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Introduction

Glass bubbles
https://www.3m.com/3M/

en_US/p/d/b40064606/
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Granular activated carbon



Testing Procedure
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 Impedance tube: B&K Type 4206

 Power amplifier: B&K 2716C

 Data acquisition: B&K 3560-B
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Testing Procedure
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Glass bubbles are sensitive to sample preparation

Test 1: not compacted

+ 1000 m Vrms 0-6400 Hz signal exposure

Test 2: compacted

+ 1000 m Vrms 0-6400 Hz signal exposure

Test 3, 4: compacted

+ 1000 m Vrms 100-1700 Hz signal (12 dB amplifier)



Testing Procedure
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Exposure to strong signal improves consistency

No treatment Exposed to 5min of 1000 m Vrms 0-6400 Hz signal



Testing Procedure
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Softening with increasing input level

input level ascend
input level descend



Testing Procedure
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Softening with increasing input level

input level ascend
input level descend



Finite Difference Approach

Introduce poro-elastic model (Biot, 1956):

𝜎𝑥
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𝜎𝑧
𝜏𝑥
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𝜏𝑧
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=
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𝑒𝑥
𝑒𝑦
𝑒𝑧
𝛾𝑥
𝛾𝑦
𝛾𝑧
𝜖

 The granules contacting each

other are regarded as the “frame”

 The fluid phase can be described

by the corresponding rigid model
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𝑟

𝑥

Uniform sound pressure

Symmetry

Pressure continuity

Displacement continuity

Zero structural load

Symmetry
Solid displacement (fixed/slip)

Zero normal fluid displacement

Zero normal particle velocity

Zero solid displacement

Zero normal fluid displacement



Finite Difference Approach

Jassen’s model – Force deflection in cylindrical 

container and friction on container wall (Duran, 

2000, Springer)

𝑑ℎ

𝑝𝑣

𝜎 + Δ𝑝𝑣

𝑝0
′

𝜌𝑔𝐴𝑑ℎ

𝐽𝜇𝑊𝐶𝐿𝜎𝑑ℎ

𝐴Δ𝜎 + 𝐽𝜇𝑊𝐶𝐿𝑝𝑣𝑑ℎ = 𝜌𝑔𝐴𝑑ℎ

𝜎 =
𝜌𝑔

𝛽
1 − 𝑒−𝛽𝑥 + 𝑝0

′ 𝑒−𝛽𝑥

𝛽 is the Jassen factor:

𝛽 = 4𝐽𝜇𝑊/𝑑

Hertzian contact – effective stiffness increases with 

the contact surface area (Fischer-Cripps, 1999)

𝐸 = 𝐸0𝜎
1/3

With Jassen’s model and Hertzian contact theory,

the stiffness of particle stack can be expressed as

a function of depth, which has been applied in

previous studies, e.g., Matchett and Yanagida,

2003; Tsuruha et al., 2020

𝐸 = 𝐸0
𝜌𝑔

𝛽
1 − 𝑒−𝛽𝑥 + 𝑝0

′ 𝑒−𝛽𝑥
1/3

𝜕𝐸

𝜕𝑥
=
1

3
𝐸0

𝜌𝑔

𝛽
1 − 𝑒−𝛽𝑥 + 𝑝0

′ 𝑒−𝛽𝑥
−2/3

𝜌𝑔 − 𝛽𝑝0
′ 𝑒−𝛽𝑥
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Finite Difference Approach
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𝐵 =
1

𝐵𝑝
+
1 − 𝜙𝑝
𝐵𝑢

𝐹𝑑

−1

𝐵𝑢 =
1

𝐵𝑚
+
1 − 𝜙𝑚
𝐵𝑛

𝐹𝑛𝑚

−1

For activated carbon, three levels of pores are 

assumed to exist in the material:

For glass bubbles, only the interstitial pores need

to be considered:

𝑘𝑝 = −𝑗𝛿𝜈
2 1 − 3𝐶/𝑥2 −1

𝑘𝑝
′ = −𝑗𝛿𝑡

2 1 − 𝜁3 +
3𝜁

𝑥𝑡
2 𝜁𝑥𝑡

1 + 𝑥𝑡 + tanh 𝑥𝑡 𝜁 − 1

𝑥𝑡 + tanh 𝑥𝑡 𝜁 − 1
− 1

where 𝜁 = 1 − 𝜙 1/3 , and all other parameters

follow the definitions in the references.

For granular activated carbon, triple porosity

model is applied:

See (Venegas and Umnova, 2016) for details



Model Predictions Compared with Measurements
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Model Predictions Compared with Measurements
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The finite difference model provides predictions that match different thicknesses:

20 mm granules 30 mm granules 40 mm granules 



Conclusions

 The measurement and model description of granular materials are introduced

 Testing procedure is developed for acoustic measurement of granular materials

 A numerical implementation of Biot theory is introduced

 The model prediction match very well with the measurement

 Future work

 Improve the testing procedure, pursuing better consistency

 Establish more complete model for forward prediction of material properties
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