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Holocene 1, 201–208.

Hamilton, T. D., Galloway, J. P., and Koster, E. A. (1987). Late
Wisconsinan eolian activity and related alluvium, central Kobuk
valley. United States Geological Survey Circular 1016, 39–43.

Hansen, E. C., Arbogast, A. F., Packman, S. C., and Hansen, B.
(2002). Port-Nipissing origin of a backdune complex along the
southeastern shore of Lake Michigan. Physical Geography 23,
233–244.

Kasse, C. (2002). Sandy aeolian deposits and environments and
their relation to climate during the Last Glacial Maximim and
Lateglacial in northwest and central Europe. Progress in
Physical Geography 26, 507–532.
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Introduction

Large dune fields, or sand seas, are landscapes often
thought to be found only in deserts beneath the great,
subtropical high-pressure zones, where subsiding air
suppresses rainfall. Dune fields are also quite com-
mon in mid-latitude regions, to the north and south
of subtropical deserts (Fig. 1). Two major character-
istics distinguish many mid-latitude dune fields from
the sand seas of lower latitudes. One difference is
that many of those in mid-latitudes are in semiarid,
rather than arid climates, and therefore are not
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presently active. In this article, ‘active’ refers to
eolian sand bodies that are not covered with vegeta-
tion, and where particles are currently being trans-
ported by the wind. Evidence of active sand transport
often takes the form of well-expressed sand ripples
on a dune’s surface. Where sand is vegetated and
particles are not being transported by the wind, a
sand body is ‘stable.’

A second characteristic of mid-latitude dune fields
is that many are situated near mountain ranges or at
least areas of relatively high relief. Glaciation in high
mountains reduces local bedrock to sand-sized parti-
cles, and additional reduction of rock to sand sizes
takes place through colluvial and fluvial processes
quickly in terrains of steep relief. Through these pro-
cesses, new sediment becomes available to feed grow-
ing dune fields much more rapidly than in areas of
low relief, which characterize lower-latitude regions.

Because of their occurrence in semiarid climates,
mid-latitude dune fields are particularly sensitive
indicators of shifts in the regional moisture balance.
Sand dunes move only where there is wind, sand-
sized sediment, and a lack of vegetation cover. A
shift to drier conditions may result in loss of vegeta-
tion cover and activation of sand by wind. A shift
back to wetter conditions may stabilize dunes
because of enhanced vegetation cover. The geologic
record of this alternation of dry and moist climates

tends to be preserved in many mid-latitude dune
fields as eolian sand–paleosol sequences. In areas
downslope of high sediment production, such as
mountains, fresh sediment may accumulate in a
dune field during periods of eolian activity, bury the
pre-existing landscape, and preserve former surface
soils as buried soils (or paleosols). In arid, low-
latitude environments of low relief, previously stabil-
ized eolian sand may be continually reworked
without addition of much new sand, and formerly
stable surfaces, which would be marked by paleosols
in semiarid climates, may not be preserved.

Throughout this article, we correlate eolian dune-
building events, where they can be dated or where the
age can be inferred, to the marine oxygen-isotope
stratigraphic framework of Martinson et al. (1987).
Where the abbreviation ‘MIS’ occurs, this refers to
‘marine isotope stage,’ using the numbering system
and approximate ages in Martinson et al. (1987).

Dune Fields in China

Introduction

Dune fields in China form an east–west trending belt
in the mid-latitude interior (latitude 35–50!N, long-
itude 75–125!E) (Fig. 2). The total desert area is
1,308,000 km2, or 13.6% of China’s land area
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(Zhu et al., 1980). These dune fields can be divided
into two parts by the north–south trending Helan
Mountains (Fig. 2). Dune fields, west of the Helan
Mountains, include the Taklimakan, Gurbantunggut,
Kumtag, Qaidam, Badain Jaran, Tengger, and Ulan
Buh deserts, which are situated in inland basins or
adjacent to high mountains. The formation of these
dune fields is a function of their inland geographic
location, far from moisture sources. Climate in these
deserts is controlled by the westerlies. Dune fields
east of the Helan Mountains, situated in the East
Asian monsoonal zone, are mainly stabilized and
semistabilized at present.

Dune Types in China

The Taklimakan Desert, which is surrounded by the
Tianshan and Kunlunshan mountains, is in the Tarim
Basin and dominated (85%) by active sand dunes
(Fig. 2). The climate is extremely arid, with a mean
annual precipitation of only 15–40 mm. Local resi-
dents call the Taklimakan Desert the ‘dead sand sea.’
Dune types are quite diverse in this desert (Fig. 3),

consisting mainly of complex dune chains and trans-
verse dunes. Dunes with heights exceeding 50 m
occupy 80% of the area in its interior.

The Gurbantunggut Desert is the second largest
dune field in China (48,800 km2), situated in the
Junggar Basin (Fig. 2). The mean annual precipita-
tion in the Gurbantunggut Desert is 70–150 mm,
which is the highest among the deserts in north-
western China. Stabilized and semistabilized sand
dunes occupy 97% of this desert, and linear (or
longitudinal) dunes are the dominant type (Fig. 4).
There are also erosional landforms in the north-
western part of the desert, called ‘yardangs’
(Fig. 5).

The Badain Jaran Desert is the third largest dune
field in China (44,300 km2). The climate is extre-
mely arid, with a mean annual precipitation of less
than 50 mm. There are two remarkable properties
of the landscape in this desert. First, the desert
consists mainly of complex sand hills, dune chains,
and pyramidal landforms called ‘star’ dunes, with
an average height of 200–300 m. Second, as many
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as 144 small lakes are found in the interdune low-
lands of the desert (Zhu et al., 1980). The source of
these lakes is melting water of the Qilian
Mountains, ,500 km to the southwest, which

reaches the desert through a subsurface fault system
(Chen et al., 2004). The Kumtag Desert also has
complex dune chains and star-shaped pyramidal
dunes. In this sand sea, heights of the dunes vary
between 100 and 200 m (Fig. 6).

