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Abstract

Maintainability is crucial to the long-term success of software projects. Among other factors, it is affected

by the programming language in which the software is written. Programming language designers should be

conscious of how their design decisions can influence software maintainability. Non-functional properties of

a language can affect the readability of source code in ways beyond the control of programmers. Language

features can cause or prevent certain classes of bugs, and runtime issues especially can require significant

maintenance effort. Tools external to the language, especially those developed and distributed by language

implementers, can aid in the creation of maintainable software. Languages designed with these aspects in

mind will ease the burden placed on software maintainers by facilitating the development of robust, high-

quality software.
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1 Introduction

Maintenance is one of the main activities of the software engineering process. It involves making incremental

changes to software to fix issues, change or add functionality, and keep dependencies updated. Fulfilling

these duties tends to involve reading code more than writing code. To complicate matters, the maintainers

of a software system are not necessarily the same developers who originally implemented it.

Maintainability refers to how easy it is maintain a given software system. Various high-level and low-level

factors contribute towards or detract from maintainability. For example, The Zen of Go highlights clarity,

readability, and simplicity as positive aspects of maintainability [1]. Software with poor maintainability

becomes harder to change as it grows in scale. Retroactively improving maintainability requires rework,

which is likely to require more developer time overall than if the software were originally developed with

maintainability in mind. However, not all systems are created with maintainability as a priority, and thus it

is worth considering other ways to promote software maintainability.

Although maintainability ultimately comes down to the software system itself, all code is influenced

by the language in which it was written. Programming language design can therefore have an effect on

maintainability. Non-functional properties of the language, such as its syntax, can significantly affect the

readability and understandability of code written in the language. Features of the language, such as its

type system, can cause or prevent certain classes of bugs. Finally, the tools that comprise the language’s

development ecosystem can make it easier to develop stable, consistent, well-documented software.

2 Non-functional aspects

2.1 Simplicity

Simple code is easier to maintain than complex code. At a high level, a simple architecture makes it clear to

the maintainer how changes to one component may affect another. At a low level, simple functions, classes,

and modules are easier to understand, debug, and modify. Especially at this lower level, the complexity of

the underlying programming language can influence the complexity of the code.

A complex language makes it easier for a programmer to write code that is hard to understand. Languages

that provide more features allow programmers to use more of these features in their code. For example, the

relative simplicity of C limits the kind of code that can be written with it, but at the same time reduces the

likelihood that a reader will be unfamiliar with a particular feature used therein. On the other hand, C++ is

more complex than C, so when a programmer uses a certain feature, it is less likely to be understood by any

given reader. Maintainers that are not familiar with a particular feature often need to spend time learning
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about it before they can properly understand and maintain it. The use of additional features can simplify

or improve code, but the cost of learning these features still remains. Therefore, before implementing a new

feature, designers should consider the value it adds relative to its complexity.

Languages that have more complex syntax invite programmers to use this syntax to create complex

expressions that are harder for maintainers to parse and debug. For example, the ternary operator found

in many languages allows programmers to abbreviate simple expressions, such as conditional assignments,

instead of writing a full conditional statement. However, programmers can also combine and nest ternary

expressions to create complex statements that would be much more understandable if they were written as

normal conditionals.

When deciding whether or not to include a new feature in a language, consider if a simpler solution

already exists. For example, C includes pre-increment (++x) and post-increment (x++) operators, in addition

to the simpler addition assignment operator (x += 1). These increment operators can be used to shorten

certain statements, but they introduce complexities with regard to evaluation order. Other languages like

Python and Rust intentionally omit pre-increment and post-increment operators to reduce complexity and

ambiguity [2].

It is worth noting that it one can almost always write simple code in a complex language by neglecting

to use complex features and syntactic elements. This can require intention on behalf of the programmer,

though, especially if they are experienced with these complex aspects. On the other hand, complex code can

still emerge in a simple language when simple features are combined in convoluted ways. However, keeping

the language simple reduces the complexity contributed by the language, allowing maintainers to focus on

the complexity of the code itself. Zig, a programming language which strives for simplicity, suggests that

a simple language lets you “focus on debugging your application rather than debugging your programming

language knowledge” [3].

