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Survey research is ubiquitous within the social sciences; however, surveys are 

vulnerable to response biases. Response biases introduce construct-irrelevant variance 

into survey responses, which degrades the accuracy of conclusions drawn through the use 

of surveys. Nonparametric person-fit statistics have been shown to accurately identify 

response biases in dichotomous response data but are not well studied in polytomous 

response data. This study examines the accuracy of nonparametric person-fit statistics in 

polytomous response data. A 6 x 4 x 4 x 2 simulation study was conducted, with type of 

aberrancy (6), number of response options (4), dimensionality (4), and test length (2) as 

factors. The sensitivity, specificity, positive predictive value, and negative predictive 

value for U3, the normed number of Guttman errors, and H
T

i were calculated using a 

bootstrapped cutoff. Findings indicate that these person-fit statistics with a conservative 

cutoff had excellent specificity but poor sensitivity.   
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CHAPTER I: INTRODUCTION 

Survey research is ubiquitous within the social sciences. Unfortunately, surveys 

are vulnerable to the introduction of construct irrelevant variance which could lead 

researchers to draw inaccurate conclusions about a given population. For surveys, 

response biases are one the most problematic sources of systematic error.  

Response biases occur when a respondent systematically answers items in a 

manner that is independent of the item content. There are six commonly discussed 

response biases in the extant literature: acquiescence, disacquiescence, midpoint 

responding, extreme responding, socially desirable responding, and careless responding. 

While methods exist to identify some of these response biases, traditionally, each 

response bias requires a unique method. Therefore, using these traditional methods to 

remove all irrelevant variance due to response biases is impractical. However, research 

has shown that person-fit statistics, particularly nonparametric person-fit statistics, are 

useful in identifying response biases in dichotomous data (Dimitrov & Smith, 2006; 

Emons, 2008; Karabatsos, 2003; Niessen et al., 2016; St-Onge et al., 2011; Tendeiro & 

Meijer, 2014). 

While nonparametric person-fit statistics have been shown to be effective at 

identifying response biases (i.e., aberrant response patterns) in dichotomous data, there is 

a dearth of research investigating their use in polytomous data. This lack of research 

stems from the fact that not many nonparametric person-fit statistics have been 

generalized for use in polytomous data. Additionally, the use of polytomous data 

introduces more factors that must be accounted for, for example, different numbers of 

response categories and multidimensionality. However, nonparametric person-fit 
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statistics could represent a practical method for identifying response biases in polytomous 

data.  

Given the above, the current study attempted to determine if nonparametric 

person-fit statistics could be successfully used in polytomous data to identify response 

biases. To that end, the study simulated polytomous response data with response biases, 

used nonparametric person-fit statistics (the normed number of Guttman errors, U3, and 

H
T

i) to classify individuals as aberrant or not, and then determined if and when the 

person-fit statistics were accurate at identifying aberrant responding.  

Polytomous response data were simulated using the Multidimensional Graded 

Response Model (De Ayala, 1994) following recommendations in the extant literature for 

realistic polytomous data (Bulut & Sünbül, 2017; Jiang et al., 2016). The various 

response biases were simulated by modifying the item boundary parameters, which is a 

method employed in similar studies (Emons, 2008; Rossi et al., 2001; Wetzel et al., 

2016). Dimensionality, the number of response options, and test length were also 

included as factors of the simulation.  

 Once the data were simulated, the nonparametric person-fit statistics were used to 

classify respondents as aberrant or not. To do so, a bootstrapped, empirical cutoff for 

each person-fit statistic was found. Using the empirical cutoff, the specificity, sensitivity, 

positive predictive value, and negative predictive value for each person-fit statistic was 

found across all unique simulation conditions. Analysis of Variance (ANOVA) was used 

to determine which factors had a meaningful impact on the accuracy of the person-fit 

statistics.  



3 

 

Due to the many meaningful three-way interactions, the results were dense and 

difficult to parse. However, a few patterns still emerged. Please note that all results 

should be considered within the lens of the meaningful interactions. 

 One, all person-fit statistics resulted in high specificity and negative predictive 

value (NPV). This finding suggests that these person-fit statistics, with a bootstrapped 

cutoff, accurately identified those not engaging in aberrant responding. While this is no 

doubt a result of the conservative cutoff that was chosen, it is still a useful finding. Two, 

the normed number of Guttman errors showed the best sensitivity and positive predictive 

value (PPV) overall. However, none of the person-fit statistics showed high sensitivity or 

PPV with these conservative cutoffs. In terms of the aberrant response patterns, Guttman 

errors showed the highest sensitivity and PPV when identifying disacquiescence, extreme 

responding, and careless responding. Coefficient 𝐻𝑖
𝑇showed the highest sensitivity and 

PPV when identifying midpoint and careless responding. Coefficient U3 showed the 

highest sensitivity when identifying disacquiescence, extreme responding, and careless 

responding.  

There were also a few patterns that emerged with regards to the simulation 

conditions. Again, there were few differences between any of the conditions regarding 

NPV and specificity. However, in terms of sensitivity and PPV, four and five response 

options showed the highest outcome estimates, dependent on test length and 

dimensionality. The medium test length condition almost always showed higher 

sensitivity and PPV than short test length condition. Dimensionality tended to improve 

the sensitivity and PPV estimates for five and seven response options as it increased. 
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Conversely, as dimensionality increased, the sensitivity and PPV for four and six 

response options tended to decrease.  

The findings from this study are comparable to both Emons (2008) and Beck et al. 

(2019). Emons found that Guttman errors and U3 performed quite well when identifying 

extreme and careless responders across test length, the number of response options, and 

the proportion of aberrant responders in polytomous data. The findings from Emons are 

supported by the findings from this study, which also found that Guttman errors and U3 

performed well across conditions in polytomous data.  

In contrast, Beck et al. (2019) found that 𝐻𝑖
𝑇outperformed Guttman errors and U3 

when predicting a measure of careless responding in real-world polytomous data. 

Additionally, Beck et al. showed that Guttman errors and U3 both performed poorly in 

terms of a ROC analysis and practical impact. This is in stark contrast to the findings of 

this study, where Guttman errors performed the best at identifying careless responding.  

The findings from this study contrast the consensus about the use of person-fit 

statistics in dichotomous data. Specifically, many studies point to coefficient 𝐻𝑖
𝑇as being 

the most accurate at identifying aberrant responses in dichotomous data. However, this 

research suggests that Guttman errors performed better overall (though, this depends on 

type of response behavior and the characteristics of the survey).  

Based on this study, it is difficult to suggest that nonparametric person-fit 

statistics are accurate indices of aberrant responses in polytomous response data. Using a 

conservative cutoff (α = .05), the person-fit statistics showed low power when identifying 

all aberrant response patterns across conditions. However, with a more liberal cutoff, it is 

likely that these person-fit statistics would show higher power. Regardless, it can be said 
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that these nonparametric person-fit statistics are accurate indicators of non-aberrant 

responding in polytomous data. Future research should focus on identifying a 

standardized cutoff, method for determining a cutoff, or valid null distributions for these 

nonparametric person-fit statistics. The impact of applying these nonparametric person-fit 

statistics to real-world data sets should also be examined. 
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CHAPTER II: REVIEW OF LITERATURE 

Survey Research 

 There are two types of research commonly conducted by educational and 

psychological scientists: experimental and nonexperimental research. Both types of 

research have unique strengths and weaknesses and require different interpretations by 

researchers. Experimental research is defined by control. Namely, control over variables 

in an experiment and control over the assignment of participants to experimental (or 

control) groups (Kerlinger & Lee, 2000). The direct control over variables and 

assignment allows for a very specific interpretation of experimental results: statements of 

causality. While statements of causality are a strong benefit of experimental research, 

experimental research has weaknesses. Generally, experiments are more resource 

intensive than nonexperimental studies, and experiments are not able to address all 

research questions and/or variables that may be of interest (Kerlinger & Lee, 2000).       

 Nonexperimental research is defined by lack of control. In contrast to true 

experiments, nonexperimental researchers often have little or no control over the 

assignment of participants to groups and are unable to directly manipulate variables of 

interest (Kerlinger & Lee, 2000). In this way, nonexperimental research is more 

observational in nature. A researcher can use nonexperimental research designs to 

investigate relationships between variables of interest, but, at best, can only provide weak 

evidence of causality through quasi-experiments (Shadish et al., 2002). While it may 

seem like nonexperimental research has more weaknesses than strengths, it is important 

to remember that some constructs are best researched through nonexperimental methods. 

Additionally, nonexperimental research tends to be less resource intensive and less 
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burdensome to participants than experimental research, which means it can be conducted 

on a larger scale (Fowler, 2009; Kerlinger & Lee, 2000). Nonexperimental research 

designs often employ surveys for data collection (particularly in the social sciences; 

Singleton & Straits, 2009), and research that primarily uses surveys for data collection is 

often called survey research. 

 A survey is a method of collecting data on phenomena in the social sciences. 

Measurement is a basic foundation of science. Without measurement, there would be few 

opportunities to quantify observations in pursuit of scientific inquiry. While the physical 

sciences are often able to directly measure the phenomena they are interested in, social 

scientists are often interested in unobservable, or latent, phenomena (DeVellis, 2012). 

The field of psychometrics eventually evolved in an effort to measure such latent 

phenomena accurately and efficiently. 

 The field of psychometrics focuses on the measurement of psychological and 

social phenomena. As such, the chief interests of psychometricians are tests, scales, 

surveys, questionnaires, and/or measures of unobservable social phenomena. Surveys are 

generally constructed from a set of effect indicators which have answers that are often 

(but not necessarily) assumed to be theoretically caused by the latent construct of interest 

(Bollen, 1989; DeVellis, 2012). While developing a survey takes time and resources, 

once a survey is developed it can easily be leveraged in many types of nonexperimental 

research designs (Fowler, 2002).  

Survey research is ubiquitous within the social sciences; surveys are used in the 

fields of marketing, psychology, sociology, business, political science, etc. Companies 

and researchers frequently utilize surveys because they are efficient to build, administer, 
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and analyze compared to other research methodologies (DeVellis, 2012; Fowler, 2009). 

Put simply, surveys are one of the most accessible and practical ways to conduct 

research. However, survey research is not without drawbacks. Data obtained from 

surveys can be contaminated with much irrelevant information, including error from 

sampling bias and systematic measurement error (Fowler, 2009; Groves, 1987). 

Unfortunately, survey data rife with error could lead researchers to draw inaccurate 

conclusions about a given population. Therefore, it is paramount for researchers who use 

surveys to identify and, whenever possible, prevent these errors from impacting their 

results. The sources of error in surveys can be broken down into two general categories: 

1) Errors caused by who gives the answers (i.e., sampling bias) and 2) Errors associated 

with the answers themselves (i.e., measurement error; Fowler, 2009).  

Sampling Bias 

 Sampling bias arises from sampling error, where sampling error refers to 

irrelevant variance (i.e., both random and systematic variance) introduced into data due to 

sampling (Shadish et al., 2002). Sampling bias specifically refers to the systematic 

component of this irrelevant variance. Sampling bias can occur when a nonrandom 

sample of the population is obtained for a particular study. A nonrandom sample occurs 

when all members of the population of interest do not have an equal chance to be selected 

for a given study. Sampling bias can lead to questionable external validity, which is the 

ability to apply findings from a sample to other samples or the population (Shadish et al., 

2002).  

 It is exceedingly difficult to obtain a true random sample in the social sciences 

(see Fowler 2009; Kerlinger & Lee, 2000; Shadish et al., 2002, for discussions of why). 
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However, survey research is often maligned for sampling only a nonrandom fraction of 

the overall population of interest. In psychology, a large proportion of survey research is 

conducted on undergraduate students. In marketing, surveys are often only administered 

to individuals who visit particular websites. In educational psychology, surveys are often 

administered to easily accessible groups of students. Unfortunately, these only represent a 

few examples of sampling biases within the social sciences. While these limited samples 

are often due to practical constraints, it is still deleterious to the external validity of 

survey research (Shadish et al., 2002). Thankfully, researchers are aware of sampling bias 

in survey research, and have taken steps to increase the external validity of their studies. 

A variety of methods have been employed to address concerns about the 

generalizability (i.e., external validity) of studies in the social sciences. These studies 

allow researchers to examine the validity of surveys, and the items that make up surveys, 

across different socio-cultural categories (i.e., genders, cultures, languages, ages, etc.). 

Additionally, psychometricians have started to focus on the adaptation of surveys, rather 

than mere translation, for different cultures and/or languages. While these methods do not 

directly address sampling bias, they are a step in the right direction. There have also been 

instances where an institution or government will obtain a representative sample of the 

population of interest by purposive sampling or true random sampling, though these 

instances are rare. It should also be noted that scientific replication can be used to address 

poor sampling techniques; however, with the current state of academia in the social 

sciences, replication studies are rare (see Bornstein, 1990; Frias-Navarro et al., 2020; 

Maxwell et al., 2015; Morawski, 2019, for discussions about the “replication crisis”).  
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Sampling bias is an important issue that affects survey research. However, 

sampling bias is not a sufficient reason to ignore findings from survey research. As 

discussed, many survey researchers are aware of these issues and take steps to address 

concerns about external validity. Additionally, adequately trained researchers are wary of 

generalizing on the basis of one study. Finally, researchers are trained to be explicitly 

candid about the limitations of their studies, which includes disclosing any concerns 

about external validity.  

Measurement Error in Classical Test Theory 

 Measurement error is one of the most discussed and examined threats to the 

validity of survey research. Indeed, measurement error has been discussed since testing 

and surveys first became a popular social science research methodology (see Thorndike, 

1904, for an early discussion of measurement error). This focus on measurement error is 

not without good reason. Measurement error can affect the statistical conclusion validity 

of the surveys being administered (Shadish et al., 2002). Put another way, measurement 

error can lead researchers to draw poor conclusions from their data. Specifically, 

measurement error can increase the likelihood of Type I and II errors by increasing the 

likelihood of over- or underestimating the magnitude of effects, as well as the degree of 

confidence in the effects (Jaccard & Wan, 1995; Shadish et al., 2002).  As such, 

researchers have made the prevention, identification, and treatment of measurement error 

a focus within survey research. In fact, measurement error is an important aspect of the 

theories used by the social sciences to understand surveys and tests. 
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 Classical Test Theory (CTT) posits that a test score is a function of True score 

and random error (i.e., measurement error). One common representation of this is the true 

score model, which is given in Equation 1:   

Xi = Ti + Ei, (1) 

where Xi is the observed score of person i on a set of variables, Ti is, theoretically, the 

true score for person i, or person i’s actual level of the construct of interest 

(mathematically, Ti is the population mean of Xi), and Ei is error impacting person i's 

score (Allen & Yen, 1979; DeVellis, 2012; Fowler, 2009). It should be noted that error 

and true score are not directly observable. The error can come from many different 

sources, but it is usually not parsed into further components. Additionally, the error is 

assumed to be completely random with a mean of zero (Allen & Yen, 1979).   

While CTT is an intuitive and useful way to understand measurement, it is not 

without issues. Measurement under CTT requires certain assumptions be made about data 

that are easily violated. Specifically, one of the assumptions states that error is not 

correlated with true score. This assumption is given in Equation 2 below: 

ρ
ET

 = 0, (2) 

where, ρET represents the relationship between error and true score in a population of 

examinees (Allen & Yen, 1979). This assumption is violated whenever there is a 

systematic component to the error term in Equation 1 (Ei). In a sample there are a 

multitude of ways in which this assumption could be violated: response biases, individual 

differences (i.e., nonrelevant, between-person characteristics), testing effects (e.g., 

fatigue), DIF, etc.  
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CTT also assumes that the measurement errors on two different tests are 

uncorrelated. This assumption is given in Equation 3: 

ρ
E1E2

 = 0, (3) 

where, 𝜌𝐸1𝐸2
 represents the population parameter for the relationship between the error 

variance of test one and test two (Allen & Yen, 1979). This assumption suggests that 

there is no systematic variance being diffused across tests. Again, there is a variety of 

ways in which this assumption could be violated: practice effects, fatigue effects, 

individual differences, setting effects, method bias, etc. The last major assumption CTT 

makes about error is that the error variance for one test is uncorrelated with the true score 

of another test. This assumption is given in Equation 4: 

ρ
E1T2

 = 0, (4) 

where, 𝜌𝐸1𝑇2
 represents the relationship between the error and true scores from two test 

forms in a population of examinees (Allen & Yen, 1979). This assumption is similar to 

the assumption given in Equation 2. However, it makes the assertion that the error scores 

on one form are independent of the true scores on another test form. Again, the 

assumption given in Equation 4 is similar to the assumption in Equation 2 and is violated 

in many of the same ways. However, it could also be violated if an individual is taking 

two surveys, and one survey contains information that changes the individual’s 

response(s) on the other survey.  

Taken together, it is easy to see why measurement error has received so much 

attention from researchers. As CTT is one of the most common ways to approach 

measurement, its vulnerability to assumption violations is a potential barrier to 

understanding, interpreting, and drawing conclusions based on surveys created under 
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CTT. Attempts to address this issue can be seen in studies examining DIF, measurement 

invariance, common method bias, etc. These sources of systematic error need to be 

identifiable and treatable if CTT is to be considered a useful form of measurement. 

Sources of Systematic Measurement Error 

 There are a multitude of ways that systematic error can be introduced into an 

observed score in CTT. As such, this section does not provide an exhaustive list of all 

possible sources of systematic measurement error. Rather, this section focuses discussion 

on the more prevalent and well-researched sources of systematic error. Whenever 

possible, these sources of systematic error should be modeled or controlled for when 

engaging in survey research. For each source of error that is discussed, general methods 

for addressing the source of error are presented. 

Common Method Bias   

Common method bias occurs when the method of survey administration causes a 

difference between the true relationship between the measured constructs and the 

measured relationship between the constructs (Doty & Glick, 1998). Unsurprisingly, 

method bias can lead to inflated, or attenuated, relationships between constructs, which 

can make it difficult to accurately judge convergent and discriminant evidence for 

validity. Furthermore, it becomes difficult to establish construct evidence for validity 

(Campbell & Fiske, 1959; Doty & Glick, 1998; Shadish et al., 2002). As constructs are 

foundational to all areas of science, using, interpreting, and disseminating information 

about valid constructs should be the highest concern for all researchers (Shadish et al., 

2002). 
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A traditional method that can be used to understand the impact of method bias is 

the Multi-Trait Multi-Method (MTMM) approach (Campbell & Fiske, 1959). MTMM 

suggests that construct-related validity evidence should be obtained in two ways: 

assessing convergent and discriminant evidence (Shadish et al., 2002). Convergent-

related validity evidence focuses on trying to establish that the construct of interest shares 

a high correlation with the same or similar constructs. In contrast, the focus of 

discriminant-related validity evidence is trying to establish that the construct of interest 

does not correlate with dissimilar constructs. The MTMM approach also suggests 

measuring a particular construct with multiple traits and with multiple methods, as the 

name suggests. The use of multiple traits allows for the examination of convergent- and 

discriminant-related validity evidence, as discussed above. MTMM prescribes the use of 

multiple methods as it allows for the parsing of test score variance into more components, 

one component being variance due to method (Campbell & Fiske, 1959; Doty & Glick, 

1998). As a result, test scores under the MTMM lens can be viewed as a function of three 

sources of variance: random variance (error), trait variance, and methods variance. Put 

another way, a test score is influenced by random error, the trait being measured, and the 

way the trait was measured (Campbell & Fiske, 1959; Doty & Glick, 1998).  

As evinced by the MTMM approach, method bias can represent a problem to 

survey research. The systematic error potentially present due to the method of survey 

administration is a violation of the assumptions of CTT. Indeed, survey researchers will 

often only use one method of collecting data (i.e., surveys or self-report methods). As a 

result, survey scores obtained from their studies are less generalizable because they might 

be confounded by common method bias. While the vulnerability of surveys to method 
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bias is problematic, it should not be seen as sufficient evidence to condemn the entire 

methodology (Doty & Glick, 1998). For one, most other methods (e.g., experiments) also 

have issues with method bias. Though, unfortunate from a validity perspective, most 

studies and experiments are designed with one indicator, or measure, for a particular 

variable. Common method bias could be accounted for by improving study design. 

Specifically, the inclusion of multiple measures of important constructs, as done in the 

MTMM approach, would alleviate this issue (Campbell & Fiske, 1959; Doty & Glick, 

1998; Shadish et al., 2002). Otherwise, researchers should consider the impact that 

common method bias might be having on their study and temper the discussion of their 

findings accordingly. 

Systematic Error from Item and Questionnaire Design  

Another potential source of bias in questionnaire research is poor questionnaire 

and item design. There is a reason that so many introductory measurement textbooks 

devote entire chapters to appropriate item design (see Allen & Yen, 1979; DeVellis, 

2012; Fowler, 2009, for a few notable examples). Poor item and overall questionnaire 

design can impact the reliability of the items on a survey and impact the validity of 

conclusions drawn from a survey (Choi & Pak, 2005; Fowler, 2009; Groves, 1987).  

Errors Associated with Item Design. It is often said that good item writing is an 

art more than it is a science. However, that has not stopped researchers from proposing 

certain characteristics that are associated with good items (i.e., an item’s score shows 

evidence of being reliable and valid on a given questionnaire). It is often recommended 

that items are unambiguously worded; descriptive enough to provide adequate detail but 

are not overly long; written at a 6th grade reading level; only include a single idea within 
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the same question; are interpreted the same for all respondents; and do not frame or lead 

the response in any way (Choi & Pak, 2005; DeVellis, 2012; Fowler, 2009). From these 

few recommendations (the above list is only a few of the posited characteristics of a 

useful item), we can see that item writing is a difficult task.  

The difficulty associated with creating good items is partially responsible for the 

large amounts of research on the reliability and validity of survey data. For example, 

studies examining DIF and measurement invariance are investigating the interpretation of 

items and surveys across socioeconomic and demographic categories. Much research of 

this type is focused on identifying questionnaires in which these problems exist, and there 

are a plethora of statistics and methodologies that allow for such investigations. Even 

outside of survey research, researchers are encouraged (and often required) to discuss the 

reliability and validity evidence of surveys used in their research.  

Errors Associated with Questionnaire Design.  While errors associated with 

questionnaire design are discussed less often in the social sciences than errors associated 

with item design, it remains an important source of systematic bias in surveys (Groves, 

1987; Krosnick & Presser, 2010; Lietz, 2010). For example, there might be an issue with 

the spacing of responses on a given survey that confuses, or frustrates, respondents. This 

confusion and/or frustration then impacts the responses they endorse as they take the 

survey. However, there are still recommendations for how a survey should be formatted 

and designed. Discussions about survey design range from what response scale is most 

valid (e.g., Guttman Scaling vs. visual analog scales) to whether or not radio buttons are 

better than check boxes in online surveys (Couper et al., 2001; DeVellis, 2012). A few of 

the most widely recommended survey design choices are the survey should be self-
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explanatory but still contain instructions; surveys should be as short as possible to reduce 

the burden on respondents; and surveys should be easy to read and uncluttered (Fowler, 

2009).  

The study of item location effects has become a popular focus of research on 

survey design in recent years. Studies examining item location effects look at how the 

placement of items on a survey might impact respondents. Item location effects are often 

examined within the context of Item Response Theory (IRT), rather than CTT, but are a 

concern for surveys developed under both theories. In IRT, item location effects have 

been found to impact test item difficulties in several contexts (see Meyers et al., 2008; 

Kingston & Dorans, 1984, for two basic examples). In IRT, accurate item difficulty is 

important for estimating Theta, or a person’s ability on the measured construct. In CTT, 

the concern is that item location effects might have an impact on the average response. 

Traditionally, there are two ways to address item location effects: randomizing the order 

of the items or using multiple questionnaire forms (Schurr & Henricksen, 1983). 

While systematic error due to questionnaire design is an undesirable quality for 

any survey, it is manageable (Krosnick & Presser, 2010; Lietz, 2010). Researchers can 

investigate surveys they use or create for deficiencies in design and address these 

deficiencies when possible. Many recommendations for good survey design are common 

sense (e.g., the survey should be easy to read and uncluttered). However, researchers 

should also remain aware of the less straightforward threats to survey design (e.g., item 

location effects).  

Systematic Errors Associated with Respondents  
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A wide variety of errors in survey data can be attributed to respondents, or how 

the respondents answer items (Fowler, 2009; Groves, 1987). For example, participants 

may have varying levels of motivation or predilections to answer items in a manner that 

affects their test or survey scores systematically. Unfortunately, systematic error 

associated with responses/respondents can be very difficult to control. This type of 

systematic error is not only difficult to identify, but there is no consensus on the best way 

to address many of the sources. Some sources of these errors can be attributed to item and 

respondent interactions, for example, certain groups interpreting items differently than 

other groups. Other errors can be associated with the survey design and respondent 

interaction; for example, respondents feeling as if they do not have enough information to 

answer certain items. These errors can also be attributed to traits of the respondents 

themselves (e.g., memory). Finally, and perhaps most insidiously, due to some trait, 

mood, attitude, etc., a respondent can purposefully respond in a way that adds systematic 

error to their answers (Fowler, 2009); this type of purposeful irrelevant responding is 

usually referred to as a response bias. 

  All of these sources of error can lead to problems for survey research. However, 

some are easier to control than others. For example, errors due to item and respondent 

interaction, and errors due to survey design and respondent interactions can be modeled 

using DIF and measurement invariance studies. These methodologies were designed to 

identify how questionnaires might be different for different groups of respondents. If 

misinterpretations are occurring for all groups, then the issue lies with survey design 

and/or item generation. Items that ask participants to recall have often been the target of 

criticism and discussion, as participants are able to accurately recall some events but not 
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others (Fowler, 2009). A wide variety of resources providing the best practices for using 

such items are available to researchers (see Belli et al., 2004; Burton & Blair, 1991; 

Fowler, 2009, for a few notable examples). Often, the design and implementation of 

accurate recall items is seen as an item generation issue. 

Response biases occur when a participant systematically responds to items 

independent of the item content (Paulhus, 1991). As mentioned, response biases are, 

arguably, the most problematic source of systematic error in surveys. For one, there are 

many different types of response biases, and it is not always clear why or how they 

originate (few studies have empirically investigated the underlying mechanisms). 

Therefore, the prevention of response biases through survey, study, or item design is 

difficult. Additionally, several response biases are innately difficult to identify. For 

example, careless responding is difficult to detect because it is an umbrella term that 

subsumes several response styles (Meade & Craig, 2008), and it can be difficult to 

discern a respondent engaging in midpoint responding from a respondent with a true, 

neutral level of the construct of interest. Finally, while some response biases are well 

studied and have had methods developed for their identification (e.g., social desirability), 

several response biases are not as commonly studied and there is no consensus on the 

best way to identify them.   

Response Biases 

As mentioned, some response biases are well studied, and methods exist for 

preventing or identifying them. However, while methods to address some response biases 

exist, each response bias tends to require a different solution. The different solution for 

each response bias often results in researchers only controlling for one or a few response 
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biases in a given study. Therefore, response biases will continue to threaten and/or 

weaken conclusions drawn from survey research until more practical methodologies for 

controlling them are investigated. 

 For the purposes of this work, the discussion of response biases is limited to self-

report surveys. That is, surveys that ask respondents about themselves. However, there 

are also response biases associated with other-report surveys. That is, surveys in which 

the respondents answer questions about other people (Wetzel et al., 2016). There are six 

types of self-report response biases which are commonly identified by researchers: 

acquiescence, disacquiescence, extreme responding, midpoint responding, socially 

desirable responding, and careless responding. Recall that response biases cause issues 

for surveys because they can introduce a source of systematic, construct irrelevant 

variance into scores. Systematic, construct-irrelevant variance represents a violation of 

the assumptions of CTT, and this irrelevant variance can attenuate relationships between 

items and constructs. As a result, the attenuated relationships will degrade the accuracy of 

conclusions drawn from the impacted scores (Meade & Craig, 2012; Wetzel et al., 2016). 

Acquiescence 

 Acquiescence occurs when respondents tend to respond positively, or in 

agreement, to items on a questionnaire (Baumgartner & Steenkamp, 2001; Knowles & 

Condon, 1999; Wetzel et al., 2016). A few theories have been posited for why 

participants engage in acquiescence responding. For example, acquiescence has been 

theorized to be either a cognitive or motivational issue (Knowles & Condon, 1999). 

Couch and Keniston (1960) suggested that acquiescence is a function of respondents’ 

personality traits. Specifically, they suggested that respondents engaging in acquiescence 
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responding were id-driven, and that they responded impulsively to stimuli because they 

are constantly seeking out novel and immediate stimulation. As such, these respondents 

are motivated to respond positively to items to elicit a response.  

While many such theories have been offered as an explanation for the 

motivational component of acquiescence, not many formal examinations of these theories 

have been made (Knowles & Condon, 1999). When there have been formal inquiries, 

they generally show relationships between acquiescence and personality scales (Blau & 

Katerberg, 1982; Ray, 1983). Without empirical research supporting the motivational 

theory, it is difficult to speculate on the role motivation has in acquiescence responding. 

However, cognitive theories for acquiescence responding have been the target of more 

formal inquiry and empirical research. 

Knowles and Condon (1999) found that respondents who engaged in 

acquiescence responding tended to “say yes” more quickly than other types of 

respondents. However, they also found that increasing the cognitive load on respondents 

increased the frequency of acquiescence responding. They posited that the relationship 

between increased cognitive load and acquiescence responding was evidence that 

acquiescence responding results from a disruption of the Spinozan response process. That 

is, a Spinozan response process is a two-step process in which an item is comprehended 

(step one) and then reconsidered (step two). Based on their findings, Knowles and 

Condon argued that the increased cognitive load was making it difficult for respondents 

to move past the comprehension step of the Spinozan response process.  

While it cannot be definitively stated which theory offers the best explanation for 

acquiescence, there is more compelling evidence to support the cognitive theory than the 
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motivation theory. Unfortunately, most response bias research is devoted to identifying 

aberrant response patterns rather than understanding or preventing them (Knowles & 

Condon, 1999). While this makes prevention difficult, it has resulted in a variety of 

methods for identifying acquiescence. 