The Tengger Desert is the fourth largest desert in
China (42,700 km2). Sand dunes occupy 71% of the
desert, and 93% of the dunes are active. The domin-
ant dune type is transverse dune, with heights usually
between 10 and 20 m.

The Qaidam Desert is located in the Qaidam Basin
(Fig. 2). Yardangs in its interior make up 67% of the
desert’s area (Fig. 7). Sand dunes are mainly distrib-
uted in the marginal areas, dominated by transverse
dunes.

Transverse dunes dominate other dune fields in
China, especially those east of the Helan
Mountains. Most dunes are stabilized or semistabi-
lized (Fig. 8), and vary in height between 5 and
15 m.

Figure 3 Sand sea of the Taklimakan Desert. About 80% of
this dune field is active at present and precipitation-to-potential-
evapotranspiration (P/PE) values are generally less than 0.2
(Wang et al., 2005).

Figure 4 Semistabilized linear dunes in the Gurbantunggut
Desert.

Figure 5 Deflation landforms (yardangs) in the northwestern
Gurbantunggut Desert.

Figure 6 Star-shaped pyramidal sand dunes in the Kumtag
Desert.

Figure 7 Deflation landforms (yardangs) in the interior of the
Qaidam Desert.
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Origin of Chinese Dune Fields

Origins of the dune fields in China can be divided
into two categories. Dune fields to the west of the
Helan Mountains are situated in the inland basins
near the Tianshan, Kunlunshan, and Qilianshan
mountains. The mean annual precipitation varies
from 20 to 150 mm. Geomorphic processes in the
adjacent mountains (especially glacial grinding)
have played an important role in producing the vast
amounts of sand-sized materials for the formation of
these dune fields. Elevations of the Tianshan,
Kunlunshan, and Qilianshan mountains range mostly
from ,3,000 m to ,5,500 m above sea level. The
high elevation gives rise to extremely cold climatic
conditions, thus favoring glacial grinding and frost
weathering. This leads to the physical weathering of
rocks in the surrounding regions, and thus the pro-
duction of clastic materials (Sun, 2002a, b). The high
relief and steep gradients of these mountains give rise
to high potential energy of melting water. Thus, the
clastic materials can be transported to the piedmont
areas, forming large alluvial fans. Examination of
multispectral Landsat thematic mapper (TM) ima-
gery indicates that a series of huge alluvial fans
have formed in the piedmont of the Qilian
Mountains (Fig. 9). The zonal distributions of the
gobi (stony desert), dune fields, and loess bodies are
the result of wind sorting of the piedmont fluvial
materials (Sun, 2002a).

Deserts to the east of the Helan Mountains are
situated in the high plains of northeastern China.
Because this region lies in the East Asian monsoonal
zone, the mean annual precipitation ranges from 200
to 450 mm. Most of the dunes are stabilized and
semistabilized. However, due to poor land-use prac-
tices in historic time, active sand dunes also occur in
these deserts, largely due to reworking of last glacial

age (MIS 2) sand dunes (Sun, 2000). The provenance
of the sediments in these dunes is dominantly from
fluvial sediments of several large rivers.

Age of Desert Dunes

One approach for studying long-term dune field his-
tory is to examine the chronology of loess deposition,
as there are few age estimates of the oldest dunes in
China. In the northern piedmont of the Kunlun
Mountains, dust derived from the Taklimakan
Desert accumulates as loess sediment. Because the
Taklimakan Desert lies within the rainshadow of
the Tibetan Plateau, which began rising in the late
Cenozoic (Gansser, 1964; Molnar and Tapponnier,
1975; Harrison et al., 1992), it is possible that dunes
have existed in this basin since the latest Cenozoic.

Recent studies of eolian silt on the Chinese Loess
Plateau indicate that the source areas are the gobi
(stony) desert in southern Mongolia and the adjoining
gobi and sandy deserts (including the Badain Jaran
Desert, Tengger Desert, Ulan Buh Desert, Hobq
Desert, and Mu Us Desert) in China (Fig. 10). These
gobi and sand deserts only serve as ‘holding areas’ of
dust and silt, rather than the original source of loess
particles. Mountain processes (especially glacial grind-
ing) in the high elevations of Asia have played an
important role in producing the vast amounts of
loess-sized material for forming the Loess Plateau
(Sun, 2002a). Because the basal age of the loess in the
Loess Plateau is 2.58 Ma (Liu, 1985; Liu and Ding,
1993), and the loess materials are transported by the
near-surface winds from the deserts listed above, these
basins have been arid environments for at least
2.58 Ma.

Figure 8 Stabilized or semistabilized sand dunes are the
dominant dune types in the deserts, distributed to the east of
the Helan Mountains. Figure 9 Landsat thematic mapper (TM) image of alluvial fans

in the piedmont of the Qilian Mounatins, China. Sediments in
these large alluvial fans are important sources of the dune sand
and loess in China.
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Relations of Desert Dunes to Loess Deposits

Because Chinese loess is derived from the deserts,
desert expansions and contractions, in response to
Quaternary glacial–interglacial cycles, may be
recorded by eolian deposits at the margins of deserts.
Among the 12 deserts in China, only the Mu Us
Desert is geographically proximal to the Chinese
Loess Plateau. Eolian deposits on the southern mar-
gin of the Mu Us Desert are ideal for studying the
response of the desert to climatic changes of the
Quaternary.