2.2 Readability

Readable code is easier to maintain for reasons similar to why simple code is easier to maintain. The less

time it takes the maintainer to read and understand the code, the less time it takes them to start doing

actual maintenance.

One way languages can facilitate readability is by using readable keywords. For example, conditionals in

POSIX-compliant shell scripts are opened with the if and then keywords, and closed by the fi keyword. fi

was chosen as the closing keyword because it is if spelled backwards, but a new developer might not imme-

diately realize or understand this reasoning. Furthermore, this logic is not applied consistently throughout
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the language. For instance, while loops are closed by the done keyword.

Similarly, built-in functions and standard library functions should be readable. The C standard libraries

are full of abbreviated function names, such as malloc, snprintf, and fgets, for historical reasons. These

abbreviations become more familiar to programmers as they spend more time with the language, but each

abbreviation that a maintainer needs to look up requires a context switch that can derail their train of

thought.

Another way languages can promote readability is by replacing symbols with text where appropri-

ate. For example, the C-style boolean operators &&, ||, and ! can be replaced by their corresponding

English names and, or, and not. This allows many boolean expressions to be read like natural lan-

guage sentences, without increasing verbosity. Similarly, Python replaces the C-style ternary operator

condition ? trueValue : falseValue with trueValue if condition else falseValue, changing the

order of the operands to improve readability. Keywords tend to be longer than symbols, so when choosing

to introduce a new symbol or keyword, weigh readability versus verbosity. Consider how much longer the

keyword is, how often the symbol or keyword will be used, and how much more readable the keyword is than

the symbol. Also keep in mind that ubiquitous symbols are usually just as readable as keywords. These

include arithmetic operators, as well as symbols like semicolons, curly braces, and square brackets, when

used in the same way as C.

As in the case of simplicity, the readability of a language is not directly proportional to the readability

of code written with it. However, a readable syntax makes it easier for programmers to write readable code,

and harder for them to write unreadable code.

2.3 Familiarity

An easy way for a language to achieve readability is to borrow common syntactic elements from well-known

and influential languages. For example, numerous languages, such as Java, JavaScript, and Dart, borrow

much of their basic syntax from C. Code written in a language with familiar syntax is likely to be at least

as readable as code written in a language with a unique but inherently readable syntax. Supporting familiar

design paradigms, such as imperative, functional, or object-oriented, lets programmers and maintainers apply

their intuition from other languages.

When designing a language, one should consider which languages will be familiar to its users. For

instance, a systems programming language with a Ruby-like syntax is unlikely to feel familiar to developers

of embedded systems, who are probably more accustomed to C-like languages.
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2.4 Explicitness

When reading a statement or expression, its behavior should be unambiguous. This is not only important to

developers and maintainers, who benefit from a clearer understanding of the code, but it is also important

when writing a parser for the language. Implicit casting is an example where a lack of explicitness can cause

unintended results. For instance, operations on integers and floating point numbers involving implicit casts

can result in an unexpected loss of precision.

Furthermore, understanding a statement’s behavior should require a minimum of context. Searching for

necessary context can take time, especially if that context could be in another file, and especially if it’s

not obvious that any external context exists in the first place. For this reason, hidden control flow harms

readability [4]. For example, a method in a Python class can be declared as a “property”, allowing it to be

called as if one were accessing a member variable. This could lead a developer to think they are, in fact,

just accessing a member variable. They might then access it multiple times, not realizing they are calling a

method each time, which could reduce performance. Confusing bugs could occur if the process of computing

the property generated side effects.

Operator overloading is another source of hidden control flow. A programmer or maintainer may see a

common operator, such as plus or minus, and expect it to work as it normally does for primitives. However, if

a custom type overloaded the operator, it could be calling a method instead. C++ notably supports operator

overloading, which is dangerous considering its use in low-level programming and embedded systems, where

an unintended method call can affect performance and memory more than usual.

2.5 Non-redundancy

In general, a programming language should provide one and only one way of accomplishing a given basic

task. This sentiment is echoed in the design philosophies of multiple programming languages. The Zen of

Python states, “there should be one — and preferably only one — obvious way to do it” [5]. Similarly, one

principle in The Zen of Zig is “only one obvious way to do things” [6].

