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Transport of nitrite from large
arteries modulates regional blood
flow during stress and exercise
J. C. Muskat1, C. F. Babbs1, C. J. Goergen1 and V. L. Rayz1,2*
1Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States,
2Mechanical Engineering, Purdue University, West Lafayette, IN, United States

Background: Acute cardiovascular stress increases systemic wall shear stress
(WSS)–a frictional force exerted by the flow of blood on vessel walls–which
raises plasma nitrite concentration due to enhanced endothelial nitric oxide
synthase (eNOS) activity. Upstream eNOS inhibition modulates distal perfusion,
and autonomic stress increases both the consumption and vasodilatory effects
of endogenous nitrite. Plasma nitrite maintains vascular homeostasis during
exercise and disruption of nitrite bioavailability can lead to intermittent
claudication.
Hypothesis: During acute cardiovascular stress or strenuous exercise, we
hypothesize enhanced production of nitric oxide (NO) by vascular endothelial
cells raises nitrite concentrations in near-wall layers of flowing blood, resulting
in cumulative NO concentrations in downstream arterioles sufficient for
vasodilation.
Confirmation and implications: Utilizing a multiscale model of nitrite transport in
bifurcating arteries, we tested the hypothesis for femoral artery flow under resting
and exercised states of cardiovascular stress. Results indicate intravascular
transport of nitrite from upstream endothelium could result in vasodilator-active
levels of nitrite in downstream resistance vessels. The hypothesis could be
confirmed utilizing artery-on-a-chip technology to measure NO production
rates directly and help validate numerical model predictions. Further
characterization of this mechanism may improve our understanding of
symptomatic peripheral artery occlusive disease and exercise physiology.

KEYWORDS

arteriole, autonomic stress, endothelium, nitric oxide, peripheral artery disease,

vasodilation, wall shear stress

Introduction

Exercise and changes in emotional state (i.e., a fight-or-flight response) are associated

with increases in regional blood flow via reduction of downstream vascular resistance (1).

As local increases in wall shear stress (WSS) upregulate endothelial nitric oxide synthase

(eNOS) expression, acute cardiovascular stress stimulates the release of nitric oxide (NO)

into luminal and abluminal regions (2) where it is metabolized to nitrite (NO2
−) or nitrate

(NO3
−) (3). Furthermore, activation of inducible NO synthase (iNOS) due to oxidative

stress associated with maximal arousal substantially elevates plasma nitrite/nitrate (NOx)

by up to 20 µM during high-intensity, dynamic exercise (4, 5). Following evidence from

Lauer et al. (6) that “the NO:oxyHb reaction [and subsequent nitrate formation] plays

only a minor role for the inactivation of NO in vivo,” we expect these changes in NOx

represented increases in plasma nitrite–a key regulator of vascular function (7–9).
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Research by Kelm and colleagues established that nitrite, rather

than nitrate, reflects regional eNOS activity in mammals (6). As

nitrite infusion at resting concentrations (0.3–0.5 µM) (10) are

vasodilator-inactive (6), this distinction led many groups to

consider flowing blood as a sink from which endothelial-derived

NO is eventually inactivated. However, Hon et al. demonstrated

autonomic stress increases both consumption and vasodilatory

effect of endogenous bloodstream nitrite (11), preventing

endothelial dysfunction via increased NO bioavailability (12).

Furthermore, evidence of conduit artery NO improving blood

flow in the microvasculature of canines (13) and rodents (14)

suggests that advection (transfer by fluid flow) of nitrogen oxides

to downstream resistance vessels can promote vasodilation.

Gladwin and others have since demonstrated that nitrite acts as

a major bioavailable pool of NO, nitrite reductase activity is

augmented during hypoxia, and nitrite acts as a relatively potent

and fast vasodilator at near-physiological concentrations (1.0–2.0

µM) (15–20). Thus, these previous reports suggest that

bloodstream nitrite participates in maintaining intravascular NO

homeostasis following acute cardiovascular stress. In this article,

we present a hypothesis that considers the possibility that

accumulation of nitrite in the cell-free plasma layer raises near-

wall nitrite concentrations to levels sufficient for vasodilation as

blood flows from large arteries to small arterioles during

cardiovascular stress and exercise.

