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Abstract
1. Bats play crucial ecological roles and provide valuable ecosystem services, yet 

many populations face serious threats from various ecological disturbances. The 
North American Bat Monitoring Program (NABat) aims to use its technology 
infrastructure to assess status and trends of bat populations, while developing 
innovative and community- driven conservation solutions.
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1  |  INTRODUC TION

Anthropogenic modifications are increasing rates of habitat destruction 
and biodiversity loss (Ceballos et al., 2015; Nelson et al., 2006; Sugai & 
Llusia, 2019), exceeding the capacity of conservation biologists to track 
and protect biodiversity (Wilson, 2017). Of critical concern are bat spe-
cies, which provide valuable ecosystem services including insect con-
trol, seed dispersal and plant pollination (Boyles et al., 2011; Ghanem 
& Voigt, 2012; Kalka et al., 2008; Medellin et al., 2017). Numerous 
cave- hibernating bats across the United States and Canada have ex-
perienced severe declines over significant portions of their ranges 
from white- nose syndrome (WNS; Cheng et al., 2021). Additionally, 
other factors including collisions with wind turbines (Frick et al., 2017; 
Thompson et al., 2017) and climate change (Hayes & Adams, 2017) may 
have significant negative effects on North American bat populations. 
More than half of bat species in the United States, Canada and Mexico 
are already of conservation concern (O'Shea & Bogan, 2003), yet we 
lack basic information on where they occur and how their populations 

are changing over time (Frick et al., 2020). Urgent efforts are needed 
to address these critical information gaps, such that we will be able to 
develop innovative solutions for bat conservation.

In order to address these information gaps, robust, scalable bat 
monitoring networks and technologies are needed. Advances in re-
cording tools and passive acoustic monitoring (PAM) techniques show 
promise in meeting needs for innovative bat monitoring solutions 
(Beason et al., 2020; Kloepper et al., 2016). PAM techniques provide 
potentially low- cost and efficient ways of monitoring bats at scale 
because they are noninvasive, autonomous and can be remotely de-
ployed (Sugai et al., 2019; Wood et al., 2021); yet, the abundance and 
rapid pace of acquired PAM data makes analysis challenging (Gibb 
et al., 2019). Additionally, survey standardization can be difficult, 
as recommendations regarding performance and biases of various 
sensors and sampling protocols across different habitats are lack-
ing (Browning et al., 2017), but see Brigham et al. (2004) and Fraser 
et al. (2020). As such, data collected among various research and 
monitoring projects are often not directly comparable. Broad- scale 

2. Here, we present NABat ML, an automated machine- learning algorithm that 
improves the scalability and scientific transparency of NABat acoustic moni-
toring. This model combines signal processing techniques and convolutional 
neural networks (CNNs) to detect and classify recorded bat echolocation calls. 
We developed our CNN model with internet- based computing resources (‘cloud 
environment’), and trained it on >600,000 spectrogram images. We also in-
corporated species range maps to improve the robustness and accuracy of the 
model for future ‘unseen’ data. We evaluated model performance using a com-
prehensive, independent, holdout dataset.

3. NABat ML successfully distinguished 31 classes (30 species and a noise class) 
with overall weighted- average accuracy and precision rates of 92%, and ≥90% 
classification accuracy for 19 of the bat species. Using a single cloud- environment 
computing instance, the entire model training process took <16 h.

4. Synthesis and applications. Our convolutional neural network (CNN)- based model, 
NABat ML, classifies 30 North American bat species using their recorded echoloca-
tion calls with an overall accuracy of 92%. In addition to providing highly accurate 
species- level classification, NABat ML and its outputs are compatible with Bayesian 
and other statistical techniques for measuring uncertainty in classification. Our 
model is open- source and reproducible, enabling future implementations as soft-
ware on end- user devices and cloud- based web applications. These qualities make 
NABat ML highly suitable for applications ranging from grassroots community sci-
ence initiatives to big- data methods developed and implemented by researchers and 
professional practitioners. We believe the transparency and accessibility of NABat 
ML will encourage broad- scale participation in bat monitoring, and enable develop-
ment of innovative solutions needed to conserve North American bat species.

K E Y W O R D S
automatic identification, bat echolocation calls, bioacoustics monitoring, community scientists, 
machine learning, North America, quantitative ecology, signal and image processing
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monitoring networks like the North American Bat Monitoring Program 
(NABat; Loeb et al., 2015) offer solutions to problems of inconsistency 
and latency in the capture and analysis of bat calls by providing stan-
dard protocols for collecting PAM recordings, as well as a recording re-
pository and platform for easy data sharing among collaborators. The 
data infrastructure created by the NABat program provides a crucial 
opportunity to develop standard, open- source platforms to process 
and analyse PAM recordings (www.nabat monit oring.org).