If a programming language provides many ways of accomplishing the same task, it may be slightly easier to

learn the language, but it will be more difficult to read code written in it. Languages that heed the Principle

of Least Astonishment, such as Ruby, can be particularly prone to this. If two programmers use differing

approaches, this can be distracting when one programmer reads code written by the other. Furthermore,

inconsistencies will arise across the code base, which can similarly distract or confuse maintainers.
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2.6 Standardized style

Differences in coding styles can reduce readability and serve as a distraction to readers. Even if an organiza-

tion implements a style guide for all of its software projects, a developer coming from another organization

may be accustomed to a different style, which could slow their onboarding. Similarly, if developers in this

organization need to interact with third-party code, they may face the same difficulties. One solution to

this problem, from the standpoint of a language designer, is to suggest a standard style to be used by every

program written in the language. For example, in PEP 8, the designers of Python suggest a common style

guide for Python code [7]. If such a style becomes widely adopted, this smooths the transition between

reading code written different people, even across code bases and organizations.

3 Language features

3.1 Type system

It could be argued that the enforcement of a type system is essential to any practical, high-level language.

From a perspective of maintainability, a type system helps prevent confusing errors and makes code more

readable. A type system can be categorized using three axes: strong or weak, static or dynamic, and explicit

or implicit. A type system tending toward the strong, static, and explicit sides of these axes tends to provide

the greatest benefits to maintainability.

The strength of a type system is not necessarily a formally defined concept, but one way of interpreting

it is as a measure of type safety. A weaker type system may allow type errors to occur, or silently attempt

to resolve them during runtime, rather than preventing them outright. Weaker typing tends to allow more

confusing behaviors and can result in strange bugs. In the case of C, programmers can bypass the type

system with type coercion and type punning. Although this is sometimes necessary for low-level development,

such behavior should be considered unsafe and it should be difficult to do unintentionally. In the case of

JavaScript, programmers can inadvertently mix data types, resulting in implicit casts, which can in turn

cause bugs that are hard to track down. Type issues like these were significant enough in JavaScript to

motivate the development of TypeScript. By adding syntax for types, TypeScript aims to “help developers

feel more confident in their code, and save considerable amounts time in validating that they have not

accidentally broken the project” [8].

Static type checking catches type errors at compile-time rather than allowing them to make it to runtime

undetected. This reduces the number of bugs that can arise at runtime, reducing the amount of maintenance

the software will need. Runtime errors can be caught by unit tests, but extensive code coverage may be
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needed for a reasonable degree of confidence. This preference for detecting errors at compile-time rather than

runtime is broadly applicable. The Zen of Zig states generally that “compile errors are better than runtime

crashes” [6]. Nonetheless, pure static type systems lack some of the major advantages of dynamic type

systems, especially runtime type information, which enables features like dynamic dispatch and downcasting.

Thus, a hybrid type system that performs static analysis but exposes type information at runtime offers a

good compromise.

Explicit typing makes code more verbose but also more readable. For instance, under an implicit type

system, if a maintainer wanted to know the type of a function return value, they would need to inspect the

function’s return statements, which could potentially involve calls to other functions. Furthermore, with

dynamic, implicit typing, it is possible that different return statements in the same function could return

different types. With an explicit type system, the function would need to declare what type or types it can

return, removing the need for such a search and making the programmer’s intentions clearer. Specifying

types takes time when writing code, but the author of the code is more likely to know what types they are

working with than a reader would.

3.2 Memory safety

In languages with manual memory management, improper memory manipulation is the cause of many strange

errors. Segmentation faults, buffer overflows, write-after-free errors, and double-free errors are frequently

difficult to debug. Perhaps worse still are cases where a valid memory address in the program’s address space

is unintentionally written to, not crashing the program but causing entirely unexpected behavior. Errors

like these may go undetected for a long time and require a significant amount of maintainers’ time to fix.

Memory safety mechanisms come in multiple forms and can significantly reduce the likelihood that mem-

ory errors will occur or go undetected. The most dramatic solution is to use automatic memory management,

which makes it practically impossible for programmers to cause memory-related errors in the first place. How-

ever, garbage collection introduces additional overhead, which generally occurs in spikes when the garbage

collector runs. These performance dips are unacceptable for certain systems, like real-time operating systems

and video games. Multi-threaded garbage collectors, such as Java’s Z garbage collector, can alleviate this

problem by doing most of their work concurrently.