The eolian deposits in the southern marginal Mu
Us Desert are characterized by alternations of eolian
sand, loess, and paleosols, making it a potential
region for recording the ecosystem changes during
the Quaternary. Eolian sand accumulated when the
Mu Us Desert expanded southeasterly to the Loess
Plateau during glacial maxima (Sun et al., 1999).

Paleosols developed under warm and humid con-
ditions of interglacial periods, as a response to the
enhanced summer East Asian monsoon winds. The
existence of the paleosols in the desert marginal
regions indicates that the dunes in the Mu Us Desert
were stabilized by vegetation during interglacial
maxima.

The loess beds imply intermediate climate condi-
tions, between full glacial and full interglacial cli-
mates. The nearly unweathered character of these
loess layers suggests that they were deposited under
the dominant winter monsoon winds but with greatly
reduced wind energy than what is necessary for sand
transportation.

The most representative section of these complex
eolian deposits is located at Shimao, in the southern
marginal Mu Us Desert (Sun et al. (1999); see Fig. 10
for location). The eolian sequences of this section
consist of 40 eolian stratigraphic units, of which 13
are sands, 13 are loess, and 14 are paleosols. Based
on paleomagnetic polarity studies and a comparison
with the composite marine oxygen isotope records
(Shackleton and Pisias, 1985; Shackleton et al.,
1990), the basal age of this section is about 0.63 Ma
(Fig. 11). The eolian deposits at Shimao and their
correlation with the marine records yield two impor-
tant implications.

First, during the past 0.63 Ma, there have been at
least 13 times of desert expansion in the Mu Us
Desert, and the desert expansion occurred not only
during glacial maxima, but also during the cold sub-
stages of interglacial periods, such as those of MIS 7,
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13, and 15. Intercalated eolian sand in the intergla-
cial paleosols S2 and S5 support this conclusion
(Fig. 11).

A second major implication is that the stratigraphy
of the section at Shimao shows that except for the
Holocene paleosol (S0), all the other paleosols (S1,
S2, S3, S4, and S5) are pedocomplexes, with eolian
sand or loess beds intercalated within the soil com-
plexes. The sand or loess intercalations indicate that
the warm climate during each interglacial time was
interrupted by cold–dry episodes.

Desert Distributions during the Holocene
Optimum and the Last Glacial Maximum in
China

Recent studies indicate that dust from Asia domin-
ates the entire Pacific Ocean north of the inter-
tropical convergence zone (Merrill et al., 1989;
Duce et al., 1991). China is considered as one of
the two dominant source regions for atmospheric
mineral aerosols originating from Asia (Rea, 1994).
The waxing and waning of the summer monsoon

during the Quaternary must have had a great effect
on the expansion and contraction of the deserts in
northeastern China, which in turn modulated the
flux of dust from Asia to the Pacific Ocean.

Former extent of deserts during the Last Glacial
Maximum Variation in global ice volume may
have played a key role in modulating and pacing the
strength of the East Asian monsoon (Ding et al.,
1994). During the Last Glacial Maximum (LGM),
the enlarged high-latitude ice sheets of the Northern
Hemisphere greatly strengthened the Siberian High,
giving rise to an enhanced cold–dry northwest winter
monsoon. Under winter monsoonal winds, strong
eolian erosion, transportation, and dune building
characterized the arid and semiarid regions of north-
ern China.

Since the 1980s, 44 profiles with LGM dune sands
and overlying Holocene sandy loam soils have been
found in northeastern China, in the monsoonal cli-
matic zone. Thus, during the LGM, active sand dunes
occurred not only in the arid inland areas of western
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China, but also in the semiarid to subhumid areas,
east of the Helan Mountains. The existence of the
buried LGM sands implies that the southern limit of
the LGM desert extended south to nearly latitude
36!N, and east to longitude 125!E (Sun et al.
(1998); Fig. 12A).

Former extent of deserts during the Holocene
optimum During the mid-Holocene climatic opti-
mum, from ,9 ka to ,3 ka, the East Asian summer
monsoon was strong. Sandy loam soils on stabilized
dunes are widely distributed in desert regions,

especially east of the Helan Mountains. Radiocarbon
ages and optically stimulated luminescence (OSL) dat-
ing indicate that these loamy soils developed mainly
between 3.0 and 9.0 ka BP, coincident with the
Holocene optimum (Zhou et al., 2001; Li et al.,
2002). Pollen analysis of these soils indicates that the
vegetation was dominated by steppe taxa, implying
that sand dunes in northeastern China were stabilized
during the Holocene optimum (Sun et al., 1998).

In contrast to the deserts in northeastern China,
the distinctive Holocene sandy loam soil has not been
found in the Taklimakan, Qaidam, and Badain Jaran

Kunlun Mts.

.

Badain Jaran

Kunlun Mts.

70° 80°

40°

30°

20°

40°

30°

20°

90° 100° 110° 120° 130°

70° 80° 90° 100° 110° 120° 130°

Last Glacial Maximum

Studied dune sectionsSand desertGobi Mountains

Holocene Optimum

500 km

500 km

Qaidam

Helan Mts. 

Taklimakan

(A)

(B)

Helan Mts

Figure 12 Desert distributions in China during the Last Glacial Maximum (A) and the Holocene Optimum (B), the filled black dots
indicating the sites where Holocene loam soils and the underlying sand dunes of the LGM are found (Sun et al., 1998).
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deserts. Its absence implies that during the Holocene
optimum, the much-enhanced summer monsoon did
not penetrate into the interior of the western desert
regions, and thus active dune fields existed then (and
still exist today). Compared with the desert of the
LGM, the extent of desert in the Holocene was
greatly reduced, with the eastern limit of desert
retreating from longitude 125!E (LGM time, MIS 2)
to about 105!E, a distance of well over 1,600 km
(Fig. 12B).

