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Electric Vehicles Road Noise

Q. What do these vehicles have in common? A. They have acoustic polyurethane foam

T — 5 I_ FI. pasted on the inner side of their tires
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Tire Air Cavity Resonance (TACR)
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Frequency Reduction and Mode Attenuation

Measurement of Acceleration of a Tire under Free Boundary Condition
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Sound Propagation within Porous Material (P.m.)

Description of sound propagation within porous: Speed of Sound

B
S : Coh = |—=345m/s
= '; Alr ph \ P /

B = Bulk Modulus of air [Pa]

p = Density of air [kg/m3]
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Sound Propagation within Porous Material

Description of sound propagation within porous

Inputs Propagation models Outputs
Porous . S R
material | o = air flow resistivity I >
Delany-Bazely-Miki model>-4] ~ .
clany-bazely ode p Complex density
_’ —~
. p, = density || * One-parameter empirical model B Complex bulk modulus
Alr c, =phase speed i
o = air flow resistivityl
= porost
Porous ||~ PUe . .
. o, = limit of dynamic tortuosity >
material A =viscous characteristic length Johnson Champoux Allards-6)
A’ = thermal characteristic length ﬁ COl'I'lpl ex density
p, = density *Five-parameters B Complex bulk modulus
¢, = phase speed semi-phenomenological model

A

!E Air n =kinematic viscosity
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. 7 = ratio of specific heats




Research Objective

- To investigate the effect of high FR porous material on the sound attenuation of TACR.

- To identify the sound attenuation and frequency reduction mechanisms.
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Flow Resistivity (FR), & * Key design parameter
. Resistance of porous material to steady state air flow
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Theoretical and FE Analysis of alined tire

Theoretical acoustic model of unfolded tire FE acoustic model
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Complex axial wavenumber

- The fact that the wavenumber, k,, IS complex is important.
- The imag. part of k,, represents the rate of pressure attenuation along the tire cavity.

Pressure distribution Complex axial wavenumber calculated
Inairway Py x—dir = e Jkxx k., =p0—ja
’ W | (2)
Combining eq.(2) and ed.(1) yields
Po, x—dir = € JPxg-ax J /\ Nom
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Behavior of mode attenuation and frequency reduction

Comparison between theoretical result and simulation result
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Behavior of mode attenuation

Behavior of mode attenuation with respect to change in flow resistivity
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Case study

Case study of the equivalent level of attenuation with thinner porous lining
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Pressure distribution and dispersion diagram

Pressure distribution and dispersion diagram (FEA with 3,500 Rayl/m of FR, 15t optimal range)
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Validation under Dynamic Boundary Condition

Measurement of Force and Internal Sound of a Rolling Tire

Test set-up , === |
- Tire Pavement Test Apparatus (TPTA) — ol e i s o
- 10~30 mph of speed with 1,000 Ibs of load. T
Sensors L

- Wheel force transducer
- Wireless microphone fixed on the rim.

NOISE CON 2023



Validation under Dynamic Boundary Condition

Measurement of the Force of a Rolling Tire at 30 mph

1 80 T T T T 200 T T T T
Non-lined Fx Non-lined Fz
— " Lined Fx 180 e 1" Tined Fz
160
Z
=
o 140
L.
mn
=,
g 120
]
[T,

80 | | ! 1 80 | | ! 1
50 100 150 200 250 300 50 100 150 200 250 300

Frequency [Hz] Frequency [Hz]
(a) Longitudinal Force at 30 mph (b) Vertical Force at 30 mph

5-18 | Grand Rapid



Validation under Dynamic Boundary Condition

Measurement of the Internal Sound of a Rolling Tire at 10 mph
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Conclusion

- The frequency reduction and attenuation of the tire cavity resonance due to a
porous lining was investigated.

- The JCA model was adopted in the theoretical analysis to describe the sound
propagation in the porous lining, thus allowing for a broader working boundary of
design parameters and consideration of visco-inertial and thermal effects.

- An important finding was the existence of not only the first optimal range previously
identified by other researchers, but also a second optimal range that performed
better in terms of attenuation.

- The frequency reduction was a result of the slowed phase speed, and the mode
attenuation was caused by the complex wavenumber due to the presence of the
porous lining




Thank you for your attention.
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