However, manual memory management is essential in some use cases, such as kernels and embedded

systems. It is still possible to ensure memory safety in a language with manual memory management.

Rust does this by implementing a borrow checker, which can detect memory errors at compile time. Rust’s

borrow checker relies on the Resource Acquisition Is Initialization paradigm, and Rust’s models of ownership,
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lifetimes, and borrowing [9]. This allows Rust to enforce memory safety at compile time with little to no

impact on runtime performance. It comes at the cost of extra restrictions on how memory can be accessed

and modified, since, as a static analysis, it underapproximates the space of valid programs. This model of

memory management is also less familiar to developers and maintainers, although the time saved debugging

memory errors may counteract the additional time spent understanding the model.

If a borrow checker cannot be implemented in a language for any reason, there are still ways for the

language to promote memory safety. Hare is one such programming language with manual memory man-

agement that lacks a borrow checker. However, it includes safety features such as bounds-checked arrays,

mandatory initializers, mandatory error handling, and exhaustive matching [10]. Features like these can

improve safety in all kinds of languages.

Even languages with automatic memory management often include the concept of null to signify the

lack of a value. Thus, null dereference errors are still common among them. Some languages, such as Dart,

attempt to combat this by implementing sound null safety [11]. This makes variables non-nullable by default,

and enforces this property with static code analysis. This solution also works for pointers in languages with

manual memory management. In Hare, nullable pointers must be checked before they can be dereferenced

[10].

3.3 Exception handling

Exceptional cases are inevitable in software, and handling them is vital to software quality. If exceptions are

not handled, they can crash a program, or in some cases, they can be silently ignored and allow undefined

behavior to arise. For example, when calling some library functions in C, programs must check the function’s

return value for an error status code, or check errno to see if an error occurred. However, it is usually possible

for a program to ignore the possibility of an error and continue running. This may cause unexpected results

that may not manifest until later in the program’s execution, to the detriment of traceability.

Out of these two options, programming languages should prefer to cause a program to crash when an

exceptional situation occurs, ensuring that the programmer is aware of the issue. As The Zen of Zig says,

“runtime crashes are better than bugs” [6]. It should be possible to ignore an error, but doing so should be

an intentional decision rather than an accidental omission. According to The Zen of Python, “errors should

not be silent, unless explicitly silenced” [5].

Many languages provide ways of defining exceptional control flow. One common approach in object-

based languages, including Java and Python, is to treat exceptions as objects. Exceptions are thrown or

raised and propagate back through the call stack until caught or until the main function is exited and the
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program crashes. The exceptions that can be thrown from a given function may be explicitly specified, such

as in Java with the throws keyword, or not, such as in Python. With explicit exception specification, it is

possible to statically determine which exceptions may be uncaught in a given scope. This is preferable from

a maintainability perspective, because it reduces the likelihood that maintainers will need to write code to

handle exceptional cases that are not detected until after deployment.

Rust offers a different approach to error handling that distinguishes between recoverable and unrecover-

able errors [9]. Recoverable errors can be handled by the program, whereas unrecoverable errors terminate

the program. This distinction is useful, because it prevents unrecoverable errors from being suppressed while

providing additional ways of handling recoverable errors. A recoverable error is represented using a Result

object, which stores either the expected result of an operation, or an error type. Rust provides various

ways to handle Results, including panicking via unwrap or expect, propagating the error, using closures,

or handling each possibility as a separate case with pattern matching. Hare uses tagged unions for error

handling, which serve a similar role of storing either an expected result or one of a specified list of errors

[12]. When handling errors with pattern matching, the Hare compiler requires every possible error type to

be addressed, preventing exceptions from unintentionally being left unhandled. Incorporating errors into the

type system, like Rust and Hare do, makes it possible to see which errors can occur in a function simply by

reading its signature, similar to explicitly specified exceptions.

3.4 Object-oriented principles

Object-oriented programming (OOP) is a programming language paradigm that emphasizes the grouping

of related data and behavior into objects, which have defined, compound types called classes. OOP is a

familiar pattern to many developers, and many design patterns are expressed in an object-oriented manner.

