda0 - lvf*sqrt(mu)/(2*rf^(3/2)) )*s;
75 end

Newton’s method may now be run via MATLAB’s fsolve.

22 % Shooting method
23 ops = optimoptions(‘fsolve’,‘Display’,‘iter-detailed’);
24 sol = fsolve(@shooting,unk,ops,x0,m0,mdot,T,mu,tf,s);

Doing so generates the following initial costates.

>> sol = [2.1455405424997; 61.7825876741792; 136.3528303294001]

We now return to lines 18-21 and the problem of starting with a good guess. A rea-
sonable idea might be to guess random numbers, e.g., unk = rand(3,1) or unk =
randn(3,1). Doing so does not lead to convergence in fsolve. One could also try
scaling these random numbers. To simplify this guessing process, recognize that it is
the terminal costate constraint that is most complicated. By setting the scaling factor
s = 1e-5, which in code multiplies the F(3) equation, the difficulty can be eliminated.
On line 19, implement the following.

19 s=1e-5; unk=1e-3*[1;1;1];

Running the code leads to a solution (to the scaled problem). Increase the scaling factor
to s = 0.1 and use the previous solution as the initial guess. To do so, implement the
following on line 20.

20 s=0.1; unk=[2.1454783539651; 61.7820129652734; 136.3627108440081];
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Running the code leads to a solution (to the scaled problem). Repeat this process by
increasing the scaling factor to one and using the previous solution as the initial guess.
To do so, implement the following on line 21.

21 s=1; unk=[2.1455405424997; 61.7825876741792; 136.3528303294001];

With the scaling factor equal to one, the problem of interest is obtained. Running the
code leads to a solution of the problem. The final radius is approximately 1.56 AU.
This is consistent with the result obtained using direct transcription in Section 4.8. A
plot of the radius as a function of time is shown in Figure 5.5.
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Figure 5.5: Orbit radius as a function of time.

The optimal thrust angle is shown in Figure 5.6.
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Figure 5.6: Thrust angle as a function of time using indirect shooting.
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MATLAB code to generate the plots is below.

25 % Simulation and plots
26 [t,x] = ode45(@ode,[0,tf],[x0;sol],[],m0,mdot,T,mu);
27 figure, plot(t,x(:,1)), grid on
28 xlabel(‘t’), ylabel(‘r (AU)’)
29

30 theta = atan2(x(:,5),x(:,6));
31 theta = 180/pi*wrapTo2Pi(theta);
32 figure, plot(t,theta), grid on
33 xlabel(‘t’), ylabel(‘theta (deg)’)

i This numerical solution is one candidate solution. Other solutions may be
generated by a different initialization process. Furthermore, the search for abnormal
solutions has not been done. These challenges are left for the reader to explore.

MATLAB Implementation of Direct Shooting

The indirect shooting method requires the guess of costates, which are non-physical. An
alternative is direct shooting. The controls are guessed at node times, an interpolation
scheme is chosen, and the state equations are integrated. The benefit of direct shooting
is that costates are completely eliminated and physical quantities are guessed. The
downside of direct shooting is that the number of quantities to be guessed increases.
Furthermore, parameterization (or discretization and interpolation) of the controls re-
sults in a sub-optimal (or approximate) control.

Numerically, the solution process begins the same and lines 1-17 are unchanged.
A selection of time nodes and guess of control values at those nodes must be made.
As before, a good guess leads to a quick numerical solution and a poor guess leads to
convergence problems. Based on the indirect shooting solution, it is seen that the thrust
angle time history looks like a scaled and shifted hyperbolic tangent function. For this
reason, the following guess is made.

18 % Control guess
19 N = 50;
20 tspan = linspace(0,tf,N);
21 theta = 150*tanh( (tspan-100)/30 )+170;
22 theta = theta*pi/180;

In between node times, linear interpolation is done. Before using the guess in optimiza-
tion, the state differential equations, objective function, and constraint function must be
coded for compatibility with MATLAB’s constrained solver fmincon. The differential
equations are in the function ode. The guessed control values are entering the function
as thvec and the associated node times are tvec. Interpolation occurs on line 45.

42 % State differential equation
43 function xdot = ode(t,x,m0,mdot,T,mu,tvec,thvec)
44 r = x(1); u = x(2); v = x(3);
45 theta = interp1(tvec,thvec,t);
46 rdot = u;
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47 udot = v^2/r - mu/r^2 + T*sin(theta)/(m0-mdot*t);
48 vdot = -u*v/r + T*cos(theta)/(m0-mdot*t);
49 xdot = [rdot;udot;vdot];
50 end

The objective function obj integrates so that the final radial position is known. It is
negated because the problem is to maximize.

51 % Objective function
52 function J = obj(theta,x0,m0,mdot,T,mu,tspan)
53 [~,x] = ode45(@ode,tspan,x0,[],m0,mdot,T,mu,tspan,theta);
54 J = -x(end,1);
55 end

The constraint function con integrates so that all final states are known. The terminal
state constraints are enforced as equality constraints in the variable ceq. There are no
inequality constraints in cin.

56 % Constraint function
57 function [cin,ceq] = con(theta,x0,m0,mdot,T,mu,tspan)
58 [~,x] = ode45(@ode,tspan,x0,[],m0,mdot,T,mu,tspan,theta);
59 rf = x(end,1);
60 uf = x(end,2);
61 vf = x(end,3);
62 cin = [];
63 ceq(1,1) = uf - 0;
64 ceq(2,1) = vf - sqrt(mu/rf);
65 end

With these functions in place, MATLAB’s fmincon is used to optimize the control
values at the node times.

23 % Optimize
24 ops = optimoptions(‘fmincon’,‘Display’,‘iter’,...
25 ‘EnableFeasibilityMode’,true,...
26 ‘SubproblemAlgorithm’,‘cg’,...
27 ‘MaxFunEvals’,5e3);
28 LB = linspace(0,0,N);
29 UB = linspace(2*pi,2*pi,N);
30 pobj = @(theta) obj(theta,x0,m0,mdot,T,mu,tspan);
31 pcon = @(theta) con(theta,x0,m0,mdot,T,mu,tspan);
32 theta = fmincon(pobj,theta,[],[],[],[],LB,UB,pcon,ops);

Running the code leads to a solution of the problem. The final radius is approximately
1.56 AU as in the indirect shooting method. A plot of the thrust angle is shown in
Figure 5.7. Observe that it is not smooth because the optimizer is simply adjusting the
control values at the node times.
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Figure 5.7: Thrust angle as a function of time using direct shooting.

The thrust angle time history can be made monotonic (and smoother) by enforcing
an inequality constraint in line 62.

62 cin = -diff(theta);

In any case, MATLAB code to generate the plots is below.

33 % Integrate the solution
34 [~,x] = ode45(@ode,tspan,x0,[],m0,mdot,T,mu,tspan,theta);
35

36 % Plot the solution
37 figure, plot(tspan,x(:,1)), grid on
38 xlabel(‘t (days)’), ylabel(‘r (AU)’)
39

40 figure, plot(tspan,theta*180/pi), grid on
41 xlabel(‘t (days)’), ylabel(‘theta (deg)’)

MATLAB Implementation of Global Control Parameterization

The hyperbolic tangent initial guess was sufficient to achieve convergence in direct
shooting. A more extreme approach, which dramatically reduces the problem size, is
to parameterize the control function over the entire time domain. In this example, it is
assumed that the thrust angle has the form

θ = c1 tanh ((t− c2)/c3) + c4, (5.71)

and the optimization variables are now the coefficients c1, c2, c3, and c4. The resulting
control is sub-optimal unless the optimality conditions dictate the optimal control has
this form. For numerical implementation, lines 1-17 remain the same. Consistent with
the coefficients specified in the direction shooting method, the guess now appears as the
following.
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18 % Control guess
19 N = 50;
20 tspan = linspace(0,tf,N);
21 coeff = [150;100;30;170];

The state differential equations, objective function, and constraint function undergo mi-
nor modification. Most importantly, the thrust angle is computed using the hyperbolic
tangent function on line 37.

34 % State differential equation
35 function xdot = ode(t,x,m0,mdot,T,mu,tvec,coeff)
36 r = x(1); u = x(2); v = x(3);
37 theta = coeff(1)*tanh( (t-coeff(2))/coeff(3) )+coeff(4);
38 theta = theta*pi/180;
39 rdot = u;
40 udot = v^2/r - mu/r^2 + T*sin(theta)/(m0-mdot*t);
41 vdot = -u*v/r + T*cos(theta)/(m0-mdot*t);
42 xdot = [rdot;udot;vdot];
43 end
44

45 % Objective function
46 function J = obj(coeff,x0,m0,mdot,T,mu,tspan)
47 [~,x] = ode45(@ode,tspan,x0,[],m0,mdot,T,mu,tspan,coeff);
48 J = -x(end,1);
49 end
50

51 % Constraint function
52 function [cin,ceq] = con(coeff,x0,m0,mdot,T,mu,tspan)
53 [~,x] = ode45(@ode,tspan,x0,[],m0,mdot,T,mu,tspan,coeff);
54 rf = x(end,1);
55 uf = x(end,2);
56 vf = x(end,3);
57 cin = [];
58 ceq(1,1) = uf - 0;
59 ceq(2,1) = vf - sqrt(mu/rf);
60 end

With these functions in place, MATLAB’s fmincon is used to optimize the coefficient
values.

