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Abstract: This study examines the use of leaf area index (LAI) to inform variable-rate irrigation (VRI)
for irrigated alfalfa (Medicago sativa). LAI is useful for predicting zone-specific evapotranspiration
(ETc). One approach toward estimating LAI is to utilize the relationship between LAI and visible
vegetation indices (VVIs) using unmanned aerial vehicle (UAV) imagery. This research has three
objectives: (1) to measure and describe the within-field variation in LAI and canopy height for an
irrigated alfalfa field, (2) to evaluate the relationships between the alfalfa LAI and various VVIs
with and without field average canopy height, and (3) to use UAV images and field average canopy
height to describe the within-field variation in LAI and the potential application to VRI. The study
was conducted in 2021–2022 in Rexburg, Idaho. Over the course of the study, the measured LAI
varied from 0.23 m2 m−2 to 11.28 m2 m−2 and canopy height varied from 6 cm to 65 cm. There was
strong spatial clustering in the measured LAI but the spatial patterns were dynamic between dates.
Among eleven VVIs evaluated, the four that combined green and red wavelengths but excluded blue
wavelengths showed the most promise. For all VVIs, adding average canopy height to multiple linear
regression improved LAI prediction. The regression model using the modified green–red vegetation
index (MGRVI) and canopy height (R2 = 0.93) was applied to describe the spatial variation in the
LAI among VRI zones. There were significant (p < 0.05) but not practical differences (<15%) between
pre-defined zones. UAV imagery coupled with field average canopy height can be a useful tool for
predicting LAI in alfalfa.

Keywords: leaf area index; unmanned aerial vehicle; alfalfa; visible vegetation index; management
zones; variable-rate irrigation

1. Introduction

This study was motivated by the potential to inform variable-rate irrigation (VRI) of
alfalfa (Medicago sativa L.) by assessing the within-field spatial variation in the canopy leaf
area index (LAI) [1]. VRI technology improves crop water productivity by spatially match-
ing irrigation rates to crop water demands, reducing irrigation inputs, and maintaining
crop yield [2–4]. Typically, irrigation scheduling based on an energy balance approach
estimates crop evapotranspiration (ETc) using a uniform crop coefficient (Kc) for the entire
field [5]. There are modeling approaches, such as the Agricultural Production Systems
simulator (APSIM) [6,7] and the Decision Support System for Agrotechnology Transfer
(DSSAT) [8], that utilize LAI as a parameter for estimating Kc [9]. If within-field spatial
variation in the crop canopy LAI can be measured, zone-specific Kc values could improve
ETc estimations for VRI [10].

LAI is the measurement of one-sided leaf area per unit of ground surface area [5,11,12].
LAI is a biophysical indicator of plant growth [13], photosynthetic rates, water use [14],
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and yield estimation for many crops [14]. LAI is considered to be one of the most important
vegetative indices and is highly related to crop growth processes [15]. LAI can be measured
manually using a ceptometer, but this approach is labor-intensive and destructive [14].

A less labor-intensive and less destructive way to predict LAI is with the relation-
ship between vegetation indices and LAI. Remotely sensed imagery from satellites and
atmospheric sensors have been used to estimate LAI on regional scales [13,16,17]. The
biggest downfalls to satellite imagery for estimating within-field variation in LAI to inform
VRI are the course spatial resolution, temporal resolution, and limitations in atmospheric
conditions when the images are captured [18,19].

One way to acquire field scale imagery for vegetation indices is using an unmanned
aerial vehicle (UAV). UAVs are relatively inexpensive, programmable, and easy to de-
ploy [16]. UAVs can be flown over entire fields collecting imagery at a high resolution as
often as growers need [20]. Vegetation indices derived from UAV imagery, such as the
normalized difference vegetation index (NDVI) and soil-adjusted vegetation index (SAVI),
are effective algorithms for quantitative and qualitative evaluations of alfalfa cover and
growth dynamics [16,21]. Many studies utilize the near-infrared wavelengths to calculate
NDVI and SAVI, which are both highly correlated to alfalfa biomass yield and LAI [17].
Due to the versatility, widespread availability, and simplicity of UAVs, this study focuses
on estimating LAI using a standard red–green–blue (RGB) sensor from the UAV. RGB
images can be stitched together to create orthomosaics, which are used to calculate visible
vegetation indices (VVIs) [13,22]. VVIs are a valuable tool for crop monitoring and require
no modifications to most UAVs [23,24].