Currently, NABat relies almost entirely on expert biologists 
and wildlife professionals for data collection efforts (Reichert 
et al., 2021). Reliance on highly skilled experts provides reliable 
and consistent data, particularly from often inaccessible geograph-
ical regions. However, expanding collection efforts by engaging 
community scientists and nonprofessionals has strong potential to 
increase the quantity and representativeness of monitoring data, 
thus increasing the chances of gathering more consistent, longer- 
term datasets spanning entire species ranges and decades of eco-
logical disturbance. One major challenge to scaling up efforts for 
acoustic monitoring is providing timely and representative results 
to stakeholders and decision makers (Reichert et al., 2018). In their 
current forms, pipelines for collecting, processing and submitting 
data to centralized repositories is labour and time intensive, cre-
ating opportunities for data loss. This can be improved by increas-
ing accessibility to open- source solutions and reducing timesteps 
with on- board processing (Figure 1). Automated machine learning 
and signal processing methods have shown promise in efficiently 
and accurately processing bat acoustic data, with high potential to 
meet the above needs. Multiple groups have developed frameworks 
that process recordings to detect and identify bat species utilizing 
both signal processing and machine- learning algorithms. These in-
clude commercial software packages such as Sonobat (www.sonob 
at.com), KaleidoScope pro (hereafter called Kaleidoscope; Wildlife 
Acoustics, www.wildl ifeac ousti cs.com), bat call id (BCID; Bat Call 
Identification, Inc. www.batca llid.com), and free programs such as 
echoclaSS (Eric Britzke; https://www.fws.gov/media/ echoc lass- instr 
uctio ns- v3- and- softw are- files), and multiple published open- source 
machine- learning- based models (Britzke et al., 2011; Skowronski & 
Fenton, 2008; Skowronski & Harris, 2006). However, these packages 
remain beyond the means or technological prowess of many poten-
tial users. These packages also do not incorporate recent advances 
in deep learning techniques, which have enabled the application of 
convolutional neural networks (CNNs; Albawi et al., 2017) to bat sig-
nal identification (e.g. BatDetective (Mac Aodha et al., 2018); BatNet 
(Chen et al., 2020); Pettersson (2020); and Tabak et al. (2022)).

In addition to scalability and improved access, increased transpar-
ency in classification error rates and uncertainty from autoclassifica-
tion software are needed to accelerate scientific efforts informing 
bat conservation. Autoclassification software programs tend to show 
lower- than- expected agreement in species classification (Lemen 
et al., 2015; Nocera et al., 2019) without providing transparency in 
uncertainty calculations. This may be especially problematic when 
combining acoustic monitoring data classified using a variety of au-
toclassification software packages to assess species distributions and 

related metrics. Current statistical models can help correct for known 
sources of bias in acoustic monitoring data (Stratton et al., 2022; 
Wright et al., 2020). However, transparency in the various architec-
tures of automated classification programs will allow for develop-
ment of new modelling approaches that account for and propagate 
uncertainty arising from acoustic classification software.

We present a scalable, open- source and fully automated model 
to detect and identify echolocation calls of North American bats. 
Using field- recorded, full- spectrum audio files from the NABat 
community- driven database, we demonstrate how our model com-
bines advanced signal- processing techniques to isolate bat pulses 
(single sound made by an echolocating bat; Figure 2), and then cor-
rectly classifies them to the labelled species using a CNN- based ap-
proach (Abadi et al., 2016). By incorporating species distributional 
information, we further demonstrate how to mitigate the effects of 
‘unseen’ data on model robustness and accuracy. This cloud- based 
model development can be uniquely tailored to the needs of end- 
users and was designed to satisfy the assumptions of statistical 
methods of strong interest to bat researchers, such as Bayesian hier-
archical models that link acoustic data with location- specific covari-
ates (e.g. topography, land cover, disease, etc.).

2  |  MATERIAL S AND METHODS

NABat is an international, multiagency, long- term North American bat 
monitoring program that seeks to provide reliable data to guide effec-
tive conservation solutions at local and continental scales, as well as 
regularly assess the status and trends in bat species abundance and 
distribution (Loeb et al., 2015; Reichert et al., 2021). Most bats use 
echolocation to understand their surrounding environment, search 
for food, and avoid threats and obstacles (Schnitzler et al., 2003). 
Bats emit three general types of echolocation calls: search- phase calls 
to search for and localize prey (e.g. insects), approach- phase calls to 
track and pursue prey, and terminal- buzz calls that represent the last 
phase of an echolocation call sequence used immediately preceding 
and during prey capture (Kalko & Schnitzler, 1989). Here, we devel-
oped our species identification model using any types of echolocation 
calls that pass our signal processing/filtering steps (see Section 2.2.2 
for more details), and excluded all social calls from these analyses.

