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SYMBOLIC REES ALGEBRAS

ELOÍSA GRIFO AND ALEXANDRA SECELEANU

Dedicated to David Eisenbud on the occasion of his 75th birthday.

Abstract. We survey old and new approaches to the study of symbolic powers of ideals.
Our focus is on the symbolic Rees algebra of an ideal, viewed both as a tool to investigate
its symbolic powers and as a source of challenging problems in its own right. We provide an
invitation to this area of investigation by stating several open questions.
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1. Introduction

Symbolic powers arise from the theory of primary decomposition. It is often surprising
to the novice algebraist that the powers of an ideal can acquire associated primes that were
not associated to the ideal itself. In that sense, the symbolic powers of I are more natural.

Definition 1.1. Let R be a noetherian ring and I an ideal in R with no embedded primes.
The n-th symbolic power of I is the ideal

I(n) :=
⋂

P∈Ass(R/I)

InRp ∩ R.

This is the ideal obtained by intersecting the components in a primary decomposition of
I corresponding to the associated primes of I, which by assumption are all minimal. When
I does have embedded primes, there are two possible definitions of symbolic power to chose
from: either taking P to range over the associated primes of I, or over the minimal primes
of I. To avoid this, we will focus on the case of ideals with no embedded primes. Note that
the symbolic powers of a prime ideal are already very interesting, and thus our assumption
that I has no embedded primes is fairly mild.

When I is a radical ideal in R = k[x1, . . . , xd], where k is a perfect field, I(n) coincides with
the set of polynomials that vanish to order n on the variety defined by I [Zar49, Nag62, EH79].
In general, we always have I(1) = I, by definition, and it is easy to show that In ⊆ I(n) always
holds. However, given an ideal I and some n > 1, determining whether the equality In = I(n)
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holds can be a very difficult question. This stems from the fact that computing primary
decompositions is a difficult problem; as Decker, Greuel, and Pfister write in [DGP99],
“providing efficient algorithms for primary decomposition of an ideal [...] is [...] still one
of the big challenges for computational algebra and computational algebraic geometry”. In
fact, even if one restricts to monomial ideals, the problem of finding a primary decomposition
is NP-complete [HS02]. This is one of the reasons why many innocent sounding questions
one could ask about symbolic powers remain open.

Nevertheless, there exist sufficiently efficient methods for computation of symbolic power
ideals using computer algebra systems such as Macaulay2 [GS]. Some of these methods are
used in the Macaulay2 package SymbolicPowers; we refer to [DGSS19] for an account of the
functionality offered by this package.

Symbolic powers are ubiquitous throughout commutative algebra, with connections to
virtually all topics in the field. For a more general survey on symbolic powers, we direct the
reader to [DDSG+17]. In this survey, we focus on symbolic Rees algebras.

2. Symbolic Rees algebras

The symbolic powers of I form a graded family of ideals, meaning that I(a)I(b) ⊆ I(a+b)

for all a and b. Thanks to this simple property, we can package together all the symbolic
powers of I to form a graded ring. This is the so called symbolic Rees algebra of I, which
contains much information about I and its symbolic powers, and the main character in this
survey.

Definition 2.1 (Symbolic Rees algebra). Let R be a noetherian ring and I an ideal in R.
The symbolic Rees algebra of I, also known as the symbolic blow-up ring of I, is the
graded ring

Rs(I) := R[It, I(2)t(2), . . .] =
⊕

n>0

I(n)tn ⊆ R[t].

The indeterminate t of degree one is helpful in keeping track of the degree of elements in the
symbolic Rees algebra. It helps distinguish an element f ∈ I(n), which we write ftn, from
the element f ∈ I, which we write ft.

This construction is akin to that of the Rees algebra of I, which is the graded ring

R(I) := R[It, I2t2, . . .] =
⊕

n>0

Intn ⊆ R[t].

The study of Rees algebras is very rich and presents its own challenges (see [Vas94] for an
overview), and yet the symbolic Rees algebra of I is often much more complicated than the
ordinary Rees algebra. While the study of symbolic Rees algebras is certainly inspired by
Rees algebras, there is a crucial difference: R(I) is a finitely generated R-algebra, whileRs(I)
may fail to be an algebra-finite extension of R. Indeed, the Rees algebra of I is generated over
R in degree 1, by a (finite) generating set of I, that is, R(I) is a standard graded noetherian
ring, i.e., generated as an R-algebra by elements of degree 1. In contrast, the symbolic Rees
algebra may require infinitely many generators. As we will see, the symbolic Rees algebra
of I is a finitely generated R-algebra if and only if Rs(I) is a noetherian ring. Even if Rs(I)
is noetherian, it may be generated in different degrees; we introduce the generation type in
Section 3.2 to quantify this. The symbolic Rees algebra of I is generated in degree 1 precisely
if In = I(n) for all n ∈ N, in which case R(I) and Rs(I) coincide. Sufficient criteria for this
equality are presented in [Hoc73] and [RV76].
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2.1. A brief history. Although symbolic Rees algebras appear implicitly in the 1950s in
work of Rees, Zariski, Nagata, and others surveyed below, this class of algebras did not
acquire a name until several decades later. To our knowledge, the terminology “symbolic Rees
algebra” appears for the first time in Huneke’s paper [Hun82] in 1982, while the monograph
[Vas94] by Vasconcelos proposes the alternative terminology “symbolic blowup algebra”.

The first example of an ideal whose symbolic Rees algebra is not finitely generated appears
in Rees’ counterexample to Zariski’s Formulation of Hilbert’s 14th Problem (Question 2.2).

Question 2.2 (Hilbert’s 14th Problem). Let k be a field. For all n > 1, and all subfields K
of k(x1, . . . , xn), is K ∩ k[x1, . . . , xn] finitely generated over k?

An important special case that provided the original motivation for this question concerns
the ring of invariants of a linear action of a group of matrices on a polynomial ring over a
field. For R = k[x1, . . . , xn], a polynomial ring with coefficients in a field k equipped with a
linear action of a group G ⊆ GLn(k), one studies the subring of G-invariant polynomials

RG = {f ∈ R | g · f = f for all g ∈ G}.
A fundamental question in invariant theory is whether RG is finitely generated as a k-algebra.
For finite groups, an affirmative answer is due to E. Noether [Noe21]. The finite generation
of RG is the particular case of Question 2.2 where K is the subfield of elements of the fraction
field of R fixed by G.

We point the reader to the surveys [Mum76, Fre01] for more on Hilbert’s 14th problem,
and we will instead focus on the connections between symbolic Rees algebras and this famous
question. The foundation of this connection was laid by Zariski in the early 1950s in [Zar54]
by interpreting the rings K ∩ k[x1, . . . , xn] as rings of rational functions on a nonsingular
projective variety X with poles restricted to a specified divisor D. Such varieties X can be
obtained geometrically by the procedure of blowing up, and D is usually taken to be the
exceptional divisor of the blow up X .

