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Electric Vehicles Road Noise
Q. What do these vehicles have in common? A. They have acoustic polyurethane foam 

pasted on the inner side of their tires

Porous Material 
(Porous Lining)



Tire Air Cavity Resonance (TACR)

Pressure distribution 
in the first air cavity resonance of a tire.

Frequency spectrum 
of typical road noise [1]
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Frequency Reduction and Mode Attenuation
Measurement of Acceleration of a Tire under Free Boundary Condition

Non-lined

1 inch lined

Internal sound 
of a tire
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Sound Propagation within Porous Material (P.M.)
Description of sound propagation within porous: Speed of Sound

𝑐𝑐𝑝𝑝𝑝 =
𝐵𝐵
𝜌𝜌

= 345 m/sAir

𝑐𝑐𝑝𝑝𝑝 =
�𝐵𝐵
�𝜌𝜌

=?

𝐵𝐵 = Bulk Modulus of air [Pa]

𝜌𝜌 = Density of air [kg/m3]

Porous 
Material

�𝐵𝐵 = Bulk Modulus of P. M.

�𝜌𝜌 = Density of P. M.



Sound Propagation within Porous Material
Description of sound propagation within porous



Research Objective
- To investigate the effect of high FR porous material on the sound attenuation of TACR.
- To identify the sound attenuation and frequency reduction mechanisms.

Flow Resistivity (FR), 𝝈𝝈 * Key design parameter
: Resistance of porous material to steady state air flow



Theoretical and FE Analysis of a lined tire
Theoretical acoustic model of unfolded tire
(235/50R18)

FE acoustic model 
(235/50R18)

Complex axial wavenumber calculated Sound pressure computed

𝑝𝑝𝑜𝑜, 𝑥𝑥−𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝑗𝑗𝑘𝑘𝑥𝑥𝑥𝑥



Complex axial wavenumber
- The fact that the wavenumber, 𝑘𝑘𝑥𝑥, is complex is important. 
- The imag. part of 𝑘𝑘𝑥𝑥 represents the rate of pressure attenuation along the tire cavity.

Propagation: Oscillatory frequency

Attenuation: Decaying rate

Pressure distribution

𝑝𝑝𝑜𝑜, 𝑥𝑥−𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝑗𝑗𝑘𝑘𝑥𝑥𝑥𝑥 … 
(1)

in airway

𝑝𝑝𝑜𝑜, 𝑥𝑥−𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑒𝑒−𝑗𝑗𝛽𝛽𝑥𝑥𝑒𝑒−𝛼𝛼𝑥𝑥

Combining eq.(2) and eq.(1) yields

𝑘𝑘𝑥𝑥 = 𝛽𝛽 − 𝑗𝑗𝑗𝑗

Complex axial wavenumber calculated
… 
(2)



Behavior of mode attenuation and frequency reduction
Comparison between theoretical result and simulation result
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Behavior of mode attenuation
Behavior of mode attenuation with respect to change in flow resistivity



Case study
Case study of the equivalent level of attenuation with thinner porous lining 

*

The equivalent attenuation group



Pressure distribution and dispersion diagram
Pressure distribution and dispersion diagram (FEA with 3,500 Rayl/m of FR, 1st optimal range)
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Validation under Dynamic Boundary Condition
Measurement of Force and Internal Sound of a Rolling Tire

Test set-up 
- Tire Pavement Test Apparatus (TPTA)
- 10~30 mph of speed with 1,000 lbs of load.

Sensors
- Wheel force transducer
- Wireless microphone fixed on the rim. 



Validation under Dynamic Boundary Condition
Measurement of the Force of a Rolling Tire at 30 mph



Validation under Dynamic Boundary Condition
Measurement of the Internal Sound of a Rolling Tire at 10 mph
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Conclusion
- The frequency reduction and attenuation of the tire cavity resonance due to a
porous lining was investigated.

- The JCA model was adopted in the theoretical analysis to describe the sound 
propagation in the porous lining, thus allowing for a broader working boundary of 
design parameters and consideration of visco-inertial and thermal effects.

- An important finding was the existence of not only the first optimal range previously
identified by other researchers, but also a second optimal range that performed 
better in terms of attenuation.

- The frequency reduction was a result of the slowed phase speed, and the mode 
attenuation was caused by the complex wavenumber due to the presence of the 
porous lining



Thank you for your attention.

Q & A
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• Name: Kyosung Choo

• Affiliation: Ray W. Herrick Labs, Purdue University

• Email: choo7@purdue.edu
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