Research has shown that there is a linear relationship between some VVIs and
LAI [11,22,25]. For example, Hopkins [11] showed that the visible atmospheric resis-
tance index (VARI), the normalized green–red difference index (NGRDI), and the modified
green–red vegetation index (MGRVI) were effective for estimating LAI in spring wheat
(Triticum aestivum L.). The authors, however, showed that predicting LAI from VVIs became
saturated and insensitive to LAI changes once the measured LAI reached values greater
than 5.6 m2 m−2 in wheat. Li [22] showed that VARI had the best performance compared
to eleven other VVIs tested for estimating the LAI in rice (Oryza sativa L.) and that LAI
estimates became more accurate when canopy texture algorithms were applied.

Previous research supports the use of VVIs to estimate LAI in wheat and rice [11,22],
but estimating LAI from VVIs has not been evaluated for alfalfa. The predicted alfalfa
LAI from VVIs is a crucial research gap as alfalfa is one of the most widely cultivated and
irrigated crops grown throughout the world [15,26–28]. Alfalfa has high water use due
to its long growing season [15], deep root system [28], and multiple high-forage annual
yields [27]. This research focuses on estimating alfalfa LAI from VVIs using remotely
sensed imagery acquired from UAVs using only RGB images. When LAI is known, it can
be used to calculate the Kc for zone-specific irrigation events. However, the LAI predictions
from VVIs will likely become insensitive at higher LAI ranges [11] due to alfalfa’s multi-leaf
structure. To improve LAI estimates from VVIs for alfalfa, including the field average
canopy height may improve LAI estimation [29].

The objectives of this study were (1) to measure and describe within-field variation
in LAI and canopy height for an irrigated alfalfa field, (2) to evaluate the relationships
between alfalfa LAI and various VVIs with and without field average canopy height,
and (3) to use UAV images and field average canopy height to describe the within-field
variation in LAI and the potential application to VRI. It is hypothesized that the within-field
variability in alfalfa LAI can be accurately estimated using VVIs derived from UAV imagery.
Furthermore, it is hypothesized that the prediction of LAI from VVIs can be improved
when the crop canopy height is known and that there will be enough difference in the
zone-average LAI to warrant the use of variable-rate irrigation.
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2. Materials and Methods
2.1. Description of Study Site

The alfalfa field (22.6 ha) was located near Rexburg, ID, USA (43.800966, −111.79014)
(Figure 1). The soil type was Pocatello variant silt loam [30]. Pocatello soil is coarse–silty,
mixed, calcareous, frigid, and Typic Xerorthents. The average annual precipitation was
339 mm with the majority of the precipitation falling as snow in the winter and early spring.
The average growing season (April to September) temperature was 13.9 ◦C with an 80 to
100 frost-free-day growing season.
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Figure 1. Rexburg, Idaho (red five-pointed star) alfalfa (Medicago sativa L.) field showing the 66 sam-
pling points (black dots). Soil samples, alfalfa canopy height, and leaf area index were recorded at
each sample point.

Irrigation was applied using a 370 m long center-pivot with drop nozzles every 5 m
equipped with variable-rate irrigation technology (Growsmart Precision VRI, Lindsay
Zimmatic, Omaha, NE, USA). Though the pivot had VRI potential, uniform irrigation
was applied as the cooperative grower’s standard practice for 2021 and 2022. There were
fourteen irrigation events during the growing season of 2021, approximately every three
days, and irrigation stopped five days before each of the three alfalfa harvests. In 2022,
the study only involved the first harvest of alfalfa, and during which there were seven
irrigation events approximately every three days. The rates of irrigation in both years were
determined by the cooperating grower at an average of 16 mm for each irrigation. Even
though the field was irrigated uniformly, irrigation zones were established as a way of
evaluating spatial variation in LAI.
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2.2. Measurement of Canopy Height and Leaf Area Index

Alfalfa canopy height and LAI were sampled on a nested 60 m grid with an additional
offset grid of 75 m, giving 66 points across the field (Figure 1). Canopy height measurements
were taken 3 times in 2021 and 6 times in 2022 at the 66 points (Table 1). At each of the
66 sample points, 3 canopy height measurements were taken within a 15 cm radius of the
point to the nearest cm using a meter stick [31,32]. The three heights were then averaged
for the point [29,33,34]. A field average alfalfa canopy height was recorded for each of the
nine dates sampled.

Table 1. Dates of the leaf area index (LAI), unmanned aerial vehicle (UAV) flights, and alfalfa canopy
height were measured in 2021 and 2022.