Measuring Acquiescence 

The difficulty in measuring acquiescence is finding a way to discriminate between 

someone who is erroneously responding positively to items and someone who would 

genuinely have a high score on the construct of interest (Paulus, 1991). An early method 

that was implemented to identify acquiescence was reverse scoring. In this method, items 

are chosen at random, and their response poles are reversed. For example, a researcher 

could take a positively worded, Likert-type item and change the valence. Whereas before, 

strongly agree might have been an endorsement of the construct of interest, now strongly 

disagree is an endorsement of the construct of interest. Theoretically, participants who 

simply respond in agreement with all items would have nonsensical or balanced scores on 

the construct of interest (Paulus, 1991). In contrast, individuals who are responding to 

each item as intended will have accurate scores reflecting their position on the construct 

of interest.  

While reverse scoring seems like an easy method to address acquiescence, it is 

also not without issue. Specifically, empirical research has shown that reverse scoring 

items may lead to participants feeling confused or less motivated to respond to the 

questionnaire in a purposeful manner (van Sonderen et al., 2013). Additionally, empirical 

research has shown that respondents tend to respond less accurately when items are 

reversed scored than when all items are worded in a positive manner (Sauro & Lewis, 
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2011; Schrieshem & Hill, 1981; van Sonderen et al., 2013). For these reasons, 

contemporary methodology suggests that reverse scoring should not be used to detect 

acquiescence responding. Instead, contemporary methods, such as structural equation 

modeling and factor analysis, have been suggested as an alternative, and have been used 

to measure and study acquiescence effects on surveys (Hinz et al., 2007). 

 Disacquiescence 

 Disacquiescence is the polar opposite of acquiescence; disacquiescence occurs 

when participants tend to respond negatively to items on a questionnaire (Baumgartner & 

Steenkamp, 2001; Weijters et al., 2013). Despite its similarity to acquiescence, 

disacquiescence has been the target of less empirical research. The dearth of research is 

partially because researchers often do not distinguish between acquiescence and 

disacquiescence. Rather, disacquiescence is often seen as the opposite end of an 

acquiescence spectrum (Weijters et al., 2013). Interestingly, it has also been suggested 

that both acquiescence and disacquiescence are more likely to occur when an individual 

is not sure of the answer (either the correct answer to a question, or when a respondent 

does not have the self-knowledge necessary to answer a self-report question; Paulus, 

1991).  

Couch and Keniston (1960) examined both acquiescence and disacquiescence 

(yea-saying and nay-saying in their terminology) and their relationship to personality 

traits. Though the personality theory and measurements Couch and Keniston used are 

outdated by today’s standards, the study still yielded some interesting results. 

Acquiescence and disacquiescence seemed to be polar opposites on the chosen 

personality scales. Specifically, disacquiescence was associated with careful 
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consideration, impulse control, and overall stimulus rejection. At the very least, this 

association provides some evidence to support the usual supposition that disacquiescence 

and acquiescence are opposites on a larger spectrum. While little empirical research has 

investigated the matter, it could be speculated that methods for measuring acquiescence 

could also be successful at measuring disacquiescence. 

Extreme Responding 

 The extreme response style (ERS) occurs when an individual tends to prefer 

endorsing extreme responses to items (Greenleaf, 1992; Wetzel et al., 2016). For 

example, a respondent engaging in ERS will tend to endorse Strongly Agree or Strongly 

Disagree for Likert-type items, regardless of their actual level of agreement. Historically, 

there have been several attempts at measuring and explaining ERS, more so than some 

other response biases. Some researchers have suggested that ERS is invariant within a 

person (i.e., someone who engages in ERS will always engage in ERS; Weijters et al., 

2010; Wetzel et al., 2013). Other researchers have tried to connect ERS with personality 

traits (Hamilton, 1968), or country-wide characteristics (e.g., level of development or 

average IQ; Meisenberg & Williams, 2008). While there is some disagreement in the 

literature about the causes and correlations of ERS, much of the extant literature agrees 

that ERS is a methodological problem that needs to be addressed. The issue with ERS is 

clear: ERS introduces construct irrelevant variance that can affect item means as well as 

item and construct correlations (De Jong et al., 2008).  

Measuring Extreme Response Style  

As previously mentioned, ERS has been the focus of much research. As a result, 

there are multiple methods of measuring ERS that have been used or suggested. Early 
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attempts at measuring ERS involved estimating proportions of extreme responses. This 

method essentially treated ERS as an estimated binomial proportion, which allowed a 

variety of hypothesis tests and descriptive statistics to be examined (Greenleaf, 1992; 

Gold, 1975). Progression in this technique led to the use of binomial error to obtain a 

more accurate estimate of a true ERS score. That is, the unobservable proportion of items 

from the item population on which a given individual would endorse an extreme response 

(Greenleaf, 1992). Along with this method, dedicated ERS measures were created and 

used. While these were useful, the addition of an extra measure assessing ERS to surveys, 

or survey batteries, was often criticized as being too expensive and too demanding of 

respondents (De Jong, et al., 2008).  

 Criticisms of dedicated ERS scales and the binomial proportion method led to 

researchers investigating IRT models to measure ERS. IRT models were naturally suited 

to measuring ERS, as IRT models build in cross-classification of item and person 

characteristics (De Jong et al., 2008; Jin & Wang, 2014). The potential of IRT to build 

complex item-person models allows the effect of an individual and an item on a given 

score to be examined separately. Several different IRT models have been used to identify 

ERS. For example, the partial credit model (PCM; Moors, 2008), the multidimensional 

nominal response model (Bolt & Johnson, 2009), an extension of the rating scale model 

(RSM; Wang et al., 2006), and a generalized PCM model (Jin & Wang, 2014) have all 

been utilized to address ERS.  

Recently, an IRTree approach has been suggested for measuring ERS. IRTree 

models attempt to model probabilistic outcomes (i.e., responses to an item) as functions 

of latent decision processes. Put another way, the latent decision processes predict 
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observed item responses (Böckenholt, 2012, 2017). Unfortunately, while modeling a 

dichotomous item with one latent process is relatively simple, adding additional decision 

processes to an item with multiple response options can become complicated rather 

quickly. Regardless, IRTree models have successfully been used to measure midpoint 

responding and ERS (Böckenholt, 2017; Jeon & De Boeck, 2019), and appear to be an 

intriguing new method for measuring response biases. While they are an extremely useful 

tool for researchers, they may be hard to implement for practical uses on a large scale. 

IRTree models are a form of latent response/IRT modeling, as the name suggests. These 

models generally have relatively large sample size requirements (i.e., N > 1000; 

Hambleton, 1989). While obtaining these sample sizes would not be an issue for a large 

testing or survey program, it may prove difficult for moderate to small scale survey 

programs and academic researchers.  

Midpoint Responding 

 Midpoint responding (MR) is often discussed in relation to extreme responding 

(ERS; Böckenholt, 2017; Hernández et al., 2004; Paulhus, 1991; Zhang, 2020). However, 

rather than preferring to select extreme response options (as in ERS), individuals 

engaging in midpoint responding tend to endorse item responses in the middle of the 

response scale (Baumgartner & Steenkamp, 2001; Greenleaf, 1992; Paulus 1991). As MR 

is often discussed with ERS, it has been the target of much research, either directly or 

indirectly. This research has been split between investigating the causes and correlates of 

MR and trying to identify and measure MR. It should also be noted that there is a 

perennial argument regarding the inclusion of a middle response category (i.e., a response 
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category that is neither in agreement nor in disagreement with the item stem) on 

questionnaires in non-cognitive measurement contexts.  

Differentiating between MR, ERS, and acquiescence can sometimes be difficult. 

For example, on a 4-point Likert-type scale, if a respondent selects Agree rather than 

Strongly Agree a disproportionate number of times, is this an example of MR or 

acquiescence? Alternatively, if the respondent selects Strongly Agree in the same 

situation a disproportionate number of times, is it an example of acquiescence or ERS? In 

both situations van de Vijver and He (2014) suggested that MR and acquiescence are 

positively correlated. As a result, these response biases can be difficult to parse. 

 Unfortunately, the causes and correlates of MR have received less attention than 

other aspects of MR. However, it is still an important avenue of research, and some work 

has been done. Interestingly, studies investigating the causes and correlates of MR have 

ranged from examining item readability (Velez & Ashworth, 2007) to aggregate country-

level personality traits (He et al., 2014). Regardless of the causes of MR, research has 

provided compelling evidence suggesting that the middle category of a set of response 

options does not function the same for all respondents (Hernández et al., 2004). As such, 

MR is an important response bias to identify when conducting survey research when the 

response scale contains a middle category.  

The most common (and traditional) method of measuring MR is simply looking at 

the frequency of middle option endorsement for a particular respondent (see He et al., 

2014; Velez & Ashworth, 2007, for two notable examples). However, IRT has recently 

been introduced as a method of modeling MR. In fact, research has shown that the 
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multidimensional nominal response model and IRTree models are effective when 

assessing MR in questionnaires (Zhang & Wang, 2020).  

Socially Desirable Responding 

 Socially desirable responding (SDR) is the response style that has received the 

most attention from researchers, specifically in the realm of personality assessment. 

Originally, SDR was identified as a nuisance to personality researchers when they were 

trying to use or develop new scales to measure personality traits (Jackson & Messick, 

1958, 1962). SDR occurs when respondents select response options that would reflect 

positively on them, based on their context and culture (Messick, 1991; Paulus, 1991). For 

example, a respondent endorsing options related to conscientiousness may select options 

that indicate higher levels of conscientiousness than that respondent has in reality 

(assuming conscientiousness is desirable in their particular contexts). Conversely, a 

participant responding to a substance-abuse questionnaire may select options that reflect 

lower levels of substance abuse than that participant actually engages in, assuming high 

levels of substance abuse are seen as undesirable behaviors in their contexts. In effect, a 

participant’s responses may reflect current societal norms and preferences more than the 

true levels of construct(s) if they are engaging in SDR. 

 Much research has investigated the potential mechanisms and correlates of SDR. 

Early investigations of SDR were focused on measurement and identification via separate 

scales designed specifically to measure SDR (Crowne & Marlowe, 1960; Wiggins, 1964). 

However, the SDR scales used in these studies often did not correlate with each other, 

and there was evidence of two factors within these scales even though they were assumed 

to be unidimensional (Holtgraves, 2004; Paulus, 1984). The two-dimensional nature of 
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the instruments eventually led to evidence for SDR as a two-factor phenomenon, with the 

two factors being self-deception and impression management (Messick, 1991; Paulus, 

1984). Due to this finding, several theories for the mechanisms underlying SDR were 

posited; many of these theories were based on Sudman and colleagues (1996) stages of 

responding.  

In addition to theorizing about the correlates and mechanisms of SDR, there have 

been several attempts at lessening its impact on survey data. Some research has shown 

that providing respondents with a high degree of anonymity is effective for limiting SDR 

on questionnaires (Becker, 1976; Paulus, 1991). Jones and Sigall (1971) presented an 

interesting fake-lie-detector technique, in which respondents were hooked up to a 

machine that they were told is a “pipeline to the soul”. While the fake-lie-detector was 

moderately successful at curbing SDR, it never became a popular method. There have 

been several other methods attempting to prevent SDR, but the SDR problem persists in 

survey data. As such, researchers have also investigated the measurement of SDR so that 

it can be dealt with post hoc.  

Measuring Socially Desirable Responding.  

The measurement of SDR has traditionally revolved around the creation of scales 

designed to identify SDR. In fact, a cursory Google Scholar search of social desirability 

returns a plethora of articles developing and investigating scales for SDR in a variety of 

areas (see Fischer & Fick, 1993; Jacobson et al., 1977; Kwak et al., 2019, for examples). 

Of course, some of the most well-known SDR scales are the Balanced Inventory of 

Desirable Responding (BIDR; Paulus, 1988), Edwards Social Desirability Scale (SD; 

Edwards, 1957), the Marlowe-Crowne Social Desirability Scale (MCSD; Crowne & 
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Marlowe, 1960), and the MMPI Lie Scale (L and K; Meehl & Hathaway, 1946). While 

these scales were developed some time ago, they are still being used and studied by 

contemporary researchers. Criticisms of these scales suggest their inclusion might 

increase the burden on participants, but they have been shown to be effective at 

identifying individuals engaging in SDR. 

Careless Responding 

 Careless responding (CR) is perhaps the most complicated response bias to 

define. This difficulty is mainly due to CR being used as a catchall category for a variety 

of response patterns assumed to be the result of similar mechanisms. As such, CR 

commonly refers to response patterns such as: random responding, low effort or 

inattentive responding, and uniform responding (Baumgartner & Steenkamp, 2001; 

Credé, 2010; Huang et al., 2012; Johnson, 2005; Maniaci & Rogge, 2014; Meade & 

Craig, 2012). However, the underlying aspect that binds these disparate response patterns 

together is the content nonresponsivity: failure to respond to the content of the items, 

regardless of the resulting response pattern. Content nonresponsivity distinguishes CR 

from other response biases, as other response biases involve the item content in some 

manner (Clark et al., 2003; Nichols et al., 1989). For example, respondents engaging in 

SDR still need to be cognizant of what the item is asking, while a respondent engaging in 

CR is theoretically completely unaware of the item content.  

While the mechanisms of CR are not known, it has been theorized that these 

response patterns may stem from either the inability to read or correctly interpret items, 

lack of motivation or ability to respond in a purposeful and thoughtful manner, or having 

the personality traits of high extroversion and low conscientious (Baumgartner & 
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Steenkamp, 2001; Hauser & Schwarz, 2016; Meade & Pappalardo, 2013; Nichols et al., 

1989).  

Researchers have become increasingly focused on CR in recent years as 

conducting survey research on undergraduate and online samples has become more 

common. These populations are considered likely to engage in CR because it is assumed 

that they have a lack of motivation to engage with the content of a survey (Meade & 

Craig, 2012). Alarmingly, estimates of respondents engaging in CR from these samples 

are relatively high: ranging from 4% to 73% of respondents. Generally, it is safe to 

assume that around 10% of a university or online sample will contain patterned responses 

meeting CR definitions (Beck et al., 2019; Johnson, 2005; Maniaci & Rogge, 2014; 

Mckibben & Silvia, 2015; Meade & Craig, 2012). This prevalence is equally troubling 

from a data quality and psychometric perspective. Research has shown that the presence 

of CR can inflate or attenuate relationships between survey variables, increase 

measurement error, decrease statistical power, and generally obscure survey data making 

it harder to draw accurate conclusions (Beck et al., 2019; Credé, 2010; Huang et al., 

2014; Maniaci & Rogge, 2014; Mckibben & Silvia, 2015; Meade & Craig, 2012).  

Specific Measures of Careless Responding 

Since CR represents a large threat to survey research, it is no surprise that 

researchers have spent considerable effort trying to measure CR. However, one of the 

characteristics of CR that makes it unique is that several distinct response patterns fall 

under the CR classification. Necessarily, there are a large number of methods designed to 

measure CR. While there are some general methods to identify CR, several methods are 

focused on identifying a specific response pattern associated with CR. 
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 Measuring Uniform Responding. Uniform responding is perhaps the easiest CR 

response pattern to identify, as it actually follows a discernable pattern. When a 

participant engages in uniform responding, he or she will select the same response option 

for large portions of a questionnaire. For example, a participant may select the midpoint 

option for 50% of the questionnaire or select the strongly agree option throughout the 

whole survey. For this reason, uniform responding is often called long string responding, 

since uniform responding visually appears in data as a set of the same response or 

category label (i.e., response strings; Johnson, 2005; Meade & Craig, 2012).  

Since uniform responding often follows such a recognizable pattern, it is often 

removed after simple visual inspection during data cleaning, or during analyses when 

response vectors are analyzed for variance. A respondent who has engaged in uniform 

responding will generate a response vector with little or no variance in their responses, 

and these are often automatically removed from psychometric analyses. However, 

uniform responding is not always so easy to identify. For example, some participants may 

engage in uniform responding for only 20% of the survey. Other individuals, for 

example, may select one response option for 30% of the survey, and a different response 

option for another 30% of the survey. While these data are still contaminated with 

content irrelevant information, it is much harder to determine through visual inspection or 

descriptive analyses (Johnson, 2005).  

To address this issue, Johnson (2005) developed the long string index; a sample-

based method of identifying long string cut-off values, above which participants are 

considered to be engaging in uniform responding. In this method, the frequencies of the 

longest consecutive strings are examined across the response categories. Similar to scree-
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plot analyses, large drops in frequencies are identified as cutoffs, and individuals falling 

outside of the cutoffs are removed from the data set. While research on the efficacy of the 

long string index as an overall measure of CR has been mixed, it is often considered 

effective for screening out respondents who engage in uniform responding (Meade & 

Craig, 2012).  

 Measuring Random Responding. Random responding can be parsed into two 

categories: true random responding and effectively random responding (Credé, 2010). 

True random responding refers to a response process that involves non-content 

responding, but also where every response option on a given item has an equal chance of 

being chosen by the participant. True random responding is a response style devoid of 

any discernable response pattern, which makes it difficult to identify using traditional 

data cleaning methods. Due to its nature, true random responding is uncommon in most 

practical settings (Credé, 2010).  

Effectively random responding is more difficult to distinguish from other CR 

response styles. It is often classified simply as content nonresponsivity, while other 

researchers have classified it as variations of uniform responding. A classic example of 

effectively random responding is a respondent that alternates between selecting the first 

and the last response option throughout a survey. This alternating endorsement is 

different from uniform responding, as they are not selecting the same response option 

consecutively, but neither do all response options have an equal chance to be chosen by 

the participant (Clark et al., 2003; Credé, 2010).  

Traditional measures of random responding involve the use of validity scales, 

response time, or assessing item agreement (Clark et al., 2003; Credé, 2010). Using 
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validity scales to detect random responding is similar to how specific scales are used to 

detect SDR. Item agreement involves looking at pairs or sets of items that should have 

similar responses if a participant was responding purposefully. For example, a 

questionnaire may contain two items assessing feeling blue in respondents. If a 

participant endorses similar responses to these items, then it can be assumed that they 

were responding purposefully (Credé, 2010). It should be noted that while random 

responding has these two specific methods of identification, it is often assessed with 

general measures of CR.  

General Measures of CR  

While uniform responding manifests somewhat differently, most other CR 

response patterns are simply assessed using general measures of CR. Quite a few of these 

general measures were initially developed to identify specific response patterns (such as 

item agreement) but were found to be somewhat effective at identifying CR more 

broadly. These general measures include item agreement or consistency indices, special 

items, outlier analyses, and more recently, person-fit statistics.  

 Consistency Indices and Item Agreement. The simplest form of consistency 

index has already been discussed: two items assessing the same construct are examined 

for response similarity within a participant. There are also methods that involve looking 

at correlations between sets of items; many of these methods are based on traditional 

methods of estimating reliability (e.g., split-half reliability). Unidimensional scales or 

subscales can be split into even and odd halves and the Spearman-Brown split-half 

formula can be applied to assess consistency within a respondent. Similarly, synonymous, 

or antonymous, item indices can be created and assessed for response consistency or 
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inconsistency (Jackson, 1976; Johnson, 2005; Maniaci, & Rogge, 2014; Meade & Craig, 

2012). Consistency indices have been shown to be somewhat effective at identifying 

random responding and CR more generally, however the sensitivity of these indices has 

been called into question (Huang et al., 2012; Maniaci & Rogge, 2014).  

Special Items. Similar to other response biases, researchers have developed 

special scales to identify CR. However, rather than taking the form of an entirely new 

questionnaire (as in SDR), these scales in CR are often composed of a few items. The two 

most common examples of these special items are bogus items and instructed response 

items. Bogus items are designed to essentially have a correct and incorrect answer. Bogus 

items owe their name to the fact that they often ask respondents ridiculous questions 

about themselves. For example, consider the bogus item I died last week assessed on a 4-

point, Likert-type scale. Obviously, to respond to this item correctly respondents should 

endorse Strongly Disagree; if they are responding to the item, they obviously did not die 

last week. Essentially, Strongly Disagree is the correct response to this item. Any 

endorsement other than Strongly Disagree can then attributed to CR. While bogus items 

make logical sense, in practice they are often interpreted figuratively or affected by 

context effects, which can lead to participants endorsing an incorrect response more often 

than would be expected (Meade & Craig, 2012; Schwarz, 1999). For example, a 

participant may figuratively interpret the item I died last week and respond with 

agreement if he or she had a difficult or stressful week.  

Instructed response items are designed with a similar logic to bogus items in a 

less ambiguous way. This clarity makes them more useful than bogus items. As with 

bogus items, the goal of instructed response items is to create an item that has a definitive 
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right and wrong answer. However, rather than making an outlandish statement trying to 

invoke a specific answer, instructed response items tell the respondent how to respond to 

the item (e.g., For this item, please select Strongly Agree). There is no ambiguity on what 

constitutes a correct response to this example item, and it is not likely to be interpreted 

figuratively. While these items can serve as useful indicators of CR, particularly when 

two or more are included on a survey, they are not recommended to be used as the sole 

indicator of CR. Additionally, the inclusion of too many instructed response items could 

serve to frustrate participants, which might result in them engaging in different response 

biases (Meade & Craig, 2012). 

Other Approaches to Measuring CR. There are a variety of other approaches 

that have been used to identify CR. These approaches include response time, IRT 

modeling, and outlier analysis. Out of these three remaining methods, response time is 

the one that has received the most research attention and results are generally positive 

(Beck et al., 2019; Meade & Craig, 2012; Kong et al., 2007; Soland et al., 2019; Wise & 

Kong, 2005). However, there is no consensus on how to establish a standardized response 

time cutoff to differentiate normal and disengaged test-taking behavior. 

Recommendations range from no recommendation being made, to a vague suggestion of 

using an empirically derived cut-off (Beck et al., 2019; Huang et al., 2012; Meade & 

Craig, 2012; Niessen et al., 2016). Of note, a few methods of determining a response-

time cutoff for measuring disengagement have been empirically investigated, but a 

consensus has not been reached (Kong et al., 2007; Soland et al., 2019). While response 

time is no doubt a useful measure of CR, more research is needed to standardize its use.  
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 IRT modeling is one of the newer ways of identifying CR. Specifically, Jin et al. 

(2018) proposed using mixture IRT modeling to remove the biasing influence of CR on 

survey data. According to the authors, mixture IRT modeling combines latent trait 

models (i.e., traditional IRT) and latent class analysis, which allows for respondents to be 

separated into different latent classes based on their response patterns. While the 

proposed model is flexible and could theoretically be used to model several response 

biases, doing so requires that the probability of endorsing any given response option is 

specified a priori. While this method may be useful in certain situations (e.g., when true 

random responding is suspected), in many situations the probability of selecting certain 

response options is unknown in individuals who engage in aberrant responding. 

However, these models represent an exciting new area of research that could have great 

potential as more research is done.  

 Finally, outlier analysis has been used to identify CR. Specifically, Mahalanobis 

distance (MD) has been used in several studies attempting to identify CR. While the 

research on the efficacy of MD to detect CR is sparse, research suggests that it is not a 

useful indicator of CR. Namely, while it is effective at detecting aberrant responses in 

specific contexts, it is not as effective as other measures of CR (Hong et al., 2020; Meade 

& Craig, 2012). Additionally, it has been shown that MD does not perform well when 

there are a large number of Likert-type items to be analyzed (Hong et al., 2020; Meade & 

Craig, 2012).  While more research is needed to confirm whether MD is useful as an 

indicator of CR, it currently appears that is less effective than other methods.  

 Thus far, many more methods of detecting CR have been discussed than for any 

other response bias. This disparity is largely due to the glut of methods that exist for 
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detecting CR, which is a direct result of the multiple response patterns that can occur 

under the current definition of CR. However, there is one additional measure of CR that 

must be discussed: person-fit statistics. Person-fit statistics are an expansive topic, as 

there are many person-fit statistics that have been investigated for use in detecting CR. 

More than that, several person-fit statistics have been investigated as general measures of 

response biases and aberrant responding: capable of detecting multiple response biases 

and aberrant response patterns simultaneously. If true, person-fit statistics have great 

potential for use in survey research. For these reasons, the discussion on person-fit 

statistics is relegated to its own section. 

Person-fit Statistics 

 Person-fit statistics are a vast category of indices developed to identify 

improbable or comparably aberrant response patterns. The ability to examine an 

individual response set and determine improbability is what makes person-fit statistics 

such powerful tools for identifying response biases. Whereas traditional methods to 

identify response biases are generally developed to detect a singular bias, person-fit 

statistics can simultaneously find response patterns that are improbable (as they would be 

in cases of random or careless responding), or too probable (as they would be in cases of 

socially desirable responding, acquiescence, extreme responding, etc.). Person-fit 

statistics have even been used to identify individuals that may be cheating or guessing on 

academic tests (Levine & Rubin, 1979). 

Generally, a person-fit statistic takes an individual response pattern and compares 

it to a measurement model or a group of other response patterns. If the response pattern in 

question deviates from the measurement model, or the group, in a significant way, the 
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person-fit statistic identifies it as improbable or aberrant (Meijer & Sijtsma, 1995, 2001).  

For a simple example, consider an individual who completed a 10-item questionnaire 

with dichotomous yes/no response options. If the questionnaire fits a particular 

parametric IRT model, this individual’s response vector could be classified as likely or 

unlikely given the model. Alternatively, this individual’s response vector could be 

compared to other individuals from the same population who have also completed the 

questionnaire. If this individual’s response vector is vastly different from the group (e.g., 

the individual endorsed 8 or 9 yes responses while most respondents in the group 

endorsed 1 or 2 yes responses) then they could be classified as having an aberrant 

response set.  

 As alluded to, most person-fit statistics are derived from IRT models: either 

parametric or nonparametric. Parametric person-fit statistics generally involve looking at 

the likelihood of a given response set based on the underlying IRT model, while 

nonparametric person-fit statistics often involve comparing a response set to a group of 

response sets to assess aberrancy (Meijer & Sijtsma, 1995). Both parametric and 

nonparametric person-fit statistics have been used to identify aberrant response patterns 

with varying levels of success. While most parametric and non-parametric person-fit 

statistics were developed, and are traditionally used, with dichotomous response data 

(i.e., correct/incorrect), all of the person-fit statistics discussed in this dissertation have 

been generalized for use with polytomous response data. 

Parametric Person-Fit Statistics 

As discussed, most parametric person-fit statistics tend to rely on an underlying 

IRT model to assess aberrancy. Any response set that is highly improbable given the 
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underlying IRT model is considered to be aberrant. This measure of probability can be 

obtained in one of two ways: examining the residuals between the model expected and 

observed item scores, or through the likelihood function. Most parametric person-fit 

statistics use the likelihood function to derive their estimate of probability for a given 

response set (Meijer & Sijstma, 1995). Two of the most well-known parametric person-fit 

statistics are the Caution Index, and the lz index. 

The Caution Index  

The Caution Index was originally conceptualized under Student-Problem (S-P) 

curve theory and was applicable to either items or respondents. Tatsuoka and Linn (1983) 

provided an informative review of S-P curve theory: In S-P theory, a data matrix of items 

and respondents (with their binary response data) is created. This data matrix is arranged 

so that respondents are ordered from high to low total test scores in the rows, and that 

items were ordered from easiest to hardest in the columns. The S-curve is developed by 

creating vertical lines for each respondent (i.e., for each row) corresponding to the 

number of items they answered correctly and connecting the vertical lines. Similarly, the 

P-curve is created by making a mark corresponding to the number of respondents that 

answered an item correctly (in the columns) and connecting those marks. In this way, row 

and column sums and proportions can be calculated. Additionally, a “perfect” S-curve 

can be created by changing all values falling above the created S-curve to 1 (i.e., correct), 

and all values falling below the S-curve to 0 (i.e., incorrect). Given all this, the Caution 

Index was defined as the ratio of observed covariance between the S- and P-curves to the 

covariance between the S- and P-curves assuming a perfect S-curve. The equation for the 

caution index is given in Equation 5: 
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where yji is the binary response of person j to item i, pj is the proportion of correct 

responses for person j, yi is the item (i.e., column) sum for item i, p is the proportion of 

correct responses across the entire data matrix, and Mji
S
 is the binary response of person j 

to item i, assuming that the responses came from a data matrix with a perfect S-curve.   

 The Caution Index was not related to IRT until Tatsuoka and Linn (1983) 

presented five extended caution indices (ECI), which demonstrated that the S-curve could 

be conceptualized as a discrete test response curve. The simplest ECI conversion 

(referred to as ECI1 and not presented here) merely replaces the (Mji 
S - p

j
) term from 

Equation 5 with an IRT equivalent term: [Sθ̂j
(b̂i) - T(θ̂j)], where, Ŝθj

(b̂i) is the estimated 

person response function for the estimated difficulty of item i, and T(θ̂j) is the test 

response function at the estimated theta (i.e., ability) of person j. Of the four remaining 

ECI conversions, ECI2 and ECI4 are the two that have been researched most often 

(Sinharay, 2016). ECI2 is a further extension of ECI1 given by Equation 6: 

ECI2j
 = 1 - 

∑ (y
ji

 - 𝑝j) [G(b̂i) - G]n
i =1

∑ [Sθ̂j
(b̂i) - T(θ̂j)] [G(b̂i) - G]n

i =1

, 

(6) 

 

where the new term, [G(b̂i)-G], represents the group response function at the estimated 

difficulty for item i minus the average of the group response function (G). ECI4 is another 

small extension on ECI2. ECI4 is given in Equation 7: 
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in which [Sθ̂j
(b̂i) - T(θ̂j)] and [G(b̂i) - G] have been swapped. Equation 7 represents a 

covariance ratio of the relationship between an individual’s response (yi) and the 

estimated person response vector at a given theta (Sθ̂j
; the numerator) divided by the 

covariance of the group response curve minus the test response curve and the person 

response curve minus the test response curve at a given level of estimated theta (the 

dominator).   