While OOP itself has been criticized for increasing code complexity, it provides a few major improvements

to code quality by means of encapsulation and abstraction. Regardless of whether a language fully embraces

the OOP philosophy, implementing these aspects can help to improve the maintainability of its programs.

Encapsulation allows developers to restrict the interfaces of their objects, so that only relevant data

and behaviors are accessible to external entities. This allows internal implementation details to be hidden,

making it easier to see which changes to a class are likely to affect other classes, and which can be more

safely modified. Information hiding is a related practice by which implementation-specific data is made

private. Access to public data can also be restricted and controlled via the use of accessor functions. All of

these features and practices reduce the amount of effort required to refactor an object, which is useful when

stability is important, as in the case of maintaining software.
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Abstraction similarly helps decouple objects from one another by letting them depend on abstractions

rather than concretions. This makes it possible to easily substitute a different concrete object with a

compatible interface without rewriting any code. This relates to the concept of polymorphism, in which

any class derived from a specified dependency may be used in its place, with no apparent change from the

caller’s perspective. This makes it possible to change the concrete implementation of a dependency without

rewriting the dependent code, which reduces the effort required to refactor such code.

3.5 Namespaces

Namespaces are a way of reducing identifier collisions by restricting the scope of identifiers. These kinds

of collisions can otherwise occur quite easily in large software systems with many dependencies. Adding

support for namespaces at the language level makes it possible to segregate identifiers into separate, named

groups. The #include preprocessor directive in C is an example of an import system without namespaces.

Most other languages support namespaced imports, including C++, Java, and Python.

It is possible to work around the collision issue by manually adding prefixes to identifier names in place

of a namespace. However, this is not a foolproof solution, since collisions can also occur in included library

code. Furthermore, prefixing identifiers increases the verbosity of the code.

Another problem that arises when importing external code without using namespaces is that it can be

hard to find where an identifier is defined. This can be a challenge at the language level, since a code module

cannot be properly parsed without processing all of its imports. This is especially a problem when the

language supports macros, as is the case in C. It is also an inconvenience at the editor level, since it can be

hard to find where an identifier comes from without intelligent tools.

Languages with namespaces often allow certain members of a namespace to be imported directly, removing

the need to use their fully qualified names, and thereby reducing verbosity. For example, this can be done in

Java with an import static statement, and in Python with a statement of the form from module import

identifier. Importing members of a namespace this way can cause collisions, but if it does, the programmer

always has the option to fall back on the fully qualified name.

These kinds of imports are best done by explicitly listing the members of the namespace to import.

Nonetheless, some languages, such as Python, allow for wildcard imports, which import every member of a

namespace. This eliminates most of the benefits of namespaces; collisions become possible and annoying to

fix, and if multiple wildcard imports are used, then it once again becomes difficult to find where an imported

identifier is defined.

Namespaces improve maintainability by making it easier for maintainers to add new internal and external
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dependencies without worrying about name collisions. They also eliminate the excessive verbosity that results

from prefixing identifiers, making the code more concise and more readable. As The Zen of Python says,

“namespaces are one honking great idea – let’s do more of those!”

4 Ecosystem

4.1 Code analysis

Code analysis refers to a variety of techniques that extract properties from source code. In the context of

software maintainability, one of the most useful applications of code analysis is to detect potential errors.

Detecting potential errors during development allows them to be avoided or fixed prior to deployment, rather

than being patched afterwards. Analysis can also be useful during maintenance, where it can detect potential

regressions unintentionally introduced by other fixes or changes.

Code analysis comes in two main forms: static analysis and dynamic analysis. Static analysis involves

analyzing code without running it, whereas dynamic analysis involves analyzing code by running it. Almost

every language implementation does some basic static analysis in the form of lexical analysis (lexing) and

syntactic analysis (parsing), and often other analyses such as type checking. Compiled languages generally

need to do more static analysis so that they can generate valid code in an intermediate language. Interpreted

languages may be able to delay analyzing parts of the code until the interpreter actually needs to execute

them.

Being able to detect errors at compile time is preferable to detecting them at runtime, so all languages

should consider including additional static analysis beyond what is strictly necessary. Third-party static

analysis tools to detect potential bugs are often known as linters, but issues detected by official static

analyses can simply be communicated through compiler warnings.