Date of UAV Flight, the LAI,
and Height Measurements Harvest Interval Days Prior to Harvest

12 May 2021 1 27
1 June 2021 1 7

29 June 2021 2 16
10 May 2022 1 37
17 May 2022 1 30
27 May 2022 1 20
2 June 2022 1 13
7 June 2022 1 8

15 June 2022 1 1

LAI m2 m−2 was measured using an AccuPAR model LP-80 PAR/LAI ceptometer [35]
at the 66 points in the field on the same dates as the canopy height measurements (Figure 1;
Table 1). The ceptometer was set with a chi value of 1.54 [35], and time of collection, latitude
and longitude, and solar zenith were all recorded using the LP-80. At each sample point,
one measurement was taken 1 m above the canopy with the ceptometer oriented north and
four measurements were taken below the canopy, one in each of the cardinal directions of
north, east, south, and west [11,15].

2.3. Spatial Statistical Analysis

The measured LAI (m2 m−2) values were imported into SpaceStat (BioMedware,
SpaceStat desktop: Release 4.0.21, Ann Arbor, MI, USA) and values were kriged to a 3 m
grid [36] across the field for each date using the associated semivariogram [37,38]. Each
kriged dataset was tested for spatial clustering using the univariate Moran’s I test with the
spatial weight set to the nearest 24 points in the 3 m grid. This was equivalent to using
second-order queen’s neighbors.

2.4. Management Zone Delineation

One approach to account for multi-variable variability in management zone delin-
eation is to use a principle components analysis (PCA). PCA preserves the variability in the
dataset while reducing dimensionality [39]. VRI management zones were delineated using
principal components generated from the standardized z-scores of the alfalfa biomass yield
in 2022, a United States Geological Survey (USGS) digital elevation model, and initial soil
moisture samples taken on 12 May 2021 and 20 April 2022 at the 66 points in the field [40].
The principal component values were used with a K means clustering analysis to create
2 to 8 zones. Mean squared error (MSE) values were recorded for each number of zones.
A scree plot was created to show how the number of zones influenced the MSEs and to
determine the optimal number of zones [39].

2.5. UAV Imagery Acquisition

Imagery was obtained using the Da-Jiang Innovations (DJI) Phantom 4 (Da-Jiang
Innovations, Shenzhen, China) and DJI Phantom 4 Real Time Kinematics (RTK) systems.
The Phantom 4 had a Sentera RGB sensor (~17 cm resolution) and was used for the
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2021 season. The camera was a 2.54 cm complementary metal oxide semiconductor (CMOS)
sensor with 20 M effective pixels and was set to be parallel to the ground, nadir. The
Phantom 4 RTK was used for all flights in 2022. The Phantom 4 RTK system had a 2.54 cm
CMOS RGB sensor (~17 cm resolution). The UAVs were programmed to take photos
with 80% frontal and 80% side overlap [11] and were geotagged using the onboard global
positioning system (GPS). The UAVs were equipped with a 3-axis-gimbal to stabilize the
camera during the flights. The field was mapped at 118 m above ground level (AGL) for all
flights. The UAV speed was between 25 and 40 km h−1. Images were collected during the
optimum UAV operating hours (11 am–2 pm) to decrease shadows. The best management
practices were followed for all flights. The UAV followed the same automated flight plan
created using DroneDeploy for the study (DroneDeploy, 2021).

2.6. Image Processing

The UAV imagery was processed using Web Open Drone Mapping (WebODM) and the
scale-invariant feature transform (SIFT) algorithm [41]. The individual images from each
flight were stitched together using common local features, creating a sparse point-cloud of
tie points to create an orthomosaic [31]. The GPS geometric accuracy was reported to be
0.39 m. The orthomosaics were imported into ArcGIS Pro (ESRI, ArcGIS desktop: Release
2.24, Redlands, CA, USA). The blue wavelengths of light were from 450 to 510 nm, the
green wavelengths of light were from 530 to 590 nm, and the red wavelengths of light
were from 640 to 670 nm. Imagery was post-processed via geometrical correction to ensure
correct easting and northing locations.

2.7. Resampling Methods

Both the DJI Phantom 4 and DJI Phantom 4 RTK UAVs had spatial resolutions of 0.17 m
at 118 m AGL. A resolution this fine introduces some noise to data and can be inappropriate
for the remote estimation of LAI and other vegetation indices [42]. Resolutions between 0.5
and 5 m are more accurate for LAI estimation [36]. Direct and ladder methods are the two
main ways of resampling imagery to gain a coarser, more appropriate resolution. A ladder
resampling method to 3 m resolution was used [11]. Resampling was conducted via ArcGIS
Pro by importing the orthomosaic bands and using the ladder method listed below. The
native 0.17 m resolution of each band was resampled to 0.25 m, 0.25 m to 0.50 m, 0.50 m to
1 m, 1 m to 2 m, and 2 m to 3 m [11] using the nearest neighbor resampling method [2,43].