Hypothesis

We hypothesize that during acute cardiovascular stress or

strenuous exercise, enhanced production of NO by vascular

endothelial cells raises nitrite concentrations in near-wall layers

of flowing blood resulting in cumulative NO concentrations

sufficient for vasodilation.

Explanation of hypothesis

Following the onset of acute autonomic stress or exercise,

changes in arterial hemodynamics increase NO release by

endothelial cells. Half of endogenous NO diffuses into the

vascular smooth muscle, resulting in local vasodilation, while half

diffuses into the cell-free plasma layer of flowing blood (2). Here

NO, with a half-life ∼2.0 msec (21), is predominantly oxidized to

nitrite, with a half-life of approximately ∼40 min (15), indicating

that deactivation by cell-free or red cell oxygenated hemoglobin

(oxyHb) occurs later in the NO-nitrite-nitrate lifecycle (6).

Antegrade blood flow carries nitrite downstream and raises near-

wall nitrite levels in arteriolar resistance vessels. Nitrite

accumulation in these vessels reach vasodilator-active levels

during the first pass of blood flow, promoting increased cardiac

output, performance, and survival in mammals during

cardiovascular arousal. Figure 1 summarizes key components of

the hypothesis related to intravascular NO homeostasis.

Support for the hypothesis

• Nitrite is a potent vasodilator at near-physiological

concentrations (>1.0 µM) in mammals. It functions as an

endocrine reservoir of NO, producing remote vasodilation

during first-pass perfusion of the contralateral limb following

nitrite infusion (15). Furthermore, there is evidence that

nitrite formation at the surface of endothelial cells serves to

preserve endogenous NO (6, 10), and formation of vasoactive

plasma nitrosothiols induce vasodilation in distal

microvasculature in felines (22). This supports the assumption

that endogenous NO is preserved as nitrite upon entering the

bloodstream and regenerates NO in distal vasculature.

• Lauer et al. demonstrated nitrate levels are unaffected during

acute stimulation with acetylcholine while nitrite levels

increase significantly (6); in a later study, the authors

concluded that 70% of plasma nitrite is derived from eNOS

after demonstrating NOS-inhibition is accompanied by an

80% decrease in plasma nitrite concentrations (10). Obversely,

there is a large 20 μM increase in nitrite/nitrate levels during

high-intensity, dynamic exercise (5). Hon et al. revealed

FIGURE 1

Key aspects of intravascular metabolism of endogenous nitric oxide
(NO). (A) Hyperemia is the result of a reduction in peripheral vascular
resistance that is induced by increased wall shear stress (WSS) in
larger conduit arteries associated with cardiovascular arousal such as
aerobic exercise as indicated by velocity profiles at rest (black arrows)
and exercise (red arrows). Endothelial nitric oxide synthase (eNOS)
expression is upregulated in response to local WSS augmentation,
resulting in enhanced NO release into the bloodstream. NO is then
converted to nitrite (NO2

−) in the cell-free plasma layer and in nearby
red blood cells (RBCs), which either store nitrite in equilibrium with
biologically active NO or inactivate a small portion via oxidation to
nitrate (NO3

−). (B) The effect of plasma nitrite on vessel tone. Smooth
muscle relaxation is illustrated in red. Vessel caliber is modulated by
physiologic levels of plasma nitrite [∼500 nM (10)] in mammals. Dejam
et al. identified a vasodilatory first-pass concentration of 1,000 nM in
human subjects (15, 17–20).
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exercise in healthy humans is associated with enhanced nitrite

consumption, leading to lower arterial pressure and increased

cardiac output (CO) (11). Taken together, these results

highlight the importance of nitrite during cardiovascular

arousal.

• It follows that nitrite infusion enhances blood flow to

metabolically active tissues such as the brain or skeletal

muscle. Rifkind et al. found nitrite infusion to NG-L-nitro-

arginine methyl ester (L-NAME) inhibited rats to decrease

mean arterial pressure by 96% and increase cerebral blood

flow by 13% (23). Cannon et al. later demonstrated that

inhalation of NO raises arterial nitrite levels by 11% and

eNOS inhibition during exercise reduces local blood flow by

∼25% (24). It is thought that nitrite offers a passive system of

maintaining circulatory function at rest and during

cardiovascular arousal, supported by arteriovenous gradients

in nitrite (25).