2.1  |  Data collection

Expert users and data contributors manually labelled digital audio 
files of bat echolocation calls in Waveform Audio File format (wav) 
and submitted them to the NABat database through an online inter-
face (NABat Partner Portal), cloud- to- cloud transfer, or by mailing 
external hard drives from 2016 to 2021. In total, over 20 experts 
from 35 NABat community projects provided manually vetted audio 
files to the NABat database. These data were collected via the 
NABat community independent of this study, so no ethical approval 
or licences were required.

http://www.nabatmonitoring.org
http://www.sonobat.com
http://www.sonobat.com
http://www.wildlifeacoustics.com
http://www.batcallid.com
https://www.fws.gov/media/echoclass-instructions-v3-and-software-files
https://www.fws.gov/media/echoclass-instructions-v3-and-software-files


4  |   Journal of Applied Ecology KHALIGHIFAR et al.



    |  5Journal of Applied EcologyKHALIGHIFAR et al.

2.2  |  Data processing

2.2.1  |  Sound reference library

We first created a reference library of bat calls by grouping manu-
ally vetted, full- spectrum Waveform Audio File format (.wav) files 
stored in the NABat database by species and location (i.e. NABat 
master sample grid cell; Reichert et al., 2021). This resulted in a list 
of 2459 unique species/NABat grid- cell combinations (Figure 3). To 
represent geographic variation in our reference library, we randomly 
drew recordings from each species/NABat grid cell combination in 
round- robin style until either all recordings associated with a given 
species were used, or the number of recordings reached 1250. This 
process resulted in 23,835 recordings for 30 species, and a ‘noise’ 
class of ambient, anthropogenic and nonbat noises (see Table 1). We 
then randomly split our dataset into three parts: 80% of audio files 

were used to create a training set, 10% for a validation set and 10% 
for a holdout test set.

2.2.2  |  Spectrogram reference library

After randomly assigning all 23,835 recordings into the three 
datasets, we processed each recording file using Librosa (McFee 
et al., 2015) library implemented in Python 3.6 (Python Software 
Foundation. Python Language Reference, version 3.6; http://
www.python.org). First, we subsampled each recording with a 
50- millisecond sliding window to detect bat call pulses in the re-
cording, regardless of whether it belonged to the training, validation 
or test set. We specifically chose a 50- ms audio sampling duration 
because it exceeds that of call pulses emitted by all known species 
of echolocating bats in North America. Second, we applied a fast 

F I G U R E  1  North American Bat Monitoring Program (NABat) current acoustic data pipeline (blue) and future strategies (green) for 
inferring and reporting on status and trends of populations through remote detection of bat calls. Wildlife professionals that record and 
classify ultrasonic calls of bats with specialized equipment and software form the core of the current NABat acoustic monitoring strategy 
(left, blue; Loeb et al., 2015). Current protocols suggest a human expert review acoustic files after being processed via an automated 
classifier to confirm or overturn species identification. Uploading meta- data (e.g. species detections and information about the survey 
including location, date, time, survey design, etc.) and acoustic files to a common database make them discoverable by researchers who may 
access them in support of various research objectives. System improvements (right, green) aim to decrease burden on wildlife professionals, 
lower barriers to community scientist participation, reduce data loss and expand research capabilities. Accessible, transparent and flexible 
open- source machine learning models for identifying species from acoustics (bolded lines) support other system advancements that will 
increase the quantity, quality, and throughput of data to ultimately improve and accelerate the delivery of information on the status and 
trends of North America's bat populations.

F I G U R E  2  Workflow of the fully automated NABat ML data processing steps, using an audio file with 5 pulses of pallid bat (Antrozous 
pallidus, or ANPA) as an example. We detect single bat echolocation pulses from the raw digital audio files (WAV files) and convert to images 
(PNG). Then, we use spectrograms as input to the convolutional neural network (CNN) model. After identifying each spectrogram, we 
summarize/average the identification outputs (species ID and confidence rate) and report at the audio- file level.

http://www.python.org
http://www.python.org
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Fourier transformation (FFT; Blackman & Tukey, 1958; Heideman 
et al., 1985), using an FFT window size of 1 ms, an overlap of 25%, 
with ‘hamming’ function to all 50- ms samples. Third, we ran all audio 
samples through a band- pass filter to remove any noise outside 
of the 5– 100 kHz frequency range (see Figure S1 for more details) 
within which most North American bat species emit echolocation 
calls. Fourth, we extracted signal features such as frequency, peak 
amplitude and the timepoint within the recording from which each 
sample was taken, to be used in denoising and calculation of the 
signal- to- noise ratio (SNR). Fifth, we applied a denoising technique 
to each 50- ms sample by subtracting the median amplitude from 
each single value of the sample matrix. Finally, we calculated a SNR 
for each sample after denoising.