Practically, ECI2 provides the covariance of an individual and the overall group 

response curve. In this way, ECI2 can be seen as a comparative statistic; an individual 

response pattern is compared to the normed group. On the other hand, ECI4 compares an 

individual’s response pattern to the person response curve at a given level of theta: how 

well the response pattern fits the model suggested curve (Tatsuoka & Linn, 1983). 

Tatsuoka (1984) suggested the standardization of these caution indices to address the fact 

that the original ECI statistics resulted in inflated values at extreme levels of theta. 

Additionally, Tatsuoka successfully used ECI2 and ECI4 to measure student 

misconceptions on an achievement test. However, they are generally outperformed by 

other person-fit statistics when they have been compared (Karabatsos, 2003; St-Onge et 

al., 2011; Tendeiro & Meijer, 2014). However, recent research has suggested that ECI4 

might be as effective as other person-fit statistics in certain situations (Sinharay, 2017).  

The lz Index  
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Drasgow et al. (1985) initially proposed the lz index as a method of examining 

nonresponse. Since then, it has gone through several iterations. The popularity of the lz 

index is partly because it is based on the likelihood function, which makes it relatively 

easy to understand compared to other parametric person-fit statistics. The general form of 

the likelihood function is given in Equation 8: 

L(θ|y) = ∏ f(y
i
|θ)

n

i =1

, 
(8) 

 

where 𝛉 is a vector containing parameter values, and y is a vector containing observed 

responses. The likelihood function is easy to apply to random samples, and it provides a 

method for examining what parameter values result in a higher likelihood that the 

observed values were obtained. Additionally, the likelihood function can be easily 

extended to measurement (and other) contexts (Bilder & Loughin, 2015).  

Drasgow et al. (1985) retrofitted an older person-fit statistic which also used the 

likelihood function, lo (Levine & Rubin, 1979), to construct their new lz index. The lo 

statistic is given in Equation 9: 

lo = ∑ 𝑦i

n

i=1

[log 𝑊i(θ̂d)] + (1 - 𝑦i)[logQ
i
(θ̂d)], 

(9) 

 

where 𝑦i is the correct/incorrect item score, 𝑊i is the item characteristic curve of the 

correct option for item i, θ̂d is the maximized likelihood function of the dichotomous 

model and Q
i
 = 1 – Pi(θ̂d). The lo statistic is then used to obtain the lz index as seen in 

Equation 10: 
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lz=
[lo-E3(θ̂d)]

σ3(θ̂d)
, 

(10) 

 

where E3 is the conditional mean of the three-parameter logistic (3PL) IRT model and σ3 

is the conditional standard deviation of the 3PL model. Drasgow et al. also proposed a 

more general version of the lz index: zh. Though, the only major difference between lz and 

zh is that means and standard deviations from a 3PL model with independent item 

responses (a histogram model, in their terminology) are used to compute the final 

statistic.  

 Since the lz statistic is contingent on the likelihood function, which itself is 

dependent on fitting an IRT model (in this context), problems arise when model 

parameters are not known. Specifically, using an estimate of ability (θ̂) results in a 

conservative lz result (Snijders, 2001). Snijders (2001) proposed a standardized version of 

lz to partially address this issue. His standardized version of the log-likelihood-based 

statistic (often called lz*) is given in Equation 11: 

lz
*
 = 

∑ [𝑦i - 𝑊i(θ̂n)][log( 𝑊i(θ̂) 1 - 𝑊i(θ̂))⁄n
i=1 ]

n
1
2σn(θ̂n)

 
(11) 

 

where yi is the dichotomous response to item i, Wi is the item characteristic curve of item 

i, and nσn

1
2⁄
(θ̂n) corrects the reduced variance that results from using an estimate of ability 

(the full proofs can be found in Snijders, 2001). Magis et al. (2012) reformulated 

Equation 11 to be more similar to the original lz equation (Equation 10); This 

reformulation is given in Equation 12: 
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lz
*
 = 

l0(θ̂) - E[l0(θ̂)] + cn(θ̂)r0(θ̂)

Ṽ[l0(θ̂)]
1

2⁄
, 

(12) 

 

where r0 is the derivative of an informative or noninformative prior (which depends on 

which model and estimator is used), cn is a weight function, and Ṽ[l0(θ̂)]
1

2⁄
 is the 

approximate standard deviation of the l0 function. Conceptually, lz* is simply a mean and 

variance adjusted version of lz that attempts to correct the conservativeness of lz when 

using estimated theta (Magis et al., 2012).  

 While lz is easy to understand and apply, research has shown that cautious 

application of the lz statistic is necessary. Specifically, it may not perform well when tests 

or surveys do not have item difficulties that cover the ability range of the population 

being tested; it may be less powerful depending on the length of the test or survey; it is 

not well suited for use in computerized adaptive tests; it does not necessarily outperform 

the nonparametric person-fit statistics; and it requires the underlying IRT model to fit the 

data well (Armstrong et al., 2007; Meijer & Tendeiro, 2012; van Krimpen-Stoop & 

Meijer, 1999). Several of these issues carry over to lz*, and research has shown that there 

is often not much difference in lz and lz* (Meijer & Tendeiro, 2012; van Krimpen-Stoop 

& Meijer, 1999).  

Nonparametric Person-Fit Statistics 

  Recall that most person-fit statistics either compare an individual to a 

measurement model or to a group to assess aberrant response patterns. In general, 

nonparametric person-fit statistics will do the latter: they compare an individual’s 

responses to those of a group to determine if they made responses that vary from the 
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norm. However, a few nonparametric person-fit statistics also assess fit based on an 

underlying nonparametric IRT (NIRT) model (Meijer & Sijtsma, 1995). As with all 

nonparametric statistics, nonparametric person-fit statistics do not assume an underlying 

distribution to data when applied. Having no (or few) specific requirements based on an 

underlying distribution allows nonparametric statistics to be applied more flexibly than 

their parametric counterparts. Some have argued this flexibility makes nonparametric 

statistics particularly suited for use in the social sciences (Siegel, 1956). Interestingly, 

nonparametric person-fit statistics have been shown to perform similarly when compared 

to their parametric counterparts and even outperform them in some situations (Dimitrov 

& Smith, 2006; Emons, 2008; Karabatsos, 2003; Niessen et al., 2016; St-Onge et al., 

2011; Tendeiro & Meijer, 2014). While there are many nonparametric person-fit 

statistics, only the most well-known (and by extension, well studied) statistics will be 

discussed: Guttman errors, the U3 statistic, and the H
T
 statistic. 

Guttman Errors  

Guttman errors are the simplest form of nonparametric person-fit statistic used to 

examine aberrant responses. They stem from the Guttman Scalogram, in which items 

were arranged from easiest to hardest difficulty. In a perfect Guttman scale, participants 

would respond correctly up to the point where an item is too difficult for them, and then 

would be unable to answer any further items correctly. A perfect Guttman scale would 

also result in distinct response patterns, for example: 11100 and 11000 would represent 

two response patterns of individuals who were able to answer 3 and 2 items correctly out 

of 5, respectively. In this way, respondents could easily be compared in terms of their 

ability on the construct being measured.  
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Guttman’s scale is an interesting measurement model, but it has fallen out of use 

as it is considered a “pre-statistical” measurement practice (Proctor, 1970). In evaluating 

the appropriateness of Guttman Scalogram to data, Guttman introduced the Guttman 

error: the situation in which a respondent answers an easy item incorrectly and a more 

difficult item correctly. In this way, a Guttman error represents a deviance from what 

normally would be expected by a Guttman pattern. Even in the absence of any specific 

measurement model a respondent should not have many Guttman errors. 

 The simplest way to use Guttman errors to assess response patterns is to obtain a 

count. Assuming that k-items are arranged from easiest to hardest (e.g., via proportion 

correct or IRT b-parameters), the number of Guttman errors can be obtained from 

Equation 13, 

𝐺 =  ∑ ∑ f
ig

k

g = i +1

k -1

i =1

 

(13) 

 

where fig represents a Guttman error for items i and g (1 denotes a Guttman error, while 0 

denotes no Guttman error for the item pair). Meijer (1994) realized that G could be 

confounded with the number-correct score. To address this issue, Meijer proposed G
*
, 

which is given in Equation 14:  

G
*
 = 

G

𝑋j(k - 𝑋j)
, 

(14) 

 

where G refers to the result of Equation 13 (or the number of Guttman errors), Xj refers to 

an individual’s number-correct score, and k refers to the number of items on the test or 

survey. Essentially, the denominator is the maximum possible number of Guttman errors 
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for a given number-correct score. Early research on the number of Guttman errors 

showed that it performed similarly to other nonparametric person-fit statistics in certain 

conditions (Harnish & Linn, 1981; Meijer, 1994). However, more recent research 

investigating Guttman errors for identifying aberrancy has been mixed. Some research 

has shown that Guttman errors are outperformed by other parametric (lz) and 

nonparametric (U3 and H
T
) person-fit statistics, particularly when used to examine 

polytomous items (Beck et al., 2019; Karabatsos, 2003), while other research suggests 

that Guttman errors perform well in a variety of conditions (Emons, 2008; Niessen et al., 

2016). Interestingly, the other nonparametric person-fit statistics discussed below can be 

conceptualized in terms of Guttman errors.  

U3  

Van der Flier (1982) proposed a statistic he dubbed U''', which was designed to 

assess the deviance of response vectors. In this case, a deviant response vector refers to a 

response vector that is less probable given estimated item difficulties. While this sounds 

quite similar to methods employed by parametric person-fit statistics, deviance scores 

only allow for the ordinal (i.e., ranked) assessment of the underlying probabilities. The 

U''' statistic is given in Equation 15: 

U'''(X)=
log(Pmax) - log(P(𝑍))

log(Pmax) - log(Pmin)
, 

(15) 

 

where P(Z) is the probability of response pattern Z, and Pmax and Pmin represent the 

probabilities of the most and least deviant response patterns that could result in the same 

number correct score, respectively. Using this equation will result in a U''' = 0 if the 

pattern is not at all deviant (essentially, a response vector with no Guttman errors), and a 
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U''' = 1 if the pattern is as deviant as possible (essentially, a response vector with the 

maximum amount of Guttman errors). The naming convention of U3 began as more 

research was conducted on U''' along with a more general form of the equation. The more 

general form of U3 is given in Equation 16: 

𝑈3(X)= 

∑ log(
πi

1 - πi

𝑌+

i=1 )- ∑ y
i
log(

πi

1 - πi

𝐼
i=1 )

∑ log(
πi

1 - πi

𝑌+

i=1
)- ∑ log(

πi

1 - πi

𝐼
i = I-Y++1 )

, 

(16) 

 

where I is a set of dichotomous items, yi is the binary response score vector, and 

Y+ = ∑ y
i

I
i=1 . Finally, let πi be the proportion of correct responses to item i in the 

population. For a given Y+, all terms will be constant except for ∑ y
i
log (

πi

1 - πi

I
i=1 ). As 

Equation 16 is a generalized form of Equation 15, results from the two equations will be 

identical. Just as with Guttman errors, U3 was found to be confounded with the number 

correct score. Van der Flier (1982) standardized U3 to address this issue. The 

standardized form of U3, ZU3, is given in Equation 17: 

𝑍𝑈3 = 
U3 - E(U3)

[Var(U3)]
1

2⁄
, 

(17) 

 

where E(U3) and Var(U3) are the expectation and variance of U3, respectively. For the 

full derivation of E(U3) and Var(U3), please see van der Flier (1982). The U3 and ZU3 

statistics have been successfully used to identify aberrancy in certain conditions (van der 

Flier, 1982; Emons et al., 2005). However, more research has shown that U3 is generally 

outperformed by other person-fit statistics and there is some question about the 
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practicability of its assumptions (Beck et al., 2019; Emons et al., 2002; Emons, 2008; 

Karabatsos, 2003; Meijer, 1994; St-Onge et al., 2011).   

H
T
  

H
T
 is the nonparametric person-fit statistic that has shown the most promise for 

detecting aberrant response patterns. Coefficient H
T 

owes its origin to Mokken (1971), 

who proposed a statistic called the coefficient of scalability (H) as a method to assess the 

quality of a unidimensional scale under his proposed nonparametric IRT models 

(Mokken’s work was also an extension of Loevinger’s [1948] work). Mokken proposed 

two models: the monotone homogeneity model and double monotonicity model 

(Mokken, 1971; Sijstma & Molenaar, 2002). Under the monotone homogeneity model, 

total test scores can be treated as ordinal measures of latent ability if: 1) the test is 

unidimensional, 2) the responses to items are locally independent, and 3) the item 

response curves are nondecreasing (i.e., monotonic). The double monotonicity model 

makes these same three assumptions but adds a fourth: that the item characteristic curves 

are nonintersecting. Coefficient H has been applied to these models in two ways: 1) to 

determine how closely a test follows a perfect Guttman Scale, or more practically, 2) to 

determine if an item set (i.e., scale) has enough information in common to be considered 

unidimensional (Sijstma & Molenaar, 2002). The coefficient of scalability can be 

obtained at the item (Hi; often called the item scalability coefficient) or test (H) level.  

 Coefficient H
T
 was originally proposed as a method for evaluating the last 

assumption made by the double monotonicity model: the non-intersection of item 

characteristic curve (ICC; Sijstma & Meijer, 1992). Obtaining H
T
 was as simple as 
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transposing the standard data matrix and calculating H. Coefficient H, and by extension 

H
T
, is given in Equation 18: 

𝐻 = 1 - 
∑ ∑ (Pig - PiPg)g≠ii

∑ ∑ Pi(1 - Pg) + ∑ ∑ Pg(1 - Pi)g<iig>ii

 , 
(18) 

 

where Pi, Pg, and Pig represent the probability of a correct answer on item i, g, and both 

items i and g, respectively, and it is assumed that Pi ≤ Pg. Since coefficient H
T

 is 

calculated using a transposed data matrix, item i and g would become person i and g. 

Equation 18 can also be expressed as a more explanatory covariance ratio, which is given 

in Equation 19: 

𝐻 = 
∑ Cov(𝑦i,R(i))i

∑ Covmax(𝑦i,R(i))i

, 
(19) 

 

where yi is the response for item i, and R(i) is the rest score: the total correct score for all 

items except item i. ∑ Covmax(y
i
,R(i))i  represents the maximum covariance between the 

response to item i and the rest score; it is obtained by correcting any Guttman errors that 

occur in the data used for this calculation. Recall that H applies to an entire test and was 

originally used for test construction and the assessment of quality. When applied to a 

transposed data matrix (H
T
), the numerical result indicates to what extent the item 

characteristic curves intersect: low values of H
T
 suggest more intersection while high 

values suggest there is less intersection (Sijstma & Meijer, 1992).  

 While H and H
T
 are useful, Hi has more applications in the removal of aberrant 

response patterns. Recall that Hi is the item scalability coefficient. It was originally used 

as a method for item selection by Mokken (1971). As with H, Hi assesses the 
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homogeneity of a specific item with the set of remaining items. Coefficient Hi is given in 

Equation 20: 

Hi = 1 - 
∑ (Pi - Pig)g≠i

∑ Pi(1 - Pg) g>i + ∑ Pg(1 - Pi)g<i

, 
(20) 

 

where all terms are interpreted the same as in Equation 18. Just as with H, Equation 20 

can also be expressed more clearly with a covariance ratio, which is given in Equation 

21: 

Hi=
Cov(𝑦i, R(i))

Covmax(y, R(i))

, 
(21) 

 

where all terms are interpreted the same as in Equation 19. Similar to how H is calculated 

on a transposed data matrix to obtain H
T
, Hi can be calculated on a transposed data matrix 

to obtain Hi
T. Coefficient Hi

T then represents the “scalability” of a person when compared 

to all other people in a given data set. In this way, person i can be compared to the rest of 

the sample to determine if his or her response pattern is homogenous with the other 

response patterns (Sijtsma & Meijer, 1992; Sijtsma & Molenaar, 2002). 

 Research regarding Hi
Tas an index of aberrant responding has been largely 

successful. Coefficient Hi
T is often shown to outperform other nonparametric and 

parametric person-fit statistics in a variety of conditions (Beck et al., 2019; Dimitrov & 

Smith, 2006; Karabatsos, 2003; Tendeiro & Meijer, 2014). However, some studies have 

shown that Hi
T does not perform as well when identifying cheating, and that Hi

T may 

perform similarly to some parametric person-fit statistics in certain contexts (St-Onge et 
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al., 2011; Sinharay, 2017). Additionally, Beck et al. (2019) found that the effectiveness of 

Hi
T varied widely when predicting a proxy for careless responding in polytomous data.  

The Polytomous Problem 

 Previously, the discussion about person-fit statistics has largely focused on their 

application in dichotomous contexts. Unfortunately, the usage of person-fit statistics with 

polytomous items requires that the person-fit statistic be generalized for that application. 

While the polytomous generalization of a person-fit statistic might not sound very 

complicated, not many person-fit statistics have been generalized in this way. However, it 

could be argued that person-fit statistics would be more useful applied to polytomous 

contexts.  

Consider the application of person-fit statistics in dichotomous contexts: a test 

resulting in binary responses is often going to be an achievement test. While cheating is a 

concern on achievement tests (and a useful application for person-fit statistics), many of 

the other response biases are not (e.g., SDR, acquiescence, CR, etc.). In contrast, consider 

a typical example of a low-stakes, polytomous survey: a researcher investigating certain 

attitudes in a sample of undergraduate students or in an online sample. In this situation, 

the researcher needs to be concerned with a bevy of response biases. If person-fit 

statistics are useful indicators of aberrant response patterns, they are almost mandatory 

for use in the polytomous example. Despite the apparent usefulness of person-fit statistics 

in polytomous contexts, only a handful of researchers have attempted to apply them in 

such a manner. The person-fit statistics that have been investigated most often in 

polytomous contexts are Guttman errors, U3, Hi
T, and lz (Beck et al., 2019; Emons, 2008).   
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 In dichotomous contexts, recall that a Guttman error is defined as an individual 

getting an easy item incorrect, but responding correctly to a harder item. To understand 

how Guttman errors work in a polytomous context, a foundational concept from 

polytomous nonparametric NIRT must be briefly discussed. In polytomous NIRT an item 

score is defined by Equation 22: 

𝑦ji= ∑ Vjih

m-1

h=1

, 

(22) 

 

where, yji is the score of person j on item i, m represents the number of response 

categories (ordered as 0, 1, …, m-1), assuming m is equal for all items, and Vjih is the 

decomposition of the m-1 dichotomous item steps, where h is ordered as 1,2, …, m-1. If 

Xji is greater than h, Vjih will equal 1, otherwise, Vjih will equal 0 (Mokken, 1997; 

Molenaar, 1997). Conceptually, Xji is the number of item steps that person j passed on 

item i, where an item step is defined as having enough of the underlying latent trait to 

move from one response category to another (e.g., moving from response category 0 to 

response category 1, assuming higher categories relate to a higher level of the underlying 

latent trait). In this vein, π̂ih can be defined as the proportion of individuals who passed 

item step h for item i in a particular sample. Similar to p-values in CTT, π̂ih can be 

treated as a measure of item step difficulty, with higher proportions suggesting an easier 

item step.  

There is now a basis to define Guttman errors in a polytomous context. 

Conceptually, a polytomous Guttman error occurs when an individual passes a difficult 

item step (i.e., an item step with a small π̂𝑖ℎ), but not an easier item step. Polytomous 
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Guttman errors are assessed for every item step pair on a given survey, and the higher 

prevalence of polytomous Guttman errors should equate to more misfit (Emons, 2008).  

Recall that Guttman errors are the simplest person-fit statistic used to assess 

aberrant response patterns in dichotomous data. Guttman errors are still the simplest 

person-fit statistic used for polytomous contexts, but the generalization has resulted in a 

somewhat complex method for assessing aberrancy. For example, consider a 3-item 

survey that uses a 5-point, Likert-type response format. For each individual completing 

this simple survey, 105 item step pairs would need to be assessed for Guttman errors. 

Regardless of the complexity added by polytomous data, the number of Guttman errors 

has been shown to identify aberrancy as well as, or better than, other statistics in certain 

conditions (Emons, 2008; Niessen et al., 2016). However, others have found that 

Guttman errors do not perform very well in polytomous contexts (Beck et al., 2019).  

While the nonparametric person-fit statistics can all be conceptualized in terms of 

Guttman errors, fitting the parametric lz
 
index to polytomous contexts is conceptually 

easier, but practically more difficult. Recall that lz is assessing the likelihood of a given 

response pattern given an underlying measurement model. In order for lz to be applied to 

polytomous data, all that is required is to define a set of polytomous IRT model 

parameters. However, parametric IRT models can be quite restrictive, and appropriate 

model fit remains key to accurately identifying misfitting persons (Meijer & Baneke, 

2004; Meijer & Tenderio, 2012). Meijer and Baneke (2004) offered several reasons that 

parametric IRT is often not a good fit for noncognitive measurement (i.e., measurement 

of attitudes, personality, frequency of behaviors, etc.). They argued that parametric IRT 

imposes a specific structure on the data that is often not reflective of how the survey was 
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constructed, and that it requires large sample sizes that are often unrealistic for 

noncognitive contexts. Both of these criticisms can be solved by using nonparametric 

IRT approaches to assess misfit. In addition to these reasons, the most commonly used 

parametric person-fit statistic, lz, has been shown to perform similarly, or worse, to 

nonparametric person-fit statistics in polytomous contexts (Beck et al., 2019; Emons, 

2008; Niessen et al., 2016).  

While nonparametric person-fit statistics are often touted as equivalent to, or more 

useful, than parametric person-fit statistics in dichotomous data, few studies have 

investigated their usefulness in polytomous data. Recall that Hi
T and U3 can also be 

conceptualized in terms of Guttman errors: where Hi
T is a ratio of observed covariance 

and the maximum covariance (i.e., the covariance if there had been no Guttman errors). 

Additionally, U3 = 0 is equivalent to a response vector being a Guttman vector (i.e., a 

vector of responses with no Guttman errors; Meijer, 1994). Both U3 and Coefficient 

Hi
Tcan still be conceptualized this way when they have been generalized for polytomous 

items. Additionally, Hi
Thas been shown to test the assumption of nonintersecting ICCs 

made by the double monotonicity model in polytomous contexts accurately (Ligtvoet et 

al., 2010).  

However, when Beck and colleagues (2019) applied Hi
T, U3, and the number of 

normed Guttman errors to polytomous survey data, their effectiveness at identifying 

aberrancy was variable. They found that Guttman errors and U3 performed poorly 

overall. Additionally, they found that Hi
Tperformed better, but it was still below 

expectations based on studies where Hi
T was applied to dichotomous data. It should be 

noted that Beck and colleagues were using the three statistics to predict a proxy for 
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inattentive responding, but it was unclear why the person-fit statistics performed so 

variably in the polytomous context. Coefficient Hi
Timproved model fit when using a 

cutoff that minimized false negatives and positives (similarly or better to other person-fit 

statistics) but performed poorly when a cutoff that offered the greatest discrimination 

(i.e., area under the curve from a receiver operating characteristic curve analysis) was 

used. Additionally, both Guttman errors and U3 performed poorly in terms of area under 

the curve from a ROC analysis and on improvement to model fit. It is unclear why Hi
T, 

U3, and the number of Guttman errors showed mixed results using these cutoffs in 

polytomous data, as such cutoffs had been used in the past to some success (Karabatsos, 

2003). The findings of Beck et al. (2019) have raised questions about potential limitations 

when applying nonparametric person-fit statistics in polytomous contexts. 

The Current Study 

 The current study investigated the efficacy of Hi
T, U3, and the number of Guttman 

errors for the detection of aberrant responses in polytomous, noncognitive contexts. 

Specifically, these person-fit statistics were investigated under a variety of simulated 

conditions to determine if, when, and how they should be applied to detect aberrancy in 

polytomous response patterns. These conditions included type of response bias (i.e., 

aberrancy), number of response options, dimensionality, and test length. The type of 

response bias, test length, and the number of response options have been previously 

shown to impact the detection ability of nonparametric person-fit statistics (Emons, 2008; 

Karabatsos, 2003; Sinharay, 2017; St-Onge et al., 2011; Tendeiro & Meijer, 2014). 

However, the impact of the number of response options on Hi
T  has not been investigated.  
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Additionally, the impact of dimensionality on these person-fit statistics in polytomous 

contexts has not been investigated. 

Multidimensionality represents a potential problem for nonparametric person-fit 

statistics, as they are developed and applied under basic NIRT models (i.e., the Monotone 

Homogeneity Model and the Double Monotonicity Model; Sijtsma & Molenaar, 2002). 

The first assumption of these models is unidimensionality. Some research has shown that 

fitting a unidimensional IRT model to multidimensional data does not result in biased 𝜃 

or item parameter estimates, but the precision of θ̂, item discrimination, and item 

difficulty estimates decrease as the severity of violations increase (Crişan et al., 2017). 

Additionally, it has been shown that parametric IRT models are robust to violations of 

unidimensionality, particularly in the presence of a strong general factor, but can lead to 

an increase in root mean square errors in the item discrimination and item difficulty 

parameters (De Ayala, 1994; Drasgow & Parsons, 1983; Harrison, 1986). While the 

nonparametric person-fit statistics have been generalized for use in polytomous data, the 

impact of multidimensionality on nonparametric person-fit statistics, or on 

unidimensional NIRT models, has not been investigated. To this end, the current study 

will make five specific hypotheses: 

 Hypothesis 1) Hi
Twill show greater sensitivity, specificity, positive predictive 

values, and negative predictive values when compared to U3 and the number of 

Guttman errors. 

 Hypothesis 2) Within person-fit statistics, the sensitivity, specificity, positive 

predictive values, and negative predictive values will be similar across 

aberrancies. 
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 Hypothesis 3) All person-fit statistics will show increased sensitivity, specificity, 

positive predictive values, and negative predictive values as the number of 

response options increases. 

 Hypothesis 4) All person-fit statistics will show decreased sensitivity, specificity, 

positive predictive values, and negative predictive values as the dimensionality of 

data increases. 

 Hypothesis 5) All person-fit statistics will show increased sensitivity, specificity, 

positive predictive values, and negative predictive values as test length increases. 
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CHAPTER III: METHOD 

 This study utilized four simulation factors: 1) type of response bias, 2) number of 

response options, 3) test length, and 4) dimensionality. For the type of response bias 

condition, six response biases were modeled: disacquiescence, acquiescence, midpoint 

responding, extreme responding, social desirability responding, and careless responding. 

For the number of response options condition, four response options of differing lengths 

were simulated: four, five, six, and seven. These four response option conditions were 

based on empirical research regarding the optimum and most common number of 

response categories for noncognitive measures (DeCastellarnau, 2018; Revilla et al., 

2014; Weijters et al., 2010). Test length was simulated as short (using 12 items) and 

medium (using 36 items). Finally, four different conditions of dimensionality were tested: 

unidimensional, two-dimensional, three-dimensional, and four-dimensional. These 

dimensions will be correlated factors from a single scale. The result is a simulation study 

with 4 x 4 x 2 x 6 conditions, for a total of 192 unique combinations. R (R Core Team, 

2021) was used for all item generation procedures and analyses. 

Simulation Procedures 

 Following procedures in the extant literature for generating realistic polytomous 

item response data that accounts for dimensionality, the Multidimensional Graded 

Response Model (MGRM) was used (Bulut & Sünbül, 2017; De Ayala, 1994; Jiang et al., 

2016). One expression of the MGRM is given in Equation 23:  

Pjk(θ)= 
1

1 + exp[-D ∑ [ajh(θh - bjk)]H
h=1 ]

 , 
(23) 
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where Pik(θ) is the probability that a respondent with a latent trait vector of length H (𝜽) 

will respond in category k (with ordered categories of k + 1) or higher for item i; D is an 

optional scaling constant of 1.702 (otherwise D = 1);  aih is the item discrimination 

parameter of item i on dimension h; θh is the latent trait of interest for dimension h; and 

bik is the item boundary parameter for category k on item i. By default, the probability of 

responding in the lowest category or higher is defined as 1 (Pi0 (θ) = 1.0), and the 

probability of responding in the highest category is defined as 0 (Pi(k+1) = 0.0). 

 To simulate the measurement model, an instrument with four intercorrelated 

factors was used as a basis for the simulation conditions. (See Beck, 2015 for an 

overview, and the general factor structure for the simulation is provided in Figure B1).  A 

multivariate normal distribution was used to simulate 1000 latent trait vectors across four 

dimensions. Each of the four dimensions was assigned a mean ranging from -.001 to 

.092, and a covariance matrix with off-diagonal terms ranging from 0.31 to 1.11 was used 

to define the covariance structure of these data. The means and the covariance matrices 

were adapted from parameters obtained from Beck (2015) and are provided in Table A1.  

Item Characteristics 

Item boundary parameters (bik) were based on values obtained from fitting data 

from Beck (2015) to the Graded Response Model using the ltm package (Rizopoulos, 

2006) in R. Recall that the number of response options was a manipulated condition for 

this study, and that the number of response options generated were four, five, six, and 

seven. For each of these four conditions, the item boundary parameters were created from 

appropriate quantiles (i.e., terciles for k = 4, quartiles for k = 5, and quintiles for k =6) 

using the item boundary parameter estimates obtained from Beck (2015). These quantiles 
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formed the basis of the uniform distributions used to obtain the item boundary parameters 

for each condition. The uniform distributions used to create the item boundary parameters 

are given in Table A2.  

For the 144 total items across four dimensions (36 loading primarily on each 

dimension), item discrimination parameters were generated from unique uniform 

distributions. The range for these uniform distributions were taken from the ranges of 

item discrimination parameters obtained by fitting data from Beck (2015) to the Graded 

Response Model using the ltm package (Rizopoulos, 2006) in R. The uniform 

distributions that the primary item discrimination parameters were drawn from were: 

a1primary ~ U(1.895, 3.296); a2primary ~ U(2.657, 4.668); a3primary ~ U(2.851, 6.651); and 

a4primary ~ U(1.803, 3.837). To ensure the data were realistic as possible, each set of 36 

items had nonzero item discrimination parameters for all dimensions. Similar to 

procedures used by Finch (2011), smaller item discrimination parameters were generated 

for the nonprimary dimension loadings. These smaller item discrimination parameters 

were randomly drawn from a uniform distribution (asecondary ~ U[0.1, 0.4]) for all 

dimensions. The full table of item discrimination parameters used to generate data is 

provided in Table A3.  After the latent trait vector (discussed in the previous section), 

item discrimination parameters, and item boundary parameters were created, simulated 

responses to all items were generated under the MGRM model using the mirt (Chalmers, 

2012) package in R. 

