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Abstract 
Context From landscape variables to weather, multi-
ple environmental factors affect honey bees and other 
pollinators. Detailed honey bee colony assessments 
in a variety of landscape and weather conditions offer 
the opportunity to develop a mechanistic understand-
ing of how landscape composition, configuration, and 
weather are associated with colony nutrition, demog-
raphy, and productivity.
Objectives Our objective was to test if weather and 
landscape characteristics (e.g., agricultural versus 

forested land use) are associated with different honey 
bee colony outcomes (foraged nectar mass, foraged 
pollen mass, pupal population size, and adult popula-
tion size change).
Methods We collected detailed colony measure-
ments on over 450 honey bee colonies over four years 
across an agricultural-to-forested land use gradient in 
Michigan, USA.
Results We found that higher than normal precipita-
tion in the preceding spring and fall was negatively 
correlated with colony size change and with foraged 
nectar mass, respectively. Sites surrounded by less 
agricultural land and more forested land also had 
fewer pupae by the end of summer.
Conclusions These inter-dependent colony metrics 
offer insights into environmental-plant-pollinator 
dynamics. Our finding that extreme weather events, 
associated with climate change, are negatively corre-
lated with colony performance point to likely lagged 
effects of weather on pollinator floral resources. 
Landscapes managed with climate-resilient, tempo-
rally continuous floral resources are likely to support 
pollinators. Capturing extreme weather phenomena 
in field studies is a valuable way to investigate the 
associations between land use, climate change and 
biological systems. However, caution should be taken 
in overinterpreting observational studies, so further 
research is needed.
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Introduction

Almost all bee species rely exclusively on flowering 
plants to fulfill their nutritional requirements through 
pollen and nectar, and mutualisms between plants and 
pollinators is integral to ecosystem functioning across 
the world (Bascompte and Jordano 2007; Soares et al. 
2017). Bees’ reliance on flowering plants makes them 
sensitive to environmental impacts on plant com-
munities (Hegland et  al. 2009; Winfree et  al. 2009; 
Soares et  al. 2017). Since the early twenty-first cen-
tury, there has been recognition of bee declines linked 
to environmental stressors, including lack of sufficient 
floral resources, exposure to pesticides, and parasites 
and disease (Potts et  al. 2010; Goulson et  al. 2015). 
The role of climate change and its association with 
floral communities and plant-pollinator interactions 
has also been recognized (Hegland et al. 2009; Ziska 
et  al. 2016). These stressors interact, further imper-
iling pollinator communities and individual species 
(Alaux et  al. 2010; DeGrandi-Hoffman et  al. 2010; 
Doublet et al. 2015).

Honey bee colony survival data indicate that envi-
ronmental factors that constrain the availability and 
quality of flowering resources (e.g., landscape com-
position and configuration, weather), are significantly 
associated with honey bee colony overwintering sur-
vival (Switanek et al. 2017; Kuchling et al. 2018; Van 
Esch et al. 2020; Calovi et al. 2021). Using a model 
selection approach, Van Esch et  al. (2020) found 
that weather (the number of frost days and flying 
hours, which are related to bees’ ability to forage for 
resources) and landscape connectivity were among 
the best variables for describing colony overwintering 
survival. In Pennsylvania, USA, Calovi et al. (2021) 
found that weather variables over three years were 
the most important predictors of colony overwinter-
ing survival, whereas landscape metrics (land use 
and topography) were of little importance. Analysis 
of a six-year beekeeper survey dataset from Austria 
revealed that warmer, drier weather (Switanek et  al. 
2017), as well as more developed land and forests 
(Kuchling et  al. 2018) were each associated with 
reduced overwintering survival.