22 % Optimize
23 ops = optimoptions(‘fmincon’,‘Display’,‘iter’,...
24 ‘EnableFeasibilityMode’,true,...
25 ‘SubproblemAlgorithm’,‘cg’,...
26 ‘MaxFunEvals’,5e3);
27 LB = [100;50;5;100];
28 UB = [200;200;50;200];
29 pobj = @(coeff) obj(coeff,x0,m0,mdot,T,mu,tspan);
30 pcon = @(coeff) con(coeff,x0,m0,mdot,T,mu,tspan);
31 coeff = fmincon(pobj,coeff,[],[],[],[],LB,UB,pcon,ops);
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32 theta = coeff(1)*tanh( (tspan-coeff(2))/coeff(3) )+coeff(4);
33 theta = theta*pi/180;

Running the code leads to a solution of the problem. The final radius is approximately
1.56 AU as with both previous methods. A plot of the thrust angle is shown in Figure 5.8.
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Figure 5.8: Thrust angle as a function of time using global control parameterization.

This problem has now been solved four ways. Direct transcription was used in
Section 4.8. A Chebyshev discretization was used and both states and controls were
optimization variables. In this chapter, the indirect shooting, direct shooting, and
global control parameterization methods were used. Indirect shooting requires guessing
costates and integrating the state/costate system. Direct shooting requires guessing the
control at node times and integrating the state system. Global parameterization requires
guessing coefficients in an assumed functional form and integrating the state system.
Though there are many variants of these four methods, they form the foundation of
numerical optimal control. The names of these numerical methods vary over specialized
disciplines. The names used in this book are standard in optimal spacecraft guidance.17

In each method, the solution is sensitive to the initial guess. This is because the
problem is not convex. For onboard implementations, this sensitivity is problematic.
For onboard implementations, it is common to reduce the problem to a simpler form
or transform it to a convex form (if it is not naturally convex). This ensures that
convergence is achieved in an appropriate amount of time.

17Hull, Conversion of Optimal Control Problems into Parameter Optimization Problems, 1997.
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5.6 Chapter Problems

Problem 5.1. Let I be an interval of time and f : I → R be an analytic function. Is
the following statement true or false?

f
ae
= 0 =⇒ f = 0

Problem 5.2. Let I be an interval of time and f : I → R be an absolutely continuous
function. Is the following statement true or false?

f
ae
= 0 =⇒ f = 0

Problem 5.3. Let f(t) = sin t. What is a function g such that f ae
= g and f ̸= g?

Problem 5.4. What is the definition of an absolutely continuous function (in terms
of derivatives and integrals) and how has this been used in the analysis of the maximal
orbit raise problem in Section 5.5?

Problem 5.5. Derive the open-loop solution for the continuous-time LQC problem
analogous to that in Section 4.3.

Problem 5.6. Derive the closed-loop solution for the continuous-time LQR problem
analogous to that in Section 4.4.

Problem 5.7. Derive the closed-loop solution for the continuous-time LQT problem
analogous to that in Section 4.5

Problem 5.8. Solve Problem 4.4 using a continuous-time formulation.

Problem 5.9. Solve the minimum time problem in Eq. (5.46) by implementing the state
feedback solution. Test the implementation by starting at different initial conditions.

Problem 5.10. Find the globally optimal control for the following minimum time
problem.

minimize tf

subject to ẋ1 = x2, x1(0) = 2, x1f = 0

ẋ2 = −x1 + u, x2(0) = 0, x2f = 0

|u| ≤ 1

The variables x1, x2, u ∈ R. Note that the dynamics represent a harmonic oscillator
(a mass attached to a spring without damping). State whether the globally optimal
solution is normal or abnormal.

Problem 5.11. Similar to the setting of Section 5.3, an evading vehicle is flying at
a constant altitude h, is initially downrange ℓ from the launch site, and is moving
downrange at constant speed V . At this moment, the pursuing vehicle launches and
applies a constant thrust acceleration τ so that its only control is the thrust angle θ.
The goal is to achieve a minimum time intercept.

(a) Write down the equations of motion assuming a flat planet model.
(b) Using optimal control, derive the equations to solve for the optimal thrust angle.
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(c) Using reasonable numerical values, simulate the trajectory to confirm interception
occurs.

Problem 5.12. Solve the maximal orbit raise problem described in Section 5.5 with a
flight time of 365 days. Keep all other problem data the same.

a) Use direct transcription.
b) Use indirect shooting.
c) Use direct shooting.
d) Use global control parameterization.





Chapter 6

Descent Guidance

Chapter Learning Objectives

1. Develop and implement the optimal state feedback law for terminal descent.
2. Develop Apollo-era guidance laws from optimization and polynomial perspectives.
3. Implement Apollo-era guidance laws.
4. Develop and implement computational guidance laws using convex optimization.

There are several phases to a powered descent trajectory: deorbit, braking and
approach, pitchover, and vertical descent to touchdown. In the vertical descent phase,
the vehicle is already positioned above the landing site with downward velocity. The
optimal guidance problem is to determine the fuel optimal thrust profile to achieve a soft
(zero terminal speed) landing. In this phase, the minimum fuel problem is equivalent to
the minimum time problem. Singular solutions cannot occur and it is shown that the
optimal thrust profile contains a coasting phase followed by a maximum thrust phase.
Because of this, the optimal control can be written in state feedback form.

The braking and approach phase is three-dimensional and designed to transfer a
vehicle from periapse of an approach orbit to the landing site (or near it). An optimal
control problem that penalizes flight time and thrust acceleration admits an analytical
solution suitable for implementation on Apollo-era flight computers. It is then shown
that this optimal guidance law is obtainable by special choice of polynomial basis func-
tions. In this setting, the historically significant E-guidance and Apollo lunar descent
guidance laws are derived. These are similar to the polynomial guidance developed and
implemented in Section 2.2.

Perhaps the most important feature of the Apollo-era guidance laws is their analytic
nature. They are not, however, fuel optimal. They solve for thrust acceleration rather
than thrust force, and they do not incorporate thrust magnitude constraints. To rem-
edy these deficiencies, a computational approach for computing optimal trajectories is
developed. In this approach, direct transcription is used to solve a convex, discrete-time
version of an originally nonconvex, continuous-time problem. Then, LQR can be used
to follow this fuel optimal trajectory.

109
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6.1 Terminal Descent Guidance

Consider the one-dimensional terminal descent phase of a planetary landing18. At the
initial time, the vehicle is directly above the landing site with downward velocity. The
thrust is bounded in magnitude. The goal is to reach the surface with zero speed and
minimize the fuel consumed. In this one-dimensional setting, the equations of motion
are consistent with the flat planet model in Eq. (2.10) and mass dynamics in Eq. (2.44).

r̈ = g + T/m, ṁ = −αT (6.1)

Observe that ṁ/m = d
dt lnm so that the dynamics may be rewritten as

r̈ = g − 1

α

d

dt
lnm. (6.2)

Integration from 0 to t gives

ṙ − ṙ0 = gt− 1

α
ln

m

m0
. (6.3)

To land with zero speed, ṙf = 0, such that

1

α
ln
mf

m0
= ṙ0 + gtf . (6.4)

The mass at the final time is

mf = m0exp [α(ṙ0 + gtf )] . (6.5)

The fuel consumed is

m0 −mf = m0 −m0exp [α(ṙ0 + gtf )] . (6.6)

It is evident from Eq. (6.6) that for given constants m0, ṙ0, g, and α, the fuel required
to bring the vehicle to rest is strictly monotonic with flight time tf . For this reason,
the minimum fuel problem can be solved as the following minimum time problem.

minimize tf

subject to ṙ = v, r(0) = r0, rf = 0

v̇ = g + T/m, v(0) = v0, vf = 0

ṁ = −αT, m(0) = m0

0 ≤ T ≤ Tmax

(6.7)

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λrv + λv (g + T/m) + λm (−αT ) (6.8)
G = λ0tf + νrrf + νvvf (6.9)

18Meditch, On the Problem of Optimal Thrust Programming for a Lunar Soft Landing, 1964.
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The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇r = 0, λrf = νr (6.10)

λ̇v = −λr, λvf = νv (6.11)

λ̇m = λvT/m
2, λmf = 0 (6.12)

Ḣ = 0, Hf = −λ0 (6.13)

It is immediately deduced that λr and H are constants. The costate λv is constant or
varying linearly in time. The pointwise minimum condition yields

T
ae
∈ argmin

0≤ω≤Tmax

(
λv
m

− αλm

)
ω =⇒ T

ae
=


0, λv −mαλm > 0

Tmax, λv −mαλm < 0

singular, λv −mαλm = 0

. (6.14)

The singular case occurs when the switching function f = λv − mαλm is zero. The
singular case is negligible if it occurs on a set of zero measure. Suppose, on the other
hand, it occurs on a set of positive measure. Because of m and λm, the function f is
absolutely continuous. Being zero on a set of positive measure does not imply being
zero everywhere. A deeper analysis is required.