Data Set Generation 

 For each unique dimensionality, number of response options, and test length 

condition (4 x 4 x 2), a data set was created by randomly sampling items from the 
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appropriate dimension(s). The sampling occurred such that there was an equal number of 

simulated responses to items from each dimension represented in multidimensional data 

sets, and these responses were sampled without replacement. This sampling procedure 

resulted in 32 static data sets that were used for all further analyses. These static data sets 

each contained 12 or 36 items and had items loading on between one and four dimensions 

with an equal number of items coming from each dimension. The full specifications of 

these data sets are provided in Table A4. After these 32 data sets were generated, any 

individual response vectors with zero variance were removed as they interfered with the 

calculation of some nonparametric person-fit statistics. Additional simulated observations 

were removed at random until all data sets had 900 simulated respondents. To ensure that 

these static data sets were comparably reliable, coefficient alpha and Omega Total 

(McDonald, 1999) were investigated for each data set within the number of response 

option conditions. Across dimensions, all reliability estimates fell within a (±) .05 range.  

Adding Aberrancy 

 For each data set, 100 aberrant response vectors were added for a total of 1000 

simulated respondents per data set. Adding aberrancy in this manner created data sets 

where exactly 10% of all simulated respondents engaged in aberrant responding. Recall 

that the extant literature suggests that ten percent of respondents are expected to engage 

in aberrant responding in a given noncognitive survey sample (Beck et al., 2019; 

Johnson, 2005; Maniaci & Rogge, 2014; Mckibben & Silvia, 2015; Meade & Craig, 

2012). The process of adding aberrancy was repeated 1000 times for each condition, with 

aberrant respondents being generated from a new multivariate normal distribution every 
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iteration. This step resulted in the creation of 32,000 data sets (4 x 4 x 2 conditions x 

1000 replications) for each aberrant response pattern. 

Acquiescence and Disacquiescence 

To simulate both acquiescence and disacquiescence, one hundred additional response 

vectors were generated using modified item boundary parameters. An approach similar to 

Emons (2008) and Rossi et al. (2001) was used to modify the item boundary parameters. 

Namely, the item boundary parameters were linearly transformed. Then, item responses 

using theta values identical to those described in the generation of the base data sets were 

used to generate additional aberrant response vectors. The linear transformation of the 

item boundary parameters for both acquiescence and disacquiescence followed a similar 

pattern, albeit in different directions. The linear transformation for acquiescence is given 

in Equation 24: 

δki
*

 = δki + sδi
, (24) 

where 𝛿ki
∗  is the modified item boundary parameter k for item i, 𝛿ki is the unmodified 

item boundary parameter k for item i, and  sδi
 is the standard deviation of the item 

boundary parameters for item i. This linear transformation increased the likelihood that 

the simulated respondents endorsed higher categories. The linear transformation for 

disacquiescence is given in Equation 25: 

δki
*

 = δki - sδi
, (25) 

where all terms are defined the same as they are in Equation 24. This transformation 

decreased the likelihood that simulated respondents endorsed higher categories. 

Extreme and Midpoint Responding 
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 To simulate both extreme and midpoint responding, additional response vectors 

were generated with modified item boundary parameters. The aberrancy was generated 

using procedures described by Emons (2008) and Rossi et al. (2001), who used the same 

method and equation to simulate both extreme and midpoint responding. The item 

boundary parameters were linearly transformed and used to generate aberrant response 

vectors. The linear transformation is given in Equation 26: 

δki
*

 =  exp(ε)  ×  (δki - δ̅i) + δ̅i, (26) 

where δki
*

 is the modified boundary parameter k for item i, 휀 is a constant representing the 

size of the transformation (i.e., the size of the aberrant response effect), δki is the k item 

boundary for item i, and δ̅i is the mean item boundary parameter for item i. When ε > 0, 

response vectors were modified such that midpoint responses have higher endorsement 

probabilities. When ε < 0, response vectors were modified such that extreme responses 

have higher endorsement probabilities. 

Social Desirability Responding 

 Simulating social desirability responding (SDR) also used a linear transformation 

of item boundary parameters. In fact, it used the same linear transformation seen in 

Equation 24. However, the linear transformation was only performed on simulated 

respondents with low values of theta. This method of generating SDR has a few 

shortcomings. Namely, it only simulates “faking good”, that is, respondents with low 

levels of a desired latent trait responding in a manner that suggests higher levels of the 

desired latent trait. Additionally, the linear transformation was identical to the linear 

transformation for acquiescence responding. In essence, this method assumed that the 
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only difference between acquiescence responding is who engages in it (i.e., individuals 

with certain levels of theta for SDR), and the motivation causing it. 

 To simulate SDR, an additional multivariate normal distribution was used to 

generate response vectors. However, this new distribution had latent means falling one 

standard deviation below the latent means used to create the base data sets (the latent 

means will be: ξ1 = -.982; ξ2 = -.964; ξ3 = -.903; and ξ4 = -.868). All other aspects of this 

multivariate normal distribution were kept the same as the distribution used to generate 

the base data sets. The new multivariate normal data set was used to generate item 

responses to items with item boundary parameters modified by Equation 24. 

Careless Responding 

 Careless responding was simulated by generating 100 additional response vectors 

from the multivariate normal distribution used to generate the base data sets. For each 

new simulated respondent, a random response option replaced the respondent’s raw 

response on the selected items. Each response option in a given response set had the same 

likelihood to be chosen as any other response option.  

This method of simulation made the explicit assumption that careless responding 

is equivalent to random or uniform responding (recall that both random and uniform 

responding are collectively included under the careless responding term). Unfortunately, 

the mechanisms of careless responding are not understood well enough for a more 

purposeful simulation. Additionally, this method of simulating careless responding made 

it unlikely that response vectors with no variance were created. 
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Estimating and Applying Nonparametric Person-Fit Statistics 

 Recall that the process of adding aberrancy to each data set was repeated 1000 

times, selecting random items and respondents each time. The estimation of Hi
Tacross all 

conditions was conducted using the mokken package in R (van der Ark, 2007, 2012). The 

estimation of U3 and the number of normed Guttman errors was performed using the 

PerFit package in R (Tendeiro et al., 2016).  

Coefficient Hi
T does not have an established theoretical null distribution, so 

specific cutoff values or statistical tests are not readily available (Mousavi et al., 2019). 

Similarly, there is no standardized method for determining cutoff values for U3 or 

Guttman errors. Therefore, to determine whether or not the nonparametric person fit 

statistics were identifying response vectors as aberrant, an empirical cutoff was applied. 

For each statistic, this empirical cutoff was derived from a bootstrapped sample of the 

estimated values. Specifically, the bootstrapping procedure followed these steps:  

1. Coefficient Hi
T, U3, and normed Guttman errors were estimated for all 

conditions and repetitions. 

2. The distributions of the nonparametric person fit statistics were treated as 

populations, and randomly sampled from 1000 times with replacement. This 

generated 1000 samples from each of the 1000 repetitions. 

3. For each of the bootstrapped samples, the value falling at the 5
th

 percentile 

rank was found.  

4. The median of the 5
th

 percentile rank values was found and treated as the 

cutoff value. 
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Performing the bootstrapping procedure as outlined above follows recommendations by 

Mousavi et al. (2019). Additionally, it allowed for the nominal alpha level (Type I error 

rate) to be close to 0.05 (Mousavi et al., 2019). Finally, using the same cutoff criteria for 

each person-fit statistic allowed for comparisons of outcomes across statistics. 

Estimating Efficacy 

 The efficacy of the nonparametric person fit statistics was determined by 

calculating sensitivity, specificity, negative predictive value, and positive predictive 

value. The results of any method, procedure, or test designed to classify individuals into a 

category can be described in terms of true or false positives and negatives. Consider the 

possible results of an individual respondent being examined for aberrant response 

patterns as presented in Table A5. A simple equation for sensitivity is given in Equation 

27: 

Sensitivity= 
True Positives

(True Positive + False Negatives)
, 

(27) 

where sensitivity is calculated as the proportion of individuals correctly classified as 

aberrant to the total number of individuals who were simulated to respond aberrantly. A 

simple equation for specificity is given in Equation 28: 

Specificity= 
True Negatives

(True Negatives + False Positives)
, 

(28) 

where specificity is defined as the proportion of individuals correctly classified as not 

aberrant to the total number of individuals not simulated to respond aberrantly. A simple 

equation for positive predictive value (PPV) is given in Equation 29: 

PPV= 
True Positives

(True Positives + False Positives)
, 

(29) 
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where the positive predictive value is the ratio of true positives to all positives. PPV 

values range from zero to one, with one representing perfect accuracy. PPV represents 

the proportion of individuals correctly classified as aberrant out of all individuals 

classified as aberrant. Conversely, negative predictive value (NPV) is the proportion of 

individuals correctly classified as not aberrant out of all individuals classified as not 

aberrant. A simple equation for NPV is give in Equation 30: 

NPV =  
True Negative

(True Negatives + False Negatives)
. 

(30) 

Sensitivity, specificity, positive predictive value, and negative predictive value 

were calculated for each of the 1000 repetitions for each condition and then averaged to 

provide an aggregated result for each condition. The results provided information on how 

well the nonparametric person fit statistics correctly detected aberrant response patterns 

(sensitivity), correctly rejected respondents without aberrant response patterns 

(specificity), and how precise the nonparametric person fit statistics were at identifying 

aberrancy (PPV and NPV).  
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CHAPTER IV: RESULTS 

 Recall that a 6 x 4 x 4 x 2 simulation study was conducted to examine the 

specificity, sensitivity, positive predictive value (PPV), and negative predictive value 

(NPV) of U3, Hi
T, and the number of normed Guttman errors when applied to polytomous 

survey data with aberrant responses. Specifically, six types of aberrant responses were 

simulated: acquiescence, disacquiescence, extreme responding, midpoint responding, 

socially desirable responding, and careless responding. For each of these aberrancies, 

response data were simulated such that each had data ranging from one to four 

dimensions, short (12) and medium (36) test lengths, and one of four different response 

categories (4, 5, 6, and 7). For each unique condition of this simulation, the specificity, 

sensitivity, PPV, and NPV were determined based on the classification accuracy of the 

person-fit statistics. 

 For each aberrant response behavior and person-fit statistic, Analyses of variance 

(ANOVAs) were calculated using the obtained specificity, sensitivity, PPV, and NPV 

values as the outcome variables. Dimensionality, number of response options, and test 

length were added to the models as main effects; all combinations of these variables were 

also included as interaction terms (with the highest term being a three-way interaction 

between dimensionality, length, and the number of response options). Weighted least 

squares general linear models were used to generate model parameters, which were then 

converted into ANOVA tables. Weighted least squares estimation via the Iteratively 

Reweighted Least Squares (IRLS) algorithm was used to address issues with 

heteroscedasticity (Cohen et al., 2003; Green, 1984). Since the sample sizes were large 

and the resulting statistical tests were overpowered, partial omega squared values (Keren 
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& Lewis, 1979) were calculated for effect size and were used to make determinations 

about which factors to interpret. The rules of thumb presented by Cohen (1992a) were 

adapted to determine the magnitude of the effects (i.e., ω
2

p
 
< .13 = small, .13 <= ω

2
p < .26 

= medium, and ω
2

p
 
> .26 = large). The results of the ANOVAs and the effect sizes are 

presented near the beginning of every section for the following chapter. After the 

ANOVAs are presented, the provided figures are used to interpret the results. Note that 

the ANOVAs and effect sizes are discussed generally in the chapter for brevity, but the 

complete ANOVA tables with effect size estimates are provided in Appendix C. 

 As the results section is quite dense, the next two paragraphs are intended to aid in 

orienting readers. The results section is parsed into subsections for each aberrant response 

pattern, which are further subdivided into each person-fit statistic. For each aberrant 

response pattern and person-fit statistic, the ANOVA results are discussed in a general 

manner, then, the highest-order term that showed a large or medium effect size is 

interpreted. Finally, aggregated results are presented, though, these should be interpreted 

with caution when in the presence of practically meaningful interactions.  

 In terms of the ANOVA results, the sample sizes were quite large given 

simulation procedure (N = 32,000 for each person-fit statistic). With such large sample 

sizes, the p-values returned from the ANOVA were miniscule (this issue was also 

encountered when attempting to review the post-hoc tests). All results for all outcomes 

from the study were statistically significant even using strict p-value criteria (p < .0001). 

For this reason, the effect sizes were largely used to determine whether an effect would 

be interpreted as meaningful. Finally, while most outcomes for the person-fit statics 

showed at least medium-sized main effect within each response pattern, only the highest-
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order terms were interpreted. Main effects become notoriously difficult to interpret when 

their levels depend on levels of other factors, particularly with disordinal interactions.  

 While only the highest-order meaningful effects were interpreted in the results 

section, it is important to attend to the partial omega squared values provided in 

Appendix C as well as the figures provided in Appendix B (Figures B2 – B73). No 

effects classified as small will be discussed in the results, but the discussions of the three-

way interactions across aberrancies and person-fit statistics often do not explicitly 

emphasize that not all meaningful effects had the same magnitude. For example, in the 

results for Guttman errors identifying acquiescence responding, the three-way interaction 

explained between 24% and 30% of the variance in the outcomes, depending on the 

outcome, after accounting for variance explained by the other factors. Conversely, the 

three-way interaction for Hi
Tin acquiescence responding only explained between 4% and 

18% of the variance in the outcomes, depending on the outcome, after accounting for 

variance explained by other predictors in the model. This suggests that the three-way 

interaction for Guttman errors found within acquiescence responding is more 

meaningful/stronger than the three-way interaction found for Hi
T in terms of variance 

explained. However, even in this example, it is important to remember that the three-way 

interactions for both Guttman errors and Hi
T were classified as meaningful based on the 

effect size criteria adopted by this study. Therefore, while the partial omega squared 

results should be considered, the results will still only interpret the highest-order terms 

that were found to be meaningful. 

Acquiescence 

Guttman Errors 
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 The average negative predictive value (NPV), positive predictive value (PPV), 

sensitivity, and specificity for the number of normed Guttman errors across the 

simulation conditions are given in Figures B2, B3, B4, and B5, respectively. 

Additionally, Table A6 contains the NPV, PPV, sensitivity, and specificity aggregated 

across simulation conditions (dimensions, number of response categories, and test 

length).  

Given the large sample sizes across all outcome variables (NPV, PPV, sensitivity, 

and specificity), all terms in the ANOVA were statistically significant. The effect sizes 

were more illuminating. For all outcomes, there were large or medium effect size 

estimates for the dimensionality, number of response options, and test length conditions. 

Additionally, the interaction between dimensionality and the number of response options 

and the three-way interaction showed at least medium effect size estimates.  

While there were lower-order terms (i.e., main effects and two-way interactions) 

that also showed large or medium effect sizes, the results focus on the three-way 

interaction. Specifically, there was a large improvement in the NPV, PPV, specificity, 

and sensitivity of normed Guttman Errors in the 3- and 4-dimensionality conditions for 

seven response options on medium length tests. This effect was not seen in the other 

dimensionality conditions, with most other conditions performed best at 2-dimensions in 

the medium-length condition. Additionally, this effect was not seen in the short test 

condition. Four and six response options tended to perform best in the 3- and 4-

dimension conditions for short tests, and the 2- and 3-dimension conditions for medium 

tests.  

Coefficient Hi
T
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 The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for coefficient Hi
T across the simulation conditions are given in Figures 

B6, B7, B8, and B9, respectively. Additionally, Table A7 contains the NPV, PPV, 

sensitivity, and specificity aggregated across simulation conditions (dimensions, number 

of response categories, and test length). 

Given the large sample sizes, across all outcome variables (NPV, PPV, 

sensitivity, and specificity) all terms in the ANOVA were statistically significant. The 

effect sizes were more illuminating. For sensitivity, the number of response options and 

the interaction between dimensionality and test length had large effect sizes. The 

interaction between dimensionality and the number of response categories, the interaction 

between the number of response categories and length, and the three-way interaction 

showed medium effect sizes as well. For specificity, only the number of response options 

showed a large effect size; all other effect sizes were small. The effect sizes for PPV and 

NPV were identical to sensitivity. In Figure B9 and Table A7, seven response options 

consistently result in higher specificity when compared to four, six, and seven response 

options regardless of dimensionality or length. 

In terms of sensitivity, PPV and NPV, there was a moderately sized three-way 

interaction. Figures B6, B7, and B8 show that while seven response options still 

outperform the other response options, the difference is impacted by both dimensionality 

and test length. All response option conditions perform their worst in the 2-dimension 

condition on short tests but perform their best in the 2-dimension condition on medium 

tests. Additionally, with six response options, there is a large increase in outcomes 

between short and medium tests in the 1- and 2-dimension conditions. However, the 
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increase is smaller in the 3-dimension condition and become a decrease in the outcomes 

in the 4-dimension condition. 

 Overall, Hi
T showed the highest outcomes at the medium test length condition 

when compared to the short test length, though the differences are small. In terms of the 

number of response categories, Hi
T performed much higher with seven response 

categories compared to four, five, or six response categories, particularly in terms of PPV 

and sensitivity. In regard to dimensionality, Hi
T performed best at 1- and 4-dimensions, 

with small differences existing between the two.  

Coefficient U3 

 The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for coefficient U3 across the simulation conditions are given in Figures 

B10, B11, B12, and B13, respectively. Additionally, Table A8 contains the NPV, PPV, 

sensitivity, and specificity aggregated across simulation conditions (dimensions, number 

of response categories, and test length). 

Given the large sample sizes, across all outcome variables (NPV, PPV, 

sensitivity, and specificity) all terms in the ANOVA were statistically significant. The 

effect sizes were more useful. For sensitivity, only the number of response categories 

showed a medium effect. There were no large or medium effect sizes for specificity. For 

NPV, there was a large effect for the number of response categories and a medium effect 

for test length. For PPV, there was a large effect for the number of response categories, 

and medium effects for test length, and a medium effect for the interaction between 

dimensionality and the number of response options. 
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In terms of sensitivity, Figure B12 shows five response options outperforming the 

other response option categories fairly consistently, with only minor differences between 

the other response categories across other conditions. In terms of NPV, Figure B10 shows 

that five response options outperformed most other response categories in most 

conditions, and that increasing test length mostly led to an increase in NPV. Finally, in 

terms of PPV, Figure B11 shows that medium-length tests offer higher PPV in most 

conditions compared to short tests. For the two-way interaction, for five, six, and seven 

response categories, there was generally an increase in PPV as dimensionality increased 

up to 3-dimensions, after which there was a decrease in PPV as dimensions increased 

from three to four. However, for five response options (the best performing response 

option condition), there was an increase from 1- to 2-dimensions, after which PPV started 

to decrease. 

 Overall, U3 performed better at the medium test length condition when compared 

to the short test length condition, particularly when examining PPV and sensitivity. In 

terms of response categories, five response options noticeably outperformed four, six, and 

seven in terms of PPV and sensitivity. Finally, the 2- and 3-dimension conditions 

outperformed the 1- and 4-dimension conditions in terms of PPV and sensitivity. 

Overall 

 For acquiescence responding, Hi
T performed the best overall. Across all conditions 

on average, it showed .90 Negative Predictive Value (NPV), .16 Positive Predictive 

Value (PPV), 8.16% sensitivity, and 95.27% specificity. While the differences between 

the normed number of Guttman errors and U3 were small, Guttman errors slightly 

outperformed U3. Guttman errors showed .90 NPV, .11 PPV, 5.49% sensitivity, and 
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94.86% specificity aggregated across all conditions. Across all conditions, U3 showed 

.90 NPV, .09 PPV, 5.12% sensitivity, and 94.80% specificity.  

Disacquiescence 

Guttman Errors 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for the number of normed Guttman errors across the simulation conditions 

are given in Figures B14, B15, B16, and B17, respectively. Additionally, Table A9 

contains the NPV, PPV, sensitivity, and specificity aggregated across simulation 

conditions (dimensions, number of response categories, and test length). 

While all ANOVA terms were significant in the hypothesis test, the effect sizes 

provided more information. For NPV, there were large or medium effects for: the 

dimensionality factor, the number of response options factor, all two-way interactions, 

and the three-way interaction. For both specificity and PPV, there were large or medium 

effects for all terms except test length. For sensitivity, there were large effects for 

dimensionality, the number of response options, and the interaction between 

dimensionality and response options.   

For NPV, Figure B14 shows the three-way interaction. Most noticeably, there was 

little impact from any of the conditions on the five-response option condition. However, 

there were increases for the four-response option and seven-response option conditions at 

4-dimensions on medium tests compared to short tests. Additionally, there was an 

increase in the NPV of six response options on medium tests compared to short tests in 

the 1-dimension condition. However, NPV actually decreases in the 2- and 3-dimension 

conditions on medium tests when compared to short tests. For specificity and PPV, there 
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was an increase in both outcomes for four and five response options on medium tests, 

except in the 3-dimension condition, which stayed roughly equivalent between short and 

medium tests. For six response options, there was an increase in outcomes at 1-dimension 

between short and medium tests. However, the outcomes of six response options started 

to decrease at 2-, 3-, and 4-dimensions when compared between test lengths. For 

sensitivity, four, five, and six response options tended to decrease from 1- to 3-

dimensions and then increased at the 4-dimension condition. However, the seven-

response option condition tended to increase as dimensionality increases. 

Overall, Guttman errors performed slightly better in the medium test length 

condition when compared to the short test length condition in terms of PPV and 

sensitivity. In terms of the number of response categories, four response options offered 

the best performance with five response options performing only slightly worse. The 1-

dimension condition was the best performing in terms of dimensionality, with 2-

dimensions performing second best and 4-dimensions performing slightly worse than 2-

dimensions. 

Coefficient Hi
T
 

 The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for Hi
T across the simulation conditions are given in Figures B18, B19, 

B20, and B21, respectively. Additionally, Table A10 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

 Again, while all ANOVA terms were statistically significant, the effect sizes were 

used to determine medium and large effects. Sensitivity showed large or medium effects 
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for the number of response options, the two-way interactions between test length and 

dimensionality and the number of response options, and the three-way interaction. 

Specificity only showed large or medium effects for the number of response options. 

Both PPV and NPV showed large or medium effects from the number of response 

categories, the test length, the interaction between dimensionality and test length and 

between response options and test length, and the three-way interaction. 

 For both PPV and NPV, Figures B18 and B19 show similar results. The three-

way interaction is most apparent in the four and five response option conditions. In short 

tests, five response options consistently performed better than four response options. 

However, on medium tests, four response options tended to outperform five. This 

difference is due to a large increase in the PPV and NPV of four response options across 

test lengths. However, the increase in outcomes is dependent on dimensionality. 

Specifically, the largest increase occurred at 1-dimension and the smallest increase in 

outcomes occurred at 4-dimensions. Interestingly, the 4-dimension condition is the 

condition in which five response options showed its largest increase between short and 

medium tests. Sensitivity showed a similar three-way interaction effect to NPV and PPV. 

Additionally, the main effect of response options can be seen on Table A10 for 

specificity, with four response categories outperforming all others with no deviation.  

 Overall, Hi
T performed better in the medium-length test condition when compared 

to the short test-length condition. In terms of response options, Hi
T showed the highest 

PPV and sensitivity with four response options. As the number of response categories 

increased, the PPV and sensitivity of Hi
T decreased. In terms of dimensionality, 1- and 4-
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dimensions showed the highest classification accuracy for Hi
T. While 1-dimension 

performed the best, there were only slight differences between 1- and 4-dimensions. 

Coefficient U3 

 The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for U3 across the simulation conditions are given in Figures B22, B23, 

B24, and B25 respectively. Additionally, Table A11 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

 While the ANOVA terms were all statistically significant, the effects sizes 

provided more information. For specificity, NPV, and PPV, all terms had medium or 

large effects except for the test length (i.e., the main effect of test length). For sensitivity, 

all terms had medium or large effects except for dimensionality and test length (again, the 

main effects).  

 For specificity, NPV, and PPV the five-response option condition noticeably 

outperformed the other response option conditions at 4-dimensions. However, on medium 

tests, both the four- and seven-response option conditions noticeably outperformed the 

other two at 4-dimensions. Additionally, six response options showed improvement on 

short tests at 2-dimensions. However, this improvement was not seen on medium length 

tests. For sensitivity, the effects discussed for specificity, NPV, and PPV (at least in terms 

of the three-way interaction) are identical.  

 Overall, U3 actually performed slightly better in terms of PPV, Sensitivity, and 

NPV in the short test-length condition when compared to the medium test-length 

condition. In terms of response categories, four response categories outperformed the 
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others, with PPV and sensitivity decreasing as the number of response categories 

increased. Regarding dimensionality, U3 performed the best in the 4-dimension 

condition, followed by the 2-dimension condition.    

Overall 

 For disacquiescence responding, the normed number of Guttman errors 

outperformed U3 and Hi
T when averaged across all conditions. Guttman errors showed 

.91 negative predictive value (NPV), .24 positive predictive value (PPV), 12.45% 

sensitivity, and 95.70% specificity. Coefficient U3 performed second best, with .91 NPV, 

.22 PPV, 11.20% sensitivity, and 95.62% specificity. Coefficient 𝐻𝑖
𝑇 performed the 

worst, with .90 NPV, .08 PPV, 4.17% sensitivity, and 94.82% specificity.   

Midpoint Responding 

Guttman Errors 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for the normed number of Guttman errors across the simulation conditions 

are given in Figures B26, B27, B28, and B29, respectively. Additionally, Table A12 

contains the NPV, PPV, sensitivity, and specificity aggregated across simulation 

conditions (dimensions, number of response categories, and test length). 

While all ANOVA terms were significant, the effect sizes told a different story. 

Specifically, the only specificity showed any medium sized effects. The medium sized 

effects were the interaction between dimensions and response categories and the three-

way interaction. Between short and medium tests, there was a decrease in sensitivity at 1- 

and 4-dimensions and an increase at 2- and 3-dimensions for seven response options. 

Additionally, there was an increase in sensitivity at 2-dimensions for five response 
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options between test lengths. Finally, there was a decrease between test lengths in 

sensitivity at 3-dimensions for four response options. 

Overall, Guttman errors performed poorly when classifying individuals engaging 

in midpoint responding. While NPV and specificity remained stable across conditions, 

PPV also remained stable at values of .01 and below. In terms of sensitivity, Guttman 

errors showed the highest sensitivity in the 2- and 3-dimension conditions, the seven 

response option conditions, and on short tests. However, it should be noted that these 

values were never greater than 1%. 

Coefficient Hi
T
 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for Hi
T across the simulation conditions are given in Figures B30, B31, 

B32, and B33, respectively. Additionally, Table A13 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). Since all ANOVA terms were significant, the effect sizes 

were used to determine which effects were meaningful. For sensitivity, NPV, and PPV all 

terms showed large or medium effect sizes. However, specificity showed large or 

medium effect sizes for all terms except the two-way interaction between response 

options and test length.  

In terms of the three-way interaction, there was a large increase for all outcomes 

between short and medium length tests for four, five, and six response categories at 1-

dimension. However, this improvement diminished as the dimensionality increased. 

Interestingly, the 1-dimension condition actually showed a decrease in performance for 

seven response categories on medium tests compared when compared to short tests.  
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Overall, Hi
Tperformed better in the medium test-length condition when compared 

to the short test-length condition. In terms of the number of response categories, 

Hi
Tshowed the highest PPV, sensitivity, and specificity in the six-response option 

condition, with the seven-response option condition showing the next best classification 

accuracy. In terms of dimensionality, Hi
T performed noticeably better in the 1-dimension 

condition in terms of PPV, NPV, sensitivity, and specificity compared to the other 

dimensionality conditions. 

Coefficient U3 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for U3 across the simulation conditions are given in Figures B34, B35, 

B36, and B37, respectively. Additionally, Table A14 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

Despite all ANOVA terms showing statistical significance, the effect size 

estimates provided more meaningful information. The only medium-sized effect was the 

interaction between dimensionality and response options for PPV. All other effect size 

estimates for U3 were classified as small.  

For the two-way interaction between dimensionality and response options, four 

and six response categories are not noticeably impacted by dimensionality. However, 

four and six response categories show a noticeable impact from dimensionality. Namely, 

four response options showed increased PPV in the 1-dimension condition compared to 

all other dimensions. Seven response options showed the lowest PPV at 1-dimension, 

which then increases at 2- and 3-dimensions, before decreasing again at 4-dimesions.  
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Much like Guttman errors, U3 struggled to identify midpoint responders overall. 

Specificity and NPV are relatively stable across conditions at approximately 94% and 

.90, respectively. The PPV was also relatively constant across conditions at values of .01 

or less. Finally, while there were some differences in terms of sensitivity, it should be 

noted that none of the values were greater than 1%. However, U3 showed the greatest 

sensitivity in the 1-dimension condition with 7-response options. In terms of test length, 

there was only a small difference between short and medium tests (PPV = .22 and .21, 

respectively). 

Overall 

 For midpoint responding, coefficient Hi
Tnoticeably outperformed both U3 and the 

normed number of Guttman errors. Across all conditions, on average, Hi
Tshowed .91 

negative predictive value (NPV), .26 positive predictive value (PPV), 13.29% sensitivity, 

and 95.83% specificity. The number of normed Guttman errors showed .90 NPV, less 

than .01 PPV, 0.12% sensitivity, and 94.39% specificity. Coefficient U3 showed .90 

NPV, less than .01 PPV, .22% sensitivity, and 94.41% specificity.  