• In addition, there is evidence of cumulative transport of

nitrogen oxides in vivo. Local suppression of NO production

in large arterioles with diameter over 500–1,000 μm reduced

NO concentration by nearly 40%; moreover, Bohlen et al.

suggested as much as 60% of wall NO in small arteries was

from blood transport (14). In earlier work, Bohlen identified a

∼50 nM increase in perivascular NO in venules above

proximal arterioles (26). The inverse relationship between

perivascular NO and vessel caliber was later confirmed with

microelectrode microcirculatory mapping (27).

Evidence against the hypothesis

• Rassaf et al. demonstrated infusion of NO into the brachial

artery increased plasma nitrite by 30-fold but lacked intrinsic

vasodilator action (28); however, intraarterial infusion of

nitrite raised plasma levels to only 0.5 μM in their study,

which is beneath the first-pass concentration of 1.0 μM

identified by Dejam et al. (15).

• Nitrite reductase activity, and subsequent NO regeneration by

red blood cells (RBCs), the major intravascular storage sites of

nitrite (9), is maximized at 50% oxygen saturation (8); of

note, distribution of oxygen tension in the pial

microvasculature of rats suggested oxygen saturation remains

above 90% in branches greater than 26 μm in diameter at

normoxia (29). As reaction with oxyHb outcompetes

molecular oxygen by an order of magnitude (6), it is unlikely

that nitrite reductase activity associated with deoxygenated

hemoglobin (deoxyHb) occurs in upstream resistance arteries.

However, compartmentalization of Hb in RBCs reduces the

rate of NO inactivation by ∼1,000-fold (15).

• Exercise, and especially footstrike during running, is associated

with significant increases in cell-free Hb due to hemolysis (30,

31). Minneci et al. revealed plasma nitrite inhibits hemolysis-

derived vasoconstriction and potentiates vasodilation at

plasma Hb concentrations less than 25 μM (32). It is plausible

that increased NO release associated with acute cardiovascular

stress (4, 5) serves to reduce the mass transfer between the

vessel wall and bloodstream, elevating abluminal NO

concentration as proposed by Bohlen et al. (14). Their

hypothesis supports the notion that plasma NO/nitrite

augments vasodilation via limiting diffusion from the

endothelium to flowing blood.

Evaluation of the hypothesis

The following section, accompanied by Figure 2, details our

multiscale model of nitrite transport in bifurcating arteries,

developed to determine if intravascular transport of nitrite from

upstream endothelium could result in physiologically active levels

of nitrite in downstream resistance vessels.

Method

We built a sequential multiscale model for twenty-orders of

idealized bifurcating arteries (proximal inlet diameter − 4.0 mm;

distal outlet diameter − 0.04 mm) following Murray’s law for

area ratio and a length ratio of 1.26, in agreement with in vivo

branching patterns (33, 36). Branches were symmetrical with a

bifurcation angle of 45°. The inlet velocities for rest and exercise

conditions were set as 0.1 and 0.4 m/s, respectively, following in

vivo measurement of femoral artery blood velocity at the onset of

exercise (37, 38). Outflow was evenly distributed across the

bifurcating branches. Due to computational limitations, we

simulated six-orders of branches at a time and passed velocity

information to the next smallest set of branches. Therefore, the

initial model was scaled by factors of 0.315, 0.099, and 0.031 to

generate a series of smaller scale models representing distal

vasculature.

Computation of the generation and movement of NOx species

was performed with the finite-volume solver ANSYS Fluent v18.1

(Ansys Inc., PA, United States). The heat-mass transfer analogy

was used to facilitate our computational fluid dynamics (CFD)

simulations (39). The heat-mass transfer analogy refers to the

similarities between the linearized Fick’s law of diffusion for

molecular mass transfer and Fourier’s law of heat conduction.