Let s be a point in the supposed set such that f(s) = 0. A formula for f is obtained
by integrating its derivative.

f(t) = f(s) +

∫ t

s

−λr − αf(τ)
T (τ)

m(τ)
dτ (6.15)

The f(s) term is zero. The integrand has a value of −λr at s. If λr is non-zero, the
integrand has the sign of −λr on [s, t] for t sufficiently close to s. This is true because
f and m are absolutely continuous and T is bounded. This implies that the zero s of
the switching function is isolated. If all zeros are isolated, then the set of zeros has zero
measure. Therefore, having f be zero on a set of positive measure implies λr = 0. It
follows that λv is constant. There are three cases to investigate.

1 Suppose λv = 0. Then λm is constant and equal to zero. At the final time, the
Hamiltonian is zero such that λ0 = 0. This violates non-triviality. Thus, λv ̸= 0.

2 Suppose λv > 0. At s, λm(s) > 0 since λv(s) − m(s)αλm(s) = 0. Also, λ̇m ≥ 0
almost everywhere. A function that is positive and never decreasing cannot satisfy
the transversality condition λmf = 0. Thus, λv ≯ 0.

3 Suppose λv < 0. At s, λm(s) < 0 since λv(s) − m(s)αλm(s) = 0. Also, λ̇m ≤ 0
almost everywhere. A function that is negative and never increasing cannot satisfy
the transversality condition λmf = 0. Thus, λv ≮ 0.

The singular case cannot occur on sets of positive measure. The optimal control can be
chosen to take only two values: 0 and Tmax. It is now shown that the control switches
at most one time. It has already been shown that zeros of f are isolated. Let t1 and
t2 be consecutive zeros of f . It follows from continuity and non-singularity that f has
constant non-zero sign on (t1, t2).

1 Suppose f > 0 and T = 0 on (t1, t2). It follows that ḟ = −λr and f is monotonic on
(t1, t2). This is impossible. Thus, f ≯ 0 on (t1, t2).
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2 Suppose f < 0 and T = Tmax on (t1, t2). It follows that ḟ = −λr + α|f |Tmax/m
and is continuous on (t1, t2). The second term is strictly positive. For f to not be
monotonic, λr > 0. In a sufficiently small neighborhood of t2, ḟ is negative. The
function f is negative and decreasing near t2 such that t2 cannot be a zero of f .
Thus f ≮ 0 on (t1, t2).

It is concluded that the switching function cannot have two zeros, i.e., there is at most
one control switch. Lastly, the thruster must be on at the final time to meet the
zero velocity constraint. This means there are two possible optimal thrust sequences:
{0, Tmax} and {Tmax}. Designing a state feedback law to initiate the thrust is left as a
problem for the reader.

6.2 Apollo-era Descent Guidance

Returning to the three-dimensional flat planet model, an optimal control problem that
penalizes flight time and thrust acceleration is now considered.19 An advantage of the
formulation is that it yields an analytical solution for the optimal controls. Disadvan-
tages are that it does not minimize fuel consumption, it solves for thrust acceleration
rather than thrust, and it does not incorporate thrust magnitude constraints. If thrust
magnitude constraints are violated, the optimal controls must be recomputed with a
new final time weighting Γ in hopes that the new Γ lowers the required thrust magnitude
a sufficient amount. The optimal control problem is the following.

minimize Γtf +
1

2

∫ tf

0

u⊤u dt

subject to ṙ = v, r(0) = r0, rf = 0

v̇ = g + u, v(0) = v0, vf = 0

(6.16)

The position r, velocity v, thrust acceleration u, and gravitational acceleration g are
all three-dimensional. For small values of Γ, longer flight times and smaller control
magnitudes are expected. For large values of Γ, shorter flight times and larger control
magnitudes are expected. The solution procedure is to first form the Hamiltonian and
endpoint functions.

H =
λ0
2
u⊤u+ λ⊤r v + λ⊤v (g + u) (6.17)

G = λ0Γtf + ν⊤r rf + ν⊤v vf (6.18)

The costate and Hamiltonian equations are the following.

λ̇r = 0 (6.19)

λ̇v = −λr (6.20)

Ḣ = 0 (6.21)

It is immediately deduced that λr and H are constants. The costate λv is constant or
varying linearly with time.

19D’Souza, An Optimal Guidance Law for Planetary Landing, 1997.



6.2. Apollo-era Descent Guidance 113

The transversality conditions generate the following equations.

λrf = νr (6.22)
λvf = νv (6.23)
Hf = −λ0Γ (6.24)

Integrating the costate equations in terms of tgo = tf − t and substituting the boundary
conditions gives the following.

λr = νr, λv = νrtgo + νv (6.25)

The pointwise minimum condition yields

u
ae
∈ argmin

ω

λ0
2
ω⊤ω + λ⊤v ω =⇒ λ0u+ λv

ae
= 0. (6.26)

Having λ0 = 0 implies λv = 0 everywhere. The costate equations imply λr = 0. This
violates non-triviality. With λ0 = 1, the optimal controls are

u = −λv = −νrtgo − νv. (6.27)

The optimal controls are linear functions of time, which is why the simple idea of
polynomial guidance discussed in Section 2.2 is a good one. These functions can be
substituted into the state equations and integrated to yield the following state equations.

v =
1

2
νrt

2
go + νvtgo − gtgo, r = −1

6
νrt

3
go −

1

2
νvt

2
go +

1

2
gtgo (6.28)

These six equations contain the undetermined constants νr and νv. Solving for these in
terms of the state values and substituting into the control equations yields the optimal
control.

u = − 4v

tgo
− 6r

t2go
− g (6.29)

i As time approaches tf , tgo approaches zero. In practice, this causes the control
accelerations to explode. Simple close-out strategies are to turn control off beyond
a threshold value of tgo or hold tgo constant beyond a threshold value.

The optimal control problem is not yet solved because the final time has not been
determined. Substituting the state, costate, and control functions into the Hamiltonian
results in a quartic function of tgo.

(Γ +
1

2
g⊤g)t4go − 2v⊤vt2go − 12r⊤vtgo − 18r⊤r = 0. (6.30)

This equation admits four solutions. The strategy from here is to numerically solve the
equation and pick the real, positive root associated with the least objective value.

There are historically significant variations of the above guidance law, and these
can be achieved by selection of basis functions rather than optimization.20 The desired

20Lu, The Theory of Fractional-Polynomial Powered Descent Guidance, 2020.
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thrust acceleration ud is written as a linear combination of two basis functions ϕ1 and
ϕ2.

ud = c1ϕ1(tgo) + c2ϕ2(tgo) (6.31)

First and second integrals of the basis functions are

ϕ̄i(tgo) =

∫ 0

tgo

ϕi(τ) dτ, (6.32)

ϕ̂i(tgo) =

∫ 0

tgo

ϕ̄i(τ) dτ. (6.33)

Integrating the state equations backward from tf gives the desired velocity and position.

vd = c1ϕ̄1(tgo) + c2ϕ̄2(tgo)− gtgo (6.34)

rd = c1ϕ̂1(tgo) + c2ϕ̂2(tgo) +
1

2
gt2go (6.35)

To track this trajectory, consider the feedback form

u = ud − βv(tgo)
(
v − vd

)
− βr(tgo)

(
r − rd

)
, (6.36)

where βv and βr are feedback gains that must be determined. Henceforth, the (tgo)
argument is dropped for brevity. Substituting in for ad, vd, and rd gives

u = c1

(
ϕ1 + βvϕ̄1 + βrϕ̂1

)
+ c2

(
ϕ2 + βvϕ̄2 + βrϕ̂2

)
(6.37)

+ gtgo

(
1

2
βrtgo − βv

)
− βvv − βrr.

The feedback gains βv and βr are chosen, for simplicity, such that the coefficients of c1
and c2 are zero.