Extreme Responding 

Guttman Errors 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for the normed number of Guttman errors across the simulation conditions 

are given in Figures B38, B39, B40, and B41, respectively. Additionally, Table A15 

contains the NPV, PPV, sensitivity, and specificity aggregated across simulation 

conditions (dimensions, number of response categories, and test length). 
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While all ANOVA terms for all outcomes were significant, the effect sizes 

provided more useful information. For sensitivity and NPV, only the main effects of the 

number of response options and test length were medium or larger. For specificity and 

PPV, all terms showed a medium or larger effect size.  

Table A15 provides interpretations of the main effect of response option and test 

length for sensitivity and NPV. Specifically, sensitivity and NPV were highest with five 

response categories, followed by four response categories, then six, and finally seven. For 

test length, medium length tests provided better sensitivity and NPV than short length 

tests. 

For specificity and PPV the three-way interaction showed a large effect size. 

Figures B39 and B41 show this three-way interaction clearly. Most noticeably, there was 

a clear impact on the accuracy at 1-dimension for four and six response options between 

short and medium tests (with medium test length showing a benefit to these response 

option conditions). Additionally, there was a large increase in the PPV and sensitivity of 

seven response options on medium tests at 3- and 4-dimensions when compared to short 

tests. This benefit was much smaller at the 1- and 2-dimension conditions for seven 

response options.   

Coefficient Hi
T
 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for Hi
T across the simulation conditions are given in Figures B42, B43, 

B44, and B45, respectively. Additionally, Table A16 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 
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With such large sample sizes, all terms in the ANOVA model were significant. 

However, the effect sizes showed that for sensitivity, NPV, and PPV, only the main 

effects for the number of response options and the test length had medium or large 

effects. In terms of test length, medium length tests provided better outcomes than short 

length tests. In terms of response categories, five response options offered the best 

outcomes. Four response options offered the second-best outcomes, closely followed by 

six response options. Seven response options showed the worst values for the outcome 

variables. Specificity showed no large of medium effects for any ANOVA terms 

suggesting that no conditions had a meaningful impact on the specificity of Hi
T. 

Coefficient U3 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for U3 across the simulation conditions are given in Figures B46, B47, 

B48, and B49, respectively. Additionally, Table A17 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

While all the ANOVA terms were significant due to large sample size, the effect 

sizes provided some interesting results. Sensitivity and NPV showed large effects from 

the number of response options, test length, and a medium sized effect for the dimension 

by response option interaction. Specificity showed large effects from the number 

response options and test length. Additionally, specificity showed medium effects from 

both the dimension by number of response options and the number of response options by 

test length interactions. PPV showed medium or large effects on all terms except the 

main effect of dimension and the interaction between dimension and test length. 
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For NPV and sensitivity, the two-way interaction between response options and 

dimensionality is shown in the differences in accuracy across dimensions for each 

response option condition. The largest difference in outcomes for the number of response 

option condition was seen at 1-dimension and the smallest differences seen at 3- and 4-

dimensions. For specificity, the dimension by response option interaction was similar to 

NPV and sensitivity. The test length by response option interaction is more difficult to 

visualize. However, there was an increase in accuracy in the medium length test 

condition compared to a short test condition. Though, the rate of increase between 

lengths was different depending on the response option condition. Four, five, and seven 

response options tended to improve by the same amount between the short test and 

medium test conditions. However, six response options showed more of an improvement 

in accuracy compared to the other response options between the two test lengths. Finally, 

PPV showed a meaningful three-way interaction. The three-way interaction is easily 

visualized in Figure B47. On medium tests, there is a large increase in the accuracy of six 

response options in the 1- and 4-dimension conditions when compared to short tests. This 

increase in accuracy was larger than the increases seen in the same conditions for other 

response option conditions. Additionally, seven response options showed a similar unique 

improvement in PPV for the 3-dimension condition between short and medium tests. This 

improvement in PPV was not shown in the other response option conditions. 

Overall 

 Across all conditions, the number of normed Guttman errors outperformed U3 

and Hi
T. In aggregate, the number of Guttman errors showed .92 negative predictive value 

(NPV), .52 positive predictive value (PPV), 26.42% sensitivity, and 97.27% specificity. 
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Coefficient U3 had the second-best performance, showing .92 NPV, .46 PPV, 23.87% 

sensitivity, and 96.96% specificity. Coefficient Hi
Twas the worst performer in terms of 

classifying extreme response style; Hi
Tshowed .90 NPV, .10 PPV, 4.85% sensitivity, and 

94.91% specificity.   

Social Desirability Responding 

Guttman Errors 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for the normed number of Guttman errors across the simulation conditions 

are given in Figures B50, B51, B52, and B53, respectively. Additionally, Table A18 

contains the NPV, PPV, sensitivity, and specificity aggregated across simulation 

conditions (dimensions, number of response categories, and test length). 

With such large sample sizes, all terms in the ANOVA for all outcomes were 

statistically significant. However, the effect sizes provided more useful information. For 

sensitivity and NPV, all effects sizes were medium or large for all terms except for the 

dimension by test length and number of response options by test length interactions. For 

specificity and PPV, all terms showed medium or higher effect sizes except the 

dimension by length interaction. 

For NPV and sensitivity, the three-way interaction is easy to visualize from both 

Figures B50 and B52. Specifically, there are small differences between medium and short 

tests for all response option conditions at 1- and 2-dimensions. However, the seven-

response option condition showed a large increase in accuracy on medium tests at 3- and 

4-dimensions over and above the other response option conditions. While PPV and 

specificity showed different effect sizes for other terms, the three-way interaction is 
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similar: seven response options showed a large increase in accuracy at 3- and 4-

dimensions on medium tests not seen in other response option conditions.  

Coefficient Hi
T
 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for Hi
T across the simulation conditions are given in Figures B54, B55, 

B56, and B57, respectively. Additionally, Table A19 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

The effect sizes were used to determine the factors with medium or high impact 

on the outcomes given the overpowered ANOVAs. For sensitivity, all terms showed 

medium or large effects except the main effect of dimensionality. For specificity, all 

terms showed medium or large effects except for the three-way interaction, the main 

effect of test length, and the main effect of dimensionality. For NPV and PPV, all terms 

showed medium or large effects. 

While NPV, PPV, and sensitivity showed different magnitudes of the effect, the 

three-way interaction had a similar interpretation in all three outcomes. For all three 

outcomes, the six and seven response option conditions show the biggest increase in 

accuracy between short and medium tests. Additionally, this increase in accuracy is much 

larger in the 2- and 4-dimension conditions compared to the 1- and 3-dimension 

conditions. For sensitivity, all three two-way interactions must be interpreted. For the 

dimensionality by response option interaction, there was an increase in accuracy between 

subsequent dimensions (i.e., 1- to 2-dimensions) for every response option condition 

except seven response options. However, from 3- to 4-dimension, seven response options 



90 

 

finally increased in accuracy rather than decreasing. For the test length by response 

option interaction, there was an increase in accuracy between short and medium length 

tests for all response options except four. Four response options showed an aggregate 

decrease in accuracy on medium tests compared to short tests. Finally, for the dimension 

by test length interaction, the aggregate accuracy on dimensions 1, 3, and 4, increased 

slightly between short and medium length tests. However, dimension 2 showed a very 

large increase in accuracy on medium tests compared to short tests. Dimension 2 showed 

the worst aggregate accuracy on short tests, but the best aggregate accuracy on medium 

tests.  

Coefficient U3 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for U3 across the simulation conditions are given in Figures B58, B59, 

B60, and B61, respectively. Additionally, Table A20 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

The effect sizes provided more useful information regarding the importance of the 

model terms given the overpowered ANOVAs. For sensitivity, the main effect of 

response options and the interaction between dimensionality and response options 

showed medium effects. Specificity showed no medium or large effects. NPV and PPV 

both showed medium and large effects for all terms except the two-way interactions 

between dimensionality and test length and between response options and test length.  

In terms of sensitivity, the two-way interaction between dimensionality and 

response options is difficult to visualize. However, as dimensionality increases, seven 
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response options tended to show a much larger increase to sensitivity than the other 

response option conditions. The five-response option condition tended to show a decrease 

in accuracy as dimensionality increased, and the four-response option condition showed 

an increase in sensitivity until the increase from 3- to 4-dimensions, where it showed a 

noticeable decrease. For both NPV and PPV, the three-way interaction was apparent from 

looking at Figures B58 and B59. Specifically, seven response options showed a large 

increase to both NPV and PPV on medium tests compared to short tests in the 3- and 4-

dimension conditions. This improvement in NPV and PPV was not seen in other response 

option conditions. 

Overall 

 Across all conditions, coefficient Hi
T showed the best PPV, sensitivity, and 

specificity when compared to Guttman errors and U3 (there are negligible difference in 

NPV between the three person-fit statistics) when identifying social desirability 

responding. Coefficient Hi
T showed: PPV = .18, sensitivity = 9.40%, and specificity = 

95.41%. Guttman errors performed second best, with PPV = .14, sensitivity = 7.15%, and 

specificity = 95.15%. Coefficient U3 showed the worst performance when identifying 

social desirability responding. Specifically, it showed: PPV = .12, sensitivity = 6.25%, 

and specificity = 94.99%. 

Careless Responding 

Guttman Errors 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for the normed number of Guttman errors across the simulation conditions 

are given in Figures B62, B63, B64, and B65, respectively. Additionally, Table A21 
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contains the NPV, PPV, sensitivity, and specificity aggregated across simulation 

conditions (dimensions, number of response categories, and test length). 

The results of the ANOVAs were not immediately useful due to the large sample 

sizes making all terms significant. However, the effect sizes were obtained and were 

more useful in determining the impact of the ANOVA terms on the outcomes. For 

sensitivity and NPV, all terms were medium or large except for the two-way interaction 

between dimensionality and test length. For specificity and PPV, all terms were medium 

or large.  

In terms of sensitivity and NPV, four, five, and six response options all showed an 

increase in outcomes between short and medium length tests at all dimensions. However, 

four and six response options showed particularly large increases in both outcomes at 3 

dimensions. The seven-response option condition showed minor increases in both 

outcomes at 1- and 2-dimenions between short and medium tests but showed larger 

increases in outcomes at 3- and 4-dimensions. For specificity and PPV, there is a similar 

relationship between short and medium length tests and seven response options. 

Specifically, seven response options showed a minor increase in outcomes at 1- and 2-

dimensions between short and medium tests, and larger increases in outcomes at 3- and 

4-dimensions. Six response options showed large increases between short and medium 

tests at the 1- and 3-dimension conditions compared to the other dimensionality 

conditions.   

Coefficient Hi
T
 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for Hi
T across the simulation conditions are given in Figures B66, B67, 
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B68, and B69, respectively. Additionally, Table A22 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

Since all ANOVA terms were significant, the effect sizes were used to determine 

the impact of the factors on the outcomes. For sensitivity, all terms showed medium or 

large effects except for the interaction between dimensionality and test length. For 

specificity, all terms had medium or large effect sizes except for the three-way interaction 

and the two-way interaction between dimensionality and test length. For both NPV and 

PPV, all terms were medium or large. 

For sensitivity, the three-way interaction was most noticeable in the four and five 

response option conditions. Both of these conditions showed an increase in sensitivity 

from short to medium tests. However, the five-response option condition showed a much 

larger increase in sensitivity at the 1-, 2-, and 3-dimension conditions compared to the 

four-response option condition.  

For specificity, the two-way interactions between response options and test length 

and dimensionality by response options are the highest-level terms that showed medium 

effect sizes. For the dimension by response option interaction, all response options show 

a decrease in aggregate specificity between 1- and 2-dimensions (with six response 

options showing the largest decrease). Between 2- and 3- dimensions there is an increase 

in specificity for four and five response options and minor differences for six and seven 

response options. Between dimensions 3 and 4, all response options increase except for 

five response options, which shows a minor decrease in specificity. The two-way 

interaction between response options and test length showed response options four, five, 
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and six increasing similarly between short and medium length tests. However, the seven-

response option condition showed an aggregate decrease in specificity between short and 

medium length tests. 

For NPV and PPV, the three-way interaction was the highest-order medium or 

large effect. The three-way interaction was most noticeable when examining the 

differences between the four and five response option conditions across dimensions and 

test lengths. Specifically, on dimension 2, there was an increase in outcomes between 

short and medium tests for five response options, but little or no increase for four 

response options. Five response options also showed a larger increase than four response 

options between short and medium length tests on dimensions 1 and 3. 

Coefficient U3 

The negative predictive value (NPV), positive predictive value (PPV), sensitivity, 

and specificity for U3 across the simulation conditions are given in Figures B70, B71, 

B72, and B73, respectively. Additionally, Table A23 contains the NPV, PPV, sensitivity, 

and specificity aggregated across simulation conditions (dimensions, number of response 

categories, and test length). 

All ANOVA terms were statistically significant due to large sample sizes, so the 

effect sizes were used to determine the factors with meaningful impact on the outcomes. 

Sensitivity showed all effect sizes as large or medium except the two-way interaction 

between dimensionality and test length. Specificity, PPV, and NPV had all terms 

showing large or medium effects. 

While all outcomes showed different effect sizes for different factors, the 

interpretation of the three-way interaction is the same across outcomes. The three-way 
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interaction is most noticeable when looking at four and five response options across test 

lengths at different dimensionalities. Specifically, on short tests, four and five response 

options are somewhat differentiated in terms of outcomes until 3- and 4-dimensions, 

where their outcomes are more similar. On medium length tests, four and five response 

options are similar at 1-, 2-, and 4-dimensions. 

Overall 

 Across all conditions, the normed number of Guttman errors provided the highest 

classification accuracy in terms of PPV, NPV, sensitivity, and specificity for identifying 

careless responding. Specifically, Guttman errors showed: NPV = .92, PPV = .56, 

sensitivity = 26.68%, and specificity = 97.54%. Coefficient U3 showed the next best 

performance, with: NPV = .92, PPV = .50, sensitivity = 25.30%, and specificity = 

97.18%. Finally, Hi
T showed the worst performance, with: NPV = .91, PPV = .25, 

sensitivity = 12.72%, and specificity = 95.77%. 

Aggregated Results 

 In aggregate, a few patterns started to emerge among the results. Tables A24, 

A25, and A26 present the results aggregated results across simulation conditions for each 

person-fit statistic and aberrant response pattern. Across response styles there is little 

difference (never greater than ± 0.02) between the negative predictive values (NPV) and 

specificity for any of the person-fit statistics across any of the aberrant response patterns. 

These findings suggest that all person-fit statistics are capable of correctly identifying 

individuals who are not aberrant responders with a high degree of accuracy (specificity). 

Additionally, once the person-fit statistics identify a respondent as non-aberrant, there is a 

high probability that they are indeed a non-aberrant responder (NPV).  
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   However, the person-fit statistics begin to differentiate themselves when looking 

at the sensitivities and positive predictive values (PPV). Sensitivity is identical to 

statistical power, and none of the person-fit statistics obtained the 0.80 convention for 

statistical power for any aberrant response pattern. Regardless, Guttman errors showed 

the highest aggregate sensitivity (.13), followed by U3 (.12), and finally by Hi
T (.09). 

Examining the results by aberrancy, Guttman errors showed the highest sensitivity when 

identifying disacquiescence (.13), extreme responding (.27), and careless responding 

(.29). Coefficient 𝐻𝑖
𝑇showed the highest sensitivity when identifying midpoint (.13) and 

careless responding (.13). Coefficient U3 showed the highest sensitivity when identifying 

disacquiescence (.12), extreme responding (.25), and careless responding (.25). However, 

the PPV values are more damning. The only aggregate conditions where those identified 

as aberrant had greater than a .50 probability to truly be aberrant is when using Guttman 

errors to identify extreme and careless responding.  

 While many of these interpretations changed based on the condition (i.e., changed 

by length, dimensionality, and number of response options) they were being applied to, 

the aggregate results are still informative about the overall performance of the person-fit 

statistics. Tables A6 - A23 are provided to explore the results when they are aggregated 

by the simulation conditions.  

Figures B74 – B79 show the results aggregated over aberrant response patterns. 

Across all number of response option conditions, four and five response options showed 

the highest outcomes for Guttman errors, followed by six response options, with seven 

response options showing the lowest outcomes. However, this depends on dimensionality 

and test length, and the difference between four and five response options increased or 
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decreased based on these factors. Both five and seven response options tended to increase 

as dimensionality increased, while four and six response options tended to decrease as 

dimensionality increased. Finally, the medium test length condition almost always 

showed higher outcomes than the short test length condition. 

Coefficient Hi
T almost always showed increased outcomes between short and 

medium length tests on all outcomes. Additionally, coefficient Hi
T showed an interesting 

trend in terms of dimensionality. Specifically, 1-dimension showed the highest outcomes 

which was followed by a large drop in outcomes at 2-dimensions. There was an increase 

in outcomes at the 3- and 4-dimension conditions, but the increases never reached the 

peak in outcome values at 1-dimension. On medium length tests, the seven-response 

option condition is fairly consistent across dimensionalities.  

Coefficient U3 showed similar trends as Guttman errors. Outcomes using 

coefficient U3 almost always benefited from increased test length, having four or five 

response options, and tended to perform the best at 1- and 2-dimension conditions 

(though, this was dependent on the three-way interaction and is not true in all cases). 

With the results provided, the study’s hypotheses can be resolved. Hypothesis 1 

stated that Hi
Twill show greater sensitivity, specificity, positive predictive values, and 

negative predictive values when compared to U3 and the number of Guttman errors. 

Interestingly, hypothesis 1 was rejected in most cases. As discussed, in aggregate, Hi
Tonly 

outperformed U3 and Guttman errors in acquiescence responding, midpoint responding, 

and socially desirable responding.  

Hypothesis 2 stated that within a person-fit statistic, the sensitivity, specificity, 

positive predictive values, and negative predictive values will be similar across 
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aberrancies. Hypothesis 2 was also rejected. As seen in the aggregate tables (Tables A24 

– A26) there is much variability in the sensitivity and PPV of the person-fit statistics 

depending on the type of aberrant responding. However, the specificity and the NPV do 

remain relatively stable across aberrancies. 

Hypothesis 3 stated that all person-fit statistics will show increased sensitivity, 

specificity, positive predictive values, and negative predictive values as the number of 

response options increased. Hypothesis 3 is rejected due to the many three-way 

interactions between all simulation conditions. At the very least, this study cannot proffer 

strong evidence to suggest that increasing the number of response options will increase 

the accuracy of person-fit statistics across the conditions. Hypothesis 3 had a few results 

that supported it (e.g., Hi
T when identifying acquiescence or socially desirable 

responding). However, the number of response options often showed a pattern that 

favored either an odd or even number of response options, fewer response options (i.e., 4 

and 5 response options outperformed 6 and 7), or the response options showed the 

opposite of the hypothesized pattern (i.e., outcome values decrease as the number of 

response options increased, as seen for careless responding). 

Hypothesis 4 stated that the person-fit statistics will show decreased sensitivity, 

specificity, positive predictive values, and negative predictive values as the 

dimensionality of data increased. Similar to hypothesis 3, hypothesis 4 was rejected due 

to the many three-way interactions between the simulation conditions. Hypothesis 4 had 

the least corroborating evidence supporting it; only one condition supported hypothesis 4: 

The number of Guttman errors when identifying socially desirable responding. 

Otherwise, the impact of dimensionality was quite variable by type of aberrancy. 
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Hypothesis 5 stated that the person-fit statistics will show increased sensitivity, 

specificity, positive predictive values, and negative predictive values as test length 

increased. While hypothesis 5 is the most difficult of the hypotheses to reject, it was 

simply not true in all cases due to the three-way interactions. Both the accuracy of U3 

and the number of Guttman errors failed to improve as test length increased for 

disacquiescence responding and midpoint responding, respectively. 
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CHAPTER V: DISCUSSION 

Summary of Findings 

As a preface, it must be emphasized that all aggregated results should be 

considered through the lens of the practically meaningful two- and three-way 

interactions. These interactions were found for most outcomes across aberrant response 

patterns. Additionally, the person-fit statistics operated differently across the various 

aberrant response patterns, effectively resulting in four-way interactions (i.e., aberrancy 

by number of response options by dimensionality by test length). Four-way interactions 

make the interpretation of results very complex. However, there were still several 

patterns that emerged in the outcome variables. 

Impact of the Simulation Conditions 

In aggregate, there was little difference between the ability of the nonparametric 

person-fit statistics to correctly identify individuals not responding aberrantly; all of the 

person-fit statistics showed expected (or higher) specificity and high negative predictive 

values (NPV) across most aberrancies. However, the simulation conditions still had a 

small impact on NPV and specificity estimates. While NPV and specificity estimates 

were fairly stable across person-fit statistics, there was differentiation when examining 

PPV and sensitivity estimates. Even with said differentiation, considering the traditional 

rules-of-thumb for adequate statistical power (1 - β = 0.80), none of the person-fit 

statistics showed acceptable sensitivity estimates or high PPV estimates. Indeed, only 

Guttman errors and U3 showed any PPV estimates greater than 0.50. However, the 

simulation conditions still had an impact on the PPV and sensitivity estimates.  
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Impact on Guttman Errors 

For Guttman errors, NPV, PPV, specificity, and sensitivity estimates benefitted 

from increased test length, almost regardless of the other simulation factors. Midpoint 

responding was the only aberrancy where Guttman errors did not show increased 

accuracy due to increased test length. While there were minor differences in the 

sensitivity estimates for Guttman errors between test lengths, the estimates were so small 

that any differences were negligible. The overall observed increase in accuracy for 

Guttman errors as test length increased is not a surprising finding. Many studies have 

shown that the power of Guttman errors to detect aberrancy increases with test length in 

both dichotomous and polytomous response data (Emons, 2008; Karabatsos, 2003; 

Meijer, 1994; St-Onge et al., 2011). 

 When examining the number of response options, four and five response options 

resulted in the highest outcomes across most aberrancies. Seven response options resulted 

in the lowest outcomes across most aberrancies (this finding is particularly clear in 

Figures B74 and B75). The six-response option condition generally performed worse than 

four and five response options but better than the seven-response option condition.  

However, when examining specific aberrancies, seven response options showed the 

highest performance when identifying social desirability responding. Compared to the 

next highest performing number of response categories (five), seven response categories 

showed a 2.26% increase in sensitivity with small increases for NPV, PPV, and 

specificity.  

 In terms of dimensionality, all outcomes tended to perform worse as 

dimensionality increased (when aggregated across aberrancies). The decrease in accuracy 
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due to dimensionality was particularly noticeable for four, five, and six response options. 

The only exception was the seven-response option condition, which tended to perform 

better as dimensionality increased. The impact of dimensionality also heavily depended 

on the type of aberrancy being identified. Acquiescence and socially desirable responding 

tended to show increased accuracy as dimensionality increased; disacquiescence and 

careless responding tended to show decreased accuracy as dimensionality increased; and 

midpoint and extreme responding showed unique patterns. Specifically, midpoint 

responding had the highest accuracy at two and three dimensions, while extreme 

responding had the highest accuracy at one and four dimensions.  

In terms of identifying aberrancies, Guttman errors showed the highest sensitivity 

when identifying extreme (sensitivity = 0.27) and careless responses (sensitivity = 0. 29). 

The number of Guttman errors showed mediocre sensitivity when identifying 

disacquiescence responding (sensitivity = 0.13) and performed poorly when identifying 

acquiescence (sensitivity = 0.05), midpoint (sensitivity < 0.01), and socially desirable 

responding (sensitivity = 0.08). Additionally, Guttman errors showed higher than 

expected specificity (0.95 based on the chosen cutoff) for disacquiescence (specificity = 

0.96), extreme (specificity = 0.97), and careless responding (specificity = 0.98). 

However, Guttman errors also showed lower than expected specificity for midpoint 

responding (specificity = 0.94).  

Impact on Coefficient Hi
T
  

For coefficient Hi
T, NPV, PPV, sensitivity, and specificity estimates tended to 

improve in the medium-test length condition compared to the short-test length condition, 

almost regardless of other factors. The only exception to improved accuracy with 
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increased test length was the four-response option condition at 3- and 4-dimensions. 

When aggregated across aberrant response styles, the four-response option condition 

tended to perform better in the short-test condition at higher dimensionalities. The 

general trend of increased test length improving the accuracy of coefficient Hi
T is not 

surprising, as several studies have shown that coefficient Hi
T

 increases in power as test 

length increases (Karabatsos, 2003; St-Onge et al., 2011). However, this effect had not 

yet been demonstrated in polytomous response data. 

When aggregated across aberrant response patterns, the impact of the number of 

response options on the outcome variables was heavily dependent on dimensionality and 

test length. Four or seven response options tended to show the best performance on short 

tests, while six or seven response options tended to show the best performance on 

medium tests. Additionally, the impact of the number of response options on the accuracy 

of coefficient Hi
T was heavily dependent on the type of aberrancy being identified. In 

general, coefficient Hi
T tended to show improved accuracy as the number of response 

options increased when identifying acquiescence, midpoint, and socially desirable 

responding. Conversely, coefficient Hi
T

 generally showed a decrease in accuracy when 

identifying disacquiescence, extreme, and careless responding. 

In terms of dimensionality, Hi
T

 tended to show the highest sensitivity, specificity, 

NPV, and PPV outcomes in the 1- or 4-dimension conditions. However, this finding was 

heavily dependent on the number of response options and test length. On short tests, the 

1-dimension condition showed the highest performance for six and seven response 

options, while the 4-dimension condition showed the highest outcomes on four and five 

response options. On medium tests, four, five, and six response options showed the 
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highest outcomes at 1-dimension. Conversely, seven response options showed the highest 

outcomes at 4-dimensions for medium-length tests. While most response option 

conditions were variable across dimensions, the seven-response option condition 

remained relatively stable across dimensions on medium-length tests.  

When aggregated over all other conditions, coefficient Hi
T

 showed mediocre 

accuracy when identifying midpoint (sensitivity = 0.13) and careless responding 

(sensitivity = 0.13) and performed poorly when identifying acquiescence (sensitivity = 

.08), disacquiescence (sensitivity = 0.04), extreme (sensitivity = 0.05), and socially 

desirable responding (sensitivity = 0.09). However, coefficient Hi
T reached the expected 

specificity (.95) for every aberrant response pattern. Additionally, it showed higher than 

expected specificity estimates for midpoint (specificity = .96) and careless responding 

(specificity = .96). 

Impact on Coefficient U3 

The overall patterns for coefficient U3 are similar to the patterns observed for the 

number of Guttman errors. Increasing test length tended to result in improved accuracy 

for U3. However, there was no noticeable increase in accuracy between short and 

medium-length tests for midpoint responding. Additionally, there was a slight decrease in 

sensitivity and specificity at the medium-test length condition compared to the short-test 

condition for disacquiescence responding. The improvement in the accuracy of U3 when 

identifying most aberrant response patterns as test length increases is not a surprising 

finding. Several studies have shown that increasing test length improves the power of U3 

to detect a variety of aberrant response patterns in both dichotomous and polytomous 

response data (Emons, 2008, Karabatsos, 2003; St-Onge et al., 2011).  
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In general, four and five response options showed higher accuracy when 

aggregating results across aberrant response patterns. Seven response options showed the 

worst performance in all conditions, with six response options generally performing 

worse than four and five response options but better than seven response options. 

However, the effect of the number of response options was heavily impacted by the type 

of aberrancy being identified. Generally, disacquiescence and careless responding 

showed decreased accuracy as the number of response options increased. Conversely, 

social desirability responding showed increased accuracy as the number of response 

options increased. Acquiescence, midpoint, and extreme responding all showed unique 

patterns associated with the number of response options. Specifically, acquiescence 

showed the highest outcomes at five response options with minor differences between the 

other response options; midpoint responding showed the best performance at four and 

seven response options (but performed poorly overall); and extreme responding showed 

the best performance with five response options and the worst performance with seven 

response options. 

In terms of dimensionality, the accuracy of U3 generally decreased as 

dimensionality increased, but this trend was heavily impacted by the type of aberrancy 

being identified. Specifically, coefficient U3 showed decreased accuracy as 

dimensionality increased when identifying acquiescence, midpoint, extreme, and carless 

responding. Conversely, coefficient U3 showed a general increase to accuracy as 

dimensionality increased when identifying disacquiescence and social desirability 

responding, though the increases were dependent on other factors.  
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In terms of the ability of U3 to identify specific aberrant response patterns, there 

is little that differentiates U3 from the number of Guttman errors. Coefficient U3 showed 

the highest sensitivity when identifying extreme (sensitivity = 0.25) and careless 

responding (sensitivity = 0.25); mediocre sensitivity when identifying disacquiescence 

responding (sensitivity = 0.12); and poor sensitivity when identifying acquiescence 

(sensitivity = 0.05), midpoint (sensitivity < 0.01), and socially desirable responding 

(sensitivity = 0.07). Additionally, U3 showed higher than expected specificity (0.95) 

when identifying disacquiescence (specificity = 0.96), extreme (specificity = 0.97), and 

careless responding. (specificity = 0.97). However, coefficient U3 showed lower than 

expected specificity when identifying midpoint responding (specificity = 0.94). 

Comparing Aberrant Response Patterns and Person-fit Statistics 

 Interestingly, Guttman errors and U3 showed remarkably similar results 

throughout the study. Across conditions, both person-fit statistics showed higher outcome 

values than coefficient Hi
T (e.g., both had comparably high sensitivity when identifying 

careless responding). Additionally, they showed similar outcome patterns across most 

other simulation conditions. However, Guttman errors slightly and consistently 

outperformed U3 in nearly every condition. While the similarity between the statistics is 

not surprising, as both U3 and Guttman errors are measures of nonconformity, the 

advantage in performance held by Guttman errors is more difficult to explain. In fact, 

Emons (2008) showed that U3 generally outperformed Guttman errors when used on 

items with two response options when identifying careless responding, but that Guttman 

errors generally outperformed U3 when used on items with four response options. 

However, the differences between the two statistics in both conditions were small. Emons 



107 

 

suggested that the difference in performance can be explained by the use of deviance 

scores in the calculation of U3. Deviance scores result in U3 showing higher power when 

there are stark changes in a response set (see Emons, 2008, Table 5). Conversely, since 

Guttman errors are based on a simple normed count, they are capable of identifying 

subtler deviations in response sets (Emons, 2008). 

