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Introduction
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Porous granular materials have drawn

attention due to their good performance

at low frequencies, such as activated

carbons:

 Rigid model does not predict the resonance

 1-D response does not follow the trend with varying thickness



Introduction

Glass bubbles
https://www.3m.com/3M/

en_US/p/d/b40064606/

 Light weight glass bubbles show complex behavior under different input
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Finite Difference Approach

Introduce poro-elastic model (Biot, 1956):
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 The granules contacting each other are

regarded as the “frame”

 The fluid phase can be described by the

corresponding rigid model
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Finite Difference Approach

Jassen’s model – Force deflection in cylindrical 

container and friction on container wall (Duran, 

2000, Springer)
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𝛽 is the Jassen factor:

𝛽 = 4𝐽𝜇𝑊/𝑑

Hertzian contact – effective stiffness increases with 

the contact surface area (Fischer-Cripps, 1999)

𝐸 = 𝐸0𝜎
1/3

With Jassen’s model and Hertzian contact theory,

the stiffness of particle stack can be expressed as

a function of depth, which has been applied in

previous studies, e.g., Matchett and Yanagida,

2003; Tsuruha et al., 2020
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Finite Difference Approach
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For activated carbon, three levels of pores are 

assumed to exist in the material:
For glass bubbles, only the interstitial pores need

to be considered:

𝑘𝑝 = −𝑗𝛿𝜈
2 1 − 3𝐶/𝑥2 −1

𝑘𝑝
′ = −𝑗𝛿𝑡

2 1 − 𝜁3 +
3𝜁

𝑥𝑡
2 𝜁𝑥𝑡

1 + 𝑥𝑡 + tanh 𝑥𝑡 𝜁 − 1

𝑥𝑡 + tanh 𝑥𝑡 𝜁 − 1
− 1

where 𝜁 = 1 − 𝜙 1/3 , and all other parameters

follow the definitions in the references.

Ref: Venegas and Umnova, 2016

Boutin and Geindreau, 2008

Boutin and Geindreau, 2010



Finite Difference Approach

𝑟

𝑥

Uniform sound pressure

Symmetry

Pressure continuity

Displacement continuity

Zero structural load

Symmetry

Zero solid displacement

Zero normal fluid displacement

Solid displacement (fixed/slip)

Zero normal fluid displacement

Zero normal particle velocity
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Model Predictions

Slip boundary condition:

ቤ
𝜕𝑢𝑥

𝜕𝑟
𝑟=𝑅

= 0, ቚ𝑢𝑟
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Fixed solid displacement:

ቚ𝑢𝑥
𝑟=𝑅

= 0, ቚ𝑢𝑟
𝑟=𝑅

= 0

If the slip boundary condition is applied all along

the wall, the response will be purely 1D, which is

equivalent to an infinite layer.

If the fixed boundary condition is applied, the

response will be 2D.

20-mm-thick glass bubble simulation

Varying stiffness achieved with 20 layers in

analytical model (Dazel et al., 2013)

8



Model Predictions
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Mixed boundary condition:

ቤ
𝜕𝑢𝑥

𝜕𝑟
𝑟=𝑅

= 0 𝑚 < 𝑚𝑑

ቚ𝑢𝑥
𝑟=𝑅

= 0 (𝑚 ≥ 𝑚𝑑)

𝑚𝑑 is the row number before which slip boundary

condition is applied, and after which fixed

boundary condition is applied.

Slip

Fixed

𝑚𝑑 = 5,𝑀 = 6



Model Predictions

speaker

sample
𝐴

𝐵

mic 1

mic 2

Activated carbon particles
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Particle size: ~0.6 mm

Bulk density: ~500 kg/m^3
Particle size: 60 um

Bulk density: ~120 kg/m^3



Model Predictions

𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜂 = 0.018
𝒎𝒅 = 𝟐𝟏

Slip

Fixed
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𝐸0 = 1.45 × 105 Pa, 𝜈 = 0.29, 𝜂 = 0.1
𝒎𝒅 = 𝟒𝟐

Slip

Fixed



Model Predictions

𝐸0 = 1.35 × 105 Pa, 𝜈 = 0.25, 𝜂 = 0.004
𝒎𝒅 = 𝟏𝟖

Slip

Fixed
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𝐸0 = 1.52 × 105 Pa, 𝜈 = 0.26, 𝜂 = 0.02
𝒎𝒅 = 𝟏𝟑

Slip

Fixed



Model Predictions
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With fully slip boundary condition (1D response assumption), the shift of resonance cannot be

captured with one set of parameters:
𝐸0 Pa2/3 3.0 × 105

𝜈 0.35

𝜂 0.09



Model Predictions
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With fully fixed boundary condition, the activated carbon testing results can be reproduced with

one set of consistent parameters:
𝐸0 Pa2/3 2.1 × 105

𝜈 0.35

𝜂 0.06



Model Predictions
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With fully fixed boundary condition, the activated carbon testing results can be reproduced with

one set of consistent parameters:



Conclusions

 The effect of different boundary conditions is studied with the proposed FD approach

 A finite difference implementation of Biot theory is introduced, with consideration of cylindrical
geometry of the test apparatus and different boundary conditions

 The response of granular materials is well matched by the simulation results of finite difference scheme

 By adjusting boundary conditions of solid phase, the response of granular materials can be better
explained

 Future works

 With consideration of non-linear behavior, a more complete model is needed, and correspondingly so are
the boundary conditions
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