βr =
ϕ1ϕ̄2 − ϕ2ϕ̄1

∆
, βv =

ϕ2ϕ̂1 − ϕ1ϕ̂2
∆

, ∆ = ϕ̄1ϕ̂2 − ϕ̂1ϕ̄2 ̸= 0 (6.38)

With this selection, the thrust acceleration becomes

u = gtgo

(
1

2
βrtgo − βv

)
− βvv − βrr. (6.39)

This thrust acceleration guides the vehicle from its current state to the origin. Basis
functions are now chosen to be

ϕ1 = 1, ϕ2 = tgo. (6.40)

First integrals are

ϕ̄1 = −tgo, ϕ̄2 = −1

2
t2go. (6.41)

Second integrals are

ϕ̂1 =
1

2
t2go, ϕ̂2 =

1

6
t3go. (6.42)
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The resulting feedback gains are

βr =
6

t2go
, βv =

4

tgo
. (6.43)

The guidance law, after some simplification, is

u = − 4v

tgo
− 6r

t2go
− g. (6.44)

This is exactly the same result obtained by solving the optimal control problem. This
guidance law is called E-guidance and was first derived in 1964.21

The two-term parameterization in Eq. (6.31) can be generalized by increasing to a
three-term parameterization. The third term is the desired final thrust acceleration uf
supposing ϕ1(0) = ϕ2(0) = 0. The desired thrust acceleration is

ud = uf + c1ϕ1(tgo) + c2ϕ2(tgo). (6.45)

Integrating the state equations backward from tf gives the desired velocity and position.

vd = c1ϕ̄1 + c2ϕ̄2 − (g + uf )tgo (6.46)

rd = c1ϕ̂1 + c2ϕ̂2 +
1

2
(g + uf )t

2
go (6.47)

The feedback form for tracking in Eq. (6.36) becomes, after substitution,

u = c1

(
ϕ1 + βvϕ̄1 + βrϕ̂1

)
+ c2

(
ϕ2 + βvϕ̄2 + βrϕ̂2

)
(6.48)

+ uf + (g + uf )tgo

(
1

2
βrtgo − βv

)
− βvv − βrr.

The same choice of βr and βv as before renders the coefficients of c1 and c2 zero. With
this selection, the thrust acceleration becomes

u = uf + (g + uf )tgo

(
1

2
βrtgo − βv

)
− βvv − βrr. (6.49)

Basis functions are now chosen to be

ϕ1 = tgo, ϕ2 = t2go, (6.50)

which results in the feedback gains

βr =
12

t2go
, βv =

6

tgo
. (6.51)

The guidance law, after some simplification, is

u = uf − 6v

tgo
− 12r

t2go
. (6.52)

This is exactly the Apollo lunar descent guidance law.22 Implementation of these
Apollo-era guidance laws is left as a problem for the reader.

21Cherry, A General, Explicit, Optimizing Guidance Law for Rocket-Propelled Spaceflight, 1964.
22Klumpp, Apollo Lunar Descent Guidance, 1974.
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6.3 Computational Descent Guidance

The Apollo-era guidance laws are analytical. This was necessary in the 1960s. However,
they do not minimize fuel consumption, they solve for thrust acceleration rather than
thrust force, and they do not incorporate thrust magnitude constraints. Thus, there is
room for improvement. Modern flight computers, while still nowhere near as powerful
as desktop computers, are capable of non-trivial online computation, and this can be
exploited in guidance.23

Consider the following minimum fuel consumption optimal control problem.

maximize mf

subject to ṙ = v, r(0) = r0, rf = 0

v̇ = g + T/m, v(0) = v0, vf = 0

ṁ = −α||T ||, m(0) = m0

0 < ρ1 ≤ ||T || ≤ ρ2

(6.53)

The dynamics are again consistent with the flat planet model in Eq. (2.10) and mass
dynamics in Eq. (2.44). The thrust magnitude is upper bounded by ρ2. This constraint
arises because thrusters cannot produce infinite force. The thrust magnitude is lower
bounded by ρ1. This constraint arises because thrusters cannot produce thrust reliably
below a certain level. Also, it is unwise to turn an engine off during descent. If the
engine fails to restart, the mission terminates with a crash. In two dimensions, the
thrust constraint appears as the annulus shown in Figure 6.1.

Tx

Ty

ρ1

ρ2

Figure 6.1: Nonconvex annular thrust constraint.

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λ⊤r v + λ⊤v (g + T/m) + λm (−α||T ||) (6.54)
G = λ0mf + νrrf + νvvf (6.55)

23Blackmore, Autonomous Precision Landing of Space Rockets, 2016.



6.3. Computational Descent Guidance 117

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇r = 0, λrf = νr (6.56)

λ̇v = −λr, λvf = νv (6.57)

λ̇m = λ⊤v T/m
2, λmf = λ0 (6.58)

Ḣ = 0, Hf = 0 (6.59)

It is immediately deduced that H is constant and zero. The costate λr is constant. The
costate λv is constant or varying linearly in time. The pointwise maximum condition
yields

T
ae
∈ argmax

ρ1≤||ω||≤ρ2

λ⊤v ω

m
− αλm||ω||. (6.60)

The first term implies that the thrust direction should be aligned with λv. The di-
rectionally singular case occurs when λv is zero. The directionally singular case is
negligible if it occurs on a set of zero measure. Suppose, on the other hand, it occurs
on a set of positive measure. Because λv is a linear (analytic) function of time, it is
zero everywhere. This implies λr = 0 everywhere. The Hamiltonian being zero implies
that λm = 0 everywhere. The transversality condition on λmf implies λ0 = 0, which
violates non-triviality. The directionally singular case cannot occur on sets of positive
measure. The optimal thrust direction T̂ satisfies, everywhere except possibly a single
point where λv = 0,

T̂ =
λv

||λv||
. (6.61)

The pointwise maximum condition is rewritten as follows.

||T ||
ae
∈ argmax

ρ1≤||ω||≤ρ2

(
||λv||
m

− αλm

)
||ω|| =⇒ ||T || ae

=


ρ2, ||λv|| −mαλm > 0

ρ1, ||λv|| −mαλm < 0

singular, ||λv|| −mαλm = 0

(6.62)
The magnitudinally singular case occurs when the switching function f = ||λv||−mαλm
is zero. The magnitudinally singular case is negligible if it occurs on a set of zero
measure. Suppose, on the other hand, it occurs on a set of positive measure. Because
of m and λm, the function f is absolutely continuous. Being zero on a set of positive
measure does not imply being zero everywhere. A deeper analysis is required.

Let s be a point in the supposed set such that f(s) = 0 and λv(s) ̸= 0. A formula
for f is obtained by integrating its derivative.

f(t) = f(s) +

∫ t

s

−λv(τ)
⊤λr

||λv(τ)||
− αf(τ)

||T (τ)||
m(τ)

dτ (6.63)

The f(s) term is zero. Define the linear function h = λ⊤v λr. The integrand has a value
of −h(s)/||λv(s)|| at s. If h(s) is non-zero, the integrand has the sign of −h(s) on [s, t]
for t sufficiently close to s. This is true because f and m are absolutely continuous and
T is bounded. This implies that the zero s of the switching function is isolated. If all
zeros are isolated, then the set of zeros has zero measure. Having f be zero on a set
of positive measure implies it has uncountably many non-isolated zeros. Let s and s′
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be two such points, i.e., f(s) = f(s′) = h(s) = h(s′) = 0. It follows from linearity of h
that it is zero everywhere. Differentiating h and setting to zero implies λr = 0 and λv
is constant.

Rewriting the Hamiltonian with λr = 0 and T = T̂ ||T || implies

λ⊤v g + f
||T ||
m

= 0 (6.64)

everywhere. In the supposed case, the second term is zero on a set of positive measure.
Therefore, the first term is zero on a set of positive measure. Being analytic, this implies
that the magnitudinally singular case requires λ⊤v g = 0 everywhere. This means that
the thrust vector is always perpendicular to the gravity vector. This is impossible in
a soft, zero velocity landing. The magnitudinally singular case cannot occur on sets of
positive measure. The magnitude of the of optimal control can be chosen to take only
two values: ρ1 and ρ2. Though not shown, typical sequences are {ρ2, ρ1, ρ2}, {ρ1, ρ2},
and {ρ2} depending on the initial conditions.

The numerical methods indirect shooting, direct shooting, and direct transcription
can be used to solve the problem completely. The problem is nonconvex, however, and
each of these methods is sensitive to the initial guess. Indirect shooting is implemented
in the following subsection. A convex reformulation is then proposed suitable for direct
transcription in the subsequent subsection.

MATLAB Implementation of Indirect Shooting

An instance of this problem is solved using indirect shooting and data specified in
Problem 6.7. Data corresponds to that of a martian descent.