Zariski [Ree58] formulated a more general version of Question 2.2, by taking any integrally
closed domain that is finitely generated over k in place of R = k[x1, . . . , xd]. The first
counterexample to Zariski’s version of Question 2.2 was given by Rees [Ree58], and this is
where the connection with symbolic Rees algebras first appears. The crux of Rees’ proof,
while not written in the language of symbolic Rees algebras, consists of showing that if P is a
height 1 prime ideal in the affine cone over an elliptic curve with infinite order in the divisor
class group, then its symbolic Rees algebra is not finitely generated. We give a numerical
example to illustrate the principles used by Rees.

Example 2.3 (Rees). Consider the elliptic curve C cut out by the equation x3 − y2z − 2z3

in the projective plane P2
Q. The point p = (3, 5, 1) is a rational point on this curve which

has infinite order with respect to the group law on C [LR11, Example 2.4.6(3)]. Consider
the coordinate ring R = Q[x, y, z]/(x3 − y2z − 2z3) of C and the ideal P = (x− 3z, y − 5z)
of R which defines p. Then [Ree58] yields that RS(P ) is not a finitely generated Q-algebra.

By contrast, consider the point q = (2, 3, 1) on the elliptic curve with coordinate ring
S = Q[x, y, z]/(x3 − y2z + z3). The point q has order six with respect to the group law of
this curve [LR11, Example 2.4.2], and examining the ideal Q = (x− 2z, y− 3z) defining this
point with Macaulay2 [GS] yields

Q(6) = (12x2 − 6xy + y2 − 6xz − 6yz + 9z2),
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which is a principal ideal. Moreover, Q(6n) = (Q(6))n for all n > 0, which as we will see in
Proposition 3.1 implies that RS(Q) is a finitely generated Q-algebra.

In the late 1950s, Nagata found the first example of an ideal I in a polynomial ring whose
symbolic Rees algebra is not finitely generated, giving a counterexample to Hilbert’s 14th
Problem [Nag59]. In fact, he constructed a ring of invariants which is not a finitely generated
algebra. The ideal constructed by Nagata defines a set of 16 points in the projective plane,
and hence is not a prime ideal like in the example provided by Rees. Nagata’s method is
to relate the structure of Rs(I) to an interpolation problem in the projective plane, namely,
that for each m > 1, there does not exist a curve of degree 4m having multiplicity at least
m at each of 16 general points of the projective plane.

In the 1980s, Roberts constructed new examples of symbolic Rees algebras that are not
finitely generated based on Nagata’s examples. His work shows that Rs(I) may fail to be
finitely generated even when I is a prime ideal in a regular ring [Rob85], thus answering
a question of Cowsik in the negative [Cow84]. Roberts’ examples are prime ideals in a
polynomial ring over a field of characteristic 0, and later Kurano [Kur93] showed that if we
consider the same examples in prime characteristic p, their symbolic Rees algebras are in
fact Noetherian. Roberts’ examples [Rob85], while prime, are not analytically irreducible,
meaning that these prime ideals do not stay prime after passing to the completion; he later
improved this by providing an example that was in fact analytically irreducible [Rob90].

Still, as shown below, finite generation has powerful consequences for some symbolic Rees
algebras, and thus it is natural to ask when this occurs. Huneke gave a general criterion for
a symbolic Rees algebra of a height 2 prime ideal in a 3-dimensional regular local ring to be
finitely generated [Hun82, Hun87], which we will discuss in more detail in Section 3.

In the early 1980s, Cowsik showed that if I determines a curve in An
k , where k is an

infinite field, and the symbolic Rees algebra of I is finitely generated, then I is a set-theoretic
complete intersection [Cow84]. This has been exploited to show that certain curves are indeed
set-theoretic complete intersections in [Eli88]. A modern generalization of Cowsik’s result
states that, if the symbolic Rees algebra of an ideal I is finitely generated, the arithmetic
rank of I, that is, the least number of generators of an ideal whose radical agrees with the
radical of I, is bounded above by the polynomial order of growth for the number of generators
of I(n) as a function of n; see [DMn20, Proposition 2.3].

One interesting case is that of space monomial curves, which are Zariski closures of images
of maps of the form A1 → A3, t 7→ (ta, tb, tc). We abbreviate this by referring to a monomial
curve as (ta, tb, tc). The defining ideals of space monomial curves were known to be set
theoretic complete intersections since 1970 [Her70], and thus one could hope that in fact
their symbolic Rees algebras are always finitely generated. This is, however, false: Goto,
Nishida, and Watanabe [GNW94] found the first counterexamples, a family of choices of
(a, b, c) which give infinitely generated symbolic Rees algebras over a field in characteristic
0. We record this interesting family of examples below.

Example 2.4 (Goto–Nishida–Watanabe). Let P be the defining ideal in the power series
ring kJx, y, zK over a field k of the space monomial curve

x = t7n−3, y = t(5n−2)n, z = t8n−3 where n > 4 and n 6≡ 0 (mod 3).

For example, when n = 4, our curve is parametrized by x = t25, y = t72, z = t29, and

P = (y3 − x4z4, x11 − yz7, x7y2 − z11).
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Then Rs(P ) is a non-Cohen-Macaulay noetherian ring if char k > 0, and Rs(P ) is not a
noetherian ring if char k = 0.

Other examples where Rs(P ) is not Cohen-Macaulay with P the defining ideal of (ta, tb, tc)
in prime characteristic were already known by [GM92].

The late 1980s and early 1990s saw a program to classify when these symbolic Rees
algebras are (or are not) finitely generated [Mor91, Sch88a, Sri91]. Most notably, Cutkosky
gave criteria which say, for example, that over any field, Rs(P ) is finitely generated whenever
(a+ b+ c)2 > abc. Cutkosky’s work [Cut91, Lemma 7] also uncovered a deep connection to a
different geometric problem: that Rs(P ), where P defines (ta, tb, tc), is noetherian if and only
if a certain space — the blow-up at a general point of the weighted projective space P(a, b, c)
— is a Mori dream space — meaning its Cox ring is noetherian. Using this connection,
González Anaya, González, and Karu [GK16, GK19, GAGK19a, GAGK19b, GAGK20] have
more recently found several large families of examples in characteristic 0 that in particular
recover the original family of examples of Goto–Nishida–Watanabe of non-noetherianRs(P );
in fact, they give a complete characterization of when Rs(P ) is (non)noetherian for large
families of curves of type (ta, tb, tc). The smallest of their examples to date are the curves
(t7, t15, t26) and (t12, t13, t17), each of these examples being smallest in a different manner. For
more examples of this kind, see also [He19]. The original family of non-noetherian examples
in [GNW94] has also been generalized via different methods in [JR15].

Finally, the story of symbolic Rees algebras of space monomial curves has deeper connec-
tions to Hilbert’s 14th Problem: Kurano and Matsuoka showed that whenever the symbolic
Rees algebra of the defining ideal P of (ta, tb, tc) is not noetherian, then in fact Rs(P ) is a
counterexample to Hilbert’s 14th Problem [KM09].