Other honey bee studies have gathered more in-
depth colony data, but often only assess these out-
comes in the context of either land use or weather. 
Smart et  al. (2018) studied colonies extensively in 
two apiaries (i.e., sites where colonies are kept) that 

differed in the proportion of agricultural land in the 
surrounding forage landscape, finding more protein-
rich pollen, greater mass gain, and lower pesticide 
exposure in a less agriculturally intensive apiary. 
Similarly, Smart et  al. (2016) assessed both colony 
survival and honey production and found a positive 
correlation with proportion of uncultivated forage 
land in the surrounding landscape. Conversely, Spon-
sler and Johnson (2015) found that foraged nectar 
and pollen as well as wax production were higher in 
landscapes with more agriculture. Likewise, Alburaki 
et al. (2017) found higher brood production and col-
ony mass (a proxy for honey production) in agricul-
turally intensive areas. Holmes (2002) also assessed 
honey yields and found temperature and precipita-
tion were correlated with honey yield, suggesting 
weather is related to both bees’ ability to forage and 
flowering plants’ ability to produce nectar. Given the 
variable associations of landscape and weather with 
end-of-season colony health metrics in honey bees, 
it is important to explore these interactions through-
out the summer activity period to understand the 
relative importance of different drivers on colony 
productivity.

We expect that detailed honey bee colony data 
will support more effective management decisions 
by revealing inconspicuous or indirect environmen-
tal associations with colony productivity. Honey bee 
colony assessments can provide information on cur-
rent colony productivity, future colony condition, 
and potential sources of stress such as poor nutrition 
or pest infestation rates. Honey bees store resources 
in the colony: carbohydrates in the form of nectar 
and honey and protein in the form of pollen and bee 
bread. The abundance of stored resources provides 
information on the ability of the surrounding forage 
landscape to provide resources (Sponsler et al. 2020). 
Because these resources are nutritionally important 
to adult bee productivity as well as brood rearing, 
stored resources can predict future colony success 
(Brodschneider and Crailsheim 2010). During sum-
mer, honey bees rear brood (worker bee pupae) con-
tinuously, commensurate with nutritional resources 
(Khoury et al. 2013) and hive space. The abundance 
of developing brood in a colony (eggs, larvae, and 
pupae) provides demographic information. Worker 
bee pupae are capped for nine days before emer-
gence (Bertholf 1925), so the area of capped brood 
(pupae) provides an estimate of colony size in the 
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near future. Additionally, while colonies may canni-
balize open brood (larvae and eggs) when resources 
become scarce, capped brood has already received all 
necessary nutrients for development, and is therefore 
not cannibalized (Schmickl and Crailsheim 2001). 
So even if resource conditions change, capped brood 
is a reliable estimate of future colony size as well as 
recent resource conditions.

In this study we sought a better understanding of 
the relative association between landscape composi-
tion, configuration, and weather with colony produc-
tivity outcomes. These colony productivity outcomes 
included foraged nectar mass, foraged pollen mass, 
area of capped brood, and change in adult population 
size.

Methods

Site selection and colony enrollment

From 2015 to 2018 we inspected 456 commercially 
managed, migratory honey bee colonies distributed 
across 18 apiaries (12 colonies inspected per api-
ary) (Fig. S1). In 2015, colonies in four apiaries were 
inspected, in 2016 six additional apiaries were added 
for a total of ten apiaries, and in 2017 two additional 
apiaries were added for a total of 12 apiaries. In 2018, 
six of the 2017 apiaries were inspected along with six 
new sites for a total of 12 apiary locations (Table S1).

Colonies were inspected once in July (initial 
inspection) and once in September (final inspection) 
of each year. During each inspection we assessed col-
onies for cluster size, presence of a laying queen, and 
varroa mite (Varroa destructor) infestation (Rosenk-
ranz et al. 2010). Presence of a laying queen was con-
firmed by finding the queen and/or freshly laid eggs. 
Varroa mite infestation levels were assessed using the 
sugar roll method on approximately 300 bees (Mac-
edo et al. 2002). We enrolled only colonies that had a 
laying queen in July. We also excluded a colony from 
analysis if it died or experienced a queen event (queen 
loss or replacement) by the final inspection. This left 
367 of the 456 colonies, with an average of ~ 10 colo-
nies per apiary and a minimum of 7 colonies per api-
ary (Table S2).