The most obvious form of dynamic analysis is testing, such as unit testing, integration testing, and system

testing. A language can assist with testing in various ways, such as by providing a unit testing framework,

support for mocking, and ways of measuring code coverage. A debugger is also a form of dynamic analysis,

and one which can prove instrumental to maintenance. As with other tools, debuggers can be written by

third parties, but language implementers can put their knowledge of the implementation to use by creating

and providing an official debugger.

Languages can also provide methods for developers to formally verify their code. At the simplest, these

can include compile time and runtime assertions. Slightly more advanced techniques include invariants,

function contracts, and bounded verification. Implementers can even consider building an engine to formally
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prove assertions and properties in given code. Such techniques can theoretically verify a program’s functional

correctness with a high level of confidence. However, if programmers and maintainers are required to work

through the formal verification process, this may result in longer development and maintenance times,

rendering such formal methods excessive for non-safety-critical projects. Thus, they should remain optional

if included in a general-purpose language.

4.2 Package management

It is rare for useful software to be built entirely from scratch, with no external dependencies. It is often

preferable to reuse quality solutions to existing problems when they are suitable and available. However,

external dependencies come with their own challenges, one of which is versioning. Because dependencies are

typically developed independently by different teams, it often happens that dependencies change in ways

that break their dependents. Furthermore, a single developer or maintainer may need to work on multiple

projects, each of which may require different versions of the same dependency, or even different versions of

the language. While this can be handled by containerization software, containers may require additional

overhead, and they may interfere with other development tools and processes. For these reasons, language

implementers should consider including a language-native solution for managing, versioning, and sandboxing

installed packages.

A package manager needs a repository of packages to draw from. To encourage package developers to

contribute their software to this repository, it should be easy for them to publish and update packages.

Package repositories for popular languages can grow quite large — for instance, the repository for npm,

the Node.js package manager, holds over 2 million packages [13]. Reviewing every package would require

a large amount of effort, so it can be tempting to allow any user to freely publish and update packages.

However, this is dangerous, because maintainers of commonly used packages can update them to include

malicious code. Furthermore, users can upload malicious packages with similar names to popular packages,

which programmers could unintentionally install by making a typo. By allowing such exploits to enter the

repository, the repository maintainers shift the burden of security from themselves to the maintainers of

dependent software.

This is a case where cost and convenience are at odds with security. Nonetheless, repository maintainers

should strongly consider implementing security measures to prevent such exploits. To address the problems

described above, for example, updates to packages with a certain number of dependents could require manual

review. Similarly, newly submitted packages with names similar to popular packages could require manual

review before being admitted to the repository.
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Inspiration could also be taken from the repositories of various Linux distributions. Many distributions,

like Debian, have stable repositories, which have been curated and tested, and an unstable repository, where

active development occurs [14]. Security updates make their way to the stable repositories, but other changes

remain in the unstable repository until the next stable release. Another model to consider can be found in

the repositories of the Arch Linux distribution [15]. This model effectively consists of a curated repository

and a user repository, both of which are always kept up to date. The curated repository includes popular

and important packages, maintained and reviewed by the Arch Linux maintainers. The user repository

is a centralized place for user-submitted packages, which come with no security guarantees. If applied to

a programming language package repository, these models could give maintainers more confidence in the

security of their packages.

4.3 Documentation generation

Documentation is one of the best ways to explain how software works. High-level written documentation

and inline comments are both useful in achieving this objective. One way programming languages can help

assist with regards to documentation is via documentation generation. Documentation generation generally

works by parsing comments and signatures at the module, class, function, and field level, and compiling

them into a readable document. This allows maintainers, among others, to easily reference the API of a

software module when making changes, fixing bugs, or just coming to an understanding of its functionality.

To improve the quality of the documentation, documentation generators often specify a particular format

for comments to be included in the generated output. This format can also include additional markup

syntax that is ignored by the language’s parser but parsed by the documentation generator. For instance,

JavaDoc and Doxygen are documentation generators that provide syntax for documenting individual function

parameters and return values, among other properties [16, 17]. This allows for richer output and improves

the usability of the generated documentation.