Dune Fields in Central Asia and South
America

Central Asia

To the west of China, dune fields occupy large areas
of Central Asia, in the desert basins of Kazakhastan,
Uzbekistan, and Turkmenistan. The largest dune
fields are situated mostly southeast of the Caspian
Sea, Aral Sea, and Lake Balkhash (Fig. 13). Wilson
(1973) estimates these dune fields to encompass

Figure 13 Upper: map showing the distribution of eolian sand and loess in Central Asia (redrawn from data in Lioubimtseva (2002) and
sources therein for sand; from Dodonov (1991) for loess). Lower: Landsat TM image (path 159, row 029; band 1, visible blue; image
taken 5 August 1987) of longitudinal dunes southeast of the Aral Sea, Kazakhstan and Uzbekistan.
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,380,000 km2 (Karakum sand sea, southeast of the
Caspian Sea), ,276,000 km2 (Kyzylkum sand sea,
southeast of the Aral Sea), and ,38,000 km2

(Myunkum sand sea, southeast of Lake Balkhash).
The region is semiarid to arid, and precipitation
ranges from ,100 to 400 mm yr–1 (Goudie, 2002;
Lioubimtseva, 2002).

The main dune forms in the region are longitudinal
(linear) dunes, which are easily visible on Landsat
imagery (Fig. 13). Goudie (2002) reports that the
linear dunes are as much as 30 m high and are sepa-
rated by interdune areas floored with clay-rich sedi-
ments. Wilson (1973) indicates that most or all of
these dunes are active at present. At the broadest
scale, orientations of the dunes (Fig. 13) agree fairly
closely with modern, dominant wind directions
(Letollé and Mainguet, 1993), but in detail, there
are some differences, as pointed out by
Lioubimtseva (2002). Southeast of the areas of linear
dunes, barchans are the dominant landforms, and
many of these are also active at present (Goudie,
2002; Lioubimtseva, 2002).

High mountain ranges in Afghanistan, Tajikistan,
and China are drained by rivers that flow westward
to the basins occupied by the Caspian and Aral Seas.
The Volga River, the largest river in Europe, carried
sediment from the Fennoscandian ice sheet that cov-
ered northern Europe during the LGM (MIS 2).
Thus, abundant sediment is delivered to the desert
basins of Central Asia at present and it is likely that
even more sediment was transported there during
glacial periods of the Pleistocene. Because sources of
specific dune fields in the region are little studied, it is
not known which rivers are most important as dune
sand sources.

The paleoclimatic significance of dunes in Central
Asia is difficult to assess, as there has been little study
of dune stratigraphy, and numerical ages are lacking.
However, as with China, some comparisons can be
made with chronologies developed for loess deposits
that are downwind of the dune fields. Loess deposits
are extensive in the southern margins of the desert
regions in Central Asia (Fig. 13). Dodonov (1991)
suggests that this loess is derived from a combination
of glaciogenic sources in the neighboring mountains
and dust sources in the desert basins. Long-distance
transport from desert basin sources is supported by
the relatively fine grain size of loess particles in sec-
tions exposed in Tadjikistan (Frechen and Dodonov,
1998). Luminescence dating indicates that there was
considerable loess deposition during both the early
(MIS 4) and later (MIS 2) parts of the last glacial
period (Frechen and Dodonov, 1998). These data
suggest that winds were strong and desert basin
source areas were relatively dry and minimally

vegetated during the last glacial period.
Nevertheless, during the early part of the last glacial
period (MIS 4), the Caspian Sea was connected to
the Aral Sea, whereas during the last interglacial
period (MIS 5), it was of lesser extent than during
the Holocene (Chepalyga, 1984). If the level of the
Caspian Sea is at least a partial indicator of
the overall moisture balance of the arid basins of
the region, these observations suggest that the dune
fields may be active primarily during interglacial,
rather than glacial periods.

South America

There is a large area of stabilized dunes in the mid-
latitudes of South America, primarily in the Pampas
region of Argentina. The precipitation gradient in
this region is steep, with present mean annual pre-
cipitation ranging from less than 500 mm (southwest)
to more than 1,000 mm (northeast). In parts
of Argentina (particularly in La Pampa and Buenos
Aires provinces), there are longitudinal (linear) dunes
over 100 km long and 2–5 km wide (Fig. 14). Iriondo
(1999) refers to this large dune field as the Pampean
Sand Sea. The largest dunes in this sand sea are
arranged as extensive southwest-to-northeast arch-
like forms and are presently stabilized by vegetation.
Although the longitudinal dune forms are easily
recognizable on Landsat TM imagery (Fig. 14), the
low relief of these features makes them difficult to
identify in the field (Martinez et al., 2001). A large
field of parabolic dunes, most of them also stabilized
and oriented in a southwest-to-northeast direction, is
situated south of the longitudinal dunes (Fig. 14).
The parabolic dunes may have developed from
reworking of pre-existing sands.

Zárate and Blasi (1993) present a model for eolian
deposition in Argentina that explains the origin of
both dunes and loess. They report sedimentological
and mineralogical data that lead them to infer that
the main dune sand sources, as well as loess sources,
are the Colorado and Negro River floodplains, which
are situated to the southwest of the Pampean Sand
Sea. The Colorado and Negro rivers drain the Andes,
and thus volcaniclastic sediments from these moun-
tains are the ultimate source of much or all of the
sediment in the sand sea and loess bodies. Zárate and
Blasi (1993) point out that the fluvial regime supply-
ing the particles was dependant, to a large degree, on
the extent of glacial cover in the Andes. The
Colorado and Negro rivers are presently underfit
and have a meandering pattern. In the last glacial
period, they apparently had a broad, braided pattern,
and during seasonal melting periods, both rivers
carried large volumes of meltwater and sediment.
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During periods of low flow, sediment availability
was large, and provided the source of both sand to
build dunes and silt for loess.