Under identical flow conditions with matching of the

nondimensional Schmidt number (the ratio of momentum and

mass diffusivity) and Prandtl number (the ratio of momentum

and heat diffusivity), the advection-diffusion solution is

analogous to the mass-heat transfer solution. An unstructured

tetrahedral mesh with a refined boundary layer was generated in

HyperMesh 2021 (Altair Engineering Inc., MI, United States)

with a target edge length of 100 μm leading to a total of 3.51

million elements. Mesh independence was verified as less than

5% deviation in wall nitrite concentration predicted on a refined

mesh with a 50 μm edge length. Arterial flow was assumed to be

steady and laminar, with blood modeled as an incompressible

Newtonian fluid with density (ρ) of 1,060 kg/m3 and viscosity (µ)

of 4.5 mPa·s. The diffusion coefficient of nitrite in whole blood

was assumed to be 3.30 × 10−9 m2/sec (40, 41). We assumed all

NO entering the bloodstream is immediately converted to nitrite
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with a resting and exercised rate of NO release taken as 0.00015

and 0.0068 nmol/cm2/sec, respectively (2, 42). Thickness of the

concentration boundary layer was estimated using dimensional

analysis as the square root of nitrite diffusion coefficient

multiplied by vessel length divided by average velocity. We

calculated mean nitrite concentration at the vessel wall, halfway

along each daughter branch.

Results

In muscular arteries greater than 0.3 mm in diameter, the

Reynolds number (Re), defining the ratio of inertial and viscous

forces in the flow, increased with local diameter (Rerest = 1–94;

Reexerise = 4–377); in resistance arteries less than 0.3 mm in

diameter, Re was less than 2 across both modeled cardiovascular

states. Furthermore, the Peclet number (Pe), defining the ratio of

diffusion to advection characteristic times, was consistently

greater than 1 (Perest = 12–1.21 × 105; Peexercise = 48–4.85 × 105),

indicating cardiovascular nitrite transport is advection dominated

(43). Pe was less than 1,000 in arterioles smaller than 0.4 mm in

diameter at rest and smaller than 0.2 mm in diameter during

exercise. Under resting conditions, the concentration boundary

layer is estimated to be 0.02–0.03 mm thick in all branches.

During exercise, this thickness decreased to 0.01 mm due to

increased blood velocity.

Due to mixing with core flow, wall nitrite concentrations at the

cruxes of branch points at bifurcations decrease 29%–38% at rest

and by 38%–50% during exercise in arteries greater than 1.26 mm

in diameter. For both simulated cardiovascular states, mixing with

core flow diminishes along the arterial tree and was minimal in

arterioles smaller than 0.2 mm; with no noticeable mixing in

arterioles less than 0.2 mm, as shown in Figure 2A. Relative

change in nitrite, defined as the difference in concentration halfway

along each parent and daughter branch, indicated successive wall

nitrite levels decrease down to 30 nM in arteries greater than

0.5 mm during exercise. As demonstrated in Figure 3, nitrite levels

are not sufficient for vasodilation (dashed horizontal line) in all

modeled vasculature scales during rest. However, due to increased

rate of NO/nitrite release during exercise, simulations indicate

FIGURE 2

Nitrite transport in twenty-orders of bifurcating vasculature during (A) rest and (B) exercise. Two-dimensional cross-sections show luminal nitrite
concentration changes above 1 nM. Insets, below and to the right of smaller branches detail how nitrite levels fluctuate at bifurcations in three-
dimensions, demonstrate the impact of bifurcations on near-wall nitrite levels. 1.0× scale models simulated arteries between 1.26–4.0 mm in
diameter, 0.315× between 0.40–1.26 mm, 0.099× between 0.13–0.40 mm, and 0.031× between 0.04–0.13 mm, respectively. Following in vivo
branching patterns (33–35), the diameters of symmetrical daughter branches are 0.79 times the diameter of the parent vessel, according to Murray’s
law. Bifurcations facilitate local mixing of the concentration boundary layers with core flow, resulting in a 10%–38% reduction in near-wall nitrite in
arteries greater than 0.20 mm in diameter. During exercise, increased velocity is associated with additional mixing in large arteries, reducing wall
nitrite concentration by 20%–50% in arteries greater than 0.20 mm in diameter. In small arterioles less than 0.16 mm in diameter, the ratio of
concentration boundary layer thickness to vessel diameter is increased, thus augmenting relative nitrite levels in core flow.
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cumulative nitrite levels do attain vasoactive levels in arterioles less

than 0.2 mm in diameter (see Figure 4). Nitrite concentrations at

the vessel wall are inversely related to vessel diameter in smaller

arteries and arterioles (see Figure 3).