Landscape metrics

Proportion of area within 4 km of each apiary in vari-
ous land use classes was determined using the 2017 
Cropland Data Layer (CDL) (USDA NASS 2017) 
in R with packages sp (Pebesma et  al. 2020), rgdal 
(Bivand et al. 2020), raster (Hijmans et al. 2020), and 
sf (Pebesma 2018). There were 66 different land use 
classifications identified by the CDL across our 18 
sites (within each 4 km buffer). We used these data to 
calculate three honey bee-relevant landscape metrics: 
land use Shannon diversity, mean patch area, and an 
agricultural versus forested land use variable.

Shannon diversity is a measure of richness and 
evenness. Landscapes with multiple different land 
use covers (high land use richness), present at even 
proportions in the landscape (high land use evenness) 
have the highest Shannon diversity score (O’Neill 
et al. 1988). We chose this metric because Michigan 
is one of the most agriculturally diverse states in the 
country (Bertone 2017), which is effectively cap-
tured by the high thematic resolution of agricultural 
crops in the CDL. The diversity of land use types may 
increase resource availability and accessibility by 
increasing the diversity and complementarity of floral 
resources for honey bees at a landscape scale (Ben-
ton et al. 2003; Mandelik et al. 2012; St. Clair et al. 
2020). Alternatively, less diverse landscapes with a 
single, abundant high-quality land cover can provide 
a boon of resources and are easy for foragers to locate 
in the landscape (Beekman and Lew 2008; Dolezal 
et al. 2019). Land use Shannon diversity within each 
buffer was calculated in R  using the vegan package 
(Legendre et al. 2018).

Mean patch size, the average size of contiguous 
patches of land within a landscape, was also cal-
culated. Michigan has one of the smallest average 
farm sizes of the Midwestern U.S. (USDA NASS 
2019). Smaller patch size is often associated with 
more natural, extensive landscapes, which are 
theoretically beneficial to pollinators (Tscharn-
tke and Brandl 2004). Landscapes made up of 
smaller patches also have greater edge area, which 
often contain abundant flowering weeds that sup-
port honey bee foraging (Bretagnolle and Gaba 
2015; Quinlan et al. 2021a, b). However, it may be 
more difficult for honey bees to find high-quality 
resources in extremely patchy landscapes (Beek-
man and Lew 2008). Mean patch area within each 
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buffer was calculated in R  using the landscapem-
etrics package (Hesselbarth et al. 2019), specifying 
queen’s case for connectivity of patches.

We also created a landscape composition met-
ric to summarize the agricultural to forested land 
use gradient of our sites, using similar methods to 
Sponsler and Johnson (2015). First, the 66 land use 
classifications were binned into the following cat-
egories: staple crops (corn, soy, small grains), non-
staple crops (all other crops), grassy-herbaceous 
land (hay, wildflower, switchgrass, fallow, and pas-
ture), forests, urban, wetland, and NA (undefined, 
barren, and water). The resulting six land use clas-
sifications (excluding NA) were then summarized 
using principal components analysis (Sponsler and 
Johnson 2015). We determined that the first prin-
cipal component (PC1) alone was sufficient for 
describing variation in our land use data based on 
the broken stick criteria (Jackson 1993) (Fig. S2). 
Furthermore, using only the first component is a 
supported statistical practice for honey bee research 
(Pirk et al. 2013).

Weather

For each of our sites, we obtained seasonal weather 
data for the preceding year and 30-year normal cli-
mate data. Data on monthly mean temperature and 
precipitation within a year’s time preceding our 
inspections were obtained from Oregon State’s 
PRISM project (2004) using the prism package in R 
by averaging pixel values (4  km-resolution) within 
4  km of each apiary. September through December 
weather from the preceding calendar year  (T−1) and 
January through August weather from each colony 
inspection year  (T0) were used for analysis. Average 
monthly temperature and precipitation values were 
then binned by meteorological season: fall (Septem-
ber, October, November), winter (December, January, 
February), spring (March, April, May), and summer 
(June, July, August) (Fig. S3). We similarly obtained 
monthly 30-year normal temperature and precipita-
tion data (i.e., climate-normal conditions or average 
temperature and precipitation for 1991–2020) for 
each of our apiary sites.