There are few data on the ages of eolian sand in
Argentina. Iriondo (1999) considers the longitudinal
dunes that occur in northwestern Buenos Aires
province and surrounding areas to be of late
Pleistocene (early last glacial, or MIS 4) age.
Thermoluminescence (TL) ages reported by Kröhling
(1999) indicate that the earliest part of the Pampean
Sand Sea may have formed during the early part of the
last glacial period (MIS 4), with reworking of this sand
occurring between ,52 and ,36 cal kyr BP. Kröhling
(1999) also recognizes an eolian sand facies in a loess-
dominated unit called the Tezanos Pinto Formation.
Bracketing TL ages of ,32 and ,9 cal kyr BP are
reported for the loess facies of the Tezanos Pinto
Formation. If these ages are correct, they imply a
major period of eolian sand movement during the
latter part of the last glacial period (MIS 2). The
inference of eolian sand movement occurring during
major glacial periods (MIS 4 and 2) is consistent with
the sediment origin model of Zárate and Blasi (1993).
However, eolian sand movement may also have
occurred during the Holocene. For example, Iriondo

(1999) considers the parabolic dunes that are found to
the southeast of the longitudinal dunes (Fig. 14) to be
of late Holocene age. Several workers (Zárate and
Blasi, 1993; Iriondo, 1999; Kröhling, 1999) use loess
and dune formation to infer a relatively dry period for
the Pampas region in the late Holocene, although not
as dry as during the last glacial period.

Dune Fields in North America

Introduction

Dunes occupy a considerable portion of the mid-
latitude regions of North America, particularly in
the Great Plains region of the central United States
and the Colorado Plateau region of the southwestern
United States (Fig. 15). The dune fields of the Great
Plains have been intensively studied since the 1980s
and much is now known about their geographic
extent, geomorphic expression, source sediments,
chronology, and paleoclimatic significance. The
dunes of the Colorado Plateau have been studied
less extensively, but work in progress (e.g., Redsteer
and Block (2004)) promises important new informa-
tion about these smaller sand seas.

Figure 14 Left: map showing the distribution of eolian sand and loess in southern South America (taken from Zárate (2003), and
sources therein). Right: Landsat TM image (path 227, row 085; band 1, visible blue; image taken 17 February 1988) of linear and
parabolic dunes in Buenos Aires province, Argentina.
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Dune Forms in Mid-Latitude Regions
of North America

There is a wide range of dune forms in the Great
Plains region of North America. The greatest vari-
ety of dune forms is found in the Nebraska Sand
Hills. In this large (,50,000 km2) dune field, barch-
anoid ridges, many 10–20 km long, are present over
extensive areas (Fig. 16). Most of these barchanoid
ridges have smaller, superimposed parabolic dunes,
indicating multiple episodes of eolian deposition. In
other areas of the Nebraska Sand Hills, barchans
are the main dune form (Fig. 16), but again super-
imposed parabolic dunes indicate that the barchan
forms were generated during earlier phases of dune
formation. Linear (longitudinal) dunes are present
over extensive areas of the Nebraska Sand Hills,
many of which appear to be superimposed on
older dune forms (Fig. 16). The Nebraska Sand
Hills subregion is semiarid and mean annual pre-
cipitation ranges from about 400 mm in the western
part to about 600 mm in the eastern part. With the
exception of small blowouts on dune crests, all of
these dunes are presently stabilized by vegetation
(Fig. 17).

Dune fields farther south, in Colorado, Kansas,
New Mexico, and Texas, are numerous, but are
much smaller than the Nebraska Sand Hills. In east-
ern Colorado, for example, the total area occupied by
dunes is ,25,000 km2 (Madole et al., 2005). As with
Nebraska, the region is semiarid and mean annual
precipitation ranges from about 300 mm (west) to

about 770 mm (east). The most common landforms
in these dune fields are stabilized parabolic dunes,
often separated by stabilized eolian sand sheets
(Fig. 18). In many places, compound dunes are com-
mon, with small parabolic dunes superimposed on
larger, older parabolic dunes.

Still farther south, however, in the Chihuahuan
Desert of southern New Mexico, western Texas,
and northern Mexico, active barchanoid ridges,
barchans, and parabolic dunes are found (Fig. 18).
Mean annual precipitation in this region is lower
than on the Great Plains, and ranges from about 220
to 320 mm. Farther west, on the Colorado Plateau,
many different dune forms exist in close proximity to
one another. For example, in the Moenkopi Plateau of
northeastern Arizona, barchan, linear, and parabolic
dunes can all be found within a relatively small area
(Fig. 19). Mean annual precipitation on this high pla-
teau region is lower still, and ranges from about 150
to 300 mm. As a result, while some dunes are stable,
many are active. In places, for example, stabilized
eolian sand sheets separate active linear dunes
(Fig. 19).

Dune Origins in North America

In the past, it was commonly assumed that dunes in
most parts of central North America, particularly the
Great Plains, were derived from local sandstone bed-
rock, notably the Tertiary Ogallala Formation. This
formation occurs over much of the region, crops out
close to the land surface, and is rich in clean sand.
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It is likely that many early investigators were struck
by the close geographic match between the distribu-
tion of dune fields and the Ogallala Formation and
inferred a genetic link. Nevertheless, much or all of
the Ogallala Formation is anchored by a thick, well-
cemented calcrete caprock and is not easily eroded.