Even when the symbolic Rees algebra Rs(P ) of the curve (ta, tb, tc) in indeed noetherian,
it may still be generated in various degrees. As a corollary of a result of Huneke’s [Hun86,
Corollary 2.5], we know P (n) = P n for all n > 1, or equivalently Rs(P ) is generated in
degree 1, exactly when P is a complete intersection. In the language of section 3.2, we say
that Rs(P ) has generation type 1. Herzog and Ulrich characterized when the symbolic Rees
algebra Rs(P ) is generated in degree up to 2, or has generation type 2, and showed that this
implies that P is self-linked [HU90]. The cases when Rs(P ) has generation type 3 [GNS91]
and 4 [Ree09, Ree05] have also been completely characterized; these characterizations are
all in terms of the Hilbert-Burch matrix of P .

With the subject of finite generation presenting such a difficult problem, the literature
on other ring-theoretic properties of Rs(I) is not as vast. Watanabe [Wat94] asked whether
Rs(I) must be Cohen-Macaulay whenever it is noetherian, where I is a divisorial ideal in
a strongly F-regular ring R. Watanabe constructed an example [Wat94, Example 4.4] of
a divisorial ideal I in an F-rational ring whose Rees algebra is noetherian but not Cohen-
Macaulay. When R is strongly F-regular, Singh showed that the answer to Watanabe’s
question is affirmative provided that a certain auxiliary ring is finitely generated over R
[Sin00]. The construction of this auxiliary ring is an iterated symbolic Rees algebra.

In positive characteristic, the symbolic Rees algebra of the canonical module ω = ωR

of a local, normal, complete ring R plays an important role in studying Frobenius actions
on the injective hull of the residue field. A significant construction in this context is the
anticanonical cover

⊕
n>0HomR(ω

(n), R). The number of generators for this ring as an
algebra over R, if finite, bounds the Frobenius complexity of R as shown by Enescu and Yao
[EY16].
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The research and literature surrounding symbolic Rees algebras is abundant and growing at
a steady rate. While we cannot do complete justice to this topic by presenting an exhaustive
review, we expand in some directions which are closest to our interests in the following
sections.

3. Criteria for noetherianity

In this section we discuss criteria for finite generation, and equivalently noetherianity, of
symbolic Rees algebras and structural invariants of finitely generated symbolic Rees algebras.

3.1. Noetherianity. The most comprehensive criterion, described below in Proposition 3.1
(4) ⇔ (1), states that, under mild hypotheses, finite generation of a symbolic Rees algebra
Rs(I) is equivalent to the fact that there exists a Veronese subalgebra

⊕
n>0 I

(kn)tkn isomor-

phic to the (ordinary) Rees algebra R(I(k)) =
⊕

n>0(I
(k))ntn. An equivalent assertion is that

a Veronese subalgebra of Rs(I) admits a standard grading.
The various parts of the following criterion appear in different places in the literature:

the equivalence of (1) and (3) is developed in [Ree58] and (4) appears in work of Schenzel
[Sch88b, Theorem 1.3]. We include a proof since this result is central to our discussion.

Proposition 3.1 (Standard graded subalgebra criterion). Let R be a noetherian ring and I
an ideal in R. The following are equivalent:

(1) Rs(I) is a finitely generated R-algebra.
(2) Rs(I) is a noetherian ring.
(3) There exists d such that for all n > 1,

I(n) =
∑

a1+2a2+···+dad=n

Ia1
(
I(2)

)a2 · · ·
(
I(d)

)ad
.

Furthermore, when these equivalent conditions hold, then

(4) There exists k such that I(kn) =
(
I(k)

)n
for all n > 1.

Conditions (1)− (4) are equivalent whenever R is an excellent ring.

Proof. The fact that (1) implies (2) is a consequence of Hilbert’s Basis Theorem. Moreover,
since Rs(I) is an N-graded algebra and Rs(I)0 = R is a noetherian ring, the equivalence
between (1) and (2) is a general fact about graded R-algebras; see for example [BH93,
Proposition 1.5.4] for a proof. Statement (3) says that Rs(I) is generated in degree up to d
as an R-algebra, and thus is equivalent to (1).

To show that (3) implies (4), we follow [Ree58, Lemma 2], where in fact a stronger state-
ment is proved. We will show that k can in fact be taken to be k = d · d!.

First, suppose that n > k. For each choice of a1 + 2a2 + · · ·+ dad = n > d · d!, we must
have iai > d! for some i, by the pigeonhole principle. Moreover, q := d!

i
is an integer, so

Ia1
(
I(2)

)a2 · · ·
(
I(d)

)ad
=

(
I(i)

)q
Ia1

(
I(2)

)a2 · · ·
(
I(i)

)ai−q · · ·
(
I(d)

)ad ⊆ I(d!)I(n−d!).

In particular, I(n) ⊆ I(d!)I(n−d!) for all n > d · d!, but since I(d!)I(n−d!) ⊆ I(n) holds because
symbolic powers form a graded family, in fact we have shown that I(n) = I(d!)I(n−d!).

Now consider any n > 1. Since nk > k = d · d!, then

I(kn) = I(d!)I(kn−d!) =
(
I(d!)

)2
I(kn−2d!) = · · · =

(
I(d!)

)d
I(kn−d·d!) ⊆ I(d·d!)I(kn−d·d!),
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so that
I(kn) = I(d·d!)I(kn−d·d!) = I(k)I(k(n−1)).

By induction, the statement follows.
On the other hand, if (4) holds, then the algebra

A :=
⊕

n>0

I(kn)tkn =
⊕

n>0

(
I(k)tk

)n ⊆ Rs(I) ⊆ R[t]

is finitely generated. The fact that (4) implies the remaining equivalent statements will
follow once we show that Rs(I) is a finitely generated algebra over A. To do that, we follow
the argument in [Sch88b, (2.2)].

Let B denote the integral closure of A inside R[t]. Recall1 that B is the subring of R[t]
given as follows:

B =
{
f ∈ R[t] : f d + ad−1f

d−1 + · · ·+ a1f + a0 = 0 for some fi ∈ A
}
.

We claim that Rs(I) =
⊕

I(n)tn ⊆ B. To show that, consider u ∈ I(i)ti. Then

uk ∈
(
I(i)

)k
tik ⊆ I(ki)tki =

(
I(k)tk

)i
,

so that u is a root of T k − uk. Since uk ∈ A, u is integral over A, which implies that u ∈ B.
Since Rs(I) is generated by such elements, we conclude that Rs(I) ⊆ B. Moreover, B is a
finitely generated module over A, by [SH06, Remark 12.3.11 or Theorem 9.2.2]. Therefore,
Rs(I) must be finitely generated over A by the Artin-Tate theorem [AT51]. �

For Proposition 3.1 (4) ⇒ (3), the condition we need is that the integral closure of a finitely
generated R-algebra B in a finite extension is a finitely generated algebra over B; rings with
this property are called Nagata rings (see [Mat80, Chapter 13]). This holds whenever R is
excellent or analytically unramified, and in particular every polynomial or power series ring
over a field has this property.

Remark 3.2. The proof of Proposition 3.1 shows that when the symbolic Rees algebra is
noetherian and generated in degree up to d, then for k = d · d!, we do have I(kn) =

(
I(k)

)n
for all n > 1. In fact, it is shown in [Ree58, Lemma 2] that if the symbolic Rees algebra
is generated in degrees a1, . . . , as, and r is the least common multiple of a1, . . . , as, then we
can take k = sr.