1 % Data
2 r0 = [2000; 100; 1500]; % m
3 v0 = [-100; -10; 0]; % m/s
4 m0 = 2100; % kg
5 x0 = [r0; v0; m0];
6 g = [0; 0; -3.71]; % m/s2
7 Isp = 225; % s
8 rho1 = 13e3; % N
9 rho2 = 20e3; % N

10 alpha = 1/(9.81*Isp);

The state and costate equations must be coded for integration in ode45. The states and
costates are extracted on lines 29 and 30. The optimal thrust is computed by calling
a subfunction getControl on line 33. The state equations are specified in lines 36-38
and the costate equations are specified in lines 41-43.

26 function xdot = ode(~,x,g,rho1,rho2,alpha)
27

28 % State/costate extraction
29 r = x(1:3); v = x(4:6); m = x(7);
30 Lr = x(8:10); Lv = x(11:13); Lm = x(14);
31

32 % Optimal control
33 T = getControl(Lv,Lm,m,rho1,rho2,alpha);
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34

35 % State equations
36 rdot = v;
37 vdot = g + T/m;
38 mdot = -alpha*norm(T);
39

40 % Costate equations
41 Lrdot = zeros(3,1);
42 Lvdot = -Lr;
43 Lmdot = Lv.’*T/m^2;
44

45 xdot = [rdot; vdot; mdot; Lrdot; Lvdot; Lmdot];
46 end

This function uses a subfunction getControl to calculate the thrust vector. This cal-
culation, like the analysis, is decomposed into a directional part and magnitudinal part.

47 function [T,Tmag] = getControl(Lv,Lm,m,rho1,rho2,alpha)
48 That = Lv/norm(Lv);
49 f = norm(Lv) - m*Lm*alpha;
50 if f >= 0
51 Tmag = rho2;
52 else
53 Tmag = rho1;
54 end
55 T = That*Tmag;
56 end

With this in place, integration can be done provided the seven initial costates and final
time are known. Indirect shooting is used to solve for these unknowns. The following
function enforces the six terminal state constraints, one terminal costate constraint,
and terminal Hamiltonian constraint. There are eight unknowns and eight boundary
conditions. It is assumed in code that λ0 = 1. It is left for the reader to explore the
case with λ0 = 0.

57 function F = shooting(unk,x0,g,rho1,rho2,alpha)
58

59 L = unk(1:7); tf = unk(8);
60 [~,x] = ode45(@ode,[0,tf],[x0;L],[],g,rho1,rho2,alpha);
61

62 rf = x(end,1:3).’; vf = x(end,4:6).’; mf = x(end,7);
63 Lrf = x(end,8:10).’; Lvf = x(end,11:13).’; Lmf = x(end,14);
64 Tf = getControl(Lvf,Lmf,mf,rho1,rho2,alpha);
65 Hf = Lrf.’*vf + Lvf.’*(g+Tf/mf) - Lmf*alpha*norm(Tf);
66 F = [rf; vf; Lmf-1; Hf];

MATLAB’s built-in Newton solver fsolve is now used to find initial costates and final
time so that all terminal boundary conditions are satisfied.

11 % Shooting method
12 ops = optimoptions(‘fsolve’,‘Display’,‘iter-detailed’);
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13 Lguess = [-0.0167;0.0002;-0.0503;-0.0537;0.0149;-0.3644;0.9011];
14 tguess = 35;
15 guess = [Lguess; tguess];
16 sol = fsolve(@shooting,guess,ops,x0,g,rho1,rho2,alpha);
17

18 % Solution Extraction
19 L = sol(1:7); tf = sol(8);
20 [t,x] = ode45(@ode,[0,tf],[x0;L],[],g,rho1,rho2,alpha);
21 r = x(:,1:3); v = x(:,4:6); m = x(:,7);
22 Lr = x(:,8:10); Lv = x(:,11:13); Lm = x(:,14);
23 for i = 1:length(t)
24 [T(i,:),Tmag(i)]=getControl(Lv(i,:),Lm(i,:),m(i),rho1,rho2,alpha);
25 end

Running the code solves the problem giving a final mass of 1,883.7 kg and final time
of 32.4 seconds. Figure 6.2 shows the thrust magnitude as a function of time. The
magnitude is bounded by ρ1 and ρ2 and in sequence {ρ1, ρ2}.
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Figure 6.2: Thrust magnitude as a function of time.

The indirect shooting method is sensitive to the initial guess and requires a good
initial guess. The method is not well-suited for an onboard implementation. For this
reason, a convex relaxation and approximation are proposed so that the problem can
be discretized and solved via direct transcription using efficient convex solvers. This is
the topic of the following subsection.

Convex Relaxation and Approximation

It is now shown that there is a convex problem that closely approximates the problem
of interest. First, fuel consumption is equal to the integral of thrust magnitude because

m = m0 − α

∫ t

0

||T || dτ. (6.65)
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The objective function can be changed to minimize the integral. Consider the relaxed
problem with two controls T and Γ.24

minimize

∫ tf

0

Γ dt

subject to ṙ = v, r(0) = r0, rf = 0

v̇ = g + T/m, v(0) = v0, vf = 0

ṁ = −αΓ, m(0) = m0

||T || ≤ Γ, 0 < ρ1 ≤ Γ ≤ ρ2

(6.66)

This problem is nonconvex because the dynamics remain nonlinear. The control con-
straints, however, are convex. Any feasible solution of the original problem is feasible in
this problem but the converse is not true. The introduction of Γ lifts the control space
into a larger dimension as illustrated in Figure 6.3.

Tx

Ty Tx

Ty

Γ

Figure 6.3: Control set lifting.

The interior of the cone on the right side contains feasible points in the relaxed
problem, but these interior points do not map to feasible points on the left side. It is
now shown that these problematic points cannot be part of the optimal solution.

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λ0Γ + λ⊤r v + λ⊤v (g + T/m) + λm(−αΓ) (6.67)

G = ν⊤r rf + ν⊤v vf (6.68)

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇r = 0, λrf = νr (6.69)

λ̇v = −λr, λvf = νv (6.70)

λ̇m = λ⊤v T/m
2, λmf = 0 (6.71)

Ḣ = 0, Hf = 0 (6.72)

24Açıkmeşe and Ploen, Convex Programming Approach to Powered Descent Guidance for Mars
Landing, 2007.
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It is immediately deduced that λr and H are constants. The costate λv is constant or
varying linearly with time. The pointwise minimum condition yields, in part,

T
ae
∈ argmin

∥ω∥≤Γ

λ⊤v ω =⇒ T
ae
=

− λv
||λv||

Γ, λv ̸= 0

singular, λv = 0
. (6.73)

The singular case is negligible if it occurs on a set of zero measure. Suppose, on the other
hand, it occurs on a set of positive measure. Because λv is a linear (analytic) function
of time, it is zero everywhere. Having λv = 0 everywhere implies λr = 0 everywhere.
Inspection of the costate and transversality conditions reveals that λm = 0 everywhere.
The Hamiltonian being zero implies that λ0 = 0, which violates non-triviality. The
singular case cannot occur on sets of positive measure. Consequently, ||T || = Γ. It has
been proven that optimal solutions of the relaxed problem are indeed feasible in the
original problem. Moreover, because it is a relaxation, optimal solutions of the relaxed
problem are optimal in the original problem.

Nonetheless, the relaxed problem is still nonconvex because of the nonlinear dy-
namics. Introduce the following variable transformations, which define two new control
variables u and σ.

u =
T

m
, σ =

Γ

m
(6.74)

The equations of motion are then

ṙ = v, (6.75)
v̇ = g + u, (6.76)
ṁ = −αmσ. (6.77)

The first two equations are linear in the states and new controls. The third remains
nonlinear. Rearranging the third gives

ṁ

m
= −ασ. (6.78)

Integrating yields the mass as a function of time.

m = m0 exp

[
−α

∫ t

0

σ(τ) dτ

]
(6.79)

It is evident that minimizing fuel consumption is equivalent to minimizing∫ tf

0

σ dt. (6.80)

Furthermore, in terms of the new control variables, the relaxed constraint is ||u|| ≤ σ.
The third state equation can be rigorously linearized through another variable transfor-
mation. Let z = lnm such that

ż =
ṁ

m
= −ασ. (6.81)

All state equations are now linear.
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Variable substitutions in the upper thrust constraint yield

Γ ≤ ρ2 −→ mσ ≤ ρ2 −→ σ ≤ ρ2e
−z. (6.82)

The transformed constraint is nonconvex. An approximation is now introduced by
replacing e−z locally by a linear approximation. It is then shown that this approximation
is conservative thereby ensuring that the original constraint ||T || ≤ ρ2 is in fact satisfied.
A linear approximation is given by

ρ2e
−z ≈ ρ2e

−z̃ − ρ2e
−z̃ (z − z̃) , (6.83)

where z̃ is to be determined. The conservative nature of the linear approximation is
easily shown using the mean value theorem, which states there is a ẑ such that equality
holds, i.e.,

ρ2e
−z = ρ2e

−z̃ − ρ2e
−z̃(z − z̃) +

1

2
ρ2e

−ẑ(z − z̃)2. (6.84)

Because the last term is non-negative, it is concluded that

ρ2e
−z̃ − ρ2e

−z̃(z − z̃) ≤ ρ2e
−z. (6.85)

As for z̃, a good selection is

z̃ =

{
ln(m0 − αρ2t), m0 − αρ2t ≥ mdry

ln(mdry), otherwise
(6.86)

where mdry is the dry (structural) mass of the spacecraft. With this definition of z̃, it is
known that z̃ ≤ z at any time because z̃ is being calculated assuming maximum thrust
force.