Later investigators questioned the importance of
bedrock as a source sediment for Great Plains
dunes. Mineralogical and geochemical studies sug-
gest that in much of the Central High Plains of
Colorado and Kansas, dune sediments are derived
from major rivers that head in the Rocky
Mountains and flow eastward onto the Great
Plains. In the Central High Plains, these fluvial
sources include the South Platte River, which supplies
sediment to dune fields in northeastern Colorado and
southwestern Nebraska (not the Nebraska Sand
Hills, however), and the Arkansas River, which sup-
plies sediment to dunes in southeastern Colorado and
western Kansas (Muhs et al., 1996; Arbogast, 1996).

In the Southern High Plains of Texas and New
Mexico, dune fields appear to be derived mainly
from an older Pleistocene eolian sheet sand called
the Blackwater Draw Formation (Muhs and
Holliday, 2001), which is, in turn, probably derived
from the Pecos River.

One of the greatest unanswered questions about
dune fields in North America is the origin of the
Nebraska Sand Hills, the largest dune field on the
continent. No major rivers are situated upwind (to
the northwest) of this dune field. The best available
evidence, based on isotopic studies, is that it has
multiple sources, most of which are sand-rich
Tertiary rocks that underlie, or occur upwind of the
dune field (Aleinikoff et al., 1994). Whatever their
ultimate sources, dunes of the Nebraska Sand Hills
are more mineralogically mature (i.e., quartz rich and
depleted in feldspars) than any of their possible
source sediments (Muhs et al., 1997; Muhs, 2004).
One explanation for this maturity is that most

Barchanoid ridges with
superimposed parabolic
dunes,  Grant County,
Nebraska, USA
(~42° N 102° W)

Linear dunes, Thomas
and Logan Counties,
Nebraska, USA
(~41°45′ N 100°25′ W)

Barchan dunes with
superimposed parabolic
dunes, Arthur County,
Nebraska, USA
(~41°25′ N 102°50′ W)

10 km

10 km

10 km

N

Figure 16 Dune landforms in the Nebraska Sand Hills, USA. All aerial photographs are from the U.S. Geological Survey National High
Altitude Aerial Photography (NHAP) program. Frames: Grant County (HAP 182-77, 25 October 1984); Thomas and Logan Counties
(HAP 152-52, 31 October 1981); Arthur County (HAP 242-184, 26 September 1985).
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feldspars have been reduced to silt-sized sediments
through ballistic impacts, an idea that has support
in both theory and laboratory evidence (Dutta et al.,
1993). If this explanation is correct, it suggests that
the Nebraska Sand Hills dune field has a long history
of repeated dune activity, with little input from fresh
sand sources.

Dune Ages in North America

For decades, many investigators assumed, with no
numerical age control, that dunes in the Great

Plains of the United States were last active during
full glacial time (MIS 2). More recent studies confirm
that the last glacial period was indeed a time of eolian
sand activity over much of the region (Swinehart and
Diffendal, 1990; Loope et al., 1995; Muhs et al.,
1996; Goble et al., 2004; Madole et al., 2005).
However, many studies also show that much eolian
sand in the Great Plains region is of late Holocene
age. In the Great Plains, the areal extent of late
Holocene eolian sand is much greater than that of
last glacial sand. For example, dunes of the Nebraska
Sand Hills cover ,50,000 km2, yet all have only

Andrews dune field, western Texas, USA
P = ~350 mm yr 

–1; P/PE = 0.36

Western Nebraska Sand Hills, USA
P = ~490 mm yr 

–1; P/PE = 0.76

Figure 17 Contrasting degrees of dune activity in the Great Plains of the USA as a function of moisture balance (P/PE) in the western
Nebraska Sand Hills (upper) and Andrews dune field, Texas (lower). Photographs by D. R. Muhs.
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simple A/AC/C soil profiles (Entisols) that develop in
a few hundred or few thousand years. This observa-
tion, along with late Holocene radiocarbon and opti-
cally stimulated luminescence (OSL) ages at
numerous localities, suggests that most or all of the
Nebraska Sand Hills region has been active at some
time in the late Holocene. However, all parts of the
dune field were not necessarily active simultaneously.

Late Holocene eolian sand deposition has now
been well documented in Nebraska, Colorado,
Kansas, Texas, and New Mexico (Swinehart and
Diffendal, 1990; Arbogast, 1996; Muhs et al., 1997;
Holliday, 2001; Goble et al., 2004; Forman et al.,
2005; Madole et al., 2005). Most of these studies
have stratigraphic data indicating multiple periods
of eolian activity in the late Holocene (Fig. 20). The
small number of radiocarbon and OSL ages and their
large analytical uncertainties preclude testing
hypotheses of regionally synchronous activity.
However, these observations show that eolian sand

in this region has been active under modern climatic
regimes. Explorers in the nineteenth century observed
active dune sand in many parts of the Great Plains
where it is now stable (Muhs and Holliday, 1995).

Paleoclimatic Significance of Dunes
in North America

One of the most important paleoclimatic inferences
made from stabilized, mid-latitude dune fields is that
periods of dune activity indicate drier-than-present
climate. Many factors influence the degree of dune
activity, including wind strength, sediment availabil-
ity, and degree of surface disturbance by animals or
human activity. Nevertheless, several studies show
that in many regions, including southern Africa
(Lancaster, 1988; Thomas et al., 2005), China
(Wang et al., 2005), and North America (Muhs and
Holliday, 1995; Wolfe, 1997), the degree of dune
activity is influenced to a great extent by the amount

Northeastern Colorado, USA
(P = 380 mm/yr; P/PE = 0.59):

