Purdue University

Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

5-16-2023

Frequency Reduction and Attenuation of the Tire Air Cavity Mode due to a Porous Lining

Kyosung Choo Purdue University, choo7@purdue.edu

Won Hong Choi *Purdue University*, choi124@purdue.edu

Guochenhao Song Purdue University, song520@purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/herrick

Choo, Kyosung; Choi, Won Hong; Song, Guochenhao; and Bolton, J Stuart, "Frequency Reduction and Attenuation of the Tire Air Cavity Mode due to a Porous Lining" (2023). *Publications of the Ray W. Herrick Laboratories.* Paper 271.

https://docs.lib.purdue.edu/herrick/271

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

Frequency Reduction and Attenuation of the Tire Air Cavity Mode due to a Porous Lining

May 15-18 | Grand Rapids, MI

Kyosung Choo, Won Hong Choi, Guochenhao Song, J. Stuart Bolton

Ray W. Herrick Labs, Purdue University

Electric Vehicles Road Noise

Q. What do these vehicles have in common?

TISLA

A. They have **acoustic polyurethane foam** pasted on the inner side of their tires

Tire Air Cavity Resonance (TACR)

Frequency Reduction and Mode Attenuation

Measurement of Acceleration of a Tire under Free Boundary Condition

Sound Propagation within Porous Material (P.M.)

Description of sound propagation within porous: Speed of Sound

Sound Propagation within Porous Material

Description of sound propagation within porous

Research Objective

- To investigate the effect of high FR porous material on the sound attenuation of TACR.
- To identify the sound attenuation and frequency reduction mechanisms.

Theoretical and FE Analysis of a lined tire

Complex axial wavenumber

- The fact that the wavenumber, k_x , is complex is important.
- The imag. part of k_x represents the rate of pressure attenuation along the tire cavity.

Behavior of mode attenuation and frequency reduction

Comparison between theoretical result and simulation result

Behavior of mode attenuation

Behavior of mode attenuation with respect to change in flow resistivity

Case study

Case study of the equivalent level of attenuation with thinner porous lining

Pressure distribution and dispersion diagram

Pressure distribution and dispersion diagram (FEA with 3,500 Rayl/m of FR, 1st optimal range)

Validation under Dynamic Boundary Condition

Measurement of Force and Internal Sound of a Rolling Tire

Test set-up

- Tire Pavement Test Apparatus (TPTA)
- 10~30 mph of speed with 1,000 lbs of load.

Sensors

- Wheel force transducer
- Wireless microphone fixed on the rim.

(a) Acceleration Measurement

(b) Force and Moment Measurement

Validation under Dynamic Boundary Condition

Measurement of the Force of a Rolling Tire at 30 mph

Validation under Dynamic Boundary Condition

Measurement of the Internal Sound of a Rolling Tire at 10 mph

Conclusion

- The **frequency reduction and attenuation of the tire cavity resonance** due to a porous lining was investigated.
- The JCA model was adopted in the theoretical analysis to describe the sound propagation in the porous lining, thus allowing for a broader working boundary of design parameters and consideration of visco-inertial and thermal effects.
- An important finding was the existence of not only the first optimal range previously identified by other researchers, but also a second optimal range that performed better in terms of attenuation.
- The frequency reduction was a result of the slowed phase speed, and the mode attenuation was caused by the complex wavenumber due to the presence of the porous lining

Thank you for your attention.

Q & A

000000

Contact Information

- Name: Kyosung Choo
- Affiliation: Ray W. Herrick Labs, Purdue University
- Email: choo7@purdue.edu

References

 Michelin North America. (2020). An introduction to tire cavity noise. Michelin Acoustic Technology. <u>https://www.michelinman.com/acoustic-technology.html</u>
Wan, C., Zheng, C.-J., Bi, C.-X., and Zhang, Y.-B. (2022). An approach for assessing the effects of porous materials on controlling the tire cavity resonance noise Engineering Analysis with Boundary Elements, 143, 418-427. <u>https://doi.org/10.1016/j.enganabound.2021.09.019</u>

[3] Delany, M. E., and Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3, 105-116. https://doi.org/10.1016/0003-682X(70)90031-9

[4] Miki, Y. (1990). Acoustical properties of porous materials - Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24.

- [5] Johnson, D. L., Koplik, J., and Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176, 379-402. https://doi.org/10.1017/S0022112087000961
- [6] Champoux, Y., and Allard, J.-F. (1991). Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics, 70, 1975-1979. <u>https://doi.org/10.1063/1.349453</u>
- [7] Gaulon, C., Pierre, J., Derec, C., Jaouen, L., Becot, F.-X., Chevillotte, F., Elias, F., Drenckhan, W., and Leroy, V. (2018). Acoustic absorption of solid foams with thin membranes. Applied Physics Letters, 112, 261904. <u>https://doi.org/10.1063/1.5032159</u>
- [8] Jaouen, L. (n.d.). Viscous characteristic length. Matelys Research Lab. Retrieved March 18, 2023, from https://apmr.matelys.com/Parameters/ViscousCharacteristicLength.html
- [9] Bolton, J. S. (2005). Porous Materials for Sound Absorption and Transmission Control. In Proceedings of Inter-Noise 2005. http://docs.lib.purdue.edu/herrick