Variable substitutions in the lower thrust constraint yield

ρ1 ≤ Γ −→ ρ1 ≤ mσ −→ ρ1e
−z ≤ σ. (6.87)

The transformed constraint is convex. It is not, however, a second-order cone con-
straint suitable for an efficient numerical solver. To make it one, a second-order Taylor
approximation about z̃ is used.

ρ1e
−z̃

[
1− (z − z̃) +

1

2
(z − z̃)2

]
≤ σ (6.88)

Using the mean value theorem, it can again be shown that this is a conservative ap-
proximation. To summarize, the final approximate convex problem is the following.

minimize

∫ tf

0

σ dt

subject to ṙ = v, r(0) = r0, rf = 0

v̇ = g + u, v(0) = v0, vf = 0

ż = −ασ, z(0) = z0

∥u∥ ≤ σ

σ ≤ ρ2e
−z̃ − ρ2e

−z̃(z − z̃)

σ ≥ ρ1e
−z̃

[
1− (z − z̃) + 1

2 (z − z̃)2
]

z̃ =

{
ln(m0 − αρ2t), m0 − αρ2t ≥ mdry

ln(mdry), otherwise

(6.89)
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This problem is convex for fixed final times. The discretized, fixed final time problem is
a second-order cone program suitable for efficient solvers. Through direct transcription
and a one-dimensional search for the optimal time, the problem can be solved efficiently.
This is left as a problem for the reader. The use of convex optimization and other
computational techniques for optimal spacecraft guidance is an active research area.25

25Lu, Introducing Computational Guidance and Control, 2017.
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6.4 Chapter Problems

Problem 6.1. In the setting of Section 6.1, solve for the optimal control as a function of
the current state and other problem data. Simulate the optimal earth descent trajectory
using the following data.

r0 = 500; % m
v0 = -10; % m/s
m0 = 1000; % kg
Tmax = 20e3; % N
Isp = 300; % s

Problem 6.2. Consider a variation of the optimal control problem in Eq. (6.7) with
control constraint 0 < Tmin ≤ T ≤ Tmax. Determine all possible optimal thrust
sequences.

Problem 6.3. Simulate a nominal lunar descent trajectory using E-guidance and the
following data. States are ordered as downrange, crossrange, and altitude.

r0 = [500e3; 100e3; 50e3]; % ft
v0 = [-3e3; 0; 0]; % ft/s
tf = 350; % s

Problem 6.4. Building upon the previous problem, incorporate into the simulation
navigation errors, actuator dynamics, and disturbances.

Problem 6.5. Simulate a nominal lunar descent trajectory using Apollo descent guid-
ance and the following data. States are ordered as downrange, crossrange, and altitude.

r0 = [500e3; 100e3; 50e3]; % ft
v0 = [-3e3; 0; 0]; % ft/s
tf = 350; % s

Problem 6.6. Building upon the previous problem, incorporate into the simulation
navigation errors, actuator dynamics, and disturbances.

Problem 6.7. Simulate a nominal martian descent trajectory by solving the optimal
control problem in Eq. (6.89). Solve the problem using direct transcription and a one-
dimensional search for the optimal time. Use the following data. States are ordered as
downrange, crossrange, and altitude.

r0 = [2000; 100; 1500]; % m
v0 = [-100; -10; 0]; % m/s
m0 = 2100; % kg
mdry = 1500; % kg
Isp = 225; % s
rho1 = 13e3; % N
rho2 = 20e3; % N

Recall that direct transcription was implemented using a standard discretization in
Section 3.6 and a Chebyshev discretization in Section 4.8.
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Problem 6.8. Building upon the previous problem, use discrete LQR to follow the
nominal martian descent trajectory. Incorporate into the simulation navigation errors
and disturbances. Recall that trajectory following using LQR was implemented in
Section 4.6.



Chapter 7

Ascent Guidance

Chapter Learning Objectives

1. Develop and implement singular solutions to Goddard’s vertical launch problem.
2. Develop and implement a guidance law based on minimum time orbit injection.
3. Develop and implement Q-guidance using a flat planet model.
4. Develop Q-guidance using a spherical planet model.

One of the earliest problems in ascent guidance was posed by Goddard in 1919. The
problem was to determine the thrust profile to achieve maximum altitude. Optimal
control theory, which was developed 40 years later, provides a conclusive answer. The
optimal thrust profile is a sequence of maximum thrust, singular thrust, and zero thrust.
Surprisingly, when using the standard quadratic drag model, the solution is not to apply
maximum thrust until burnout. From a mathematical perspective, it is interesting that
singular solutions are part of the optimal solution, and Goddard’s problem is the only
applied problem in this book for which the singular case can occur.

The minimum time orbit injection problem is then studied. This problem and its
variations have led to well-known ascent guidance laws including the iterative guidance
mode (IGM) for Saturn V and powered explicit guidance (PEG) for Shuttle. Under
a constant thrust acceleration assumption, it is shown that the optimal thrust angle
behaves according to a linear tangent law. A change of variables facilitates analytic
integration of the state equations so that the problem is reduced to an algebraic problem
in three physical variables.

Finally, Q-guidance is developed – first using a flat planet model and then using a
spherical planet model. The development is dynamics-based rather than optimization-
based. Nonetheless, Q-guidance is fuel optimal in some settings. Q-guidance is also
called cross-product steering because the control acceleration is chosen so that a certain
cross-product is zero. Originally developed for missile guidance applications, Q-guidance
provides a flexible framework suitable for ascent applications. Because of its military
applications and the intellectual challenge of computing Q, Q-guidance was originally
classified. It is now in the public domain.

127
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7.1 Goddard’s Problem

Consider the one-dimensional vertical launch of a rocket.26 At the initial time, the
vehicle is on the ground with zero velocity. The thrust is bounded in magnitude. The
goal is to reach maximum altitude. In this one-dimensional setting, the equations of
motion are consistent with the flat planet model in Eq. (2.10), though a state-dependent
drag functionD(r, v) is also included, and the mass dynamics in Eq. (2.44). Surprisingly,
the optimal solution is not to use maximum thrust until burnout. The optimal solution
includes a period of maximum thrust followed by a period of intermediate thrust. The
intermediate thrust corresponds to a singular solution. The optimal control problem is
the following.

maximize rf

subject to ṙ = v, r(0) = 0

v̇ = g + T/m−D(r, v)/m, v(0) = 0

ṁ = −αT, m(0) = m0, mf = m̄f

0 ≤ T ≤ Tmax

(7.1)

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λrv + λv (g + T/m−D/m) + λm(−αT ) (7.2)
G = λ0rf + ν (mf − m̄f ) (7.3)

The costate, Hamiltonian, and transversality conditions generate the following equa-
tions.

λ̇r =
λv
m

∂D

∂r
, λrf = λ0 (7.4)

λ̇v = −λr +
λv
m

∂D

∂v
, λvf = 0 (7.5)

λ̇m =
λvT

m2
− λvD

m2
, λmf = ν (7.6)

Ḣ = 0, Hf = 0 (7.7)

It is immediately deduced that H is constant and zero. The pointwise maximum con-
dition yields

T
ae
∈ argmax

0≤ω≤Tmax

(
λv
m

− αλm

)
ω =⇒ T

ae
=


Tmax, λv −mαλm > 0

0, λv −mαλm < 0

singular, λv −mαλm = 0

. (7.8)

The singular case occurs when the switching function f = λv − mαλm is zero. The
singular case is negligible if it occurs on a set of zero measure. Suppose, on the other
hand, it occurs on a set of positive measure. The function f is absolutely continuous.
Being zero on a set of positive measure does not imply being zero everywhere. A deeper
analysis is required.

26Garfinkel, A Solution of the Goddard Problem, 1963.