We filtered and excluded any 50- ms audio samples that met one 
or more of the following criteria from analysis: (1) the focal bat pulse 
occurred within the first or last 10 ms of the sample, in order to pre-
vent bat pulses from getting cut off at the edges of the sample; (2) 
the greatest frequency magnitude was equal to or <21 (short- term 
Fourier transform in Librosa; McFee et al., 2015); or (3) the SNR was 
equal to or <7. After excluding any samples that met the above cri-
teria, we converted the remaining samples to spectrogram images 

in portable graphics format (PNG) format. Each 50- ms image was 
100 × 100 pixels, with a 95 kHz frequency range on the y- axis. y- axis 
lower and upper bounds were set at 5 and 100, respectively. We 
used these spectrograms as inputs to our CNN model (Figure 2).

2.2.3  |  Model architecture and training

We applied a CNN modelling approach to detect and classify bat 
pulses in spectrograms associated with call recordings from the 30 
bat species and a noise class. CNN models are comprised of three 
types of layers: (1) convolutional layers, which apply hierarchical 
feature extraction and decomposition to input images; (2) pooling 
layers, which carry out operations to reduce the number of param-
eters and computations in the network; and (3) fully connected lay-
ers, which perform classification at the end of the process, where 
each input is connected to all nodes of that layer. A main advantage 
of CNN models over traditional machine- learning classifiers is their 
automated image feature extraction, which eliminates the need for 
users to determine a priori which image features will be important 
for accomplishing the desired detection and classification tasks. We 

F I G U R E  3  The distribution map of 2459 unique species/NABat master sample grid cell combinations (blue dots; Reichert et al., 2021), 
from which representative recordings of bat calls from 30 different species were selected to train a convolutional neural network (CNN) for 
an automatic detection and classification system.
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specifically chose to use a CNN because they show reliably high per-
formance with image classification tasks and pattern recognition (Gu 
et al., 2018; Krizhevsky et al., 2017).

We developed a CNN model with 10 hidden layers, using the Keras 
(https://keras.io/api/) and TensorFlow 2 (Abadi et al., 2016) software 
libraries in Python 3.6 (see Table S1), and used Amazon Web Services 
(AWS) SageMaker for training and evaluation. Keras is a high- level, 
deep- learning application programming interface (API) running on 

TensorFlow, an open- source, end- to- end machine learning platform. 
We used a cloud- based modelling environment (ml.p3.2xlarge AWS 
instance) with 1 Graphic Processing Unit (GPU), 61 GB of memory, and 
8 virtual Central Processing Units (vCPUs). We trained our CNN model 
on 611,637 spectrograms associated with the 31 classes (30 species 
and 1 noise class) in the training set using a batch size of 32. We con-
sidered the validation loss value (the sparse categorical cross- entropy 
function) as a factor to find optima in the training process. The loss 

TA B L E  1  Summary of the 31 classes analysed, correct identification rates and sample sizes of validation set (pulse- level identification) 
and test set (audio- file level identification) for 30 North American bat species and a noise class

Scientific name Common name Label

Validation set (pulses) Test set (audio files)