2.8. Visible Vegetation Indices (VVIs) Calculations

There are many visible vegetation indices (VVIs), from very simple to very com-
plex [44]. Eleven VVIs were selected because of their sensitivity to alfalfa growth and
LAI [11,22,44] (Table 2). Each index differs based on the ratios of visible wavelengths (red,
green, and blue). VVIs were calculated using the raster calculator tool in ArcGIS Pro on
the resampled 3 m resolution imagery for each sample date. VVI values for each of the
66 sampling points were extracted using the extract multi-value to points tool in ArcGIS Pro
(Supplementary Materials). VVI values were averaged for each of the management zones
for each flight. The zone-average VVIs were then compared to the manually measured
zone-averaged LAI values using simple linear regression models.

Table 2. Abbreviations, names, and formulas of the eleven visible vegetative indices (VVIs) that
were evaluated. Formulas were calculated using reflected light in red (R), green (G), and blue
(B) wavelengths.

VVI Name Formula Citation

ExB Excess Blue Vegetation Index ExB = 1.4 B − G [45]
ExG Excess Green Vegetation Index ExG = 2 G − R − B [46]



Agronomy 2023, 13, 1289 6 of 17

Table 2. Cont.

VVI Name Formula Citation

ExR Excess Red Vegetation Index ExR = 1.4 R − G [47]
ExGR Excess Green Minus Excess Red Vegetation Index ExGR = ExG − ExR [48]
GLI Green Leaf Index GLI = (2 G − R − B)/(2 G + R + B) [49]

IKAW Kawashima Index IKAW = (R − B)/(R + B) [50]
MGRVI Modified Green–Red Vegetation Index MGRVI = (G2 − R2)/(G2 + R2) [51]
NGRDI Normalized Green–Red Difference Index NGRDI = (G − R)/(G + R) [51]
RGBVI Red–Green–Blue Vegetation Index RGBVI = (G2 − B × R)/(G2 + B × R) [52]
VARI Visible Atmospherically Resistant Index VARI = (G − R)/(G + R + B) [53]

WI Woebbecke Index WI = (G − B)/(R − G) [46]

2.9. Model Development and Validation Datasets

All the calculated VVIs, measured alfalfa canopy heights, and the measured LAI
(m2 m−2) for each of the 66 sampling points across the 9 sampling dates were compiled
into 1 dataset (n = 574). A random number generator was applied to each of the data points.
The data were then arranged in ascending order and the 1st 2/3 (n = 379) were put into
a model development dataset. The remaining 1/3 (n = 195) of the data was reserved to
validate the model development LAI equations. The zone averages across the sampling
dates were used to create the average LAI, alfalfa canopy height, and VVIs. The model
development data were then imported into R software (v.4.1.1, R Development Core Team,
2022) to run linear regressions of each VVI to the LAI.

2.10. Regression Modeling

Each of the VVIs (Table 2) were used as independent variables in a simple linear
regression (SLR) of the model development data to predict the measured LAI m2 m−2.
The field average alfalfa canopy height was used in multiple linear regression (MLR) to
improve the prediction of LAI from VVIs. The four models with the highest coefficient
of determination without field average height were selected and the four equations with
the highest coefficient of determination with field average canopy height were selected
from the model development dataset and applied to the model validation dataset to predict
the LAI.

2.11. Model Evaluation Statistics

Three model statistics, relative error, root mean squared error, and normalized objective
function, were calculated for each of the VVI models to evaluate performance. Relative error
(RE) shows the bias of the predicted mean in relation to the measured mean. Root mean
square error (RMSE) shows the error in the predictions. The normalized objective function
(NOF) shows the average deviation between the predicted and observed values. The equation
for the relative error is

RE =

(−
P −

−
O
)

−
P

∗ 100 (1)

where
−
P is the predicted mean and

−
O is the observed mean. RE is the average over the

entire dataset, showing long-term bias. A negative RE value expresses the model bias toward
underestimation, and a positive RE value expresses model overestimation. However, bias
alone is not enough. A small RE could be the result of over- and underestimations that cancel
each other out. RMSE negates this problem of under- or overestimation by averaging the
squared differences, weighing larger differences more heavily. The equation for RMSE is

RMSE =

√
∑n

i=1(Pi − Oi)
2

n
(2)
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where Pi is the ith predicted value, Oi is the ith observed value, and n is the number of
samples. The equation for NOF is

NOF =
RMSE

−
O

(3)

where RMSE and
−
O are as previously defined. A NOF value of 0 indicates a perfect

fit between the experimental and simulated results, and an NOF value less than 1 is a
simulation error less than 1 standard deviation from the experimental mean.