HTML is a popular and useful format for generated documentation. Hyperlinks make it easier to navigate

a hierarchy of classes compared to a static text document, and allow writers of the documentation to

provide links to indirectly related components of the software. Furthermore, HTML can be easily deployed

on a website for maintainers and API users to reference without needing to compile the documentation

themselves. JavaDoc and Doxygen both support HTML output. JavaDoc also allows HTML tags to be used

in its documentation comments, which can increase the readability of the generated documentation at the

cost of the readability of the documentation comments themselves.

It is possible to leave it up to third parties to create documentation generators and design a syntax
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for documentation comments. However, this risks the emergence of multiple competing standards and

inconsistencies between them. Therefore, creating official specifications and a reference implementation is

preferable.

4.4 Standard library

Providing a good standard library can help improve code quality. From a maintenance perspective, there

are many factors that contribute to the quality of a standard library. A good standard library should be

robust, stable, and backwards-compatible. It should be well-documented and easy to learn. It should be

broad enough to encompass at least the main use cases of the language, and ideally more, as long as it can

remain well-supported. A standard library also provides an opportunity to exemplify and demonstrate the

idioms of the language to developers.

Introducing a third-party library into a software project involves various risks. It may have security

vulnerabilities, incompatibilities with other dependencies, or incompatibilities with newer versions of the

language. Smaller libraries especially may contain bugs due to a lack of testing, may lack documentation,

and may be less likely to receive updates. Due to these concerns, introducing third-party dependencies is

likely to increase the amount of maintenance work required relative to a standard library.

Another advantage of a standard library is its ubiquity. Almost all software is likely to use it to some

extent, which builds familiarity among developers. If software uses a standard library instead of a third-party

library, maintainers will not need to learn a new library to maintain it. If maintainers need to troubleshoot

or debug code that relies on the standard library, they are likely to be able to find documentation due to

this ubiquity. This includes not only official documentation, but unofficial documentation such as tutorials,

examples, and answered questions.

Not every feature should be included in the standard library, though. The larger the standard library,

the more maintenance it will require from language implementers. Furthermore, the size of the standard

library can affect the size of the runtime environment or compiled program executables. Therefore, language

implementers should consider which features are worth implementing in the standard library, considering

their size and maintenance cost. Particularly common and important features can be considered for inclusion

as built-in features of the language.

4.5 Automatic formatting

As discussed, suggesting a standardized coding style is useful, as it reduces the number of distracting style

inconsistencies in code, making it more readable and therefore more maintainable. However, not every
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developer and organization will go out of their way to follow a standard style, especially if they are already

following a different style. Furthermore, even with a style guide in place, it is possible for style inconsistencies

to slip through the review process. Going back to fix these style inconsistencies is not an efficient use

of developer time, and doing so can lead to unnecessary commits and merge conflicts. Automatic code

formatting tools address these problems by making it easy to use, adopt, and consistently enforce a standard

style.

After the initial setup, a code formatter requires no additional effort on behalf of the programmer to use.

A formatter can also be run on a code base that wishes to adopt a standard style, although this still has the

downside of polluting the history of each affected file in the version control system. In both cases, a good

code formatter solves the issue of style inconsistencies making their way into the code due to its systematic,

algorithmic nature. Always committing with a consistent style is likely to result in smaller diffs in the long

term.

Code formatters work well when run upon saving changes to a file, as this allows programmers to im-

mediately see their code formatted in the proper style. It can also tip them off to potential syntax errors if

the formatter fails or exhibits unexpected behavior. When using a version control system like Git, running

a formatter in a pre-commit hook is another reasonable approach.

Code formatters do not necessarily need to be developed by the creator of the language, but doing so

reduces the likelihood of competing formatters arising with potential inconsistencies. Furthermore, as the

implementer of the language, one would already have access to and knowledge of their language’s parser,

which is necessary for non-trivial code formatting. Some practical examples of official formatting tools include

dart format [18], distributed with the Dart language, and gofmt [19], distributed with the Go language.

As of 2013, approximately 70% of Go packages surveyed were formatted following gofmt rules [19].

5 Conclusion

Although a programming language does not directly determine the maintainability of the software it is

used to create, it has an influence nonetheless. Non-functional aspects, language features, and the language

ecosystem all contribute to creating an environment that makes it easier or harder for developers to write

maintainable software. Language designers should consider how their design choices at each of these levels

may affect software maintainability, for better or for worse.
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