Under mild assumptions, part (3) of Proposition 3.1 above might be rewritten, as follows:

Lemma 3.3. Let R be an excellent ring, and I an ideal in R. Suppose that k is such that
I(kn) =

(
I(k)

)n
for all n > 1. Then there exists A > 1 such that for all n > 1, if n = qk + r,

with 0 6 r < k, then

I(n) =
A∑

a=0

(
I(k)

)q−a
I(ak+r).

Proof. As before, note that the R-algebra

B :=
⊕

n>0

I(kn)tkn =
⊕

n>0

(
I(k)tk

)n ⊆ R[t]

is finitely generated, and that Rs(I) is finitely generated over B.

1The book [SH06] is a comprehensive reference on the subject of integral closure.
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Suppose that Rs(I) is generated over B in degrees a1, . . . , ad. Then
⊕

n>0

I(n)tn = Rs(I) = I(a1)ta1B ⊕ · · · ⊕ I(ad)tadB =
⊕

m>1

I(ai)
(
I(k)

)m
tai+km.

Finally, the theorem follows once we collect the pieces in degree n. �

While very useful, the criteria in Proposition 3.1 often prove challenging to apply because
they require checking infinitely many equalities of ideals. The next results of Huneke [Hun87,
Theorems 3.1 and 3.25] present ideal-theoretical criteria for the symbolic Rees ring Rs(P ) of
a height two prime P of a 3-dimensional regular ring R to be noetherian, which are relatively
simple to apply. These criteria suffice to establish that every affine space curve of degree
three as well as every monomial space curve of degree four have noetherian symbolic Rees
algebras.

Proposition 3.4 (Multiplicity criterion). Let R be a regular local ring with dim(R) = 3 and
infinite residue field and let P be a height two prime ideal of R. The following are equivalent:

(1) Rs(P ) is a finitely generated R-algebra.
(2) There exist k, l > 1, f ∈ P (k), g ∈ P (l) and x 6∈ P such that

λ(R/(f, g, x)) = klλ (R/(P + (x)) .

(3) There exist f.g ∈ P such that
√

(f, g) = P and the leading forms f ∗, g∗ of f, g in the
associated graded ring of PRP form a regular sequence.

It is possible to extend this criterion to reduced ideals of height two that are not necessarily
prime. For example, by [HH13, Proposition 3.5], if an ideal I defines a set of s points in
P2 and if there exist m ∈ N and f, g ∈ I(m) such that f, g form a regular sequence and
deg(f) deg(g) = m2s, then Rs(I) is a noetherian ring. This criterion can be applied to show
that any set of s 6 8 points in P2 gives rise to a noetherian symbolic Rees algebra. However,
the converse implication is no longer valid, as shown in [NS16].

It turns out that the analytic spread ℓ(I) of I, which is defined to be the Krull dimension
of the special fiber ring of I, R(I)/mR(I), plays an important role in the study of symbolic
Rees algebras. Its contribution is due to work of McAdam on asymptotic primes of I. For
the rest of this section, we assume R is an excellent domain, although a weaker condition,
locally quasi-unmixed, would suffice. Brodmann shows in [Bro79] that the following set,
known as the set of asymptotic primes of I, is finite:

A∗(I) :=
⋃

n>0

Ass(In).

McAdam [McA80, Theorem 3] (see also [McA83, Proposition 4.1]) shows that P ∈ A∗(I) if
and only if ℓ(IRP ) = dim(RP ). Setting

J =
⋂

P∈A∗(I)\Min(I)

P

yields another description of the symbolic powers of I as saturations: I(n) = In : J∞. We
are now ready to state another criterion for finite generation of the symbolic Rees algebra.
This appears for primary ideals in work of Katz and Ratliff [KR86, Theorem A], and in the
form presented here in [CHS10, Theorem 2.6].
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Proposition 3.5 (Analytic spread criterion). Let (R,m) be an excellent domain. Then
Rs(I) is a finitely generated R-algebra if and only if for all P ∈ V (J) we have that

ℓ ((I : J∞)RP ) < dim(RP ).

In a similar vein, Goto, Herrmann, Nishida, and Villamayor give a sufficient criterion for
the symbolic Rees algebra to be Noetherian in terms of an equimultiplicity condition of some
symbolic power. Their result in [GHNV90, Theorem 3.3] states that if ℓ(I(n)) = ht(I(n)) for
some natural number n and ideal I in an unmixed local ring, then Rs(I) is noetherian.

A large class of ideals with finitely generated symbolic Rees algebra is the class of monomial
ideals. While none of the above criteria apply to show this, finite generation of the respective
symbolic Rees algebras follows from Gordan’s lemma, which says that the set of all lattice
points in a rational cone is a finitely generated affine semigroup. This approach is taken
by Herzog, Hibi, and Trung in [HHT07, Proposition 1.4]. For squarefree monomial ideals,
finite generation of the symbolic Rees algebra was previously shown in work of Lyubeznik;
see [Lyu88, Proposition 1].

3.2. Generation type and standard Veronese degree. In this section, we explore the
maximum degree of elements required to generate the symbolic Rees ring as an R-algebra
and the minimum degree of a standard graded Veronese subalgebra.

Following Bahiano [Bah04], we define

Definition 3.6. The generation type of a symbolic Rees algebra Rs(I) is the value

gt(Rs(I)) := inf{d | Rs(I) = R[It, I(2)t2, . . . , I(d)td]}.
Note that gt(Rs(I)) ∈ N ∪ {∞} and gt(Rs(I)) ∈ N if and only if Rs(I) is a noetherian

ring. A challenging problem is to determine or bound this invariant for interesting classes of
ideals.

Problem 3.7. Find effective bounds on gt(Rs(I)), when finite, in terms of invariants of I.

This problem has been studied predominantly in combinatorial contexts, when I is a
monomial ideal [Bah04, MBRMV11, HHT07]; it has also been studied for the ideal defining
a space monomial curve [GNS91, Ree09, Ree05], and in some cases of more general monomial
curves, for example in [DM20]. For a monomial ideal I, finding a minimal set of algebra
generators for Rs(I) translates into finding a Hilbert basis for an appropriate convex poly-
hedron [MBRMV11, Corollary 3.2]. This is a computationally intensive problem, which can
nevertheless be approached with the aid of specialized software [BIR+, tt].

When I is a monomial ideal and I(n) = In for each n ∈ N, i.e. when all the symbolic powers
are the integral closures of the corresponding ordinary powers, then [EVY06, Corollary 3.11]
yields gt(Rs(I)) 6 dim(R) − 1. When I is the edge ideal of a simple graph, [Bah04] yields
gt(Rs(I)) 6 (dim(R)− 1)(dim(R)−ht(I)). However, for arbitrary monomial ideals the best
known bound seems to be given by [HHT07, Theorem 5.6]:

gt(Rs(I)) 6
(dim(R) + 1)(dim(R)+3)/2

2dim(R)
.