Further testing of the hypothesis

The quantitative hypothesis developed here, in concert with

preliminary CFD results, suggests further experimental studies

are necessary to quantify the rate of endothelial-derived NO

release at rest and during cardiovascular stress or exercise. To

confirm or refute the hypothesis, it is crucial to address the

orders of magnitude variation in mammalian NO production

rates indicated in literature, e.g., species, culture methodology,

and cell harvest location along the arterial tree modulate rate of

NO production (44–46). Utilizing recent advancements in artery-

on-a-chip technology (47), future studies could quantify

magnitude of variation in the rate of NO release potential along

the arterial tree. Compact microfluidic platforms closely resemble

in vivo conditions and enable comparison across mammalian

species in a highly replicable manner. Furthermore, these systems

would allow for controlled assessment of eNOS expression in

intact blood vessels exposed to resting and aroused levels of WSS.

In addition, it is plausible that bloodstream nitrite contributes

to the nitrodilator-activatable intracellular NO store (NANOS)

within vascular smooth muscle cells, potentiating function and

contraction properties independent of local endothelial activity

(48). However, how circulating nitrite stimulates release of NO

from the NANOS, and the chemical nature of the NANOS,

remain unknown. Again, artery-on-a-chip technology seems well

suited to investigating the endogenous nitrite-NANOS lifecycle.

Future studies, despite ambiguity about the rates of NO release,

could confirm the presence of additive near-wall nitrite transport

(see Figure 2) through targeted disruption of NO metabolism via

local eNOS inhibition in resistance arterioles (0.01–0.3 mm in

diameter), as CFD results suggest nitrite accumulation is

sufficient for vasodilation at this arterial scale. For example,

transfer of nitrogen oxides from upstream femoral

microvasculature of canines promotes vasodilation in vivo (13).

Increased NO accumulation at these locations (as shown in

Figure 3) is expected to decrease downstream vascular resistance

and increase regional blood flow.

Discussion

The present hypothesis considers NO release into the

bloodstream (and subsequent equilibration with nitrite) as an

evolutionary mechanism for local regulation of downstream

vascular resistance during acute cardiovascular stress. Increases in

heart rate and pulse pressures associated with exercise are

accompanied by increases in the oscillatory shear index and

magnitude of WSS (49), which is associated with a 14-fold

increase in NO release (50). Under fully developed laminar flow

conditions, much of the released NO/nitrite remains concentrated

in near-wall fluid laminae, in which nitrite levels can accumulate

to vasoactive concentrations in downstream resistance vessels

during cardiovascular stress. This local synthesis and delivery

minimize waste of endogenous NO. The resulting vasodilation

lowers regional vascular resistance and, in turn, increases regional

blood flow as well as WSS in the parent branches, creating a

positive feedback effect that causes further arterial NO release.

Across a variety of species and tissues, precapillary vessels 0.01–

0.3 mm in diameter account for the arteriovenous pressure drop in

mammals (51). These “resistance vessels” modulate peripheral

vascular resistance and regional cardiac output and, of interest, are

the location where we found that nitrite accumulation first

achieved vasodilator-active levels under stressed conditions (see

Figure 3). These results support the hypothetical mechanism

where local accumulation of bloodstream nitrite enhances

perfusion of metabolically active tissues during arousal.

A confirmation of the hypothesis has implications in exercise

physiology, atherosclerotic disease, and the survival benefit of a

complete circle of Willis (52). Endothelium-derived, NO-mediated

vasodilation is rate-sensitive with dependency on both frequency

and amplitude of the shear stimulus (53–56). Of interest, the

“beat” phenomenon due to cardiolocomotor synchrony in healthy

runners brings about wide pressure pulse oscillations that give rise

to negative arterial pressures (−20 mmHg diastolic pressure) (57).

As cardiolocomotor synchrony significantly reduces run-time by

35 s on average over three miles (58) and periodic acceleration

increases plasma nitrite levels over 5.7-fold (59), we speculate

systemic nitrite formation is significantly elevated due to the

correspondingly greater oscillatory WSS. Further, when negative

FIGURE 3

Cumulative wall nitrite concentration as a function of inverse vessel
diameter. The results for rest and exercise are displayed in black
squares and red cross marks, respectively. First-pass vasodilator-active
concentration of 1,000 nM identified by Dejam et al. (15) is
represented by the dashed line. At rest cumulative axial nitrite levels
fail to reach first-pass vasodilator-active levels (represented by the
horizontal dashed line); however, during exercise, near-wall
concentration reaches vasoactive levels in arterioles less than 0.2 mm
in diameter. Mixing associated with large arteries is reduced here,
resulting in a linear increase in wall nitrite concentration in resistance
arteries and arterioles.
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arterial pressure swings occur, it is expected that monophasic

antegrade flow in resistance vasculature will reverse, further

stimulating the endothelium of vascular beds to release NO into

the bloodstream and allowing a second pass effect, in which the

same near wall fluid can receive two doses of endothelial NO, one

prior to flow reversal and the other during and after flow reversal.