2.12. Zone Statistical Analysis

Once the selected equations for predicting LAI were validated using the 1/3 validation
dataset, 1 equation with the highest R2 value was applied to the 3 m resolution UAV images.
A total of 150 random samples for each of the 4 zones were selected using the random
sampling tool in ArcGIS Pro to test the zone UAV-predicted LAI against the field mean
LAI [11]. The UAV-predicted LAI value at each sample point was recorded and an analysis
of variance (ANOVA) test was performed for each sampling date across the zones. If the
p-value was <0.05, a Bonferroni test was performed between each zone to indicate which
zones were statistically different from each other.

3. Results
3.1. Number of Management Zones

The scree plot shows that as the number of zones increases, the mean squared error
(MSE) for Principal Component 1 (PCA1) and Principal Component 2 (PCA2) decreases
(Figure 2). In a scree plot, the point where there is the greatest change in slope identifies
the optimal number of zones. For this study, a four-zone pattern (Figure 3) was chosen to
represent the alfalfa field as PCA 1 and 2 suggested that four or five zones were optimal for
this dataset (Figure 2).

3.2. Variability in Measured Alfalfa Leaf Area Index and Canopy Height

The measured LAI for alfalfa varied temporally from the beginning of the growing
season, 12 May 2021 and 10 May 2022, to shortly before the harvest, 1 June 2021 and
15 June 2022 (Table 3). As the alfalfa grew, the LAI increased across the field with the
greatest temporal change happening within the week of 7–15 June 2022. During this week,
alfalfa produced more leaves and grew laterally, which greatly increased LAI.

Table 3. Summary statistics for the measured alfalfa leaf area index (LAI) and measured alfalfa
canopy height from the study site in Rexburg, Idaho (n = 66). Min: minimum, Max: maximum, Std.
Dev.: standard deviation.

Date
Leaf Area Index (m2 m−2) Alfalfa Canopy Height (cm)

Min Max Mean Std. Dev. Min Max Mean Std. Dev.

12 May 2021 0.23 3.42 1.93 0.51 16 25 20 1.96
1 June 2021 4.42 7.86 6.6 0.69 34 60 51 4.06

29 June 2021 1.88 4.84 3.21 0.62 26 50 37 5.29
10 May 2022 0.36 2.11 1.2 0.32 6 18 14 2.19
17 May 2022 0.67 4.29 2.63 0.77 11 26 20 2.85
27 May 2022 2.57 6.07 4.12 0.7 20 39 32 4.09
2 June 2022 3.39 7.07 5.01 0.81 27 48 39 5.14
7 June 2022 3.08 8.56 5.54 1.27 36 58 48 5.82

15 June 2022 4.7 11.28 7.66 1.56 46 65 57 4.28
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For each date that LAI was measured, unique spatial patterns of LAI existed. The
within-field spatial variability was evaluated using a univariate Moran’s I test of spatial
autocorrelation. Each date had a positive Moran’s I value and significant p-value (Table 4),
showing that there was significant positive spatial autocorrelation or the clustering of
high and low values. At the beginning, throughout, and at the end of the season for both
years, there were differences in where the significant clusters of the high and low LAI were
located in the field (Figure 4). The greatest difference in the zone-averaged LAI values was
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between Zone 1 and Zone 4 at the end of the alfalfa growth period (p < 0.05) (Figure 4). An
overall pattern of statistically high, low, and non-significant points was created for the nine
dates that the LAI was measured on. There was no defined negative spatial autocorrelation
present and no spatial outliers.

Table 4. Moran’s I statistics values for measured alfalfa LAI values from the study site in
Rexburg, Idaho.

12/5/21 1/6/21 29/6/21 10/5/22 17/5/22 27/5/22 2/6/22 7/6/22 15/6/22

Moran’s value 0.994 0.975 0.998 0.980 0.973 0.988 0.978 0.993 0.957
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
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Figure 4. Statistically significant cluster of high and low measured LAI (m2 m−2) for Rexburg, Idaho,
alfalfa field in 2021 and 2022. (A) 12 May 2021, (B) 2 June 2021, (C) 10 May 2022, (D) 15 June 2022,
and (E) overall trend for 2021 and 2022. The zone map is outlined in each and labeled in (E) for all
the figures.