White Sands National Monument,
southern New Mexico, USA

(P = 170 mm/yr; P/PE = 0.19):
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Figure 18 Dune forms in the Central High Plains of Colorado (upper) and northernmost Chihuahuan Desert of New Mexico (lower).
Upper photograph is false-colored IR aerial photograph (USGS NHAP 61-107, 22 June 1985); lower photograph is natural-color aerial
photograph (USGS NAPP 9524-114, 6 October 1996).
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of plant cover, which in turn is influenced signifi-
cantly by moisture balance. Moisture balance can
conveniently be calculated, at least to a first approx-
imation, by the ratio of precipitation (P) to potential
evapotranspiration (PE). Values less than 1.0 indicate
a net moisture deficit and are typical of regions with
semiarid, arid, or hyperarid climates. In areas where
P/PE is greater than about 0.35–0.40, dunes are sta-
bilized by vegetation. When P/PE is less than about
0.35–0.40, dunes are at least partially active, and as
this ratio diminishes, dune activity increases
(Fig. 17). In desert regions of the southwestern
United States and northwestern Mexico, P/PE is less
than about 0.25. Thus, dunes in the Chihuahuan
Desert, Algodones, and Gran Desierto dune fields
(Fig. 15) are quite active (Fig. 18). In the
Taklimakan Desert of China, eolian sand is active
over most of the dune field (Fig. 3) and P/PE values
for stations in and around this sand sea are less than
0.2 (Wang et al., 2005). With these observations in

mind, it can be inferred that in areas now character-
ized by stable dunes, past periods, represented by
eolian sand, were more arid than present. In contrast,
periods represented by paleosols were times that may
have had a moisture balance similar to the present.

One of the remarkable observations of many
North American Great Plains dune field records is
the presence of multiple paleosols, all dating to the
Holocene, intercalated within eolian sand (Fig. 20).
The evidence for multiple periods of dune activity
and stability in the past few thousand years indicates
that Great Plains eolian sand is quite sensitive to
small changes in the overall moisture balance and
degree of vegetation cover. As in the Mu Us Desert
in China, the Great Plains region of North America is
highly sensitive to fluctuations in the strength of a
monsoonal moisture source. In central North
America, the main monsoonal flow of moist air is
from the Gulf of Mexico in summer. When this flow
is diminished, summer precipitation is lower and

Dunes on the Moenkopi Plateau, northeastern
Arizona, USA (~35°42′ N, : 110°55′ W)

Moenkopi Plateau, ~35°47′ N; 111°04′ W:   

Near Tolani Lakes, Arizona, USA,
 ~35°30′ N; 110°55′ W:   

(A)

(B) (C)

Figure 19 Dune forms on the Colorado Plateau, USA. Upper: aerial photograph showing dune types (USGS NAPP 5240-178,
22 September 1992). Lower: active linear dunes separated by stable eolian sand sheets (left) and active barchan dunes (right). Lower
photographs by D.R. Muhs.
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vegetation cover is reduced. Dry periods in the Great
Plains are characterized not only by decreased sum-
mer monsoonal flow from the Gulf of Mexico, but
also by an increase in zonal, or westerly flow of
Pacific air (typically a winter pattern). Pacific air is
usually dry by the time it reaches the Great Plains.
Moisture in Pacific air masses is lost on north–south
trending mountain ranges between the Pacific Ocean
and the Great Plains (Fig. 15). Reactivation of stabi-
lized dune sand or mobilization of new sand by wind
is enhanced under conditions of reduced vegetation
cover during periods of decreased monsoonal flow
and increased zonal flow.

Another important application of dunes to paleo-
climate studies in mid-latitude North America is
wind direction inferred from dune orientation.
Most of the late Holocene dunes in the mid-
continent of North America are parabolic forms,
which are excellent paleowind indicators.
Parabolic dunes have arms that point upwind, with
noses that face downwind, as seen when they are
active in areas such as White Sands, New Mexico
(Fig. 18). On the Great Plains of North America,
orientations of many late Holocene dunes indicate
northwesterly winds in Nebraska, and northern and
central Colorado (Fig. 18), similar to modern, sand-
moving wind regimes of fall, winter, and spring
(Fig. 21). Such orientations are consistent with the
scenario of increased zonal or westerly flow dis-
cussed above. Late Holocene dunes in southeastern
Colorado and Kansas have orientations
that indicate southwesterly paleowinds, again
similar to present. However, in eastern New
Mexico and western Texas, dunes have orientations

that indicate northwesterly winds, whereas modern
dune-forming winds are dominantly from the south-
west. One explanation is that during the periods of
late Holocene dune formation, there was less of an
influence from southwestern (Gulf of California),
monsoonal airflow, and a greater influence from
zonal (westerly) circulation.

Summary

Large dune fields, or sand seas, are widespread in
the interiors of continental mid-latitudes. Most of
them are found in China, Central Asia, Argentina,
and the United States. Mid-latitude dune fields in
the United States are generally smaller than those of
low latitudes, but those in China, Central Asia, and
Argentina are quite large. Where climates are arid,
such as in western China and Central Asia, active
dunes dominate these sand seas. Other dune fields,
in the semiarid climates of eastern China, Argentina,
and the United States, have mostly stabilized dunes.
Mid-latitude dune fields are often near mountains,
which supply much of the sediment to the sand seas
on a regular basis, particularly during glacial peri-
ods. Many different kinds of eolian landforms are
found in mid-latitude sand seas, including transverse
dunes, longitudinal (linear) dunes, star dunes, para-
bolic dunes, and eolian sand sheets. Where dune
fields of mid-latitudes occur in semiarid climates,
they are particularly sensitive indicators of shifts in
climate. In China, records of dune field expansion
and contraction extend back hundreds of thousands
of years.
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See also: Dune Fields: High Latitudes; Low Latitudes.
Eolian Records, Deep-Sea Sediments; Loess
Deposits, Origins and Properties. Loess Records:
Central Asia; China; North America; South America.
Luminescence Dating: Optically-Stimulated
Luminescence. Paleosols and Wind-Blown Sediments:
Nature of Paleosols.
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Muhs, D. R., and Zárate, M. (2001). Late Quaternary eolian
records of the Americas and their paleoclimatic significance.
In Interhemispheric Climate Linkages (V. Markgraf, Ed.), pp.
183–216. Academic Press, San Diego.