Coefficient Hi
T

 differentiated itself from Guttman errors and U3, while not 

performing as well overall. Coefficient Hi
T

 was the only person-fit statistic that showed 

any ability to detect midpoint responding. However, midpoint responding was the only 

aberrant response pattern where coefficient Hi
T

 had higher outcomes than U3 or Guttman 

errors. Interestingly, the number of response options and dimensionality (i.e., the 

interaction effects) had a more noticeable impact on coefficient Hi
T

 than on U3 or 

Guttman errors (clearly seen in Figures B76 - B77). The larger impact of the interaction 

effects possibly results from how Hi
Tis calculated. In contrast to U3 and Guttman errors, 

Hi
T is a measure of conformity between a response vector and the other response vectors 

in a sample. In effect, it is a correlation between an individual’s response vector and a 

group’s summarized response vector (Karabatsos, 2003; St-Onge et al., 2001). Given this 

idiosyncrasy, Hi
T is more sensitive to individual changes in item responses across a data 

set (Karabatsos, 2003). 

Across all conditions, Guttman errors and U3 showed low sensitivity for 

midpoint, socially desirable, and acquiescence response behaviors. Coefficient Hi
Tshowed 

low sensitivity when identifying acquiescence, disacquiescence, extreme, and socially 

desirable response behaviors. Since the person-fit statistics performed well in terms of 

specificity, the most likely explanation for this poor performance is that the 
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nonparametric person-fit statistics lacked statistical power within each simulated dataset. 

The lack of statistical power is likely caused by a combination of two issues. 1) First, this 

dissertation chose a conservative cutoff that limited type I errors. While this cutoff was 

chosen to provide an easy point of comparison for the statistics, a conservative cutoff will 

reduce statistical power (Bilder & Loughin, 2015). 2) Second, even with the large sample 

sizes used in this dissertation, an aberrant responder was still modeled as a relatively rare 

occurrence (only 100 out of every 1000 responders were modeled as aberrant). Rare 

outcomes can affect the statistical power of studies and are often considered when 

conducting power analyses in medical and biological research (Buderer, 1996).  

Discussion and Implications 

Nonparametric person-fit statistics have been used with varying levels of success 

to identify aberrant response patterns in dichotomous response data, often showing 

equivalent or better performance than their parametric counterparts (Dimitrov & Smith, 

2006; Emons, 2008; Karabatsos, 2003; Meijer, 1994; Niessen et al., 2016, St-Onge et al., 

2011; Tendeiro & Meijer, 2014). However, not much research has investigated the 

applicability of nonparametric person-fit statistics to polytomous response data. This 

dearth of research is largely due to the lack of easily available generalizations of many 

person-fit statistics. However, when studies investigated the use of nonparametric person-

fit statistics with polytomous response data, findings have been mixed.  

Emons (2008) simulated unidimensional polytomous response data for careless 

and extreme responding. He examined the impact of test length, the number of response 

options, item discrimination, and the proportion of aberrant responses in a response 

vector on the accuracy of the number of Guttman errors and U3 (among others). Emons 
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found that Guttman errors tended to slightly outperform U3 in most conditions for 

careless responding. For extreme responding, Emons also found that Guttman errors 

slightly outperformed U3; additionally, Emons found that both nonparametric person-fit 

statistics (Guttman errors and U3) performed similarly to a parametric person-fit statistic. 

This dissertation showed a similar relationship between Guttman errors and U3. Namely, 

Guttman errors, with few exceptions, slightly outperformed U3 in most conditions. 

Additionally, Emons (2008) found that U3 and Guttman errors were able identify 

careless responding at a higher rate than extreme responding. In contrast, this dissertation 

found few differences between the aggregate identification rates of careless and extreme 

responding for Guttman errors or U3. However, it should be noted that Emons only 

examined two and four response categories. This dissertation found a decrease in the 

sensitivity and PPV of Guttman errors and U3 at six and seven response categories, but 

the four- and five-response category conditions show PPV and sensitivity estimates much 

closer to the results found by Emons. Similarly, the seven-response category condition 

also resulted in lower PPV and sensitivity estimates for Guttman errors and U3 when 

identifying extreme responding. When looking at the response category conditions with 

the fewest options (i.e., four and five), the sensitivity and PPV estimates are closer to 

those found by Emons.  

Therefore, both studies support the conclusion that U3 and Guttman errors 

perform better with fewer response options when identifying careless responding 

compared to extreme responding. However, as the number of response options increases, 

the difference in identification rate of U3 and Guttman errors between extreme and 

careless responding decreases. Specifically, there are only small differences in the 
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performance of the person-fit statistics at six response categories, and at seven response 

categories both person-fit statistics show higher sensitivity when identifying extreme 

response behavior compared to careless response behavior. This finding is likely a result 

of how careless responding was simulated: as random responding. As the number of 

response options increases, the number of possible unique response patterns also 

increases (Cox, 1980). As the number of unique response patterns increases, it becomes 

more difficult to identify Guttman errors as there is higher likelihood that a response not 

representing a Guttman error will be chosen at random. Additionally, for U3, as the 

number of unique response patterns increases, the probabilities of the most and least 

possible deviant response patterns (Pmin and Pmax from Equation 15) become more 

extreme (van der Flier, 1982).  

This dissertation showed the number of response categories had a large impact on 

person-fit statistic accuracy for most aberrancies. In contrast, Emons (2008) found only a 

small effect of the number of response categories on careless responding and a noticeable 

impact on extreme responding when using U3 and Guttman errors. However, Emons 

limited their simulation to two and four response categories. It is possible that Emons 

findings are due to restriction of range, as this dissertation did not start to see a large 

impact on careless or extreme responding until investigating the six-response category 

condition and beyond. Additionally, the shift between four and five or five and six 

response categories is where the number of response options has the most impact in other 

aberrant response patterns (if there was a noticeable impact of response categories on the 

outcomes).  
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Emons (2008) also found a noticeable increase in accuracy between two and four 

response categories when using U3 and Guttman errors to identify extreme responding. 

Based on this finding, Emons hypothesized that having items with five or more response 

categories would improve the accuracy of U3 and normed Guttman errors. This 

dissertation did find an increase in the accuracy of U3 and normed Guttman errors when 

identifying extreme responses between four and five response categories, but the 

accuracy began to decrease at six and seven response categories. Based on findings from 

both studies, it seems that there might be a benefit to the accuracy of U3 and Guttman 

errors when identifying extreme responses up until five categories, after which there are 

deleterious effects. While there are interactions between response categories, test length, 

and dimensionality to consider, five response categories tended to offer the best 

performance for U3 and Guttman errors across conditions, being outperformed slightly 

by four and six response categories in specific conditions (see Figures B74 – B79). 

In terms of test length, this study corroborates the findings from Emons (2008). In 

nearly all conditions, Emons found that increasing test length (from 12- to 24-items) 

improved the detection rates of U3 and Guttman errors when identifying careless and 

extreme responding. Similarly, this study found that increasing test length (from 12- to 

36-items) nearly always improved the detections rates of U3, Guttman errors, and H
T

i. 

This finding also supports the consensus on test length found in studies focused on 

dichotomous response data (Dimitrov & Smith, 2006; Karabatsos, 2003; Meijer, 1994; 

Niessen et al., 2016, St-Onge et al., 2011; Tendeiro & Meijer, 2014). 

Beck et al. (2019) applied U3, the normed number of Guttman errors and Hi
T, to a 

multidimensional, polytomous data set containing a measure of careless responding (a 
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single instructed response item). The person-fit statistics were used to predict the 

outcome of the instructed response item, from which a Receiver Operating Curve (ROC) 

was created. Beck et al. found that Hi
T

 provided the highest area under the ROC, 

suggesting that it was outperforming the other statistics at predicting the outcome of the 

instructed response item. However, when using the area under the ROC to find an 

empirical cutoff, Beck et al. found that using Hi
T to remove individuals from a data set 

provided mixed results in terms of improvement to measurement model fit. Additionally, 

Beck et al., found that Guttman errors and U3 performed poorly in terms of improvement 

to model fit, and in their ability to predict the outcome of the instructed response item 

(shown by low area under the curve based on the ROC).  

The data used by Beck et al. (2019) were from a 34-item, self-report survey with 

four factors. Additionally, the items on the survey were Likert-type and had five response 

categories. According to the findings from this dissertation, a survey with these 

characteristics should result in U3 and Guttman errors showing higher sensitivity to 

careless responding than Hi
T

 (i.e., sensitivity [Guttman] = 47.43%; sensitivity [U3] = 

44.66%; sensitivity [Hi
T] = 22.79%; see Figures B62 – B73). This finding is contrary to 

what Beck et al. found in their application of these person-fit statistics to a real data set. 

While these findings and the findings of Beck et al. do appear contradictory, they can be 

reconciled.  

The sensitivity and specificity of a classification method is a spectrum, and 

sensitivity and specificity are inversely proportional to each other. Decreasing the 

specificity of a classification method will increase its sensitivity and vice versa (Bilder & 

Loughin, 2015). To allow for direct comparisons, this dissertation chose a conservative 
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cutoff for all person-fit statistics. Coefficient Hi
T would have shown higher sensitivity for 

identifying (at least) careless responders if a more liberal cutoff was chosen. In fact, using 

person-fit statistics with different cutoffs creates the possibility of an effective two-stage 

approach to identifying careless responding (and other aberrant response patterns). Step 

one would be the application of a person-fit statistic with high sensitivity as a screening 

test for the aberrancy. Step two would be the application of a person-fit statistic with high 

specificity to identify cases from step one that represent likely Type II errors. A two-step 

approach as described could be a practical and effective method for identifying 

aberrancy, but more research would be needed to determine if it was appropriate. 

In summary, the findings of the current study are more comparable to Emons 

(2008) than Beck et al. (2019). Similar to the findings in Emons, Guttman errors and U3 

performed well when identifying extreme and careless responding, with Guttman errors 

slightly outperforming U3. This result is not surprising, as the method to simulate both 

aberrant response patterns in both studies are identical. However, it does provide 

replicability of the results found by Emons. Beck et al. found that Hi
T

 provided the best 

predictability of the careless response indicator, and that Guttman errors and U3 

performed poorly at the same task. This dissertation showed the opposite results: 

Guttman errors and U3 should be outperforming Hi
T

 when identifying careless responses 

under the same conditions. The consensus in the extant literature is that Hi
Thas great 

potential at identifying aberrant response patterns in dichotomous response data 

(Dimitrov & Smith, 2006; Karabatsos, 2003; Meijer, 1994; Niessen et al., 2016, St-Onge 

et al., 2011; Tendeiro & Meijer, 2014). Even research that is critical regarding the 
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application of Hi
T has suggested that it performs similarly to parametric person-fit 

statistics when identifying aberrant responders in dichotomous data (Sinharay, 2017).  

The difference in findings between Beck et al. (2019), this dissertation, and the 

extant literature can possibly be due to the conservative cutoff chosen by this dissertation. 

Beck et al. examined three different cutoffs derived from ROC results, and the extant 

literature has employed a variety of methods to determine cutoffs for these statistics. 

Finding optimal cutoffs for these person-fit statistics is an important step for making 

them practical. However, differences in cutoff methods do not explain why Guttman 

errors and U3 showed poor performance in Beck et al. It is possible that the instructed 

response item used in Beck et al. was not operating as a valid measure of careless 

responding. While instructed response items work in theory, it is difficult to judge their 

efficacy in practice. The mechanisms behind careless responding are not well defined, as 

such it is difficult to determine if any a priori measure (such as instructed response items) 

are reliable and valid for the purposes of identifying said behavior. 

It is also possible that the addition of response categories beyond two, or 

dimensions beyond one, make it difficult for Hi
T

 to identify careless responding. There is 

a fairly large decrease in the sensitivity and PPV of Hi
T

 between 1-dimension and 2-

dimensions for four and five response options (Figure B68). This decrease suggests that 

as dimensionality and response options increase, they have a deleterious impact on the 

ability of Hi
T to identify careless responding. Finally, it is also possible that the simulation 

of careless responding in this dissertation was simply unrealistic. This dissertation 

simulated careless responding as random responses across the response scale. However, 

given that Hi
T has been shown to predict careless responding accurately in other studies, it 
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is possible that random responding does not capture all the intricacies of real careless 

responding. Since Beck et al. employed real data, the difference between the two sets of 

results could simply be the fact that random responding is not the same as careless 

responding in real data. 

Based on findings from this dissertation and the implication of these findings 

within the extant literature, a few recommendations can be made. First, nonparametric 

person-fit statistics perform better on longer tests. This result has been replicated many 

times in dichotomous response data and in studies investigating polytomous response 

data. There is little evidence to the contrary. Therefore, it can be stated with a degree of 

confidence that nonparametric person-fit statistics will more accurately identify aberrant 

responses on longer tests and/or surveys. Additionally, nonparametric person-fit statistics 

should be applied to shorter tests or surveys only when the reduction in accuracy is an 

acceptable trade-off for identifying aberrancy. 

Second, the violation of the unidimensionality assumption does impact the 

accuracy of nonparametric person-fit statistics, though the impact is heavily dependent on 

other factors. Unfortunately, the impact was not consistent across aberrancy or person-fit 

statistics. Dimensionality showed a noticeable (PPV ± 0.1 between largest and smallest 

value) impact on Guttman errors when identifying disacquiescence responses; Hi
T when 

identifying midpoint responses; all person-fit statistics when identifying extreme 

responses; all person-fit statistics when identifying socially desirable responses; and on 

Hi
T when identifying careless responses. Interestingly, increasing dimensionality did not 

always decrease accuracy, as one would expect when violating a statistical assumption. In 

several conditions, increasing dimensionality improved the accuracy of the person-fit 



116 

 

statistic(s). For example, Hi
T

 with seven response categories often performed best in the 3- 

or 4-dimension conditions.  

There were also several conditions where increasing the dimensionality had little 

to no impact on the accuracy of the person-fit statistic(s). As it stands, it seems that the 

nonparametric person-fit statistics can be robust to the violation of unidimensionality in 

certain situations. However, the exact nature of their robustness is still unclear. 

Regardless, the dimensionality of a survey in conjunction with the survey’s other 

characteristics should be carefully considered when using nonparametric person-fit 

statistics. Different surveys may create different use-cases for different person-fit 

statistics. For example, when trying to identify disacquiescence on a medium length test, 

Guttman errors generally provide the highest accuracy. However, if the survey has 3- or 

4-dimensions, U3 actually shows higher sensitivity across response options. 

Third, the number of response categories also impacts the ability of nonparametric 

person-fit statistics to detect aberrant response patterns in polytomous response data. 

Generally, there was a noticeable impact (PPV ± 0.1 between largest and smallest value) 

of response categories on Guttman errors and Hi
T when identifying acquiescence 

responses; all person-fit statistics when identifying disacquiescence responses; Hi
T

 when 

identifying midpoint responses; Guttman errors and U3 when identifying extreme 

responses; Guttman errors and Hi
T

 when identifying socially desirable responses; and all 

person-fit statistics when identifying careless responses. It is difficult to arrive at a 

generalization based on these findings because of the inconsistency of the impact across 

person-fit statistics and type of aberrancy. However, the trend appears to be (at least on 

medium-length tests) that Guttman errors and U3 show higher accuracy with fewer 
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response options (four and five), while Hi
T

 generally shows higher accuracy with more 

response options (six and seven). On the other hand, it could be noted that these general 

trends depend heavily on test length, type of aberrancy, and dimensionality (particularly 

for Hi
T). Regardless, it is safe to conclude that the number of response categories does 

impact the accuracy of nonparametric person-fit statistics.  

Fourth, a single person-fit statistic cannot be used as a blanket test for all aberrant 

response patterns. Aberrant response patterns present differently, and evidence from this 

dissertation and the extant literature suggest that some aberrant response patterns are 

more difficult to detect than others (see Dimitrov & Smith, 2006; Emons, 2008; 

Karabatsos, 2003; Meijer, 1994; for a few examples). This information is not new, but it 

reiterates how crucial it is to use multiple methods and measures. While it is unfortunate 

that a single nonparametric person-fit statistic cannot serve as an omnibus test for 

aberrant responses, a combination of nonparametric person-fit statistics may be able to 

identify aberrant responses more accurately under optimal conditions. For example, 

Guttman errors performed quite well when identifying careless and extreme responses. 

Coefficient Hi
T was able to identify midpoint responding more accurately than U3 or 

Guttman errors. Therefore, the combined usage of Guttman errors and Hi
T could provide a 

way to identify three types of aberrancies. While not a perfect solution, calculating 

multiple person-fit statistics to identify three or more aberrant response patterns is still 

fairly practical, particularly if the person-fit statistics were easily accessible in software 

packages.  

Finally, while Guttman errors, in particular, are relatively adept at identifying 

extreme and midpoint responding, the sensitivity of these indices is still well below 50%. 
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In comparison, a general rule of thumb is that statistical power for any given test should 

be around 80% (Cohen, 1992b). Given the cutoff employed by this dissertation, the 

nonparametric person-fit statistics did not have the statistical power to reliably identify 

aberrancy. However, these nonparametric person-fit statistics would have better statistical 

power with a more liberal cutoff. Indeed, Meijer (2003) suggested that the ability of 

nonparametric person-fit statistics to detect aberrant response patterns might benefit from 

higher levels of alpha (i.e., greater than 0.05). Increasing alpha levels will increase Type I 

errors, so the difficulty arises in identifying a cutoff that provides acceptable sensitivity 

without too many Type I errors. This dissertation chose a cutoff under the assumption 

that data are valuable, and that researchers do not want to haphazardly discard quality 

data. Increasing the rate of Type I errors will increase the number of respondents being 

identified as aberrant. As seen in Beck et al. (2019), choosing a cutoff for these statistics 

that increased the rate of Type I errors led to a large proportion of the sample being 

identified as aberrant and removed. As such, modifying the Type I error rate needs to be 

done with care. On a more positive note, given an empirically bootstrapped cutoff, these 

nonparametric person-fit statistics are very accurate at identifying those individuals who 

are not engaging in aberrant responding. While contrary to how these statistics are 

generally applied in dichotomous data, these statistics could actually be used to 

confidently retain good responders with great accuracy rather than discard aberrant 

responders.  

Limitations 

 No study is perfect, and this study is no exception. There are multiple limitations 

to this dissertation, and the findings should be considered in light of these limitations. 
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Perhaps the most glaring limitation is how the aberrant response patterns were simulated. 

The mechanisms of aberrant response patterns are not well studied. When the 

mechanisms of aberrant response patterns have been studied, the results and 

interpretations of said results have been met with disagreement and uncertainty. It is 

always difficult to simulate a complex human behavior, and complex human behaviors 

are unlikely to be recreated perfectly with any statistical model or simulation. So, while a 

literature-based and justifiable method was used to simulate all of the aberrant response 

behaviors, it is unlikely that the simulations captured all idiosyncrasies of these 

behaviors. In addition to these concerns, the simulations for socially desirable responding 

and careless responding were simplified due to practical reasons.  

 This study only examined the appropriateness of nonparametric person-fit 

statistics as indicators of aberrant responding. There is a myriad of other person-fit 

statistics in the extant literature (parametric and other nonparametric) designed for this 

purpose. As discussed earlier, many of the person-fit statistics have not been generalized 

for use in polytomous response data. While this dissertation investigated the accessible 

(i.e., generalized) nonparametric person-fit statistics, it would be informative to 

investigate the person-fit statistics that are less accessible. 

 This study used ANOVAs to identify differences between the simulation 

conditions. However, the large sample size rendered the ANOVAs effectively useless in 

terms of statistical significance; even using very strict p-level criteria (p < .0001) 

provided no benefit. While the effect size estimates were useful in identifying meaningful 

differences, the large sample sizes also created an issue for post hoc testing (i.e., Tukey’s 

HSD). Due to this reason, the Tukey’s HSD results were not presented, or discussed, in 
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this dissertation. Post-hoc testing should normally be conducted following an ANOVA 

test, but the absence of usable post-hoc results for this dissertation did not affect the 

interpretation of the results.  

 Finally, it would have been informative to apply the findings from this simulation 

study to a study utilizing real data. A study of this nature would allow for corroborating 

findings in a real-world setting. Additionally, having real-world data would create the 

opportunity to investigate the practical impacts of applying these person-fit statistics in a 

real-world setting. 

Future Research 

 There is a dearth of research investigating person-fit statistics with polytomous 

response data, and there is much additional work to be done. This area is ripe for 

research, as nonparametric person-fit statistics could represent a practical and efficient 

method for improving validity in low-stakes testing contexts. Based on the results of this 

study, several future research ideas can be suggested.  

First, a study should be conducted comparing the nonparametric person-fit 

statistics from this dissertation to parametric person-fit statistics in polytomous response 

data. The study would largely follow the method employed by this dissertation, with the 

addition of one or more parametric person-fit statistics. The multidimensional graded 

response model (MGRM) could be used to generate multidimensional, polytomous 

response data based on parameters from an extant survey. Then, aberrant response 

patterns would be generated, and person-fit statistics would be calculated on the resulting 

data. Using a bootstrapped empirical cutoff, the sensitivity, specificity, NPV, and PPV 

could be calculated. This proposed study could even investigate different empirical 
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cutoffs. Of particular interest would be the impact of dimensionality on the parametric 

person-fit statistics, and how their accuracy compares to the nonparametric person-fit 

statistics.  

Second, more nonparametric person-fit statistics should be generalized to operate 

in polytomous data. While this undertaking is not a study, per se, it would have a large 

impact on person-fit research in the future. Generalizing nonparametric person-fit 

statistics under polytomous models would require a strong background in mathematics 

and statistics, and the ability to generate and solve mathematical proofs. Successfully 

generalizing person-fit statistics would likely result in a publishable paper. Additionally, 

once additional person-fit statistics were generalized, R packages would need to be 

created (or existing ones updated) to include the new generalizations.  

Third, a study attempting to establish the sampling distributions of these 

nonparametric person-fit statistics would increase the likelihood that these statistics see 

widespread adoption. Establishing known and viable sampling distributions would mean 

that statistical hypothesis testing via calculating p-values would be possible for these 

person-fit statistics.  Unfortunately, such an investigation would be complex and would 

not necessarily result in a publishable paper. One would need to investigate how well 

these person-fit statistics meet the assumptions and approximate various discrete 

probability distributions (e.g., Poisson, binomial, Bernoulli, etc.), or other relevant 

distributions.  While this study would require a deep understanding of statistical and 

distributional research, it would have a huge impact on person-fit and aberrant response 

research in the future. 
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Fourth, as alluded to several times throughout this discussion, an important next 

step in advancing person-fit research would be identifying method(s) that provide optimal 

cutoffs. Many of the results from this dissertation are likely due to the use of a 

conservative and conventional cutoff. These person-fit statistics could show better 

identification rates if the alpha levels were modified to allow for more Type I errors. 

Notably, it would be important to find a cutoff that provided the biggest benefit to 

sensitivity while still maintaining acceptable specificity levels. A study investigating the 

optimal cutoff for these nonparametric person-fit statistics would need to simulate data, 

find the classification results using the person-fit statistics, and identify a cutoff method 

that provides an acceptable level of Type I and Type II errors. The results could be found 

with a ROC analysis or other methods commonly used to examine classification 

accuracy.  

This dissertation provided evidence that dimensionality has an impact on the 

accuracy of nonparametric person-fit statistics in polytomous response data. However, 

simulated response data were based on an underlying measurement model with correlated 

factors. It is unknown whether orthogonal factors or the magnitude of the factor 

intercorrelations from the underlying measurement model would impact the accuracy of 

these person-fit statistics. While unrealistic, orthogonal factors are often used in low-

stakes surveys in both education and psychology research. It is possible that a 

measurement model with orthogonal factors would decrease the accuracy of these 

person-fit statistics. Additionally, it is possible the person-fit statistics would become 

more accurate as the intercorrelations between factors increased in magnitude. A study of 
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this nature would be of particular interest when focused on Hi
T, as the accuracy of Hi

T
 was 

most impacted by dimensionality. 

Finally, the robustness of these person-fit statistics to the violation of the 

unidimensionality assumption needs additional investigation. This study showed that the 

violation of unidimensionality does impact the accuracy of these person-fit statistics, but 

not in every condition. The nature of this robustness and the impact of dimensionality is 

still unclear. A study investigating the robustness of the person-fit statistics to 

dimensionality would need to calculate the bias (i.e., systematic error) introduced into the 

person-fit estimates from differing levels of dimensionality. Doing so would require a 

simulation where data were generated using specified parameters. For example, a data set 

where Hi
Tis a known value. Keeping all else equal, dimensionality could be introduced as 

a factor, Hi
T estimated, and differences catalogued. Over the course of many replications, 

a pattern would start to emerge giving information about how much bias is introduced at 

various dimensionalities.  
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APPENDIX A 

Table A1 

Covariance Matrix and Means for Data Simulation 

 
Mean D1 D2 D3 D4 

D1 0.03 1.02 

   D2 0 0.49 1.11 

  D3 0.09 0.31 0.38 0.95 

 D4 0.02 0.43 0.89 0.40 0.96 

 



 
1
4
2 

Table A2 

Uniform Distributions of Item Boundary Parameters by Condition 

k Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 

4 U(-13.71, -5.19) U(-5.19, -2.51) U(-2.51, 2.42) 

  5 U(-13.71, -5.81) U(-5.81, -2.19) U(-2.19, 2.42) U(1.5, 3)  

6 U(-13.71, -6.68) U(-6.68, -4.78) U(-4.78, -3.09) U(-3.09, -1.42) U(-1.42, 2.42) 

Note. Cat stands for Category
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Table A3 

Item Discrimination Parameters that will be used for Data Generation 

a1 a2 a3 a4 

2.27 0.16 0.15 0.28 

2.42 0.31 0.34 0.10 

2.70 0.27 0.22 0.19 

3.17 0.15 0.20 0.18 

2.18 0.38 0.28 0.34 

3.15 0.38 0.28 0.18 

3.22 0.14 0.14 0.32 

2.82 0.35 0.19 0.37 

2.78 0.24 0.27 0.38 

1.98 0.26 0.29 0.12 

2.18 0.27 0.25 0.33 

2.14 0.17 0.25 0.19 

2.86 0.33 0.26 0.13 

2.43 0.15 0.27 0.39 

2.97 0.22 0.36 0.22 

2.59 0.36 0.35 0.24 

2.90 0.39 0.13 0.39 

3.28 0.17 0.31 0.28 

2.43 0.23 0.37 0.39 

2.98 0.12 0.18 0.33 

3.20 0.30 0.17 0.31 

2.19 0.22 0.10 0.40 

2.81 0.35 0.14 0.25 

2.07 0.15 0.13 0.25 

2.27 0.20 0.17 0.29 

2.44 0.25 0.34 0.35 

1.91 0.14 0.28 0.24 

2.43 0.21 0.37 0.35 

3.11 0.39 0.27 0.25 

2.37 0.14 0.33 0.26 

2.57 0.10 0.21 0.27 

2.73 0.15 0.21 0.17 

2.59 0.34 0.15 0.36 

2.16 0.36 0.24 0.30 

3.05 0.25 0.18 0.24 

2.83 0.29 0.20 0.39 

0.34 4.36 0.37 0.24 

0.13 3.23 0.16 0.29 
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0.32 4.00 0.27 0.22 

0.22 2.96 0.16 0.10 

0.35 4.63 0.18 0.38 

0.29 3.25 0.34 0.17 

0.33 2.89 0.15 0.27 

0.27 2.99 0.27 0.15 

0.26 4.56 0.23 0.37 

0.34 4.26 0.18 0.13 

0.11 4.62 0.11 0.37 

0.24 3.36 0.13 0.37 

0.32 3.67 0.19 0.32 

0.31 4.29 0.34 0.27 

0.24 2.67 0.17 0.22 

0.36 2.69 0.16 0.32 

0.23 4.03 0.36 0.37 

0.17 4.53 0.40 0.34 

0.12 3.21 0.35 0.35 

0.13 4.29 0.37 0.23 

0.19 4.24 0.24 0.15 

0.26 4.65 0.17 0.15 

0.30 3.89 0.14 0.37 

0.22 4.09 0.18 0.32 

0.37 4.21 0.34 0.27 

0.19 4.44 0.12 0.12 

0.24 3.91 0.34 0.36 

0.20 3.18 0.13 0.37 

0.30 4.38 0.33 0.17 

0.18 3.54 0.19 0.29 

0.24 3.44 0.33 0.12 

0.33 3.59 0.26 0.25 

0.13 3.10 0.21 0.34 

0.36 2.79 0.13 0.39 

0.20 3.21 0.33 0.20 

0.35 3.28 0.33 0.29 

0.20 0.11 6.28 0.22 

0.20 0.16 6.52 0.20 

0.24 0.16 4.81 0.35 

0.37 0.33 4.94 0.31 

0.36 0.19 3.47 0.20 

0.22 0.36 3.48 0.23 

0.33 0.22 5.84 0.18 

0.39 0.27 5.71 0.14 

0.23 0.21 5.83 0.37 
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0.31 0.30 5.34 0.31 

0.22 0.11 4.29 0.27 

0.20 0.22 2.88 0.38 

0.33 0.16 6.48 0.37 

0.16 0.36 6.04 0.12 

0.31 0.39 3.66 0.11 

0.14 0.20 4.73 0.40 

0.17 0.32 5.27 0.16 

0.14 0.20 6.35 0.38 

0.17 0.39 2.90 0.16 

0.12 0.22 3.87 0.14 

0.29 0.21 4.51 0.26 

0.36 0.27 6.00 0.18 

0.33 0.24 6.16 0.21 

0.34 0.16 3.81 0.13 

0.24 0.23 4.08 0.33 

0.22 0.13 4.01 0.23 

0.34 0.13 3.55 0.11 

0.28 0.23 5.43 0.31 

0.30 0.16 5.76 0.18 

0.21 0.23 5.44 0.29 

0.18 0.39 3.65 0.18 

0.40 0.35 5.56 0.26 

0.29 0.19 5.15 0.24 

0.16 0.28 4.15 0.27 

0.14 0.37 3.01 0.30 

0.24 0.24 4.38 0.16 

0.38 0.14 0.12 3.79 

0.28 0.14 0.19 3.45 

0.39 0.11 0.20 2.36 

0.32 0.32 0.12 2.61 

0.21 0.21 0.15 2.39 

0.23 0.27 0.15 2.81 

0.14 0.35 0.37 3.34 

0.10 0.34 0.31 2.84 

0.31 0.36 0.35 2.69 

0.13 0.13 0.30 3.41 

0.23 0.39 0.16 3.66 

0.29 0.27 0.24 1.95 

0.40 0.11 0.32 2.09 

0.25 0.17 0.35 2.60 

0.25 0.39 0.35 3.54 

0.15 0.37 0.16 2.34 
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0.33 0.17 0.28 2.00 