Identification 
rate Sample size

Identification 
rate Sample size

Antrozous pallidus Pallid bat ANPA 0.69 773 0.78 23

Corynorhinus 
townsendii

Townsend's big- eared bat COTO 0.32 642 0.91 34

Eptesicus fuscus Big brown bat EPFU 0.89 4190 0.91 117

Euderma maculatum Spotted bat EUMA 0.78 1029 0.97 38

Eumops perotis Greater bonneted bat EUPE 0.83 287 0.72 25

Idionycteris phyllotis Allen's big- eared bat IDPH 0.43 282 0.25 4

Lasionycteris 
noctivagans

Silver- haired bat LANO 0.68 2541 0.92 122

Lasiurus blossevillii Western red bat LABL 0.63 269 0.53 17

Lasiurus borealis Eastern red bat LABO 0.72 4519 0.84 125

Lasiurus cinereus Hoary bat LACI 0.71 1447 0.84 116

Lasiurus intermedius Northern yellow bat LAIN 0.93 2824 0.96 101

Lasiurus seminolus Seminole bat LASE 0.71 2663 0.89 114

Myotis austroriparius Southeastern myotis MYAU 0.88 586 1.00 9

Myotis californicus California myotis MYCA 0.84 4126 0.91 101

Myotis ciliolabrum Western small- footed myotis MYCI 0.85 3986 0.95 127

Myotis evotis Long- eared myotis MYEV 0.89 3919 0.97 119

Myotis grisescens Grey bat MYGR 0.97 1248 1.00 42

Myotis leibii Eastern small- footed myotis MYLE 0.94 2495 0.97 96

Myotis lucifugus Little brown bat MYLU 0.82 3734 0.83 127

Myotis septentrionalis Northern myotis MYSE 0.81 1214 0.76 46

Scientific name Common name Label

Validation set (pulses) Test set (audio files)

Identification rate Sample size Identification rate Sample size

Myotis sodalis Indiana bat MYSO 0.96 2977 0.98 85

Myotis thysanodes Fringed myotis MYTH 0.90 3609 0.94 110

Myotis velifer Cave bat MYVE 0.14 175 0.25 4

Myotis volans Long- legged myotis MYVO 0.76 3019 0.97 76

Myotis yumanensis Yuma myotis MYYU 0.84 3442 0.98 121

Nycticeius humeralis Evening bat NYHU 0.79 5221 0.93 136

Nyctinomops macrotis Big free- tailed bat NYMA 0.69 310 0.87 23

Parastrellus hesperus Canyon bat PAHE 0.96 3704 0.99 83

Perimyotis subflavus Tri- coloured bat PESU 0.89 3480 0.93 117

Tadarida brasiliensis Brazilian free- tailed bat TABR 0.74 1661 0.91 109

— Noise NOISE 0.77 56 1.00 5

https://keras.io/api/
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function is part of the model optimization, which was calculated re-
peatedly to measure error of the model's current status (Akbari et al., 
2021). To achieve the highest performance possible, we completed the 
training process in two separate rounds. First, we initiated the training 
process with a learning rate of 1 × 10−4 using the Adam optimizer and 
rectified linear unit activation function (ReLU). We used dropout reg-
ularization layers to avoid over- fitting during the training process, and 
the Early Stopping method in Keras to monitor validation loss values, 
which automatically stopped the training process once model predic-
tion performance failed to increase on the holdout validation data-
set. After completing the first round, we reduced the learning rate to 
1 × 10−6 and kept all other configurations the same before beginning 
the second training round. We ultimately chose this process for train-
ing our model because it resulted in the best performance (with lowest 
validation loss) on the validation set.

2.2.4  |  Model evaluation

Our validation set consisted of 74,773 spectrograms from 2396 
recordings. Throughout the training process, we calculated overall 
weighted accuracy, precision, recall (hereafter, correct identification 
rate) and F1- score to measure and report model performance using 
this set. We used a softmax function as the final layer of our CNN 
network to normalize model output and provide a confidence rate 
(between 0 and 1) to each classification label assignment. We meas-
ured the distribution of these confidence rates to identify a thresh-
old confidence rate for filtering false positives at the evaluation step 
(see below).

The remaining 10% of recordings in our sound reference library 
constituted an independent test set of 2426 recordings resulting in 
82,103 spectrograms. To evaluate model performance after com-
pleting the training process, we calculated the same metrics for mea-
suring and reporting model performance detailed above. However, 
since the test set represents a simulation of the ‘real- world’, we mea-
sured model performance at the audio- file level. To report metrics of 
model performance at the audio- file level, we set three conditions:

1. Number of detected pulses: In order to receive an identification, 
each recording needed to contain at least one detectable bat 
pulse. Lack of a detectable bat pulse resulted in returning 
“NoID” for the audio file.

2. Mean confidence rate of pulses: If the confidence rate for classifica-
tion of every detected pulse within an audio file was below 0.57 
(i.e. the confidence rate threshold calculated using the validation 
set), the model returned ‘NoID’ for the audio file. We calculated 
this threshold using an optimal cut- point value with the receiver 
operating characteristic (ROC) technique (optimal AUC), and used 
it to reduce our false positive rate (see Figure S2).

3. Species distributional information: We incorporated species dis-
tributional data as secondary information to improve our iden-
tification rate and further reduce our false positive rate. To do 
so, we used species range maps (North American Bat Species 

Distribution, 2014), and added a 300 km buffer to each range. 
After assigning a species label to each audio file, we compared 
the recording's location with the species range. If no overlap was 
found between the buffered species range and the recording's 
location, the model returned the next species label for the audio 
file. This process continued until the recording's location over-
lapped with the species range map.