7.1. Goddard’s Problem 129

Let s be a point in the supposed set such that f(s) = 0. A formula for f is obtained
by integrating its derivative.

f(t) = f(s) +

∫ t

s

h(τ)− αf(τ)
T (τ)

m(τ)
dτ (7.9)

The function h is
h = −λr +

λv
m

∂D

∂v
+ α

λv
m
D. (7.10)

The f(s) term is zero. The integrand has a value of h(s) at s. If h(s) is non-zero, the
integrand has the sign of h(s) on [s, t] for t sufficiently close to s. This is true because
f , h, and m are absolutely continuous and T is bounded. This implies that the zeros
of the switching function are isolated and the set of zeros has zero measure. Therefore,
having f be zero on a set of positive measure implies h(s) = 0. Furthermore, H(s) = 0.
In matrix form, having f(s) = h(s) = H(s) = 0 means

1

m
(T −D) + g v −αT

1

α
0 −m

∂D

∂v
+ αD −m 0




λv

λr

λm

 (s) =


0

0

0

 . (7.11)

If the matrix is full rank at s, then λr(s) = λv(s) = λm(s) = 0. The costate equations
are homogenous. If the costates are all zero somewhere, then they are all zero every-
where. At the final time λrf = λ0. This violates non-triviality. The matrix must have
rank less than three at s. Equivalently, the absolutely continuous determinant function
∆ given by

∆ = D −mg − αvD − v
∂D

∂v
(7.12)

must equal zero at s. A formula for ∆ is obtained by integrating its derivative.

∆(t) = ∆(s) +

∫ t

s

∆̇(τ) dτ (7.13)

The ∆(s) term is zero. The integrand has a value of ∆̇(s) at s. If ∆̇(s) is non-zero, the
integrand has the sign of ∆̇(s) on [s, t] for t sufficiently close to s. This is true again
because of continuity and boundedness arguments. This implies that the zeros of ∆ are
isolated and the set of zeros has zero measure. Therefore, having ∆ be zero on a set of
positive measure implies ∆̇(s) = 0. Upon defining the quantities

ϕ = αD +
∂2D

∂v2
v + α

∂D

∂v
v, (7.14)

θ =
∂D

∂r
v − α

∂D

∂r
v2 − ∂2D

∂v∂r
v2 +

(
D

m
− g

)
ϕ, (7.15)

ψ =
ϕ

m
− αg, (7.16)

it can be shown that ∆̇ depends linearly on T as ∆̇ = θ − ψT . By choosing T = θ/ψ
at s, the value of ∆̇ at s is zero. In conclusion, at every point s in the supposed set
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of positive measure, this choice of T guarantees that all of the conditions required for
singularity hold. This is the singular control.

In practice, solutions to the problem typically have the sequence max thrust, singular
thrust, and finally zero thrust. To implement this, apply maximum thrust at the initial
time. Monitor the determinant and switch to singular thrust when it is zero. Continue
applying singular thrust until the terminal mass constraint is satisfied. At this point,
coast to maximum altitude. Implementation is left as a problem for the reader.

7.2 Minimum Time Orbit Injection

A planar ascent problem is now considered assuming constant thrust acceleration τ =
T/m. The control variable is the thrust angle θ, and the dynamics are consistent with
the flat planet model in Eq. (2.10). The horizontal range x is free. The range rate u and
altitude rate v at the final time are fixed. The problem is to reach orbit in minimum
time. This formulation is consistent with that used to develop the iterative guidance
mode (IGM) for Saturn V ascent guidance.27

minimize tf

subject to ẋ = u x(0) = 0

ẏ = v, y(0) = 0, yf = ȳf

u̇ = τ cos θ, u(0) = 0, uf = ūf

v̇ = g + τ sin θ, v(0) = 0, vf = 0

(7.17)

The solution procedure is to first form the Hamiltonian and endpoint functions.

H = λxu+ λyv + λuτ cos θ + λv (g + τ sin θ) (7.18)
G = λ0tf + νy(yf − ȳf ) + νu(uf − ūf ) + νvvf (7.19)

The costate and Hamiltonian differential equations are the following.

λ̇x = 0 =⇒ λx constant (7.20)

λ̇y = 0 =⇒ λy constant (7.21)

λ̇u = −λx =⇒ λu = −λx (t− tf ) + λuf (7.22)

λ̇v = −λy =⇒ λv = −λy (t− tf ) + λvf (7.23)

Ḣ = 0 =⇒ H constant (7.24)

The transversality conditions specify terminal boundary conditions on the costates and
Hamiltonian.

λxf = 0, λuf = νu (7.25)
λyf = νy, λvf = νv (7.26)
Hf = −λ0 (7.27)

27Chandler and Smith, Development of the Iterative Guidance Mode with its Application to Various
Vehicles and Missions, 1967.
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Using the costate and transversality conditions together gives

λx = 0, (7.28)
λy = νy, (7.29)
λu = νu, (7.30)
λv = −νy (t− tf ) + νv. (7.31)

That is, λx is constant and zero, λy is constant, λu is constant, and λv is constant or
varying linearly with time. The pointwise minimum condition yields

θ
ae
∈ argmin

ω
λuτ cosω + λvτ sinω =⇒ −λu sin θ + λv cos θ

ae
= 0, (7.32)

which determines the thrust angle θ except when λu and λv are both zero. This singular
case is negligible if it occurs on a set of zero measure. Suppose, on the other hand, it
occurs on a set of positive measure, i.e., λu and λv are both zero on a set of positive
measure. Because they are linear (analytic) functions of time, they are zero everywhere.
This implies that all the costates are zero. The Hamiltonian is zero and theHf condition
implies λ0 = 0, which violates non-triviality. The singular case cannot occur on sets of
positive measure. It is deduced that

tan θ =
λv
λu

=
−νy(t− tf ) + νv

νu
. (7.33)

Observe that tan θ is a linear function of time such that it can be written differently in
terms of unknowns θ0 and c.

tan θ = tan θ0 − ct (7.34)

This is called the linear tangent law. Using θ as the independent variable, the state
equations can be integrated to the final point in an analytic fashion. Differentiating the
linear tangent law with respect to time gives

sec2 θ
dθ

dt
= −c =⇒ dt

dθ
= − sec2 θ

c
. (7.35)

It follows that
du

dθ
=
du

dt

dt

dθ
= −τ

c
sec θ. (7.36)

Integrating both sides with u0 = 0 gives

uf = −τ
c

∫ θf

θ0

secϕdϕ (7.37a)

= −τ
c
ln | tan θ + sec θ|θfθ0 (7.37b)

= −τ
c
ln | tan θf + sec θf |+

τ

c
ln | tan θ0 + sec θ0| (7.37c)

= +
τ

c
log

(
tan θ0 + sec θ0
tan θf + sec θf

)
. (7.37d)

Absolute values in the last equation are removed recognizing that θ will be in the first
quadrant for the ascent problem.
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Repeating this process for each state yields the following integrated state equations.

uf =
τ

c
log

(
tan θ0 + sec θ0
tan θf + sec θf

)
(7.38a)

vf =
τ

c
(sec θ0 − sec θf ) + gtf (7.38b)

xf =
τ

c2

[
sec θ0 − sec θf − tan θf log

(
tan θ0 + sec θ0
tan θf + sec θf

)]
(7.38c)

yf =
τ

2c2

[
(tan θ0 − tan θf ) sec θ0 − (sec θ0 − sec θf ) tan θf (7.38d)

− log

(
tan θ0 + sec θ0
tan θf + sec θf

)]
+

1

2
gt2f

At the final time, tan θf = tan θ0− ctf . As such, there are three unknowns in the above
equations. These are θ0, θf , and tf . There are also three boundary conditions: yf , uf ,
and vf . The three equations can be solved iteratively. Numerical implementation is left
as a problem for the reader.

Another popular ascent guidance law is powered explicit guidance (PEG).28 Though
the reader has by now developed the skills needed to derive PEG, it is lengthy and
beyond the scope of this book. A modern exposition of PEG-like guidance is available.29

7.3 Q-Guidance

Another guidance technique from the 1950s called Q-guidance is now discussed. Q-
guidance is also called cross-product steering. The development is dynamics-based
rather than optimization-based; however, Q-guidance is fuel optimal in some settings.30
Q-guidance was first developed for missiles but is applicable in various settings including
ascent.