The alfalfa measured canopy height varied temporally with dates ranging from the
beginning of the growing season, 12 May 2021 and 10 May 2022, to right before the harvest,
1 June 2021 and 15 June 2022 (Table 3). At the beginning of the 2021 growing season, the
alfalfa canopy height varied from 16 to 25 cm with a mean of 20 cm and standard deviation
of 1.96 cm, and for 2022 it varied from 6 to 18 cm with a mean of 14 cm and standard
deviation of 2.19 cm (Table 3). The alfalfa canopy height increased temporally with a linear
pattern of growth throughout each harvest.

3.3. Evaluation of Visible Vegetation Indices and Height

The eleven VVIs were calculated for each of the nine days that UAV data were acquired
and LAI was measured. Each of the VVIs showed variation across the field and across the
dates (Supplemental Data). The four VVIs with the highest coefficient of determination in
the model development dataset for the SLRs were ExGR (R2 = 0.53), ExR (R2 = 0.39), the
MGRVI (R2 = 0.35), and the NGRDI (R2 = 0.35) (Table 5). The four VVIs with the highest
coefficient of determination in the model development dataset for the MLRs that included
average canopy height were the MGRVI (R2 = 0.94), NGRDI (R2 = 0.94), ExR (R2 = 0.94),
and ExGR (R2 = 0.92) indices (Table 3).
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Table 5. Results of simple linear regression to predict the LAI from four visible vegetation indices
(VVI), and multiple linear regression results for predicting the LAI from the VVI and average canopy
height (avgh). R2: coefficient of determination, RMSE: root mean square error, RE: relative error,
NOF: normalized objective function.

VVI
Model Development Model Validation

Model Equation R2 RMSE RE NOF

Models excluding average canopy height
ExGR LAI = 0.08 × ExGR − 3.91 0.53 1.51 1.56 0.36
ExR LAI = −0.11 × ExR + 5.20 0.39 1.63 0.52 0.39

MGRVI LAI = 16.57 × MGRVI − 0.21 0.35 1.68 −0.36 0.40
NGRDI LAI = 31.36 × NGRDI − 0.08 0.35 1.68 −0.45 0.40

Models including average canopy height
MGRVI LAI = 5.70 × MGRVI + 0.13 × avgh − 1.80 0.94 0.67 0.39 0.16
NGRDI LAI = 10.77 × NGRDI + 0.13 × avgh − 1.76 0.94 0.67 0.19 0.16

ExR LAI = −0.04 × ExR + 0.13 × avgh + 0.08 0.94 0.69 0.69 0.16
ExGR LAI = 0.02 × ExGR + 0.13 × avgh − 1.80 0.92 1.01 13.08 0.24

As one example of how canopy height improves the correlation of VVIs to LAI, the
MGRVI equation with canopy height was applied to the validation dataset to assess the
performance of the model (Figure 5). The RMSE was 0.67, the RE was 0.39, and the NOF
was 0.16. The UAV prediction model had a linear relationship with the measured LAI
which was significant (p < 0.05).
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line) and a 1:1 line is represented as the solid line.

Throughout the growing season, the UAV-predicted LAI was consistent with the
measured LAI. The trendline was close to the 1:1 line and was highly correlated with the
measured LAI. While the UAV-predicted LAI model slightly overestimated LAI at values
above 4, using the field average height overcame the point of saturation problem observed
when UAV imagery was used alone to predict LAI.

3.4. Zone Statistical Analysis

The model developed using the MLR of the MGRVI and average canopy height was
applied to each of the 3 m resolution UAV orthomosaic images to predict LAI where it was
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not manually measured. There were not distinct, repeating visual patterns between the
zones when the equation was applied (Figure 6). The images from the beginning of the
growing season in 2021 (Figure 6A) and 2022 (Figure 6D) show areas of the field with very
low LAI values. These were noticeable in the field as spots with delayed alfalfa growth and
were green in areas where snow and ice persisted the longest. These patterns disappeared
over time. More pronounced spatial variation in the predicted LAI was observed on 29 June
2021 (Figure 6B, sixteen days before second harvest) and 2 June 2022 (Figure 6E, thirteen
days before first harvest). The least spatial variation in LAI was observed for times with
maximum growth as alfalfa approached the time for harvest on 1 June 2021 (Figure 6C,
seven days before first harvest) and 15 June 2022 (Figure 6F, one day before first harvest).
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Figure 6. Maps of the standard deviation of LAI predicted from UAV imagery in Rexburg, Idaho,
alfalfa field. (A) 12 May 2021, (B) 29 June 2021, (C) 1 June 2021 (zone numbers shown), (D) 10 May
2022, (E) 2 June 2022, and (F) 15 June 2022. The four zones are outlined in each map. LAI was
predicted from the MLR equation using the MGRVI and field average height.