Change in colony cluster size

For our study, the honey bee colonies were kept in 
hive boxes with removable frames, upon which the 
bees built their nest. Colony cluster size, a proxy for 
adult population size (Nasr et  al. 1990), was deter-
mined by counting the number of frames fully cov-
ered on either side with adult bees (Nasr et al. 1990). 
Hives were of various sizes and therefore varied in 
available frames, introducing the potential for censor-
ing. We used a mixed effects Cox model, through the 
coxme package in R (Therneau 2022; Therneau and 
Grambsch 2000) to model change in colony size from 
July to September. This modeling framework allowed 
us to indicate that change in colony size was poten-
tially right censored for colonies that had filled all 
hive frames in September.

Pollen

In every year, two colonies in each apiary were out-
fitted with pollen traps (Superior Pollen Traps, Mann 
Lake, Hackensack, MN), which brush pollen loads off 
returning foragers. Pollen traps were set to collect pol-
len for 72 h every two weeks from early July through 
late September. Each of the resulting six pollen col-
lection periods were synchronized ± 3 days each year. 
In some years there were fewer collections, either due 
to the managing beekeeper’s schedule (moving colo-
nies into the apiaries late in early summer or remov-
ing colonies early in fall) or due to actions by the 
researchers (i.e., a scheduling conflict or mis-labeled 
samples) (Table  S2). In total, we collected 317 pol-
len samples (2015 = 46 samples, 2016 = 79 samples, 
2017 = 96 samples, 2018 = 96 samples). Pollen sam-
ples were transported in coolers from the field to the 
lab where they were stored at − 20 °C until they were 
weighed.

Capped brood

In September 2018, the two colonies at each apiary 
from which pollen samples were collected were also 
inspected for area of capped brood (pupal population 
size), allowing for direct comparison between average 
mass of foraged pollen and capped brood. Amount 
of capped brood was determined by examining both 
sides of each colony’s frames and recording the area 
of each frame containing capped brood (rounded to 
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the nearest 1/32 per frame side). A gridded 4 × 8 piece 
of clear plexiglass was used to train observers in esti-
mating capped brood (Delaplane et  al. 2013) until 
consistent estimates were made among observers.

Mass

Colony mass (excluding equipment mass) approxi-
mates the mass of stored nectar and honey in a col-
ony. Two additional colonies in each apiary were 
placed on hive scales (Solutionbee LLC, Raleigh, 
NC) that logged mass every 15 min. Before analysis, 
colony mass data were cleaned as follows (modified 
from Smart et  al. 2018). First, to remove artifactual 
spikes or drops in mass that could have resulted from 
colony management, sudden changes in mass (> 2 kg 
within 15  min) were smoothed, as were absolute 
mass below 25  kg (approximate mass of two large, 
empty hive boxes with frames and 2.25 kg of bees). 
Colonies with extremely sparse data (fewer than 10 
logged masses from mid-July to late-September) 
were excluded. Then, cumulative colony mass change 
was calculated, starting at 0  kg when the colony 
was placed on the scale resulting in a continuous, 
smoothed mass change curve. From this curve, we 
extracted bi-weekly snapshots of colony mass on the 
same collection schedule as pollen sampling. Mass 
was obtained at midnight when we would expect all 
bees to be inside their colony.

Model development and analysis

All statistical analysis was completed in R version 
3.6.3 (R Core Team 2020). In the mixed effects Cox 
model for change in colony cluster size, apiary and 
year were included as random effects. Foraged pol-
len mass and colony mass were each modeled using 
a generalized linear mixed effects model (GLMM) 
through the nlme package (Pinheiro et  al. 2020). A 
first-order autoregressive error structure was used to 
account for repeated measures of bi-weekly sampling 
rounds on colonies. To accommodate the hierarchi-
cal structure of these data sets, year, apiary-within-
year, and colony-within-apiary-within-year were each 
included as nested random effects. Amount of capped 
brood in September was modeled using a GLMM 
using the lme4 package (Bates et al. 2015) with a ran-
dom effect of apiary.