All codes for processing audio files, training and evaluating the 
CNN model, as well as the image and sound reference libraries are 
made available via U.S. Geological Survey data and software release 
(https://doi.org/10.5066/P969TX8F; https://doi.org/10.5066/
P9XJRJZX) to facilitate future training and validation of our classifier 
in applied settings.

3  |  RESULTS

We calibrated our bat classification model through two separate 
training rounds using 611,637 spectrograms. In the first round, the 
early stopping method terminated the training process after 19 
epochs, as no further improvement was observed in model perfor-
mance. Using the same method, the second round lasted 18 epochs, 
and ultimately achieved a validation loss score of 0.75. This was the 
lowest validation loss value achieved across all tested approaches. 
Each epoch took an average of 25 min, resulting in ~15.5 h of total 
training process time across both rounds. We then used independ-
ent validation and test sets to evaluate our model's performance at 
the pulse-  and audio- file levels of identification, respectively.

Validation set: We applied our fully automated classifier to the 
2396 audio files of the validation dataset, resulting in 74,773 spec-
trograms for identification (see Table 1). We created a confusion ma-
trix to depict model results at the pulse level for 31 classes (Figure 4). 
The overall accuracy and precision rates for pulse- level identification 
were 83 and 80%, respectively. We achieved >80% correct identifi-
cation rate for 16 classes. Of these, correct identification rates were 
highest (>95%) for grey bat (Myotis grisescens, MYGR), Indiana bat 
(Myotis sodalis, MYSO), and canyon bat (Parastrellus hesperus, PAHE). 
The lowest correct identification rates were for cave bat (Myotis 
velifer, MYVE), Townsend's big- eared bat (Corynorhinus townsendii, 
COTO), Allen's big- eared bat (Idionycteris phyllotis, IDPH), and west-
ern red bat (Lasiurus blossevillii, LABL), with 14%, 32%, 43% and 63%, 
respectively. Notably, species with the lowest correct identification 
rates were represented by the fewest audio samples among the 30 
species of bats tested (MYVE, n = 175; LABL, n = 269; IDPH, n = 282).

Test set: We used our test dataset to evaluate model perfor-
mance by applying our classifier to 2426 audio files, generating 
82,103 spectrograms (see Table 1, Figure 5). After classifying each 
spectrogram within an audio file, we summed their confidence 
rates per species and labelled the file with the species name that 
had the highest cumulative value, provided all three recording cri-
teria were met (see Methods). Applying these conditions resulted 
in ‘NoID’ returns, or change of species labels, for 93 audio files (i.e. 

https://doi.org/10.5066/P969TX8F
https://doi.org/10.5066/P9XJRJZX
https://doi.org/10.5066/P9XJRJZX
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3.8% of recordings in test dataset). Recording locations for 39 files 
(1.6%) did not coincide with the range of the top identified species: 
29 files (1.2%) had a mean confidence rate below 0.57, and 25 (1%) 
had <1 detectable bat pulse. This process resulted in a 92% overall 
weighted- average classification accuracy and precision at the re-
cordings level. Incorporating species distribution information and 
confidence rate criteria improved our overall classification accuracy 
by 2%.

At the audio- file level, we achieved ≥90% correct identifica-
tion rates for 19 of the bat species classes, out of a total 31 classes 
(Figure 5). The highest correct identification rates were for calls of 
southeastern myotis (Myotis austroriparius, MYAU), MYGR, and the 
noise class, each at 100%, followed by PAHE at 99%. Notably, MYAU 
and the noise class were represented by only 9 and 5 samples in 
the test set, respectively (Table 1). The lowest correct identification 
rates were for MYVE (25%), IDPH (25%), and LABL (53%); these 
species were represented by correspondingly sparse representation 
in the test set, with 4, 4, and 17 samples, respectively. Our model 
performed poorly when classifying hoary bat calls (Lasiurus cinereus, 

LACI); known calls of that species were confused with 8 other spe-
cies: 4% of recordings associated with LACI were misidentified as 
Brazilian free- tailed bat (Tadarida brasiliensis, TABR), 2% each as eve-
ning bat (Nycticeius humeralis, NYHU), silver- haired bat (Lasionycteris 
noctivagans, LANO), big brown bat (Eptesicus fuscus, EPFU), eastern 
red bat (Lasiurus borealis, LABO) and little brown bat (Myotis lucifugus, 
MYLU), and 1% each as MYSO and spotted bat (Euderma maculatum, 
EUMA). Additional model performance details, including precision 
and F- 1 scores for all 31 classes at both the pulse and audio- file lev-
els, are located in Table S2.