Muhs, D. R., Stafford, T. W., Cowherd, S. D., et al. (1996). Origin
of the late Quaternary dune fields of northeastern Colorado.
Geomorphology 17, 129–149.

Muhs, D. R., Stafford, T. W., Jr, Swinehart, J. B., et al. (1997).
Late Holocene eolian activity in the mineralogically mature
Nebraska Sand Hills. Quaternary Research 48, 162–176.

Muhs, D. R., Reynolds, R., Been, J., and Skipp, G. (2003). Eolian
sand transport pathways in the southwestern United States:
Importance of the Colorado River and local sources.
Quaternary International 104, 3–18.

Rea, D. K. (1994). The paleoclimatic record provided by eolian
deposition in the deep sea: The geological history of wind.
Reviews of Geophysics 32, 159–195.

Redsteer, M., and Block, D. (2004). Drought conditions accelerate
destabilization of sand dunes on the Navajo Nation, southern
Colorado Plateau. Geological Society of America Abstracts
with Programs 36(5), 171.

Shackleton, N. J., and Pisias, N. G. (1985). Atmospheric carbon
dioxide, orbital forcing, and climate. Geophysical Monograph
Series 32, 412–417.

Shackleton, N. J., Berger, A., and Peltier, W. R. (1990). An alter-
native astronomical calibration of the Lower Pleistocene time-
scale based on ODP Site 677. Transactions of the Royal Society
of Edinburgh: Earth Science 81, 251–261.

Sun, J. M. (2000). Origin of eolian sand mobilization during the
past 2300 years in the Mu Us Desert, China. Quaternary
Research 53, 73–88.

Sun, J. M. (2002a). Provenance of loess material and formation of
loess deposits on the Chinese Loess Plateau. Earth and
Planetary Science Letters 203, 845–859.

Sun, J. M. (2002b). Source regions and formation of the loess
sediments on the high mountain regions of northwestern
China. Quaternary Research 58, 341–351.

Sun, J. M., Ding, Z. L., and Liu, T. S. (1998). Desert distribution
during the glacial maximum and climatic optimum: Example of
China. Episodes 21, 28–31.

Sun, J. M., Ding, Z. L., Rokosh, D., and Rutter, N. (1999).
580,000 year environmental reconstruction from eolian depos-
its at the Mu Us Desert margin, China. Quaternary Science
Reviews 18, 1351–1364.

Swinehart, J. B., and Diffendal, R. F., Jr, (1990). Geology of the
pre-dune strata. In Resource Atlas No. 5a: An Atlas of the Sand
Hills (A. Bleed and C. Flowerday, Eds.), pp. 29–42. University
of Nebraska, Lincoln.

Thomas, D. S. G., and Shaw, P. A. (1991). The Kalahari
Environment. Cambridge University Press, Cambridge.

Thomas, D. S. G., Knight, M., and Wiggs, G. F. S. (2005).
Remobilization of southern African desert dune systems by
twenty-first century global warming. Nature 435, 1218–1221.

Thorp, J., and Smith, H. T. U. (1952). Pleistocene eolian deposits
of the United States, Alaska, and parts of Canada. National
Research Council Committee for the Study of Eolian Deposits,
Geological Society of America, scale 1: 2,500,000.

DUNE FIELDS/Mid-Latitudes 625



Wang, X., Dong, Z., Yan, P., Zhang, J., and Qian, G. (2005).
Wind energy environments and dunefield activity in the
Chinese deserts. Geomorphology 65, 33–48.

Wilson, I. G. (1973). Ergs. Sedimentary Geology 10, 77–106.
Wolfe, S. A. (1997). Impact of increased aridity on sand

dune activity in the Canadian Prairies. Journal of Arid
Environments 36, 421–432.
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Low-latitude sand seas (also called ergs) are extensive
areas of sand dunes located in the tropical and sub-
tropical deserts of the world (Fig. 1), where they
occupy as much as one-third of the area classified as

arid. Major low-latitude sand seas occur in the Sahara
and Arabian deserts, the Thar Desert of India, the
interior of Australia, and in southern Africa (Namib
and Kalahari deserts). Large sand seas are absent in
the Americas, where areas of dunes cover less than 1%
of the area classified as arid. Important studies and
surveys of low-latitude sand seas include those by
Wilson (1973) and McKee (1979). Lancaster (1999)
provided a review of modern paradigms of sand sea
geomorphology. Important summaries of chronologic
data include Munyikwa (2005) for Southern
Hemisphere sand seas, Glennie and Singhvi (2002)
for Arabia, and Swezey (2001) for the Sahara.

Sand seas contain large volumes of sand (tens to
hundreds of cubic kilometers) and have accumulated
episodically during the Quaternary. Their construc-
tion has therefore been determined by climatic,
tectonic, and sea-level changes that have affected
sand supply, availability, and mobility, as well as
the preservation of deposits and landforms from
prior episodes of eolian construction. As significant
sedimentary deposits in low-latitude desert regions,
sand seas also provide an archive of the effects of
climate change on these areas.

Sand seas and dune fields typically form part of
well-defined regional- and local-scale sediment trans-
port systems in which sand is moved by wind from
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Figure 1 Distribution of major low-latitude sand seas, showing areas of active, partly active, and vegetation-stabilized dunes. For
names and details of sand seas, see regional maps.
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