To understand the importance of our landscape 
metrics and weather to describe each of our four col-
ony outcomes, we developed 17 increasingly complex 
candidate models (Table  1) that followed the basic 
model structures described above. Those candidate 
models which included weather variables always 
included summer temperature and precipitation 
because we expected summer weather to have a direct 
effect on colonies. Spring or fall temperature and pre-
cipitation were included in more complex candidate 
models (in addition to summer weather) because we 
expected them to have a less pronounced, indirect 
effect on colonies beyond that of summer weather. 
Ten of the candidate models included a land use vari-
able, summarized using principal components analy-
sis. Additionally, land use Shannon diversity and 
mean patch size were each included along with (1) 
land use; land use and each seasonal weather combi-
nation (i.e., (2) summer, (3) summer/ spring, (4) sum-
mer/ fall); and (5) together (Shannon diversity and 
mean patch size) with land use.

Change in cluster size and capped brood models 
also included a set of null predictor variables (fixed 
effects that were the same across all eight candidate 
models). For change in colony cluster size, varroa 
mite infestation in September was included as null 
predictors in every candidate model, as we expected 
varroa mites to have potentially confounding effects 
on colony growth. For the capped brood model, mean 
mass of pollen collected across all sampling events 
and July colony size were included as null predictor 
variables. No fixed effects were included as null pre-
dictors in either the pollen mass or colony mass mod-
els, resulting in each null candidate model being an 
intercept-only model. In all candidate models, each 
predictor variable was scaled and centered prior to 
analysis, enabling comparisons of coefficient esti-
mates (β) within each model.

We used Akaike’s Information Criterion, corrected 
for small sample size (AICc) and model weights to 
rank these candidate models (Burnham and Anderson 
2002) and report parameter estimates and 95% con-
fidence intervals (CI) for supported models. We did 
this using the MuMIn package (Bartoń 2019). Models 
are considered substantially different at ΔAICc > 2 
per additional variable (Burnham and Anderson 
2001). Given the exploratory nature of our model 
comparisons, we chose not to report p-values, which 
by their nature suggest hypothesis testing, and would 
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Table 1  Akaike information criterion corrected for small sample size (AICc), showing the difference in AICc values (ΔAICc) 
among 17 different candidate models for honey bee colony outcomes

Null Land Weather (Temperature + Precipi-
tation)

ΔAICc df Model 
Weight

Varroa Land 
Use

Shannon
Diversity

Mean 
Patch
Size

Summer
(T0)

Spring  (T0) Fall
(T−1)

Change in Colony Cluster Size Y Y Y Y Y 0 12.0 0.36
Y Y Y 0.7 14.4 0.26
Y Y Y Y 1.0 14.6 0.22
Y Y Y Y Y 1.6 15.1 0.16
Y Y Y 14.9 16.8 0.00
Y Y Y 18.6 17.1 0.00
Y Y 21.6 13.9 0.00
Y Y Y Y 21.7 11.1 0.00
Y Y Y 22.2 14.3 0.00
Y Y Y Y 23.3 14.7 0.00
Y Y Y Y 25.9 10.9 0.00
Y Y 26.1 11.4 0.00
Y Y Y 27.3 10.1 0.00
Y 27.5 12.7 0.00
Y Y 27.7 13.3 0.00
Y Y Y 27.8 13.9 0.00
Y Y 28.3 13.2 0.00

Intercept Land 
Use

Shannon
Diver-
sity

Mean 
Patch
Size

Summer
(T0)

Spring  (T0) Fall
(T−1)

ΔAICc df Model 
Weight

Summer-long
Foraged Pollen

Y Y 0 8 0.26

Y 0.2 6 0.24
Y Y Y 2.1 9 0.09
Y Y 2.3 7 0.09
Y Y Y 3.5 10 0.05
Y Y Y 3.5 8 0.05
Y Y Y 3.6 8 0.04
Y Y Y Y 3.7 10 0.04
Y Y Y Y 3.9 10 0.04
Y Y Y 4.2 10 0.03
Y Y Y Y 5.3 9 0.02
Y Y Y Y 5.6 11 0.02
Y Y Y Y 6.3 11 0.01
Y Y Y Y Y 7.4 12 0.01
Y Y Y Y Y 7.5 12 0.01
Y Y Y Y Y 8.0 12 0.00
Y Y Y Y Y 8.2 12 0.00
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Candidate models include null predictor variables (first column), landscape variables (a forest versus agricultural land use variable derived 
through Principal Components Analysis, land use Shannon diversity, and/or mean land use patch size), and/or weather variables (seasonal 
temperature and precipitation). Boxes containing “Y” indicate that a variable (column) is included in candidate model (row). This suite of 
17 candidate models is proposed for each honey bee colony metric along with fixed and random effects described in the statistical analysis 
section of the methods. Total number of degrees of freedom (df) for each model are also shown. Weather data are from the year preceding 
each summer inspection, such that fall weather includes data from the previous calendar year  (T−1) of the colony inspection  (T0)