4  |  DISCUSSION

We present NABat ML, a fully automated, scalable and open- source 
model to detect and classify bat pulses from field recordings. Our 
model converts these pulses to images, identifies each pulse spectro-
gram at the species level using an advanced CNN- based model and 
reports the final identification at the audio- file level. After testing on 

F I G U R E  4  Confusion matrix for the 31 classes of North American bat species (using species codes) and the noise class in the validation 
set (pulse- level identification). Blue, correct identifications; brown, misidentifications. All values of zero or <1% are removed for ease of 
visualization.
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an independent dataset, our model successfully identified record-
ings of 31 classes (30 species of bats and a noise class) with overall 
weighted- average accuracy and precision rates of 92%. We achieved 
correct identification rates of ≥90% for 20 of these classes, including 
the noise class. Notably, three of the 20 classes represent federally 
endangered species in the United States (MYGR and MYSO; U.S. 
Fish and Wildlife Service, 1991), or species of Special Concern in 
Canada (EUMA; COSEWIC, 2004). Additionally, the tri- coloured bat 
(Perimyotis subflavus, PESU) is federally listed as Endangered under 
the Species at Risk Act in Canada (COSEWIC, 2012), and is currently 
under review for protection under the U.S. Endangered Species 
Act (U.S. Fish and Wildlife Service, 2017). We also achieved >75% 
precision across all classes, indicating that our model has a low rate 
of false positives at the audio- file level. To the best of our knowl-
edge, the model we presented is the most comprehensive deep 
learning- based bat echolocation classifier available, benefiting from 
a combination of advanced signal and image processing techniques. 
Our model is reproducible, fully automated, performs at analysis 
speeds faster than real- time, and can be used to process enormous 

quantities of data generated by PAM techniques. As an open- source 
software application with encouraging classification accuracy, this 
model shows promise for improving large- scale bat monitoring ef-
forts in North America.

CNNs are increasingly developed to analyse data collected 
through PAM techniques, camera traps, and other autonomous 
monitoring devices because of their proven effectiveness at au-
tomated feature extraction, image decomposition and informa-
tion gathering from huge volumes of data (Allen et al., 2021; Gray 
et al., 2019; Norouzzadeh et al., 2018). In particular, multiple studies 
have successfully applied CNNs to bat echolocation calls to detect 
and/or classify species (Chen et al., 2020; Mac Aodha et al., 2018; 
Pettersson, 2020; Tabak et al., 2022). However, these foundational 
prior efforts fell short of meeting NABat's goals to assess status and 
trends of bat populations well into the future. For example, although 
BatDetective (Mac Aodha et al., 2018) successfully detects bat 
calls in recordings, the CNN- based model does not classify species 
producing those calls. BatNet (Chen et al., 2020) classifies species 
with 86% overall accuracy, but is limited to Asian bats and requires 

F I G U R E  5  Confusion matrix for the 31 classes of North American bat species (using species codes) and the noise class in the test 
set (audio- file level identification). Blue, correct identifications; brown, misidentifications. All values of zero are removed for ease of 
visualization.
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manual extraction of signals from audio files. Tabak et al.'s (2022) 
CNN- based model classifies 10 North American species of bats with 
90% overall accuracy, but is not compatible with cloud environments 
like the NABat database. Additionally, this model was trained on 
acoustic data recorded in zero- crossing (ZC) format, which makes 
the model rely on a reduced set of information that could be critical 
for bat call identification. As such, our model adds to a pool of CNN- 
based bat identification models that is capable of identifying echolo-
cation calls with high accuracy, increases equitable access and offers 
maximum transparency, while addressing the needs of the NABat 
and bat research communities at large.

We also incorporated species distributional information to 
further improve our model's robustness to future unseen data. 
However, our method differs from the classification process used 
in other common software packages, which incorporate species 
lists based on geographic information prior to classification. In early 
tests, we experimented with incorporating species distributional 
information into our model prior to pulse classification, and exper-
imentally removed species that were not known to occur in a spe-
cific area (see Figure S3 and S4). For example, if one species was 
not known to occur where a call was recorded, that species was not 
considered a potential classification candidate for that recording. 
Although this experimental test resulted in a slight improvement in 
overall weighted- average classification accuracy (93% overall accu-
racy), we ultimately decided to incorporate distributional informa-
tion after classification to account for disagreement and uncertainty 
in existing species ranges, as well as any needed model adjustments 
as ranges shift over time.