To begin, the flat planet model in Eq. (2.10) is assumed. At the current time t, the
position is r. The goal is to reach a position rf at some later time tf . Provided the
velocity associated with r at time t, denoted vr, satisfies

rf = r + (tf − t)vr +
1
2 (tf − t)2g, (7.39)

then the vehicle can coast to the desired final point. This can be verified by simply
integrating the flat planet equations of motion with zero control. Solving for vr gives

vr =
1

tf − t

[
rf − r − 1

2
(tf − t)2g

]
. (7.40)

If, at time t, the vehicle’s actual velocity v is not equal to vr, i.e., the vehicle is not on a
trajectory that coasts to the desired final point, then control is required. In yet another
form, vr must satisfy the equation

(tf − t)vr = rf − r − 1
2 (tf − t)2g. (7.41)

28Jaggers, An Explicit Solution to the Exoatmospheric Powered Flight Guidance and Trajectory
Optimization Problem for Rocket Propelled Vehicles, 1977.

29Hull and Harris, Optimal Solutions for Quasiplanar Ascent over a Spherical Moon, 2012.
30Battin, An Introduction to the Mathematics and Methods of Astrodynamics, 1999.
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Differentiating and solving for v̇r gives

v̇r =
vr − v

tf − t
+ g. (7.42)

The difference between the needed velocity vr and the actual velocity v is the velocity-
to-be-gained vg.

vg = vr − v (7.43)

Differentiating with respect to time and recognizing that v̇ = g + u gives

v̇g =
1

tf − t
vg − u. (7.44)

Historically, the quantity pre-multiplying vg is called Q, hence the name Q-guidance.
To reach the desired trajectory, the control acceleration should be chosen to drive vg to
zero. To explore this further, see that

d

dt
(vg · vg) =

d

dt

(
∥vg∥2

)
= 2v̇g · vg (7.45a)

=
2

tf − t
∥vg∥2 − 2u · vg. (7.45b)

Since ∥vg∥2 is non-negative, its derivative must be made negative to drive it to zero.
To do this, choose u parallel to vg and as large as possible in magnitude. If umax is the
upper bound on acceleration at time t,

u =
vg
∥vg∥

umax. (7.46)

It may not be possible to make the derivative negative if umax is not sufficiently large.
Also, Q is simply a scaled identity matrix in the current setup, which is a very special
situation. This algorithm was implemented in Section 1.2.

i Observe that this choice of u causes v̇g × vg to be zero since

v̇g × vg =

(
1

t1 − t
vg − u

)
× vg (7.47a)

=
1

t1 − t
vg × vg − u× vg (7.47b)

= 0. (7.47c)

It is this cross-product property that is important and generalizes to spherical bodies.
This is why Q-guidance is also called cross-product steering.

The more general case in which the gravitational acceleration is a function of r is
now considered. The equation of motion is

v̇ = g(r) + u. (7.48)

The velocity-to-be-gained is again

vg = vr − v, (7.49)
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and its time derivative is
v̇g = v̇r − g(r)− u. (7.50)

Because vr depends on t and r, the chain rule gives

dvr
dt

=
∂vr
∂t

+
∂vr
∂r

dr

dt
(7.51a)

=
∂vr
∂t

+
∂vr
∂r

v (7.51b)

=
∂vr
∂t

+
∂vr
∂r

(vr − vg) (7.51c)

=
∂vr
∂t

+
∂vr
∂r

vr︸ ︷︷ ︸
=

dvr
dt = g(r)

−∂vr
∂r

vg

since it is a coasting trajectory

(7.51d)

= g(r)− ∂vr
∂r

vg. (7.51e)

Substituting this back into the v̇g equation with Q = ∂vr

∂r gives

v̇g = −Qvg − u. (7.52)

The control acceleration should now be chosen so that v̇g × vg = 0. To facilitate the
process of doing so, define p = −Qvg which means v̇g = p − u. Cross-product steering
is then to choose u such that

(p− u)× vg = p× vg − u× vg = 0, (7.53a)
=⇒ u× vg = p× vg. (7.53b)

Again, the vehicle must have sufficient control acceleration to achieve this equality.
Vector post-multiplication by vg and using the identity (a × b) × c = (a · c)b − (b · c)a
yields

(u · vg) vg − ∥vg∥2 u = (p · vg) vg − ∥vg∥2 p. (7.54)

Dividing by ∥vg∥2 and rearranging,

u = p+
1

∥vg∥2
(u · vg − p · vg)vg. (7.55)

Defining ı̂g =
vg

∥vg∥ and q = u · ı̂g,

u = p+ (q − p · ı̂g )̂ıg. (7.56)

Squaring both sides gives

u⊤u = p⊤p+ 2 (q − p · ı̂g) p⊤ ı̂g + (q − p · ı̂g)2 (7.57a)

=⇒ ∥u∥2 = ∥p∥2 + 2qp · ı̂g − 2 (p · ı̂g)2 + q2 − 2qp · ı̂g + (p · ı̂g)2 (7.57b)

= ∥p∥2 + q2 − (p · ı̂g)2 . (7.57c)

Using the above to solve for q gives

q =
[
∥u∥2 − ∥p∥2 + (p · ı̂g)2

] 1
2
. (7.58)
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From here, it is again evident that ∥u∥ must be sufficiently large for q to be real. It
is common to know the magnitude of control acceleration available at a given time.
Thus, Eq. (7.58) is used to calculate q and then Eq. (7.56) to calculate u. By doing this
continuously, or periodically in guidance, vg is driven to zero.

i When the available control acceleration is not sufficiently large, it is chosen
parallel to vg and as large as possible in magnitude, i.e.,

u =
vg
∥vg∥

umax. (7.59)

The calculation of vr and Q depends on the target orbit and can be quite involved.
Those quantities for a circular target orbit and elliptical target orbit are presented
now. In both, the matrix S(x) is the cross-product matrix mapping elements of the
three-dimensional x to

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (7.60)

To target a circular orbit with an orbit plane defined by ı̂h,

vr = S(̂ıh)r

√
µ

∥r∥3
, (7.61)

Q =

√
µ

∥r∥3
S(̂ıh)

(
I − 3

2
ı̂r ı̂

⊤
r

)
. (7.62)

To target an elliptical orbit with parameter ℓ, eccentricity e, and orbit plane ı̂h,

vr = ±

{
µ

ℓ

[
e2 −

(
ℓ

∥r∥
− 1

)2
]} 1

2

ı̂r +

√
µℓ

∥r∥
ı̂h × ı̂r, (7.63)

Q = ±
√
µℓ

∥r∥2

[(
||r||e
ℓ− ||r||

)2

− 1

]− 1
2

ı̂r ı̂
⊤
r (7.64)

± 1

||r||

{
µ

ℓ

[
e2 −

(
ℓ

∥r∥
− 1

)2
]} 1

2 (
I − ı̂r ı̂

⊤
r

)
−

√
µℓ

∥r∥2
S(̂ıh)

(
I − 2ı̂r ı̂

⊤
r

)
.
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7.4 Chapter Problems

Problem 7.1. Consider the one-dimensional vertical launch of a rocket from earth’s
surface as in Section 7.1 with the following data and aerodynamic drag D(v) = v2/2.

m0 = 17500; % kg
mf = 10000; % kg
r0 = 0; % m
v0 = 0; % m/s
Tmax = m0*20; % N
Isp = 330; % s

(a) Using maximum thrust at all times, compute the burnout time and maximum
altitude.

(b) Using optimal thrust, compute the time at which singular thrust initiates, burnout
time, and maximum altitude.

(c) Plot altitude as a function of time for the maximum thrust and optimal thrust
cases.

(d) Plot thrust as a function of time for the maximum thrust and optimal thrust
cases.

Problem 7.2. Derive the integrated state equations in Eq. (7.38).

Problem 7.3. Simulate a nominal lunar ascent trajectory using the techniques of
Section 7.2 and the following data.

yf = 50000; % ft
uf = 5330; % ft/s
tau = 3*abs(g); % ft/s2

Problem 7.4. Building upon the previous problem, incorporate into the simulation
navigation errors, actuator dynamics, and disturbances.

Problem 7.5. Simulate a nominal lunar ascent trajectory by solving Eq. (7.17) using
direct transcription and a one-dimensional search for the optimal time. Use the following
data.

yf = 50000; % ft
uf = 5330; % ft/s
tau = 3*abs(g); % ft/s2

Recall that direct transcription was implemented using a standard discretization in
Section 3.6 and a Chebyshev discretization in Section 4.8.

Problem 7.6. Building upon the previous problem, use discrete LQR to follow the
nominal lunar ascent trajectory. Incorporate into the simulation navigation errors and
disturbances. Recall that trajectory following using LQR was implemented in Sec-
tion 4.6.

Problem 7.7. Simulate a nominal earth ascent trajectory using Q-guidance and the
following data. States are ordered as downrange and altitude.

rf = [100e3; 50e3]; % m
umax = 50; % m/s2
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Recall that Q-guidance was implemented in Section 1.2.

Problem 7.8. Building upon the previous problem, incorporate into the simulation
navigation errors, actuator dynamics, and disturbances. Recall that Q-guidance was
implemented in Section 1.2.
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