Proposition 3.1 reveals the importance of standard graded Veronese subalgebras of the
symbolic Rees algebra. We introduce a new invariant that captures the least degree where
they occur.
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Definition 3.8. The standard Veronese degree of an ideal I is the value

svd(I) := inf{k | (I(k))n = I(kn) for all n ∈ N}.
As before, svd(I) < ∞ is equivalent to Rs(I) being a noetherian ring by Proposition 3.1,

and the proof of this proposition yields the upper bound svd(I) 6 gt(Rs(I)) · gt(Rs(I))!.
Remark 3.2 yields a sharper upper bound. For particular families of ideals, specific upper
bounds can be found in the literature, for example for some space monomial curve families
[Mor91] and for ideals defining Fermat-type point configurations [NS16] (cf. Example 4.6).

We explore these invariants for a specific family of monomial ideals below, with an eye
towards evaluating the optimality of these bound.

Example 3.9. Let n and h 6 n − 1 be positive integers and let In,h denote the following
monomial ideal in the polynomial ring Rn = k[x1, . . . , xn] with coefficients in a field k

In,h :=
⋂

16i1<i2<···<ih6n

(xi1 , xi2 , · · · , xih).

This family of ideals is known as monomial star configurations. Then the following hold:

(3.1) Rs(I) = Rn[xi1xi2 · · ·xin−h+m
tm, 1 6 m 6 h, i1 < i2 < · · · < in−c+m 6 n],

gt(Rs(In,h)) = h, and svd(In,h) is divisible by lcm(1, 2, . . . , h).

Proof. The description of the symbolic Rees algebra in (3.1) is established using different
notation in [HHT07, Proposition 4.6].

It follows that the generation type of this algebra is h, provided that the unique algebra
generator of degree h,

∏n
i=1 xi ∈ I(h), listed in (3.1) cannot be decomposed as a product

of squarefree monomials m1, m2, . . . , ms with s > 1, mi = xi,1xi,2 · · ·xi,n−h+ai ∈ I(ai). This
would yield a1 + · · · + as = h and because the degrees of these monomials are deg(mi) =
n− h+ ai we obtain the following impossible inequality

deg(m1) + · · ·+ deg(ms) > a1 + · · ·+ as + s(n− h) = h+ s(n− h) > n = deg

n∏

i=1

xi.

Continuing to a discussion of the standard Veronese degree, let us first observe that the

lowest degree of a nonzero element of I
(m)
n,h is α(I

(m)
n,h ) = m+(n−h)⌈m

h
⌉. A simple calculation

now verifies that when m
h
is not an integer, then α(I

(mk)
n,h ) < kα(I

(m)
n,h ) = α((I

(m)
n,h )

k) whenever
k > h. This restricts the possible values for r := svd(In,h) to multiples of the height h.
However, further restrictions on r are imposed by consideration of the manner in which our
family of ideals contracts with respect to the inclusions Rn−i ⊂ Rn. Specifically, for all
h, n,m there are identities

I
(m)
n,h ∩ Rn−i =

⋂

16i1<i2<···<ih6n

(xi1 , xi2, · · · , xih)
m ∩Rn−i

=

h⋂

j=h−i

⋂

16i1<i2<···<ij6n−i

(xi1 , xi2 , · · · , xij )
m

= I
(m)
n−i,h−i ∩ I

(m)
n−i,h−i+1 ∩ · · · ∩ I

(m)
n−i,h

= I
(m)
n−i,h−i,
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where we make the convention that In,u = Rn whenever u < 0. Similarly one deduces

Imn,h ∩ Rn−i = (In,h ∩Rn−i)
m = Imn−i,h−i.

If I(rm) = (I(r))m for all m ∈ N then for 0 6 i 6 h− 1 we deduce the identities

I
(rm)
n,h ∩ Rn−i = (I

(r)
n,h)

m ∩Rn−i, i.e.,

I
(rm)
n−i,h−i = (I

(r)
n−i,h−i)

m.

By the previous reasoning, we see that r must be divisible by all integers 1 6 h− i 6 h, thus
lcm(1, 2, . . . , h) divides r. �

We conjecture that for the family of ideals in Proposition 3.9 there is in fact an equality
svd(In,h) = lcm(1, 2, . . . , h). This prompts the following question:

Question 3.10. Can the bound in Remark 3.2 be improved for all monomial ideals I to

svd(I) 6 the lcm of the degrees of any set of algebra generators for Rs(I)?

At this time we are unaware of any ideals that satisfy svd(I) < gt(I). Hence we ask:

Question 3.11. Does the inequality gt(I) 6 svd(I) hold for every ideal I?

4. Applications to containment problems and asymptotic invariants

4.1. The Containment Problem. Containments of the form In ⊆ I(n) are a direct conse-
quence of Definition 1.1, which further implies that Ib ⊆ I(a) if and only if b > a. Contain-
ments of the converse type I(a) ⊆ Ib are a lot more interesting. Together these form the basis
for comparison of the ordinary and symbolic ideal topologies, which has been pioneered by
Schenzel [Sch86] and later Swanson [Swa00]. This line of inquiry is nowadays known as the
containment problem:

Question 4.1 (Containment problem). Let R be a ring and let I be an ideal of R without
embedded primes. For which pairs a, b does the containment I(a) ⊆ Ib hold?

If for each value of b there is a pair a, b answering the above question, then the families
{I(n)}n and {In}n are cofinal, and induce equivalent topologies. In [Swa00], Swanson shows
that the equivalence of ordinary and symbolic ideal topologies is linear, that is, if {I(n)}n and
{In}n are cofinal then there is a constant c, possibly depending on I, such that I(cn) ⊆ In

for all n > 1. When the ambient ring is regular, this constant can be expressed explicitly,
in terms of the big height of I, the largest height of on associated prime of I. In fact, in
this case the constant c can even be taken uniformly, depending only on R, as shown by the
following important results [ELS01, HH02, MS18a].

Theorem 4.2 (Ein–Lazarsfeld–Smith, Hochster–Huneke, Ma–Schwede). Let R be a regular
ring and I an ideal in R. If h is the big height of I, then I(hn) ⊆ In for all n > 1. In
particular, if d = dim(R), then I((d−1)n) ⊆ In for n > 1.

If we remove the regular assumption, and ask that R be a complete normal local domain,
it is still an open problem in general to determine whether there exists a uniform constant
c, depending only on R, such that P (cn) ⊆ P n for all n > 1 and all primes P . When P is
a prime ideal in a complete normal local domain, the P -symbolic and P -adic topologies are
equivalent [Sch85]. More generally, if R is an excellent Noetherian domain, the P -symbolic
and P -adic topologies are equivalent for every prime P if and only if going down holds
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between R and its integral closure [HKV21]. Some of the recent progress on this problem
in [HKV09, HKV15, HK19, Wal16b, Wal16a, Wal17] is also described in some detail in
[DDSG+17].

More surprisingly, the containment problem is not settled even in the regular case. In
fact, the containments provided by Theorem 4.2 are not necessarily best possible. In fact,
examining the proof of the above theorem in [HH02] one sees that in the case of positive
characteristic, char(R) = p, it relies on containments of the form I(hq) ⊆ I [q], where q = pe for
e ∈ N and I [q] denotes the qth Frobenius power of I. The stronger containment I(hq−q+1) ⊆
I [q] follows in this context using localization and the pigeonhole principle as explained in
[HH02, p.351]. This yields the following improved containments:

Proposition 4.3. Let R be a regular ring, I an ideal of R, and h the big height of I. If
char(R) = p > 0, the containments I(hq−h+1) ⊆ Iq hold for q = pe and for each integer e > 1.