0.24 0.33 0.23 3.28 

0.25 0.27 0.29 3.80 

0.16 0.19 0.23 2.21 

0.17 0.31 0.36 2.93 

0.28 0.20 0.20 2.51 

0.27 0.16 0.19 2.63 

0.12 0.38 0.25 2.19 

0.11 0.11 0.20 2.51 

0.29 0.39 0.17 2.18 

0.38 0.19 0.35 3.46 

0.28 0.30 0.26 3.60 

0.27 0.26 0.13 3.23 

0.26 0.35 0.13 2.37 

0.40 0.16 0.27 2.68 

0.25 0.22 0.26 1.83 

0.30 0.15 0.25 2.95 

0.28 0.19 0.20 3.17 

0.17 0.29 0.30 2.44 

0.18 0.19 0.36 3.73 

Note. Primary loadings are bolded.  
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Table A4 

Specifications of Static Data Sets 

Length 

Number of 

Dimensions 

Items from 

Factor 1 

Items from 

Factor 2 

Items from 

Factor 3 

Items from 

Factor 4 

12 

1 12 0 0 0 

2 6 6 0 0 

3 4 4 4 0 

4 3 3 3 3 

36 

1 36 0 0 0 

2 18 18 0 0 

3 12 12 12 0 

4 9 9 9 9 

 

*Note. Dim = dimension 
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Table A5 

Possible Results of Classification  

    True Status 

  

Aberrant Not Aberrant 

Classification 

Result 

Aberrant True Positive (1- β) False Positive (α) 

Not Aberrant False Negative (β) True Negative (1- α) 
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Table A6 

Classification Accuracy of Guttman Errors across Simulation Conditions for 

Acquiescence Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.07 2.74 94.58 

2 0.90 0.12 6.36 94.99 

3 0.90 0.13 5.80 94.91 

4 0.90 0.11 5.36 94.98 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.06 3.22 94.44 

5 0.90 0.18 9.24 95.37 

6 0.90 0.08 4.12 94.73 

7 0.90 0.10 5.36 94.92 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.07 3.77 94.60 

36 0.90 0.14 7.20 95.13 
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Table A7 

Classification Accuracy of H
T

i across Simulation Conditions for Acquiescence 

Responding 

 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.18 9.24 95.38 

2 0.90 0.15 7.44 95.18 

3 0.90 0.13 6.58 95.09 

4 0.90 0.19 9.38 95.40 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.09 4.41 94.85 

5 0.90 0.09 4.78 94.89 

6 0.90 0.16 8.20 95.28 

7 0.91 0.30 15.24 96.04 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.15 7.42 95.19 

36 0.90 0.18 8.89 95.34 
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Table A8 

Classification Accuracy of U3 across Simulation Conditions for Acquiescence 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.08 5.01 94.71 

2 0.90 0.10 5.71 94.87 

3 0.90 0.10 5.21 94.81 

4 0.90 0.08 4.53 94.81 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.07 4.22 94.68 

5 0.90 0.14 8.34 94.94 

6 0.90 0.09 4.59 94.84 

7 0.90 0.06 3.32 94.74 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.06 3.59 94.60 

36 0.90 0.12 6.65 95.00 
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Table A9 

Classification Accuracy of Guttman Errors across Simulation Conditions for 

Disacquiescence Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.91 0.35 17.90 96.24 

2 0.91 0.23 12.17 95.66 

3 0.90 0.17 8.60 95.34 

4 0.91 0.22 11.14 95.57 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.91 0.34 17.61 96.27 

5 0.91 0.31 15.73 96.10 

6 0.90 0.18 9.58 95.30 

7 0.90 0.13 6.88 95.13 

Test Length NPV PPV Sensitivity Specificity 

12 0.91 0.23 12.05 95.60 

36 0.91 0.25 12.85 95.80 
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Table A10 

Classification Accuracy of H
T

i across Simulation Conditions for Disacquiescence 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.09 4.64 94.88 

2 0.90 0.07 3.73 94.79 

3 0.90 0.07 3.77 94.75 

4 0.90 0.09 4.53 94.86 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.14 7.03 95.13 

5 0.90 0.11 5.37 94.99 

6 0.90 0.05 2.54 94.65 

7 0.90 0.03 1.73 94.52 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.06 3.12 94.70 

36 0.90 0.10 5.21 94.94 
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Table A11 

Classification Accuracy of U3 across Simulation Conditions for Disacquiescence 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.91 0.21 11.01 95.59 

2 0.91 0.23 11.71 95.69 

3 0.90 0.18 9.44 95.45 

4 0.91 0.25 12.66 95.78 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.91 0.28 14.47 95.98 

5 0.91 0.24 12.52 95.77 

6 0.90 0.18 9.30 95.41 

7 0.90 0.17 8.53 95.34 

Test Length NPV PPV Sensitivity Specificity 

12 0.91 0.22 11.44 95.65 

36 0.91 0.21 10.97 95.60 
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Table A12 

Classification Accuracy of Guttman Errors across Simulation Conditions for Midpoint 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.00 0.08 94.38 

2 0.90 0.00 0.16 94.41 

3 0.90 0.00 0.16 94.38 

4 0.90 0.00 0.07 94.39 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.00 0.07 94.39 

5 0.90 0.00 0.07 94.36 

6 0.90 0.00 0.02 94.37 

7 0.90 0.01 0.31 94.43 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.00 0.14 94.38 

36 0.90 0.00 0.09 94.40 
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Table A13 

Classification Accuracy of H
T

i across Simulation Conditions for Midpoint Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.92 0.39 20.10 96.59 

2 0.91 0.20 10.35 95.50 

3 0.90 0.17 8.90 95.33 

4 0.91 0.22 11.13 95.62 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.91 0.20 10.39 95.51 

5 0.91 0.21 10.81 95.58 

6 0.91 0.31 16.03 96.14 

7 0.91 0.26 13.25 95.82 

Test Length NPV PPV Sensitivity Specificity 

12 0.91 0.20 10.29 95.50 

36 0.91 0.29 14.95 96.02 
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Table A14 

Classification Accuracy of U3 across Simulation Conditions for Midpoint Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.01 0.39 94.39 

2 0.90 0.00 0.11 94.44 

3 0.90 0.00 0.23 94.41 

4 0.90 0.00 0.14 94.41 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.00 0.21 94.44 

5 0.90 0.00 0.12 94.41 

6 0.90 0.00 0.07 94.37 

7 0.90 0.01 0.47 94.42 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.00 0.22 94.41 

36 0.90 0.00 0.21 94.41 
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Table A15 

Classification Accuracy of Guttman Errors across Simulation Conditions for Extreme 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.92 0.55 27.93 97.43 

2 0.92 0.48 24.74 97.11 

3 0.92 0.50 25.95 97.19 

4 0.92 0.53 27.07 97.35 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.93 0.57 29.34 97.59 

5 0.93 0.63 31.89 97.92 

6 0.92 0.55 28.07 97.44 

7 0.91 0.32 16.40 96.15 

Test Length NPV PPV Sensitivity Specificity 

12 0.92 0.42 21.81 96.74 

36 0.93 0.61 31.04 97.80 
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Table A16 

Classification Accuracy of H
T

i across Simulation Conditions for Extreme Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.12 5.92 95.01 

2 0.90 0.08 3.95 94.78 

3 0.90 0.09 4.63 94.93 

4 0.90 0.10 4.91 94.93 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.90 0.13 6.53 95.11 

5 0.90 0.10 5.34 94.96 

6 0.90 0.09 4.40 94.84 

7 0.90 0.06 3.15 94.75 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.08 4.06 94.83 

36 0.90 0.11 5.64 94.99 
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Table A17 

Classification Accuracy of U3 across Simulation Conditions for Extreme Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.92 0.48 24.95 97.06 

2 0.92 0.45 23.10 96.88 

3 0.92 0.46 23.68 96.94 

4 0.92 0.46 23.73 96.97 

Response 

Categories 
NPV PPV Sensitivity Specificity 

4 0.92 0.50 25.72 97.15 

5 0.93 0.63 32.50 97.90 

6 0.92 0.49 25.06 97.10 

7 0.91 0.24 12.18 95.70 

Test Length NPV PPV Sensitivity Specificity 

12 0.91 0.36 18.50 96.36 

36 0.93 0.57 29.23 97.56 
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Table A18 

Classification Accuracy of Guttman Errors across Simulation Conditions for Social 

Desirability Responding 

Dimensions NPV PPV Sensitivity Specificity 

1 0.90 0.11 5.78 94.92 

2 0.90 0.14 7.25 95.19 

3 0.90 0.15 7.79 95.25 

4 0.90 0.15 7.79 95.23 

Response 

Categories NPV PPV Sensitivity Specificity 

4 0.90 0.09 4.79 94.91 

5 0.90 0.15 7.68 95.23 

6 0.90 0.12 6.19 94.99 

7 0.91 0.19 9.94 95.47 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.12 6.01 95.01 

36 0.90 0.16 8.29 95.29 
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Table A19 

Classification Accuracy of H
T

i across Simulation Conditions for Social Desirability 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.17 8.46 95.32 

2 0.90 0.17 8.43 95.30 

3 0.90 0.19 9.40 95.42 

4 0.91 0.22 11.32 95.61 

Response 

Categories NPV PPV Sensitivity Specificity 

4 0.90 0.09 4.65 94.90 

5 0.90 0.10 4.95 94.93 

6 0.91 0.22 11.04 95.59 

7 0.91 0.33 16.97 96.24 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.14 7.18 95.18 

36 0.91 0.23 11.62 95.64 
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Table A20 

Classification Accuracy of U3 across Simulation Conditions for Social Desirability 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.90 0.10 5.56 94.90 

2 0.90 0.11 5.64 94.96 

3 0.90 0.14 7.22 95.01 

4 0.90 0.13 6.58 95.08 

Response 

Categories NPV PPV Sensitivity Specificity 

4 0.90 0.08 4.20 94.59 

5 0.90 0.11 6.02 94.97 

6 0.90 0.11 5.52 94.98 

7 0.90 0.18 9.27 95.41 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.10 5.48 94.86 

36 0.90 0.14 7.02 95.11 
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Table A21 

Classification Accuracy of Guttman Errors across Simulation Conditions for Careless 

Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.93 0.60 30.61 97.78 

2 0.93 0.59 30.08 97.70 

3 0.92 0.51 25.90 97.23 

4 0.92 0.55 28.12 97.47 

Response 

Categories NPV PPV Sensitivity Specificity 

4 0.94 0.80 40.59 98.88 

5 0.94 0.83 42.06 99.04 

6 0.92 0.55 28.23 97.48 

7 0.90 0.07 3.82 94.77 

Test Length NPV PPV Sensitivity Specificity 

12 0.92 0.45 23.20 96.92 

36 0.93 0.67 34.15 98.17 
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Table A22 

Classification Accuracy of H
T

i across Simulation Conditions for Careless Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.92 0.39 20.06 96.56 

2 0.90 0.18 9.06 95.33 

3 0.90 0.18 9.10 95.39 

4 0.91 0.25 12.68 95.81 

Response 

Categories NPV PPV Sensitivity Specificity 

4 0.92 0.39 19.75 96.55 

5 0.91 0.33 16.54 96.21 

6 0.91 0.20 10.16 95.49 

7 0.90 0.09 4.44 94.84 

Test Length NPV PPV Sensitivity Specificity 

12 0.90 0.18 9.29 95.40 

36 0.91 0.32 16.16 96.15 
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Table A23 

Classification Accuracy of U3 across Simulation Conditions for Careless Responding 

Dimension NPV PPV Sensitivity Specificity 

1 0.92 0.55 28.09 97.48 

2 0.92 0.51 25.63 97.23 

3 0.92 0.46 23.32 96.96 

4 0.92 0.48 24.17 97.05 

Response 

Categories NPV PPV Sensitivity Specificity 

4 0.93 0.74 37.75 98.55 

5 0.94 0.77 39.16 98.73 

6 0.92 0.47 23.98 97.02 

7 0.90 0.01 0.31 94.42 

Test Length NPV PPV Sensitivity Specificity 

12 0.92 0.39 20.06 96.60 

36 0.93 0.60 30.54 97.76 
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Table A24 

Aggregated Results for Guttman Errors across Simulation Conditions 

Aberrancy NPV PPV Sensitivity Specificity 

Acquiescence 0.90 0.10 0.05 0.95 

Disacquiescence 0.91 0.24 0.13 0.96 

Midpoint 0.90 0.00 0.00 0.94 

Extreme 0.92 0.52 0.27 0.97 

Social 0.90 0.15 0.08 0.95 

Careless 0.93 0.57 0.29 0.98 

MEAN 0.91 0.26 0.13 0.96 
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Table A25 

Aggregated Results for H
T

i across Simulation Conditions 

Aberrancy NPV PPV Sensitivity Specificity 

Acquiescence 0.90 0.16 0.08 0.95 

Disacquiescence 0.90 0.08 0.04 0.95 

Midpoint 0.91 0.25 0.13 0.96 

Extreme 0.90 0.10 0.05 0.95 

Social 0.90 0.18 0.09 0.95 

Careless 0.91 0.26 0.13 0.96 

MEAN 0.90 0.17 0.09 0.95 
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Table A26 

Aggregated Results for U3 across Simulation Conditions 

Aberrancy NPV PPV Sensitivity Specificity 

Acquiescence 0.90 0.08 0.05 0.95 

Disacquiescence 0.91 0.24 0.12 0.96 

Midpoint 0.90 0.00 0.00 0.94 

Extreme 0.92 0.48 0.25 0.97 

Social 0.90 0.13 0.07 0.95 

Careless 0.92 0.49 0.25 0.97 

MEAN 0.91 0.24 0.12 0.96 
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APPENDIX B 

Figure B1 

General Factor Structure of the Simulated Data

F1 F4 F3 F2 

V1 … V36 V1 V36 V1 V36 V1 V36 … … … 



 

 

1
7
1
 

Figure B2 

NPV of the Number of Normed Guttman Errors by Test Length when Applied to Acquiescence Responding 
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Figure B3 

PPV of the Number of Normed Guttman Errors by Test Length when Applied to Acquiescence Responding 
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Figure B4 

Sensitivity of the Number of Normed Guttman Errors by Test Length when Applied to Acquiescence Responding 
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Figure B5 

Specificity of the Number of Normed Guttman Errors by Test Length when Applied to Acquiescence Responding 
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Figure B6 

Negative Predictive Value of H
T

i by Test Length when Applied to Acquiescence Responding  
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Figure B7 

Positive Predictive Value of H
T

i by Test Length when Applied to Acquiescence Responding  
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Figure B8 

Sensitivity of H
T

i by Test Length when Applied to Acquiescence Responding  
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Figure B9 

Specificity of H
T

i by Test Length when Applied to Acquiescence Responding  
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Figure B10 

Negative Predictive Value of U3 by Test Length when Applied to Acquiescence Responding  
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Figure B11 

Positive Predictive Value of U3 by Test Length when Applied to Acquiescence Responding  
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Figure B12 

Sensitivity of U3 by Test Length when Applied to Acquiescence Responding  
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Figure B13 

Specificity of U3 by Test Length when Applied to Acquiescence Responding  
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Figure B14 

Negative Predictive Value of Guttman Errors by Test Length when Applied to Disacquiescence Responding  
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Figure B15 

Positive Predictive Value of Guttman Errors by Test Length when Applied to Disacquiescence Responding  
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Figure B16 

Sensitivity of Guttman Errors by Test Length when Applied to Disacquiescence Responding  
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Figure B17 

Specificity of Guttman Errors by Test Length when Applied to Disacquiescence Responding  
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Figure B18 

Negative Predictive Value of H
T

i by Test Length when Applied to Disacquiescence Responding 
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Figure B19 

Positive Predictive Value of H
T

i by Test Length when Applied to Disacquiescence Responding 
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Figure B20 

Sensitivity of H
T

i by Test Length when Applied to Disacquiescence Responding 

  



 

 

1
9
0
 

Figure B21 

Specificity of H
T

i by Test Length when Applied to Disacquiescence Responding 
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Figure B22 

Negative Predictive Value of U3 by Test Length when Applied to Disacquiescence Responding 
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Figure B23 

Positive Predictive Value of U3 by Test Length when Applied to Disacquiescence Responding 
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Figure B24 

Sensitivity of U3 by Test Length when Applied to Disacquiescence Responding 
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Figure B25 

Specificity of U3 by Test Length when Applied to Disacquiescence Responding 
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Figure B26 

Negative Predictive Value of Guttman Errors by Test Length when Applied to Midpoint Responding 
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Figure B27 

Positive Predictive Value of Guttman Errors by Test Length when Applied to Midpoint Responding 
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Figure B28 

Sensitivity of Guttman Errors by Test Length when Applied to Midpoint Responding 
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Figure B29 

Specificity of Guttman Errors by Test Length when Applied to Midpoint Responding 
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Figure B30 

Negative Predictive Value of H
T

i by Test Length when Applied to Midpoint Responding 
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Figure B31 

Positive Predictive Value of H
T

i by Test Length when Applied to Midpoint Responding 
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Figure B32 

Sensitivity of H
T

i by Test Length when Applied to Midpoint Responding 
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Figure B33 

Specificity of H
T

i by Test Length when Applied to Midpoint Responding 
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Figure B34 

Negative Predictive Value of U3 by Test Length when Applied to Midpoint Responding 
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Figure B35 

Positive Predictive Value of U3 by Test Length when Applied to Midpoint Responding 
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Figure B36 

Sensitivity of U3 by Test Length when Applied to Midpoint Responding 
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Figure B37 

Specificity of U3 by Test Length when Applied to Midpoint Responding 
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Figure B38 

Negative Predictive Value of Guttman Errors by Test Length when Applied to Extreme Responding 
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Figure B39 

Positive Predictive Value of Guttman Errors by Test Length when Applied to Extreme Responding 
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Figure B40 

Sensitivity of Guttman Errors by Test Length when Applied to Extreme Responding 
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Figure B41 

Specificity of Guttman Errors by Test Length when Applied to Extreme Responding 
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Figure B42 

Negative Predictive Value of H
T

i by Test Length when Applied to Extreme Responding 
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Figure B43 

Positive Predictive Value of H
T

i by Test Length when Applied to Extreme Responding 
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Figure B44 

Sensitivity of H
T

i by Test Length when Applied to Extreme Responding 
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Figure B45 

Specificity of H
T

i by Test Length when Applied to Extreme Responding 
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Figure B46 

Negative Predictive Value of U3 by Test Length when Applied to Extreme Responding 
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Figure B47 

Positive Predictive Value of U3 by Test Length when Applied to Extreme Responding 
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Figure B48 

Sensitivity of U3 by Test Length when Applied to Extreme Responding 
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Figure B49 

Specificity of U3 by Test Length when Applied to Extreme Responding 
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Figure B50 

Negative Predictive Value of Guttman Errors by Test Length when Applied to Social Desirability Responding 
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Figure B51 

Positive Predictive Value of Guttman Errors by Test Length when Applied to Social Desirability Responding 
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Figure B52 

Sensitivity of Guttman Errors by Test Length when Applied to Social Desirability Responding 

  



 

 

2
2
2
 

Figure B53 

Specificity of Guttman Errors by Test Length when Applied to Social Desirability Responding 
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Figure B54 

Negative Predictive Value of H
T

i by Test Length when Applied to Social Desirability Responding 
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Figure B55 

Positive Predictive Value of H
T

i by Test Length when Applied to Social Desirability Responding 
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Figure B56 

Sensitivity of H
T

i by Test Length when Applied to Social Desirability Responding 
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Figure B57 

Specificity of H
T

i by Test Length when Applied to Social Desirability Responding 
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Figure B58 

Negative Predictive Value of U3 by Test Length when Applied to Social Desirability Responding 
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Figure B59 

Positive Predictive Value of U3 by Test Length when Applied to Social Desirability Responding 
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Figure B60 

Sensitivity of U3 by Test Length when Applied to Social Desirability Responding 

 



 

 

2
3
0
 

Figure B61 

Specificity of H
T

i by Test Length when Applied to Social Desirability Responding 
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Figure B62 

Negative Predictive Value of Guttman Errors by Test Length when Applied to Careless Responding 
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Figure B63 

Positive Predictive Value of Guttman Errors by Test Length when Applied to Careless Responding 
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Figure B64 

Sensitivity of Guttman Errors by Test Length when Applied to Careless Responding 
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Figure B65 

Specificity of Guttman Errors by Test Length when Applied to Careless Responding 
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Figure B66 

Negative Predictive Value of H
T

i by Test Length when Applied to Careless Responding 

  



 

 

2
3
6
 

Figure B67 

Positive Predictive Value of H
T

i by Test Length when Applied to Careless Responding 
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Figure B68 

Sensitivity of H
T

i by Test Length when Applied to Careless Responding 
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Figure B69 

Specificity of H
T

i by Test Length when Applied to Careless Responding 
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Figure B70 

Negative Predictive Value of U3 by Test Length when Applied to Careless Responding 
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Figure B71 

Positive Predictive Value of U3 by Test Length when Applied to Careless Responding 
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Figure B72 

Sensitivity of U3 by Test Length when Applied to Careless Responding 
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Figure B73 

Specificity of U3 by Test Length when Applied to Careless Responding 

 

  



 

 

2
4
3
 

Figure B74 

NPV and Specificity of Guttman Errors Aggregated over Aberrant Response Patterns 
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Figure B75 

PPV and Sensitivity of Guttman Errors Aggregated over Aberrant Response Patterns 
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Figure B76 

NPV and Specificity of H
T

i Aggregated over Aberrant Response Patterns 
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Figure B77 

PPV and Sensitivity of H
T

i Aggregated over Aberrant Response Patterns 

 



 

 

2
4
7
 

Figure B78 

NPV and Specificity of U3 Aggregated over Aberrant Response Patterns 
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Figure B79 

PPV and Sensitivity of U3 Aggregated over Aberrant Response Patterns 
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APPENDIX C 

ANOVA Results for Acquiescence Responding 

Table C1  

Guttman Errors ANOVA Table for Acquiescence 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 6.18 3 2.06 4514.87 0.30 

 

resp 14.35 3 4.78 10490.94 0.50 

 

leng 5.19 1 5.19 11374.61 0.26 

 

dim:resp 4.30 9 0.48 1046.67 0.23 

 

dim:leng 0.92 3 0.31 670.98 0.06 

 

resp:leng 0.96 3 0.32 700.76 0.06 

 

dim:resp:leng 4.61 9 0.51 1122.85 0.24 

  residual 14.58 31968 0.00     

Specificity dim 0.13 3 0.04 7919.82 0.43 

 

resp 0.20 3 0.07 12145.15 0.53 

 

leng 0.08 1 0.08 14125.70 0.31 

 

dim:resp 0.07 9 0.01 1319.66 0.27 

 

dim:leng 0.02 3 0.01 1330.25 0.11 

 

resp:leng 0.01 3 0.00 840.35 0.07 

 

dim:resp:leng 0.07 9 0.01 1436.71 0.29 

  residual 0.18 31968 0.00     

NPV dim 0.07 3 0.02 5898.14 0.36 

 

resp 0.16 3 0.05 13005.26 0.55 

 

leng 0.06 1 0.06 14269.94 0.31 

 

dim:resp 0.05 9 0.01 1277.13 0.26 

 

dim:leng 0.01 3 0.00 836.01 0.07 

 

resp:leng 0.01 3 0.00 836.83 0.07 

 

dim:resp:leng 0.05 9 0.01 1369.83 0.28 

  residual 0.13 31968 0.00     

PPV dim 23.31 3 7.77 5996.64 0.36 

 

resp 54.57 3 18.19 14039.15 0.57 

 

leng 19.30 1 19.30 14899.40 0.32 

 

dim:resp 15.81 9 1.76 1356.01 0.28 

 

dim:leng 3.44 3 1.15 885.82 0.08 

 

resp:leng 3.68 3 1.23 946.52 0.08 
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dim:resp:leng 17.61 9 1.96 1510.45 0.30 

  residual 41.42 31968 0.00     

 

Table C2 

H
T

i ANOVA Tables for Acquiescence 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 1.92 3 0.64 1078.32 0.09 

 

resp 57.82 3 19.27 32439.50 0.75 

 

leng 1.03 1 1.03 1732.85 0.05 

 

dim:resp 2.92 9 0.32 545.84 0.13 

 

dim:leng 7.37 3 2.46 4133.80 0.28 

 

resp:leng 3.43 3 1.14 1924.43 0.15 

 

dim:resp:leng 4.06 9 0.45 758.33 0.18 

  residual 18.99 31968 0.00     

Specificity dim 0.02 3 0.01 238.45 0.02 

 

resp 0.63 3 0.21 6230.53 0.37 

 

leng 0.01 1 0.01 315.64 0.01 

 

dim:resp 0.03 9 0.00 100.92 0.03 

 

dim:leng 0.09 3 0.03 910.05 0.08 

 

resp:leng 0.05 3 0.02 512.65 0.05 

 

dim:resp:leng 0.04 9 0.00 139.74 0.04 

  residual 1.09 31968 0.00     

NPV dim 0.02 3 0.01 1196.40 0.10 

 

resp 0.63 3 0.21 35388.84 0.77 

 

leng 0.01 1 0.01 1881.34 0.06 

 

dim:resp 0.03 9 0.00 592.39 0.14 

 

dim:leng 0.08 3 0.03 4561.87 0.30 

 

resp:leng 0.04 3 0.01 2165.90 0.17 

 

dim:resp:leng 0.04 9 0.00 823.53 0.19 

  residual 0.19 31968 0.00     

PPV dim 6.85 3 2.28 1007.67 0.09 

 

resp 227.37 3 75.79 33441.25 0.76 

 

leng 4.09 1 4.09 1802.87 0.05 

 

dim:resp 11.16 9 1.24 547.24 0.13 

 

dim:leng 30.84 3 10.28 4535.92 0.30 

 

resp:leng 13.82 3 4.61 2032.97 0.16 
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dim:resp:leng 16.00 9 1.78 784.44 0.18 

  residual 72.45 31968 0.00     

 

Table C3 

U3 ANOVA Tables for Acquiescence 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 1.76 3 0.59 382.47 0.03 

 

resp 16.83 3 5.61 3658.98 0.26 

 

leng 5.97 1 5.97 3894.01 0.11 

 

dim:resp 4.79 9 0.53 347.22 0.09 

 

dim:leng 2.21 3 0.74 480.23 0.04 

 

resp:leng 1.21 3 0.40 262.42 0.02 

 

dim:resp:leng 1.70 9 0.19 123.01 0.03 

  residual 49.02 31968 0.00     

Specificity dim 0.01 3 0.00 69.35 0.01 

 

resp 0.04 3 0.01 198.07 0.02 

 

leng 0.06 1 0.06 922.05 0.03 

 

dim:resp 0.01 9 0.00 12.92 0.00 

 

dim:leng 0.02 3 0.01 105.30 0.01 

 

resp:leng 0.02 3 0.01 101.11 0.01 

 

dim:resp:leng 0.01 9 0.00 16.51 0.00 

  residual 2.23 31968 0.00     

NPV dim 0.02 3 0.01 561.93 0.05 

 

resp 0.17 3 0.06 5034.65 0.32 

 

leng 0.07 1 0.07 5917.02 0.16 

 

dim:resp 0.05 9 0.01 471.81 0.12 

 

dim:leng 0.02 3 0.01 708.51 0.06 

 

resp:leng 0.01 3 0.00 422.52 0.04 

 

dim:resp:leng 0.02 9 0.00 159.60 0.04 

  residual 0.36 31968 0.00     

PPV dim 5.82 3 1.94 1014.48 0.09 

 

resp 41.73 3 13.91 7276.56 0.41 

 

leng 19.91 1 19.91 10415.89 0.25 

 

dim:resp 10.43 9 1.16 606.25 0.15 

 

dim:leng 7.40 3 2.47 1289.44 0.11 

 

resp:leng 3.98 3 1.33 693.64 0.06 



252 

 

 

 

dim:resp:leng 3.88 9 0.43 225.34 0.06 

  residual 61.11 31968 0.00     

ANOVA Results for Disacquiescence Responding 

Table C4  

Guttman Errors ANOVA Table for Disacquiescence 

  Parameter Sum Sq df 

Mean 

Sq. F value Partial Omega Sq 

Sensitivity dim 24.30 3 8.10 7024.17 0.40 

 

resp 69.82 3 23.27 20185.53 0.65 

 

leng 0.06 1 0.06 56.26 0.00 

 

dim:resp 29.67 9 3.30 2859.27 0.45 

 

dim:leng 5.26 3 1.75 1520.65 0.12 

 

resp:leng 4.45 3 1.48 1285.43 0.11 

 

dim:resp:leng 5.35 9 0.59 515.70 0.13 

  residual 36.86 31968 0.00     

Specificity dim 0.25 3 0.08 16939.57 0.61 

 

resp 0.81 3 0.27 54891.78 0.84 

 

leng 0.02 1 0.02 4715.87 0.13 

 

dim:resp 0.35 9 0.04 8020.13 0.69 

 

dim:leng 0.06 3 0.02 4397.32 0.29 

 

resp:leng 0.05 3 0.02 3195.54 0.23 

 

dim:resp:leng 0.15 9 0.02 3481.46 0.49 

  residual 0.16 31968 0.00     

NPV dim 0.27 3 0.09 8315.81 0.44 

 

resp 0.77 3 0.26 24239.66 0.69 

 

leng 0.00 1 0.00 12.89 0.00 

 

dim:resp 0.32 9 0.04 3374.51 0.49 

 

dim:leng 0.06 3 0.02 1838.13 0.15 

 

resp:leng 0.05 3 0.02 1527.24 0.13 

 

dim:resp:leng 0.06 9 0.01 632.31 0.15 

  residual 0.34 31968 0.00     

PPV dim 89.77 3 29.92 13715.21 0.56 

 

resp 248.24 3 82.75 37926.63 0.78 

 

leng 0.14 1 0.14 62.73 0.00 

 

dim:resp 103.15 9 11.46 5253.38 0.60 

 

dim:leng 16.45 3 5.48 2512.82 0.19 
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resp:leng 16.05 3 5.35 2452.57 0.19 