Table 1  (continued)

Average 
Pollen 
Mass
 + Cluster 
Size

Land 
Use

Shannon
Diversity

Mean 
Patch
Size

Summer
(T0)

Spring  (T0) Fall
(T-1)

ΔAICc df Model 
Weight

September
Capped Brood

Y Y 0 6 0.65

Y Y Y 2.5 7 0.18
Y Y Y 4.0 7 0.09
Y Y 5.7 7 0.04
Y Y Y Y 7.0 8 0.02
Y Y Y 7.5 8 0.02
Y Y Y 10.2 9 0.00
Y 11.4 5 0.00
Y Y Y Y 12.3 9 0.00
Y Y Y Y 12.9 9 0.00
Y Y Y Y 13.7 10 0.00
Y Y Y 14.2 9 0.00
Y Y Y Y 18.3 10 0.00
Y Y Y Y Y 21.2 11 0.00
Y Y Y Y Y 21.4 11 0.00
Y Y Y Y Y 25.8 11 0.00
Y Y Y Y Y 25.9 11 0.00

Intercept Land 
Use

Shannon
Diversity

Mean 
Patch
Size

Summer
(T0)

Spring  (T0) Fall
(T−1)

ΔAICc df Model 
Weight

Summer-long 
Colony Mass

Y Y Y Y 0 11 0.23

Y Y Y Y Y 0.1 12 0.22
Y Y Y 0.4 10 0.19
Y Y Y Y Y 1.3 12 0.12
Y Y Y 2.0 8 0.08
Y Y 3.0 7 0.05
Y Y Y 3.7 8 0.04
Y Y Y Y 4.1 9 0.03
Y 5.7 6 0.01
Y Y Y Y 6.1 10 0.01
Y Y Y 7.0 9 0.01
Y Y Y Y 7.7 10 0.00
Y Y Y Y 8.1 11 0.00
Y Y Y Y Y 8.3 12 0.00
Y Y 8.7 8 0.00
Y Y Y Y Y 9.8 12 0.00
Y Y Y 11.2 10 0.00
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therefore be misleading in this context (Tredennick 
et al. 2021).

Results

Landscape metrics

Based on the CDL, there were an average of 36 ± 2 
(mean ± standard error (S.E.)) unique land use types 
per 4  km buffer. Correcting for land area evenness, 
the Shannon diversity of these landscapes ranged 
from 1.6 to 2.5, with an average score of 2.0 ± 0.1. 
The mean patch size of land use classifications ranged 
from 3551 to 8173  m2 and averaged 5259 ± 326  m2.

The first land use principal component (PC1) 
explained 65.4% of variance in simplified land use 
surrounding our sites and had a standard deviation of 
11.07. The first principal component was negatively 
correlated with area of staple crops (ρ = − 0.69) and 
non-staple crops (ρ = −  0.16) and positively corre-
lated with area of forests (ρ = 0.69). All other land 
cover loadings had a magnitude of 0.10 or less. Thus, 
PC1 can be thought of as an axis of agriculture to for-
est, with high values representing landscapes domi-
nated by forests and low values representing land-
scapes dominated by agriculture. Sites ranged in PC1 
values from − 15.3 to 16.6. The next principal com-
ponent (PC2) only explained an additional 14.2% of 
the variance.

Weather

There was significant variation in seasonal tempera-
ture and precipitation among the years of our study 
(Fig. S3). Across the four seasons, 2017 and 2018 
were generally wetter than 2015 and 2016, with sum-
mer precipitation showing the most variation across 
sites. 2016 and 2017 were the warmest years in our 
study, with temperatures remaining relatively consist-
ent across sites within each season.