This leads to the question of whether similar improvements can be carried over to arbi-
trary characteristic and arbitrary exponents. Harbourne proposed this as a conjecture in
[BDRH+09, HH13] for homogeneous ideals, which we write here for radical ideals.

Conjecture 4.4 (Harbourne). Let I be a radical homogeneous ideal in a polynomial ring,
and let h be the big height of I. Then the containments I(hn−h+1) ⊆ In hold for all n > 1.

Remark 4.5. To compare Conjecture 4.4 to Theorem 4.2, it is instructive to note that
Theorem 4.2 implies that I(n) ⊆ I⌊

n
h
⌋ for n > 1, while Harbourne’s Conjecture 4.4 asks if

I(n) ⊆ I⌈
n
h
⌉ for all n > 1.

There are various cases where Conjecture 4.4 is known to hold: if I is a monomial ideal
[BDRH+09, Example 8.4.5] or more generally if I defines an F-pure ring [GH19], if I corre-
sponds to a general set of points in P2 [BH10a] or P3 [Dum15], and if I defines a matroid
configuration [GHMN17], that is, a union of codimension c intersections of hypersurfaces
such that any subset of at most c + 1 of the equations of these hypersurfaces forms a reg-
ular sequence. Moreover, versions of Conjecture 4.4 hold in some singular settings as well
[GMS19]. Despite that, asking that Conjecture 4.4 holds for any radical ideal in a regular
ring turns out to be too general.

Example 4.6 (Dumnicki–Szemberg–Tutaj-Gasińska [DSTG13], Harbourne–Seceleanu [HS15]).
Let n > 3 be an integer and let k be a field of with char(k) 6= 2 that contains n distinct
roots of unity. Let R = k[x, y, z], and consider the ideal

I = (x(yn − zn), y(zn − xn), z(xn − yn))

defining n2 + 3 points in P2
k, namely the 3 coordinates points together with the n2 points

defined by the complete intersection (xn − yn, yn − zn). For this ideal h = 2 but I(3) 6⊆ I2,
thus Conjecture 4.4 is not satisfied for n = 2.

Example 4.6 is particularly interesting because it shows that Conjecture 4.4 can fail even
for ideals with noetherian symbolic Rees algebra. Indeed, in [NS16] it is shown that the
symbolic Rees algebras of the ideals in Example 4.6 are finitely generated. On the other
hand, the family of space monomial curves in Example 2.4, which have (big) height 2, satisfy
I(4) ⊆ I3 by [Gri20, Example 4.7]. This is a stronger containment than the one proposed by
Conjecture 4.4, and yet these ideals have non-noetherian symbolic Rees algebras.

In [HS15], Harbourne and Seceleanu show that the containment I(hn−h+1) ⊆ In can fail
for arbitrarily high values of n that grow with the dimension of R, if R is a polynomial
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ring of characteristic p > 0. However, in characteristic 0 all the known counterexamples
to Conjecture 4.4 found to date [DSTG13, CGM+16, BDRH+18, MS18b, JLBM18, DS20]
are for the value n = 2. There are moreover no prime counterexamples to Harbourne’s
Conjecture 4.4. We emphasize this by asking:

Question 4.7 (Harbourne conjecture for primes). If P is a prime ideal in a regular ring
and ht(P ) = h, then do the containments P (hn−h+1) ⊆ P n hold for all n > 1?

For example, in characteristic other than 3, it is know that all space monomial curves
(ta, tb, tc) satisfy this containment for n = 2 [Gri20, Theorem 4.1], and also for n ≫ 0
[GHM20a, Corollary 4.3]. There are also no known counterexamples to the following asymp-
totic version of Harbourne’s conjecture formulated in [Gri20].

Conjecture 4.8 (Stable Harbourne conjecture). Let R be a regular ring and I a radical ideal
of R with big height h. Then there exists N > 0 such that the containment I(hn−h+1) ⊆ In

holds for all n > N .

This stable version of Harbourne’s Conjecture does hold for various classes of ideals in
equicharacteristic rings, including examples with non-noetherian symbolic Rees algebra. In
Subsection 4.3, we will discuss ideals with expected resurgence, and all of these satisfy the
Stable Harbourne Conjecture.

4.2. Noetherian symbolic Rees algebras and the containment problem. We now
consider the implications of having a noetherian symbolic Rees algebra on the Containment
Problem 4.1. The first easy implication is that I satisfies a version of Harbourne’s Conjecture
with the big height replaced by the generation type.

Lemma 4.9. Let R be a noetherian ring and I an ideal in R with gt(I) = d. Then for all
n > 1,

I(dn−d+1) ⊆ In.

In particular, I satisfies Harbourne’s Conjecture whenever gt(I) 6 bight(I).

Proof. Fix n > 1. By Lemma 3.1, it is enough to show that for all choices of a1, . . . , an > 0
such that a1 + 2a2 + 3a3 + · · ·+ dad = dn− d+ 1,

Ia1
(
I(2)

)a2 · · ·
(
I(d)

)ad ⊆ Idn−d+1.

To see this holds, note that
(
I(i)

)ai ⊆ Iai for each i, so that

Ia1
(
I(2)

)a2 · · ·
(
I(d)

)ad ⊆ Ia1+a2+···+ad .

For each such choice of a1, . . . , ad,

d (a1 + · · ·+ ad) > a1 + 2a2 + · · ·+ dad = dn− d+ 1,

so that

a1 + · · ·+ ad >
d(n− 1) + 1

d
.

Since a1 + · · ·+ ad is an integer, we conclude that

a1 + · · ·+ ad > (n− 1) + 1 = n. �

Moreover, if Rs(I) is noetherian, it suffices to check the containments for n 6 gt(I) in
Conjecture 4.4 to conclude Harbourne’s Conjecture holds for I:
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Lemma 4.10. Let R be a noetherian ring and I an ideal in R such that gt(I) = d. If h is
an integer such that

I(i) ⊆ I⌈ i
h⌉

for all i 6 d, then for all n > 1,

I(hn−h+1) ⊆ In.

Proof. Given n > 1,

I(hn−h+1) =
∑

a1+2a2+···+dad=hn−h+1

Ia1
(
I(2)

)a2 · · ·
(
I(d)

)ad
.

It is enough to show that for all a1, . . . , ad > 0 such that a1 + 2a2 + · · ·+ dad = hn− h+ 1,
the ideal

J := Ia1
(
I(2)

)a2 · · ·
(
I(d)

)ad

is contained in In. By assumption, I(i) ⊆ I⌈
i
h
⌉ for each i. Therefore, J ⊆ IN , where

N >

d∑

i=1

ai

⌈
i

h

⌉
>

d∑

i=1

iai
h

=
hn− h+ 1

h
.