The average predicted LAI value per zone was calculated from 150 random sample
points in each zone and compared to the field-average-predicted LAI to determine whether
there was enough within-field spatial variation to warrant VRI in this alfalfa field (Table 6).
At the beginning of the growing season, the greatest LAI zone differences were observed.
As the alfalfa grew, the differences between the zones decreased. There were no two zones
that reached a 15% threshold difference between them [11]. This suggests that variation in
the LAI values alone in this irrigated alfalfa field was not enough to direct full-season VRI.
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Table 6. Estimated alfalfa leaf area index (LAI) values for Rexburg, Idaho, averaged by date and
management zone and the percent difference between management zone and field mean. Letters
after the zone mean represent zones with significantly different averages (p < 0.05): a is zone 1, b is
zone 2, c is zone 3, and d is zone 4.

Management Zone Field
Mean

1 2 3 4

12 May 2021
Estimated LAI m2 m−2 1.49 bd 1.66 ac 1.49 bd 1.65 ac 1.57
% difference from mean −5 6 −5 5 -

1 June 2021
Estimated LAI m2 m−2 6.22 d 6.28 d 6.18 d 6.07 abc 6.19
% difference from mean 0 1 0 −2 -

29 June 2021
Estimated LAI m2 m−2 3.96 bcd 3.79 acd 4.06 ab 4.14 ab 3.99
% difference from mean −1 −5 2 4 -

10 May 2022
Estimated LAI m2 m−2 1.19 d 1.29 1.21 d 1.35 ac 1.26
% difference from mean −6 3 −4 7 -

17 May 2022
Estimated LAI m2 m−2 2.30 cd 2.39 d 2.45 a 2.52 ab 2.42
% difference from mean −5 −1 1 4 -

27 May 2022
Estimated LAI m2 m−2 4.29 d 4.37 4.33 d 4.42 ac 4.36
% difference from mean −2 0 −1 1 -

2 June 2022
Estimated LAI m2 m−2 7.13 bcd 6.92 ad 6.91 ad 7.22 abc 7.05
% difference from mean 1 −2 −2 2 -

7 June 2022
Estimated LAI m2 m−2 6.43 bcd 6.29 a 6.22 a 6.26 a 6.30
% difference from mean 2 0 −1 −1 -

15 June 2022
Estimated LAI m2 m−2 7.48 d 7.45 d 7.47 d 7.54 abc 7.48
% difference from mean 0 0 0 1 -

4. Discussion
4.1. Spatiotemporal Variability in Measured LAI

The measured LAI values varied spatially and temporally as the alfalfa grew through-
out each season. For all of the dates, there were areas of the field with statistically higher
and lower LAI values; however, the observed spatial patterns were not consistent over time.
In a study on predicting LAI of grassland from VVIs, Li [25] also showed that the spatial
patterns of the predicted LAI varied over time. In the Li [25] study, the spatial patterns for
LAI changed in response to the growth of different plant species. Changes in the growth
of different species do not explain the observation in this study of an alfalfa monoculture.
Rather, the spatiotemporal variation observed in this study was mostly controlled by the
alfalfa development stage.

While it was not an objective of this study to explain the causation of spatial variation
in the LAI, we observed several influencing factors. For example, in both 2021 and 2022, the
late melting of snow and ice resulted in areas of the field with a relatively low LAI during
the first LAI measurements of the year (Figure 6A,D). We also speculate that spatial patterns
in LAI are related to plant available water and how this may vary throughout the root zone.
The surface soils at this study site were much drier in 2022 than in 2021 and this likely
influenced the observed differences in the LAI between the years. It is interesting to note
that in the 29 June 2021 UAV imagery (Figure 4B), a semi-circular pattern was visible that
corresponded to a temporary problem with water delivery in that part of the center-pivot
irrigation system. This observation supports the hypothesis that water availability may
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explain other observed spatial patterns in the LAI. Other studies such as that by Kayad
et al. [17] have shown that spatial variation in alfalfa biomass was explained by slope, flow
accumulation, and the topographic wetness index. These factors are interesting because
of the potential for temporal variation, as they interact with dynamic factors including
precipitation and solar radiation.

4.2. Visible Vegetation Index for Alfalfa Leaf Area Index Estimation

The MGRVI, NGRDI, and ExR were the models with the highest coefficient of de-
termination compared to the other VVIs in the study, especially when alfalfa height was
included. All VVIs’ coefficient of determination values increased when height was incorpo-
rated into the MLR models. The models that performed the poorest were those in which
the blue wavelengths of light were more heavily weighted. This suggests similar results to
Hopkins [11] in that the blue wavelength is less useful for LAI estimation in wheat.