 

dim:resp:leng 20.18 9 2.24 1027.61 0.22 

  residual 69.75 31968 0.00     

 

Table C5  

 H
T

i ANOVA Table for Disacquiescence 

  Parameter Sum Sq df 

Mean 

Sq. F value Partial Omega Sq 

Sensitivity dim 0.97 3 0.32 816.87 0.07 

 

resp 20.19 3 6.73 16947.98 0.61 

 

leng 1.75 1 1.75 4412.91 0.12 

 

dim:resp 0.61 9 0.07 171.55 0.05 

 

dim:leng 2.08 3 0.69 1743.32 0.14 

 

resp:leng 2.08 3 0.69 1749.93 0.14 

 

dim:resp:leng 4.30 9 0.48 1202.45 0.25 

  residual 12.69 31968 0.00     

Specificity dim 0.01 3 0.00 182.67 0.02 

 

resp 0.27 3 0.09 3981.32 0.27 

 

leng 0.02 1 0.02 795.91 0.02 

 

dim:resp 0.02 9 0.00 75.94 0.02 

 

dim:leng 0.03 3 0.01 513.11 0.05 

 

resp:leng 0.03 3 0.01 409.34 0.04 

 

dim:resp:leng 0.05 9 0.01 243.38 0.06 

  residual 0.73 31968 0.00     

NPV dim 0.01 3 0.00 938.71 0.08 

 

resp 0.23 3 0.08 19618.20 0.65 

 

leng 0.02 1 0.02 4998.42 0.14 

 

dim:resp 0.01 9 0.00 205.94 0.05 

 

dim:leng 0.02 3 0.01 2070.11 0.16 

 

resp:leng 0.02 3 0.01 1993.40 0.16 

 

dim:resp:leng 0.05 9 0.01 1359.42 0.28 

  residual 0.12 31968 0.00     

PPV dim 3.77 3 1.26 1021.52 0.09 

 

resp 76.87 3 25.62 20846.43 0.66 

 

leng 6.36 1 6.36 5173.77 0.14 

 

dim:resp 2.31 9 0.26 209.24 0.06 
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dim:leng 8.03 3 2.68 2178.77 0.17 

 

resp:leng 7.75 3 2.58 2101.41 0.16 

 

dim:resp:leng 16.36 9 1.82 1478.63 0.29 

  residual 39.30 31968 0.00     

 

Table C6  

U3 ANOVA Table for Disacquiescence 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 4.40 3 1.47 1342.90 0.11 

 

resp 32.77 3 10.92 10003.42 0.48 

 

leng 1.44 1 1.44 1320.64 0.04 

 

dim:resp 20.33 9 2.26 2068.61 0.37 

 

dim:leng 9.58 3 3.19 2922.99 0.22 

 

resp:leng 15.51 3 5.17 4734.25 0.31 

 

dim:resp:leng 6.14 9 0.68 624.78 0.15 

  residual 34.91 31968 0.00     

Specificity dim 0.04 3 0.01 1632.23 0.13 

 

resp 0.41 3 0.14 15157.74 0.59 

 

leng 0.02 1 0.02 1705.38 0.05 

 

dim:resp 0.26 9 0.03 3140.64 0.47 

 

dim:leng 0.12 3 0.04 4240.08 0.28 

 

resp:leng 0.19 3 0.06 6830.48 0.39 

 

dim:resp:leng 0.08 9 0.01 921.31 0.21 

  residual 0.29 31968 0.00     

NPV dim 0.05 3 0.02 1595.44 0.13 

 

resp 0.37 3 0.12 12136.10 0.53 

 

leng 0.02 1 0.02 1580.05 0.05 

 

dim:resp 0.23 9 0.03 2510.50 0.41 

 

dim:leng 0.11 3 0.04 3525.92 0.25 

 

resp:leng 0.17 3 0.06 5722.31 0.35 

 

dim:resp:leng 0.07 9 0.01 755.78 0.18 

  residual 0.32 31968 0.00     

PPV dim 16.49 3 5.50 2349.11 0.18 

 

resp 125.81 3 41.94 17918.36 0.63 

 

leng 5.57 1 5.57 2379.45 0.07 

 

dim:resp 77.59 9 8.62 3683.55 0.51 
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dim:leng 37.22 3 12.41 5300.20 0.33 

 

resp:leng 58.57 3 19.52 8341.53 0.44 

 

dim:resp:leng 23.09 9 2.57 1095.95 0.24 

  residual 74.82 31968 0.00     

ANOVA Results for Midpoint Responding 

Table C7  

Guttman Errors ANOVA Table for Midpoint Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 0.00 3 0.00 84.70 0.01 

 

resp 0.03 3 0.01 952.26 0.08 

 

leng 0.00 1 0.00 258.31 0.01 

 

dim:resp 0.01 9 0.00 60.73 0.02 

 

dim:leng 0.00 3 0.00 15.57 0.00 

 

resp:leng 0.00 3 0.00 13.61 0.00 

 

dim:resp:leng 0.00 9 0.00 37.96 0.01 

  residual 0.33 31968 0.00     

Specificity dim 0.01 3 0.00 992.26 0.09 

 

resp 0.02 3 0.01 1189.62 0.10 

 

leng 0.00 1 0.00 830.30 0.03 

 

dim:resp 0.03 9 0.00 693.21 0.16 

 

dim:leng 0.01 3 0.00 695.10 0.06 

 

resp:leng 0.02 3 0.01 1315.30 0.11 

 

dim:resp:leng 0.03 9 0.00 697.07 0.16 

  residual 0.16 31968 0.00     

NPV dim 0.00 3 0.00 688.79 0.06 

 

resp 0.00 3 0.00 1792.49 0.14 

 

leng 0.00 1 0.00 20.55 0.00 

 

dim:resp 0.00 9 0.00 228.69 0.06 

 

dim:leng 0.00 3 0.00 288.19 0.03 

 

resp:leng 0.00 3 0.00 571.66 0.05 

 

dim:resp:leng 0.00 9 0.00 304.31 0.08 

  residual 0.00 31968 0.00     

PPV dim 0.01 3 0.00 89.71 0.01 

 

resp 0.11 3 0.04 967.76 0.08 

 

leng 0.01 1 0.01 252.07 0.01 

 

dim:resp 0.02 9 0.00 61.99 0.02 
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dim:leng 0.00 3 0.00 16.34 0.00 

 

resp:leng 0.00 3 0.00 13.53 0.00 

 

dim:resp:leng 0.01 9 0.00 40.65 0.01 

  residual 1.20 31968 0.00     

Table C8  

 H
T

i ANOVA Table for Midpoint Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 48.07 3 16.02 16738.13 0.61 

 

resp 8.63 3 2.88 3004.80 0.22 

 

leng 19.81 1 19.81 20698.40 0.39 

 

dim:resp 32.84 9 3.65 3811.88 0.52 

 

dim:leng 15.56 3 5.19 5419.34 0.34 

 

resp:leng 5.44 3 1.81 1894.71 0.15 

 

dim:resp:leng 15.71 9 1.75 1823.74 0.34 

  residual 30.60 31968 0.00     

Specificity dim 0.60 3 0.20 10885.32 0.51 

 

resp 0.10 3 0.03 1787.01 0.14 

 

leng 0.23 1 0.23 12735.90 0.28 

 

dim:resp 0.40 9 0.04 2437.63 0.41 

 

dim:leng 0.20 3 0.07 3637.32 0.25 

 

resp:leng 0.06 3 0.02 1028.24 0.09 

 

dim:resp:leng 0.21 9 0.02 1297.45 0.27 

  residual 0.59 31968 0.00     

NPV dim 0.53 3 0.18 19105.86 0.64 

 

resp 0.10 3 0.03 3395.67 0.24 

 

leng 0.22 1 0.22 23512.43 0.42 

 

dim:resp 0.36 9 0.04 4337.59 0.55 

 

dim:leng 0.17 3 0.06 6201.03 0.37 

 

resp:leng 0.06 3 0.02 2123.98 0.17 

 

dim:resp:leng 0.18 9 0.02 2096.11 0.37 

  residual 0.30 31968 0.00     

PPV dim 182.00 3 60.67 24931.57 0.70 

 

resp 33.13 3 11.04 4538.74 0.30 

 

leng 73.62 1 73.62 30254.00 0.49 

 

dim:resp 127.20 9 14.13 5808.20 0.62 

 

dim:leng 60.20 3 20.07 8245.94 0.44 

 

resp:leng 20.67 3 6.89 2830.86 0.21 
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dim:resp:leng 62.43 9 6.94 2850.50 0.44 

  residual 77.79 31968 0.00     

 

Table C9  

U3 ANOVA Table for Midpoint Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 0.01 3 0.00 210.47 0.02 

 

resp 0.06 3 0.02 1183.74 0.10 

 

leng 0.00 1 0.00 119.11 0.00 

 

dim:resp 0.08 9 0.01 508.57 0.12 

 

dim:leng 0.00 3 0.00 26.98 0.00 

 

resp:leng 0.00 3 0.00 29.97 0.00 

 

dim:resp:leng 0.00 9 0.00 25.34 0.01 

  residual 0.56 31968 0.00     

Specificity dim 0.00 3 0.00 60.62 0.01 

 

resp 0.00 3 0.00 112.91 0.01 

 

leng 0.00 1 0.00 10.93 0.00 

 

dim:resp 0.01 9 0.00 108.26 0.03 

 

dim:leng 0.00 3 0.00 67.01 0.01 

 

resp:leng 0.00 3 0.00 85.92 0.01 

 

dim:resp:leng 0.01 9 0.00 69.11 0.02 

  residual 0.39 31968 0.00     

NPV dim 0.00 3 0.00 259.86 0.02 

 

resp 0.00 3 0.00 1001.99 0.09 

 

leng 0.00 1 0.00 32.49 0.00 

 

dim:resp 0.00 9 0.00 450.09 0.11 

 

dim:leng 0.00 3 0.00 61.42 0.01 

 

resp:leng 0.00 3 0.00 57.12 0.01 

 

dim:resp:leng 0.00 9 0.00 55.90 0.02 

  residual 0.01 31968 0.00     

PPV dim 0.04 3 0.01 221.21 0.02 

 

resp 0.23 3 0.08 1183.69 0.10 

 

leng 0.01 1 0.01 117.38 0.00 

 

dim:resp 0.31 9 0.03 535.86 0.13 

 

dim:leng 0.01 3 0.00 28.92 0.00 

 

resp:leng 0.01 3 0.00 26.92 0.00 
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dim:resp:leng 0.02 9 0.00 26.31 0.01 

  residual 2.08 31968 0.00     

ANOVA Results for Extreme Responding 

Table C10  

Guttman Errors ANOVA Table for Extreme Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 3.29 3 1.10 573.45 0.05 

 

resp 123.16 3 41.05 21477.94 0.67 

 

leng 86.32 1 86.32 45160.06 0.59 

 

dim:resp 6.66 9 0.74 386.96 0.10 

 

dim:leng 6.44 3 2.15 1123.43 0.10 

 

resp:leng 4.79 3 1.60 834.76 0.07 

 

dim:resp:leng 6.30 9 0.70 366.39 0.09 

  residual 61.11 31968 0.00     

Specificity dim 0.03 3 0.01 1885.75 0.15 

 

resp 1.52 3 0.51 95468.71 0.90 

 

leng 1.17 1 1.17 220747.25 0.87 

 

dim:resp 0.07 9 0.01 1565.09 0.31 

 

dim:leng 0.09 3 0.03 5915.83 0.36 

 

resp:leng 0.07 3 0.02 4430.32 0.29 

 

dim:resp:leng 0.06 9 0.01 1344.61 0.27 

  residual 0.17 31968 0.00     

NPV dim 0.04 3 0.01 654.20 0.06 

 

resp 1.37 3 0.46 25060.03 0.70 

 

leng 0.97 1 0.97 53085.50 0.62 

 

dim:resp 0.07 9 0.01 445.70 0.11 

 

dim:leng 0.07 3 0.02 1329.45 0.11 

 

resp:leng 0.05 3 0.02 990.22 0.08 

 

dim:resp:leng 0.07 9 0.01 420.32 0.11 

  residual 0.58 31968 0.00     

PPV dim 10.79 3 3.60 1909.56 0.15 

 

resp 471.07 3 157.02 83334.34 0.89 

 

leng 348.04 1 348.04 184708.93 0.85 

 

dim:resp 24.60 9 2.73 1450.43 0.29 

 

dim:leng 26.73 3 8.91 4729.54 0.31 

 

resp:leng 19.07 3 6.36 3372.75 0.24 
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dim:resp:leng 21.59 9 2.40 1272.95 0.26 

  residual 60.24 31968 0.00     

Table C11  

 H
T

i ANOVA Table for Extreme Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 0.43 3 0.14 298.19 0.03 

 

resp 5.48 3 1.83 3756.37 0.26 

 

leng 2.51 1 2.51 5154.08 0.14 

 

dim:resp 1.08 9 0.12 247.21 0.06 

 

dim:leng 1.77 3 0.59 1210.87 0.10 

 

resp:leng 0.71 3 0.24 488.70 0.04 

 

dim:resp:leng 1.20 9 0.13 275.04 0.07 

  residual 15.54 31968 0.00     

Specificity dim 0.01 3 0.00 51.43 0.00 

 

resp 0.07 3 0.02 538.55 0.05 

 

leng 0.02 1 0.02 523.01 0.02 

 

dim:resp 0.02 9 0.00 49.67 0.01 

 

dim:leng 0.02 3 0.01 197.88 0.02 

 

resp:leng 0.02 3 0.01 131.43 0.01 

 

dim:resp:leng 0.01 9 0.00 40.12 0.01 

  residual 1.31 31968 0.00     

NPV dim 0.00 3 0.00 347.16 0.03 

 

resp 0.06 3 0.02 4316.06 0.29 

 

leng 0.03 1 0.03 5743.01 0.15 

 

dim:resp 0.01 9 0.00 286.61 0.07 

 

dim:leng 0.02 3 0.01 1410.19 0.12 

 

resp:leng 0.01 3 0.00 603.57 0.05 

 

dim:resp:leng 0.01 9 0.00 307.44 0.08 

  residual 0.15 31968 0.00     

PPV dim 1.55 3 0.52 328.26 0.03 

 

resp 21.12 3 7.04 4464.83 0.30 

 

leng 9.07 1 9.07 5750.83 0.15 

 

dim:resp 4.29 9 0.48 302.58 0.08 

 

dim:leng 6.64 3 2.21 1404.51 0.12 

 

resp:leng 2.91 3 0.97 614.50 0.05 

 

dim:resp:leng 4.57 9 0.51 322.15 0.08 

  residual 50.40 31968 0.00     
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Table C12  

U3 ANOVA Table for Extreme Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 2.42 3 0.81 298.52 0.03 

 

resp 175.19 3 58.40 21620.95 0.67 

 

leng 105.39 1 105.39 39020.97 0.55 

 

dim:resp 13.54 9 1.50 556.88 0.14 

 

dim:leng 1.47 3 0.49 181.94 0.02 

 

resp:leng 8.84 3 2.95 1091.15 0.09 

 

dim:resp:leng 5.33 9 0.59 219.30 0.06 

  residual 86.34 31968 0.00     

Specificity dim 0.02 3 0.01 292.28 0.03 

 

resp 1.96 3 0.65 31156.24 0.74 

 

leng 1.26 1 1.26 60029.68 0.65 

 

dim:resp 0.18 9 0.02 931.20 0.21 

 

dim:leng 0.01 3 0.00 185.32 0.02 

 

resp:leng 0.11 3 0.04 1749.54 0.14 

 

dim:resp:leng 0.07 9 0.01 351.83 0.09 

  residual 0.67 31968 0.00     

NPV dim 0.03 3 0.01 351.25 0.03 

 

resp 1.94 3 0.65 26198.99 0.71 

 

leng 1.17 1 1.17 47495.06 0.60 

 

dim:resp 0.15 9 0.02 685.43 0.16 

 

dim:leng 0.02 3 0.01 213.84 0.02 

 

resp:leng 0.10 3 0.03 1331.90 0.11 

 

dim:resp:leng 0.06 9 0.01 268.06 0.07 

  residual 0.79 31968 0.00     

PPV dim 8.38 3 2.79 1133.55 0.10 

 

resp 659.88 3 219.96 89282.49 0.89 

 

leng 407.49 1 407.49 165404.04 0.84 

 

dim:resp 52.95 9 5.88 2387.94 0.40 

 

dim:leng 4.99 3 1.66 674.98 0.06 

 

resp:leng 33.60 3 11.20 4546.30 0.30 

 

dim:resp:leng 20.33 9 2.26 916.83 0.20 

  residual 78.76 31968 0.00     
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ANOVA Results for Socially Desirable Responding 

Table C13  

Guttman Errors ANOVA Table for Socially Desirable Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 3.59 3 1.20 1704.97 0.14 

 

resp 5.63 3 1.88 2673.68 0.20 

 

leng 4.74 1 4.74 6757.33 0.17 

 

dim:resp 6.75 9 0.75 1068.90 0.23 

 

dim:leng 2.31 3 0.77 1097.90 0.09 

 

resp:leng 2.74 3 0.91 1300.91 0.11 

 

dim:resp:leng 7.11 9 0.79 1125.53 0.24 

  residual 22.44 31968 0.00     

Specificity dim 0.03 3 0.01 1887.35 0.15 

 

resp 0.08 3 0.03 4752.01 0.31 

 

leng 0.13 1 0.13 21977.76 0.41 

 

dim:resp 0.08 9 0.01 1565.33 0.31 

 

dim:leng 0.02 3 0.01 1085.60 0.09 

 

resp:leng 0.03 3 0.01 1900.22 0.15 

 

dim:resp:leng 0.16 9 0.02 3089.01 0.46 

  residual 0.18 31968 0.00     

NPV dim 0.04 3 0.01 2022.92 0.16 

 

resp 0.06 3 0.02 3314.09 0.24 

 

leng 0.06 1 0.06 9028.32 0.22 

 

dim:resp 0.07 9 0.01 1227.82 0.26 

 

dim:leng 0.02 3 0.01 1292.65 0.11 

 

resp:leng 0.03 3 0.01 1557.06 0.13 

 

dim:resp:leng 0.08 9 0.01 1417.33 0.28 

  residual 0.20 31968 0.00     

PPV dim 12.64 3 4.21 2302.21 0.18 

 

resp 20.76 3 6.92 3781.90 0.26 

 

leng 20.12 1 20.12 10996.51 0.26 

 

dim:resp 22.90 9 2.54 1390.74 0.28 

 

dim:leng 7.99 3 2.66 1455.03 0.12 

 

resp:leng 10.92 3 3.64 1989.41 0.16 

 

dim:resp:leng 28.50 9 3.17 1731.06 0.33 

  residual 58.48 31968 0.00     
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Table C14  

H
T

i ANOVA Table for Socially Desirable Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 3.47 3 1.16 1572.88 0.13 

 

resp 69.73 3 23.24 31640.67 0.75 

 

leng 9.24 1 9.24 12577.59 0.28 

 

dim:resp 10.26 9 1.14 1551.74 0.30 

 

dim:leng 9.43 3 3.14 4280.95 0.29 

 

resp:leng 15.31 3 5.10 6948.45 0.39 

 

dim:resp:leng 6.16 9 0.68 932.01 0.21 

  residuals 23.48 31968 0.00     

Specificity dim 0.04 3 0.01 486.39 0.04 

 

resp 0.85 3 0.28 10203.90 0.49 

 

leng 0.09 1 0.09 3378.78 0.10 

 

dim:resp 0.18 9 0.02 716.06 0.17 

 

dim:leng 0.16 3 0.05 1879.71 0.15 

 

resp:leng 0.18 3 0.06 2135.72 0.17 

 

dim:resp:leng 0.10 9 0.01 396.00 0.10 

  residuals 0.89 31968 0.00     

NPV dim 0.04 3 0.01 1863.92 0.15 

 

resp 0.77 3 0.26 37871.21 0.78 

 

leng 0.10 1 0.10 14832.02 0.32 

 

dim:resp 0.12 9 0.01 1922.80 0.35 

 

dim:leng 0.11 3 0.04 5286.34 0.33 

 

resp:leng 0.17 3 0.06 8288.79 0.44 

 

dim:resp:leng 0.07 9 0.01 1135.73 0.24 

  residuals 0.22 31968 0.00     

PPV dim 11.35 3 3.78 1734.51 0.14 

 

resp 280.04 3 93.35 42805.84 0.80 

 

leng 31.45 1 31.45 14422.55 0.31 

 

dim:resp 48.89 9 5.43 2491.05 0.41 

 

dim:leng 41.31 3 13.77 6314.95 0.37 

 

resp:leng 53.91 3 17.97 8241.15 0.44 

 

dim:resp:leng 28.24 9 3.14 1439.11 0.29 

  residuals 69.71 31968 0.00     
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Table C15  

U3 ANOVA Table for Socially Desirable Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 2.98 3 0.99 1376.70 0.11 

 

resp 6.37 3 2.12 2939.20 0.22 

 

leng 2.11 1 2.11 2927.80 0.08 

 

dim:resp 7.67 9 0.85 1180.49 0.25 

 

dim:leng 0.57 3 0.19 263.62 0.02 

 

resp:leng 1.59 3 0.53 731.77 0.06 

 

dim:resp:leng 3.03 9 0.34 466.20 0.12 

  residual 23.08 31968 0.00     

Specificity dim 0.04 3 0.01 276.89 0.03 

 

resp 0.08 3 0.03 564.49 0.05 

 

leng 0.01 1 0.01 272.20 0.01 

 

dim:resp 0.10 9 0.01 240.33 0.06 

 

dim:leng 0.02 3 0.01 142.05 0.01 

 

resp:leng 0.03 3 0.01 183.28 0.02 

 

dim:resp:leng 0.04 9 0.00 105.53 0.03 

  residual 1.50 31968 0.00     

NPV dim 0.03 3 0.01 1927.30 0.15 

 

resp 0.07 3 0.02 4108.04 0.28 

 

leng 0.02 1 0.02 3857.70 0.11 

 

dim:resp 0.09 9 0.01 1665.75 0.32 

 

dim:leng 0.01 3 0.00 411.49 0.04 

 

resp:leng 0.02 3 0.01 1044.89 0.09 

 

dim:resp:leng 0.03 9 0.00 652.11 0.15 

  residual 0.18 31968 0.00     

PPV dim 12.08 3 4.03 2334.66 0.18 

 

resp 23.61 3 7.87 4564.38 0.30 

 

leng 7.47 1 7.47 4333.48 0.12 

 

dim:resp 28.30 9 3.14 1823.82 0.34 

 

dim:leng 2.56 3 0.85 495.29 0.04 

 

resp:leng 6.36 3 2.12 1229.31 0.10 

 

dim:resp:leng 11.78 9 1.31 758.88 0.18 

  residual 55.12 31968 0.00     
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ANOVA Results for Careless Responding 

Table C16  

Guttman Errors ANOVA Table for Careless Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 17.84 3 5.95 2960.94 0.22 

 

resp 644.49 3 214.83 106939.81 0.91 

 

leng 81.71 1 81.71 40674.35 0.56 

 

dim:resp 31.83 9 3.54 1760.33 0.33 

 

dim:leng 5.26 3 1.75 872.56 0.08 

 

resp:leng 13.75 3 4.58 2281.59 0.18 

 

dim:resp:leng 13.43 9 1.49 742.94 0.17 

  residual 64.22 31968 0.00     

Specificity dim 0.22 3 0.07 19315.19 0.64 

 

resp 7.96 3 2.65 688161.26 0.98 

 

leng 1.01 1 1.01 262334.62 0.89 

 

dim:resp 0.41 9 0.05 11823.14 0.77 

 

dim:leng 0.07 3 0.02 6029.79 0.36 

 

resp:leng 0.16 3 0.05 13431.94 0.56 

 

dim:resp:leng 0.16 9 0.02 4708.92 0.57 

  residual 0.12 31968 0.00     

NPV dim 0.20 3 0.07 3403.42 0.24 

 

resp 7.16 3 2.39 122954.56 0.92 

 

leng 0.91 1 0.91 46777.46 0.59 

 

dim:resp 0.35 9 0.04 2030.76 0.36 

 

dim:leng 0.06 3 0.02 1008.85 0.09 

 

resp:leng 0.15 3 0.05 2604.00 0.20 

 

dim:resp:leng 0.15 9 0.02 852.86 0.19 

  residual 0.62 31968 0.00     

PPV dim 72.46 3 24.15 21504.47 0.67 

 

resp 2500.70 3 833.57 742107.89 0.99 

 

leng 316.36 1 316.36 281651.88 0.90 

 

dim:resp 126.81 9 14.09 12543.76 0.78 

 

dim:leng 21.32 3 7.11 6326.89 0.37 

 

resp:leng 51.01 3 17.00 15138.66 0.59 

 

dim:resp:leng 51.57 9 5.73 5101.34 0.59 

  residual 35.91 31968 0.00     
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Table C17  

 H
T

i ANOVA Table for Careless Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 79.82 3 26.61 28848.72 0.73 

 

resp 124.74 3 41.58 45082.90 0.81 

 

leng 25.88 1 25.88 28063.65 0.47 

 

dim:resp 19.95 9 2.22 2403.37 0.40 

 

dim:leng 4.07 3 1.36 1472.67 0.12 

 

resp:leng 17.72 3 5.91 6402.67 0.38 

 

dim:resp:leng 6.27 9 0.70 755.08 0.17 

  residual 29.48 31968 0.00     

Specificity dim 0.94 3 0.31 10524.20 0.50 

 

resp 1.59 3 0.53 17764.28 0.62 

 

leng 0.32 1 0.32 10885.75 0.25 

 

dim:resp 0.24 9 0.03 898.70 0.20 

 

dim:leng 0.05 3 0.02 541.72 0.05 

 

resp:leng 0.19 3 0.06 2140.67 0.17 

 

dim:resp:leng 0.07 9 0.01 245.72 0.06 

  residual 0.95 31968 0.00     

NPV dim 0.88 3 0.29 32070.46 0.75 

 

resp 1.39 3 0.46 50503.30 0.83 

 

leng 0.29 1 0.29 31437.34 0.50 

 

dim:resp 0.22 9 0.02 2677.36 0.43 

 

dim:leng 0.05 3 0.02 1639.73 0.13 

 

resp:leng 0.19 3 0.06 7051.93 0.40 

 

dim:resp:leng 0.07 9 0.01 828.89 0.19 

  residual 0.29 31968 0.00     

PPV dim 303.60 3 101.20 46342.98 0.81 

 

resp 476.27 3 158.76 72701.60 0.87 

 

leng 96.10 1 96.10 44006.67 0.58 

 

dim:resp 76.28 9 8.48 3881.13 0.52 

 

dim:leng 14.98 3 4.99 2286.09 0.18 

 

resp:leng 67.63 3 22.54 10322.80 0.49 

 

dim:resp:leng 23.28 9 2.59 1184.64 0.25 

  residual 69.81 31968 0.00     
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Table C18  

U3 ANOVA Table for Careless Responding 

  Parameter Sum Sq df Mean Sq F value Partial Omega Sq 

Sensitivity dim 13.09 3 4.36 2307.57 0.18 

 

resp 687.35 3 229.12 121161.49 0.92 

 

leng 89.64 1 89.64 47402.65 0.60 

 

dim:resp 23.96 9 2.66 1407.55 0.28 

 

dim:leng 8.60 3 2.87 1515.52 0.12 

 

resp:leng 39.44 3 13.15 6952.13 0.39 

 

dim:resp:leng 23.22 9 2.58 1364.33 0.28 

  residual 60.45 31968 0.00     

Specificity dim 0.15 3 0.05 3449.22 0.24 

 

resp 8.40 3 2.80 196326.58 0.95 

 

leng 1.12 1 1.12 78650.58 0.71 

 

dim:resp 0.30 9 0.03 2334.78 0.40 

 

dim:leng 0.10 3 0.03 2340.87 0.18 

 

resp:leng 0.47 3 0.16 10876.88 0.50 

 

dim:resp:leng 0.29 9 0.03 2229.66 0.39 

  residual 0.46 31968 0.00     

NPV dim 0.14 3 0.05 2635.30 0.20 

 

resp 7.63 3 2.54 139624.16 0.93 

 

leng 1.00 1 1.00 54739.57 0.63 

 

dim:resp 0.27 9 0.03 1626.71 0.31 

 

dim:leng 0.10 3 0.03 1738.77 0.14 

 

resp:leng 0.44 3 0.15 7982.67 0.43 

 

dim:resp:leng 0.26 9 0.03 1572.13 0.31 

  residual 0.58 31968 0.00     

PPV dim 51.32 3 17.11 12129.69 0.53 

 

resp 2661.46 3 887.15 629064.20 0.98 

 

leng 347.28 1 347.28 246249.80 0.88 

 

dim:resp 90.50 9 10.06 7130.00 0.67 

 

dim:leng 33.15 3 11.05 7835.09 0.42 

 

resp:leng 150.54 3 50.18 35580.68 0.77 

 

dim:resp:leng 89.09 9 9.90 7018.91 0.66 

  residual 45.08 31968 0.00     
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