Peripheral artery occlusive disease due to atherosclerosis causes

intermittent claudication with symptomatic pain in 5% of the

population over 50 years of age (60). Upstream atherosclerotic

plaques cause a pressure drop, subsequently reducing blood flow

and, therefore, WSS-mediated nitrite formation and mixing with

core flow (61), potentially reducing exercise tolerance in these

patients. Intermittent claudication or crampy leg pain in response

to walking may in part be mediated by disruption of nitrite

concentration boundary layers and nitrite formation by disturbed

flow distal to stenotic regions. Interestingly, Böger et al.

demonstrated restoration of NO formation by L-arginine infusion

improved pain-free walking distance by 230% and absolute

walking distance by 155% (62). Allen et al. later hypothesized

peripheral artery disease induces a reduction in plasma nitrite

which is coupled to distal tissue ischemia and claudication pain

following acute exercise stress; the authors demonstrated that

improved “plasma nitrite flux” resulted in improved exercise

performance, peak walking time, and maximal oxygen uptake

(60). Taken together, these reports suggest intermittent

claudication pain as an indicator of reduced nitrite bioavailability.

The circle of Willis allows blood to be redistributed throughout

the brain during local ischemia; however, we and others have

argued that the anatomic persistence of the circle of Willis across

animal species is unlikely to be driven by natural selection of

individuals with resistance to cerebrovascular disease typically

occurring in elderly human populations (52, 63). Our previous

work exploring the effect of anatomy and changes in frequency

content of the pulse waveform (i.e., during fear and aerobic

exercise) revealed a complete circle of Willis augments

vertebrobasilar blood velocity acceleration 82%–134% (52). As

noted above, NO-mediated vasodilation is highly rate-sensitive.

Therefore, a confirmation of the present hypothesis would

provide evidence that local hemodynamic changes induced by a

complete circle of Willis are capable of enhancing vascular bed

FIGURE 4

Nitrite transport in twenty-orders of bifurcating vasculature at (A) rest and (B) exercise. Cross-sections are not shown to scale for visual clarity and
represent nitrite concentration halfway along each branch. Resistance vessels, 0.01–0.3 mm in diameter, are highlighted for each state of
cardiovascular stress. Arteries with diameters between 1.0–4.0 mm, 0.20–0.80 mm, and 0.04–0.16 mm are shown in the left, middle, and right
columns, respectively. The simulations indicate that luminal nitrite concentration can reach vasodilator-active levels during exercise.
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perfusion in the cerebellum and brainstem reticular activating

system, which are critically important in survival scenarios (64).

A potential limitation of our computational models is the

assumption of a rigid wall. Due to the compliant nature of large

muscular arteries, radial expansion will reduce near-wall nitrite

accumulation due to mixing with core flow. However, our

validated reduced-order model of the systemic circulation (52)

indicates femoral artery diameter amplitude (systolic minus

diastolic diameter) changes less than 8.5% or less than 0.065 cm

during moderate aerobic exercise. Therefore, the rigid wall

assumption could be considered reasonable in the present

context. The present results are representative of time-averaged

steady state nitrite concentration expected to be delivered over

the entire duration of exercise.

Conclusion

We hypothesize that during acute cardiovascular stress or

strenuous exercise, plasma nitrite levels accumulate in near-wall

laminae to achieve vasodilator-active concentrations. Previous

studies have indicated that plasma nitrite participates in

maintaining vascular homeostasis during exercise, while

disruption of nitrite bioavailability leads to clinical manifestations

of ischemia. Herein we provided quantitative evidence for nitrite

transport in twenty-orders of bifurcating vasculature under time-

averaged flow conditions for the femoral artery. Nitrite

accumulation in these vessels can reach vasodilator-active levels

during the first pass of blood flow, which are expected to

promote increased regional blood flow, cardiac output,

performance, and even survival in mammals during

cardiovascular stress and exercise.
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