Though Hopkins [11] and Li [22] both had VARI and NGRDI as their models with the
highest coefficient of determinations for wheat and rice, respectively [11,22], VARI was
ranked number 6 out of 11 indices for alfalfa with a R2 value of 0.22 in the SLR. With the
addition of average field height, the VARI’s coefficient of determination increased to a R2

of 0.90. Alfalfa has a multiple-layered leaf structure that makes correlating VVIs with the
LAI more difficult [54]. This additional complexity means that when the alfalfa canopy
becomes saturated, there will not be proportionally the same change in light reflected back
off the plant, which would increase the LAI values [55]. However, when the field average
alfalfa canopy height is known, it can be used to supplement the VVIs and greatly increase
the correlation with LAI.

One approach to estimating alfalfa canopy height remotely is using photogrammetric
techniques such as the structure from motion algorithm [29]. Structure from motion is
the analysis of feature matching common points in multiple images and creating a three-
dimensional point cloud that can be used to create a digital terrain model (DTM) and
digital surface model (DSM) of the field. In this study, we manually measured the alfalfa
canopy height, which may not be practical for wide applications. Using the same UAV
imagery, there is the potential to estimate the plant height by subtracting the DTM from the
DSM [56]. However, the accuracy of the DTM can be inhibited under dense canopies such
as alfalfa [57].

4.3. Translation of UAV Images of the Entire Field

At the beginning of the season, there were areas of the field where alfalfa had not
started to grow and were easily detected from the LAI prediction model (Figure 6A,D). The
greatest spatial difference among zone-estimated LAI existed early within the first harvest
interval (Table 5). As the alfalfa matures, the differences in average estimated LAI decrease
among the pre-determined zones [55]. Though some zones are statistically different from
each other, no two zones reach a 15% threshold difference in the LAI values needed [11].
This threshold of 15% difference was based on the practical ability of the center-pivot
sprinkler to be able to apply different rates among VRI zones. The observed spatial patterns
(Figure 6) may approach practical differences if dynamic zones are delineated for each UAV
flight date rather than the static zones used in this analysis.

4.4. Limitations and Future Work

A key aspect of this study was the determination of VRI zones based on a PCA
using alfalfa biomass yield, relative elevation, and pre-season soil water content. The
spatial variation in the LAI did not align well with these zones. Thus, future work could
address alternative approaches for zone delineation. One potential approach is the use
of independent component analysis (ICA), an approach that shows spatial heterogeneity
and reduces dimensionality in data. The ICA approach has been demonstrated to be a
zone delineation mechanism in soybean, spring wheat, and winter wheat [58]. Other
future work could also expand upon the variables used for zone delineation for either PCA
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or ICA methods. One variable shown to possess importance in other studies is the soil
apparent electrical conductivity [59,60]. Future work could also explore the potential for
using temporally dynamic zones rather than static zones.

Measuring the alfalfa canopy height proved to be important in estimating LAI. All
VVI models were improved when the field average canopy height was included in the
MLR. Manually measuring the canopy height across the field can be time-intensive. A
potentially more efficient way to estimate canopy height is remotely, with structure for mo-
tion techniques from UAV imagery. Howell [56] examined different UAV flight parameters
to estimate Mountain big sagebrush (Artemisia tridentata spp. vaseyana) canopy height via
UAV imagery. The authors found that they could estimate sagebrush canopy height within
10 cm (standard error: 0.4 cm) of the actual height using UAV imagery. Xie [29] found that
you can estimate the canopy height of rapeseed using UAV imagery with structure for
motion techniques (RMSE: 3 cm). These techniques for estimating canopy height via UAV
imagery need to be studied for alfalfa.

4.5. Conclusions

The results showed that UAV imagery that acquired the MGRVI, NGRDI, and ExR
vegetation indices along with measured field average canopy height could predict LAI
across the growing season (R2 = 0.94, R2 = 0.94, R2 = 0.94, and R2 = 0.92). The most useful
VVIs identified for alfalfa in this study were different to those that Hopkins [11] and Li [22]
reported for wheat and rice, respectively. VVIs with canopy height showed promising
results for using UAV imagery to predict LAI in alfalfa. VVI- and canopy-height-derived
models can be used to estimate LAI and zone-specific Kc; however, the difference in the LAI
between zones for this alfalfa field was not above a 15% threshold, which was assumed to
be the practical level needed to justify the use of VRI. If different and temporally dynamic
management zones are used, the LAI approach presented may have practical use in VRI
applications. VVIs alone are appropriate to use to estimate the LAI for rice and wheat, but
alfalfa is more structurally complicated and an average height for the field is needed to
improve the model of the LAI from VVIs.
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