Since N is an integer, we must have

N >

⌈
hn− h + 1

h

⌉
= n. �

For example, as a consequence of Lemma 4.10 and [Gri20, Theorem 4.4], Harbourne’s
Conjecture holds for space monomial curves of generation type up to 6.

In a similar vein, one may ask if the Stable Harbourne Conjecture holds when Rs(I) is
noetherian. Here is some evidence in that direction (cf. [Gri18, Theorem 5.28]).

Theorem 4.11. Let I be a radical ideal of big height h in a regular ring R containing a
field. If svd(I) divides h, then I(hn−h+1) ⊆ In for all n ≫ 0.

Proof. First, notice there is nothing to show in the case when h = 1, so we assume h > 2.
By Lemma 3.3, there exists an integer A > 1 such that for all n > 1,

I(hn−h+1) =
A∑

a=0

(
I(h)

)n−1−a
I(ha+1).

In prime characteristic p, consider e such that q := pe > A + 1. Whenever n > q, we have
hn− h+ 1 > hq − h+ 1 > hA+ 1, and thus

I(hn−h+1) =

A∑

a=0

(
I(h)

)n−1−a
I(ha+1) =

A∑

a=0

(
I(h)

)n−q (
I(h)

)q−1−a
I(ha+1) ⊆ I(h(n−q))I(hq−h+1).

Now as we have mentioned above, I(hq−h+1) ⊆ Iq and I(h(n−q)) ⊆ In−q by [HH02]; the latter is
true more generally, but the first statement requires specifically that we are in characteristic
p and q = pe. Combining these two containments with the line above, we conclude that

I(hn−h+1) ⊆ I(hq−h+1)I(h(n−q)) ⊆ IqIn−q = In.



SYMBOLIC REES ALGEBRAS 15

To prove the statement in equicharacteristic 0, we need [Hüb05, Theorem 1.2], which says
that there exists N > 0 such that

(
I(2)

)n ⊆ In+1 for all n > N . Fix such N , and let
n > N + A+ 1. Then

I(hn−h+1) =

A∑

a=0

(
I(h)

)n−1−a
I(ha+1) =

A∑

a=0

(
I(h)

)N (
I(h)

)n−1−N−a
I(ha+1).

By [ELS01, HH02], I(ha+1) ⊆ Ia. Moreover,
(
I(h)

)n−1−N−a ⊆ In−1−N−a since I(h) ⊆ I. By

choice of N ,
(
I(h)

)N ⊆
(
I(2)

)N ⊆ IN+1. Therefore,

I(hn−h+1) =

A∑

a=0

(
I(h)

)N (
I(h)

)n−1−N−a
I(ha+1) ⊆

A∑

a=0

IN+1In−1−N−aIa = In. �

So if the big height of an ideal I is divisible by its standard Veronese degree, then I satisfies
the stable Harbourne Conjecture 4.8. The ideals in Example 3.9, for example, do not have
this property although they satisfy Conjecture 4.8. Thus we ask:

Question 4.12. Which ideals satisfy the condition that bight(I) is divisible by svd(I)?

In prime characteristic, there are other cases where the noetherianity of Rs(I) implies the
Stable Harbourne Conjecture 4.8; for example, see [Gri18, Theorem 5.19 and Theorem 5.23].

4.3. Asymptotic invariants. One way to study symbolic powers and the containment
problem is through the development of asymptotic invariants. This is an idea pioneered by
Bocci and Harbourne in [BH10a, BH10b] with the definition of the resurgence of an ideal,
and extended in [GHVT13] with the definition of the asymptotic resurgence. We present
these invariants and their relationship to the symbolic Rees algebra below.

Definition 4.13. The resurgence of an ideal I and the asymptotic resurgence are given,
respectively, by

ρ(I) = sup
{a

b
| I(a) 6⊆ Ib

}
and ρ̂(I) = sup

{a

b
| I(at) 6⊆ Ibt for t ≫ 0

}
.

The importance of (asymptotic) resurgence to containment problems lies in the fact that,
by definition, if a, b are positive integers with a > ρ(I)b, then I(a) ⊆ Ib.

If I is an ideal of a regular ring and has big height h, Theorem 4.2 implies that 1 6 ρ(I) 6 h
and since the definitions yield ρ̂(I) 6 ρ(I) we deduce that 1 6 ρ̂(I) 6 h as well. If we have
equality of ordinary and symbolic powers I(n) = In for all n > 1, then ρ̂(I) = ρ(I) = 1.
However, the resurgence attaining its lowest possible value of 1 does not guarantee equality
of the ordinary and symbolic powers.

Example 4.14 (DiPasquale–Drabkin [DD20]). The ideal I = (abc, aef, cde, bdf) of the poly-
nomial ring R = k[a, b, c, d, e, f ] satisfies ρ(I) = 1 and I(n) = In + (abcdef)In−2 for n > 2.
In particular, the ordinary and symbolic powers do not coincide for any n > 2.

At the other end of the spectrum, whether the (asymptotic) resurgence attains its largest
possible value equal to the big height has implications on the stable Harbourne Conjecture 4.8.
First, it follows easily from the definition that Conjecture 4.8 holds for ideals with ρ(I) <
bight(I) (see [Gri20, Remark 2.7]); moreover, it is sufficient to show that ρ̂(I) < bight(I).
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Theorem 4.15 (Grifo–Huneke–Mukundan [GHM20a, Proposition 2.11]). Let I be a radical
ideal in either a regular local ring containing a field, or a quasi-homogeneous radical ideal
in a polynomial ring over a field. If ρ̂(I) < bight(I), then the containment I(hn−h+1) ⊆ In

holds for all n ≫ 0.

Ideals satisfying ρ(I) < bight(I) have been termed ideals with expected resurgence in
[GHM20a]. Classes of ideals with expected resurgence include: those defining general points
in Pn [BGHN20a, Theorem 4.2], locally complete intersection ideals I a polynomial ring that
are minimally generated by forms of degree lower than bight(I) [GHM20a, Theorem 3.1],
ideals I of a local or standard graded regular ring (R,m, k) which contains a field so that
R/I is Gorenstein, I(n) = In : m∞ and either k has positive characteristic or the symbolic
Rees algebra of I is noetherian [GHM20b].

Because of these considerations it becomes important to develop methods for determining
the (asymptotic) resurgence of an ideal. In order to do this, it is helpful to investigate
another asymptotic invariant.

Definition 4.16. Let I be an ideal of a graded ring and denote by α(I) the smallest degree
of a nonzero homogeneous from in I. The Waldschmidt constant of I is the value

α̂(I) = lim
n→∞

α(I(n))

n
= inf

n

α(I(n))

n
.

For homogeneous ideals of a polynomial ring, the following inequalities discovered by Bocci
and Harbourne often hold the key to computing resurgence.

Theorem 4.17 (Bocci–Harbourne [BH10a, Theorem 1.2.1]). Let I be a homogeneous ideal
of a polynomial ring. Then there is an inequality

α(I)

α̂(I)
6 ρ(I).

If, in addition, I defines a 0-dimensional subscheme, then

ρ(I) 6 reg(I)/α̂(I),

where reg(I) denotes the Castelnuovo-Mumford regularity of I.