While CNN models can detect and classify echolocation calls 
of bats with high accuracy, several model performance challenges 
remain. As exemplified in our analysis by MYVE, IDPH and LABL, 
this is particularly true when classifying species represented by few 
training examples, resulting in lower correct classification rates. This 
can be addressed by incorporating more training data containing a 
broader sampling of intra- specific variation, which can create mod-
els that are more generalizable to the true variation present in echo-
location calls across the ranges of widely distributed species (Murray 
et al., 2001; Russo et al., 2018). Additionally, our model assigns only 
one label to each spectrogram, even though a single audio file may 
be representative of multiple species. Future steps may include uti-
lizing object detection CNNs, which would allow separate detection 
of pulses within a single spectrogram/audio file, or recurrent neural 
networks that better handle time- series data.

Previous studies using machine learning algorithms to identify 
bat calls that report high test set accuracy sometimes have reduced 
performance when applied to field recordings (Rydell et al., 2017). 
Determining the degree of truth of call labels used in model training 
remains a major challenge. The NABat program and community re-
cording database benefit from many skilled experts manually vetting 
calls, most of which were initially recorded and flagged by existing 
software programs. Human error in species identification is inevita-
ble and hard to detect, especially because many existing algorithms 
were designed to discriminate on human- recognizable patterns. 

When training models to classify bat species from calls, a required 
assumption is that species labels are correct, and that call- structure 
variability is representative of each species across its range. Because 
our model was trained on only a subset of representative calls, as 
well as calls that were selected and labelled by humans and algo-
rithms, it likely incorporated bias toward certain features of search- 
phase calls that were previously identified by experts as diagnostic 
of each species. It is possible that the classification accuracy we 
observed was high because the test set included few calls deemed 
ambiguous by humans. To increase our model's applicability to field 
recordings in the future, we plan to create a fully independent and 
more representative call library (e.g. more call types and validated 
raw species recordings) to reduce human- introduced bias in labelled 
calls used to train classification algorithms.

We built NABat ML using an open- source framework to make it 
possible for anyone to participate and develop bat acoustic mon-
itoring solutions, including software packages, cloud- based web 
applications, and single- board computer and microcontroller hard-
ware sensor platforms (e.g. AudioMoth, Arduino, and Raspberry Pi). 
Alone or in combination, open technologies could greatly expand 
options for in- field, real- time bat call detection and classification, 
benefiting the goals of community scientists, expert bat biologists, 
wildlife professionals, and other interested stakeholders (Figure 1). 
For example, outputs from NABat ML can be used to build Bayesian 
hierarchical models that link acoustic data with location- specific co-
variates of bat occurrence and activity (Stratton et al., 2022; Wright 
et al., 2020), applied to bat monitoring and conservation programs, 
or utilized in education and outreach programs that encourage cit-
izen scientists and community members to engage in local bat re-
search. We can also apply various statistical procedures to account 
for uncertainty and bias in our species detection and classification 
process (Barré et al., 2019), providing the NABat community and 
other researchers with transparency about our current model's 
ability to perform classification tasks. We hope this new framework 
encourages users and data contributors with diverse expertise and 
backgrounds to collect bat acoustic data to help expand the NABat 
database to all species of North American bats and improve the cur-
rent representation of their acoustic characteristics in the NABat da-
tabase, which can be used regularly to update NABat ML. Ultimately, 
this will further improve the technology infrastructure necessary for 
effectively assessing status and trends of bat populations, as well as 
addressing important ecological questions involving bats.

In conclusion, North American bats are facing serious threats 
across the continent (Cheng et al., 2021; Hayes & Adams, 2017; 
Thompson et al., 2017), and due to the crucial ecological roles they 
play (Boyles et al., 2011; Ghanem & Voigt, 2012; Kalka et al., 2008; 
Medellin et al., 2017), there is great need for effective population 
monitoring to support conservation efforts. The NABat program 
aims to measure the impacts of range- wide threats to bats and offer 
innovative conservation solutions for bat populations through the 
development of NABat ML, a fully automated, reproducible CNN- 
based model for detecting and classifying bat species calls. This 
model can be implemented at local, national and international scales 
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to address various ecological questions about bats. It is also fully 
accessible and scientifically transparent, such that it can promote 
community awareness, education, and participation in critical bat 
research by encouraging individuals with diverse backgrounds to 
engage in monitoring efforts. We believe that the methodological 
transparency and increased accessibility of our model will ultimately 
enable the development of the innovative conservation solutions 
needed to ensure the health and vitality of North American bat 
populations.
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