However, resurgences and Waldschmidt constants remain elusive invariants. In the case
of ideals having Noetherian symbolic Rees algebras, however, one can get a better handle on
these invariants by expressing them in terms of finitely many symbolic power of ideals.

Theorem 4.18 (Drabkin–Guerrieri [DG20, Theorem 3.6], DiPasquale–Drabkin [DD20, Propo-
sition 2.2, Corollary 3.6]). Suppose I is an ideal of a polynomial ring which has noetherian
symbolic Rees algebra. Then the Waldschmidt constant, asymptotic resurgence, and the
resurgence of I are rational numbers and can be computed as follows

α̂(I) = min
n6gt(I)

α(I(n))

n
,

ρ̂(I) = max
16i6r,16j6gt(I)

{
jνi(I)

νi(I(j))

}
, and

ρ(I) =

{
max(a,b)∈finite set

{
a
b
| I(a) 6⊆ Ib

}
if ρ(I) 6= ρ̂(I)

ρ̂(I) otherwise,



SYMBOLIC REES ALGEBRAS 17

where ν1, . . . , νr denote the distinct Rees valuations
2 of I and the finite set in the last displayed

equation is given explicitly in [DD20, Proposition 2.2].

Remark 4.19. If I is an ideal of a polynomial ring which has noetherian symbolic Rees
algebra, then in fact the Waldschmidt constant is determined by a single symbolic power cor-
responding to the standard Veronese degree. Indeed, Definition 4.16 and Proposition 3.1(3)
yield α̂(I) = α(I(svd(I)))/ svd(I).

Ideals with irrational values of the Waldschmidt constant are expected to abound. Indeed,
Nagata’s conjecture [Nag59] would imply that the Waldschmidt constant of a radical ideal
I defining s general points in P2 is α̂(I) =

√
s, often producing an irrational value. How-

ever, no examples of ideals with confirmed irrational Waldschmidt constant, resurgence, or
asymptotic resurgence have been constructed yet. Thus we propose the following task.

Problem 4.20. Provide examples of ideals with irrational Waldschmidt constant, resurgence,
or asymptotic resurgence.

The lower bound α̂(I) > α(I)/(d − 1) holds for homogeneous ideals in a d dimensional
polynomial ring, and it follows easily from the containments in Theorem 4.2. The details can
be found in [HH13], but the lower bound itself — although phrased in a different language
— appears in work of Waldschmidt [Wal77] and Skoda [Sko77]. Improvements on this lower
bound have been proposed by Chudnovsky [Chu81] and Demailly [Dem82] in relation to the
difficult question of finding the least degree of a homogeneous polynomial vanishing at a given
set of points in projective space to a prescribed order. The validity of the bounds suggested by
Chudnovsky and Demailly follows if one can establish containments of the symbolic power
ideals deeper within the ordinary powers than provided by Theorem 4.2. We make these
containments precise in Question 4.21 below, while also abstracting the bounds suggested
by Chudnovsky and Demailly to the more general setting of homogeneous radical ideals in
Question 4.22.

Question 4.21. Let I be either a radical ideal of big height h in a regular local ring (R,m), or
a homogeneous radical ideal of big height h in a polynomial ring R with maximal homogeneous
ideal m. Do the following containments

(4.1) I(rh) ⊆ m
r(h−1)Ir

(4.2) I(r(h+m−1)) ⊆ m
r(h−1)

(
I(m)

)r

hold for all m, r > 1?

Note that (4.1) is the particular case of (4.2) with m = 1. These first appeared as a
question for ideals of points in [HH13, Question 4.2.3], and the more general version for
radical ideals of big height h appeared in [CEHH17, Conjecture 2.9]. Both containments are
satisfied for squarefree monomial ideals by [CEHH17, Corollary 4.3], where in fact a stronger
statement was shown [CEHH17, Theorem 4.2]. Similar containment for the defining ideal of
a general set of points in P2 were investigated in [BCH14].

The validity of the containments in equations (4.1) and (4.2) of Question 4.21 would imply
the bounds for Waldschmidt constants of homogeneous radical ideals given in (4.3) and (4.4)
respectively of the following question.

2For details on Rees valuations and their applications the reader is invited to consult [SH06, §10.1].
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Question 4.22 (Chudnovsky and Demailly type bounds on the Waldschmidt constant). Let
I be a homogeneous radical ideal of big height h in a polynomial ring R. Do the following
inequalities

(4.3)
α(I(n))

n
>

α(I) + h− 1

h
and thus α̂(I) >

α(I) + h− 1

h

(4.4)
α(I(n))

n
>

α(I(m)) + h− 1

m+ h− 1
and thus α̂(I) >

α(I(m)) + h− 1

h

hold for all n,m > 1?

An affirmative answer to Question 4.22 (4.1) has been given for ideals defining general
points in P2 in [HH13], for ideals defining general sets of projective points of sufficiently
large cardinality in [DTG17], for very general sets of points in arbitrary projective spaces in
[FMX18], and for ideals defining sufficiently many general sets of points in projective space
in [BGHN20a], where Question 4.21 (4.1) is shown to hold for r ≫ 0. Question 4.22 (4.4) is
answered in the affirmative for general points in P2 by Esnault and Viehweg [EV83] and for
very general sets of projective points of sufficiently large cardinality in arbitrary projective
spaces by work of Malara, Szemberg and Szpond [MSS18], extended by Chang and Jow
[CJ20]. Recently, an affirmative answer to Question 4.22 (4.4) has also been established for
sufficiently large general sets of points in arbitrary projective spaces by Bisui, Grifo, Hà and
Nguy˜̂en in [BGHN20b], where an affirmative answer to Question 4.21 (4.2) is also provided
in the same context for infinitely many values of r, although not for all r or even r ≫ 0.
Outside of the context of points, the answer to all of these questions is also affirmative for
generic determinantal ideals and the defining ideals of star configurations in any codimension
[BGHN20b].

However, both of the above questions remain open in the form stated here, and are open
even for ideals having noetherian symbolic Rees algebra.

Remark 4.23. Suppose that I has a finitely generated symbolic Rees algebra. Since the
limit in the definition of α̂(I) exists, we obtain

α̂(I) = lim
n→∞

α(I(svd(I)n))

svd(I)n
=

α(I(svd(I)))

svd(I)
.

Alternatively, since α̂(I) is also given as an infimum, one can compute α̂(I) by taking

α̂(I) = min

{
α(I),

α(I(2))

2
, . . . ,

α(Igt(I))

gt(I)

}
.

As a consequence, the containments (4.1) and (4.2) of Question 4.22 can be reduced to
checking only those instances with r 6 gt(I) or, alternatively, only the case r = svd(I).
Similarly, the inequalities (4.3) and (4.4) of Question 4.22 reduce to checking

α(I(n))

n
>

α(I) + h− 1

h
and

α(I(n))

n
>

α(I(m)) + h− 1

m+ h− 1
for 1 6 n 6 gt(I) and m > 1

or, equivalently,

α(I(svd(I)))

svd(I)
>

α(I) + h− 1

h
and

α(I(svd(I)))

svd(I)
>

α(I(m)) + h− 1

m+ h− 1
for m > 1.
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