Change in colony cluster size

In July, colony cluster sizes ranged from 3 to 38 
frames of bees, with a mean of 17 frames (± 0.4 
frames; S.E.). By September, colonies ranged in clus-
ter size from 2 to 26 frames of bees, averaging 14 
frames (± 0.2 frames). Colony populations showed a 

large range of change between sampling rounds, from 
−  25 to 19 frames. On average, colonies decreased 
in size by 2 frames (± 0.4 frames) throughout the 
summer. This decrease in colony size, on average, is 
likely in part due to right censoring by available hive 
equipment (many colonies had honey supers removed 
in August). Of 367 analyzed colonies, 98 were at 
maximum capacity provided by available hive equip-
ment at the September inspection.

We found that apiary locations that experienced 
more spring precipitation had a greater risk of popu-
lation size loss by September. The four most parsimo-
nious models for describing change in colony cluster 
size each included spring weather. Together, these 
models made up 100% of candidate model weights 
(Table 1), indicating high certainty in the importance 
of spring weather for describing change in colony 
cluster size within our set of candidate models. Fur-
thermore, the CI for spring precipitation did not con-
tain zero (β = 0.46, CI 0.31, 0.61), based on estimates 
from our top model. It should be noted that for the top 
model, the assumption of proportional hazards was 
violated for the summer weather variables. We report 
on the original model here and show that alternative 
models, aimed at resolving the violation, yield very 
similar results (Table S3).

Low to moderate precipitation, estimated to maxi-
mize colony growth, fell within the historic range (30-
year normal) of spring precipitation for our region 
whereas higher-than-normal spring precipitation was 
associated with population loss. Some of the smallest 
colonies we observed, however, were in locations that 
experienced normal spring precipitation (Fig.  1a). 
There was a negative correlation between spring tem-
perature and the hazard of change in colony cluster 
size, suggesting apiary locations that experienced 
warmer spring temperatures supported greater colony 
growth by the following September (β = −  0.87; CI 
−  1.10, −  0.65) (Fig.  1b). Both spring precipitation 
and temperature trends seemed to be driven by two 
years of data; colonies grew more in 2015 (a warm 
spring with intermediate precipitation) and less in 
2018 (a cool spring with abnormally high precipita-
tion in some sites), so caution should be taken in over 
interpreting these results. While both spring mod-
els also included summer weather by default, there 
was no evidence of a correlation between summer 
weather and change in colony size (summer tempera-
ture: β = 0.11; CI − 0.05, 0.28; summer precipitation: 
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β = 0.09; CI −  0.07, 0.24). Land use composition 
(β = − 0.37; CI − 0.64, − 0.10) and Shannon diver-
sity (β = − 0.33; CI − 0.56, − 0.10) were each posi-
tively correlated with colony growth in the top model. 
However, the addition of these land use covariate did 
not improve upon the top model (ΔAICc < 1.6), indi-
cating that land use was not important for describing 
change in colony cluster size. Models without spring 
weather each had a model weight of < 1% and were 
therefore not considered further.

All candidate models included varroa infesta-
tion rates, but there was no evidence for an associa-
tion with varroa infestation on change in cluster size 
(β = 0.07; CI − 0.07, 0.20). We found an average of 
fewer than 3 varroa mites per 100 bees which is com-
monly considered the treatment threshold for this par-
asite (Jack and Ellis 2021). However, the distribution 
of mite infestation was heavily right skewed, with 
26% of colonies above this threshold and some colo-
nies showing very high infestation (the most infested 
colony had 29 mites/ 100 bees).

Pollen

On average, colonies collected 76.6  g (± 4.9  g) of 
pollen per biweekly 72-h sampling round. The mass 
of foraged pollen was heavily right skewed, with 
the majority (~ 70%) of colonies collecting less than 
100  g of pollen per sampling round. The maximum 
amount of pollen foraged within 72  h was 725.9  g. 
None of our proposed candidate models were better 
than the null intercept model (ΔAICc = 0.2), sug-
gesting that colony pollen collection was not related 
to our weather and landscape covariates. In our top 
model, apiaries intercepts had a standard deviation 
of 1.7 and colonies had a standard deviation of 1.4. 
The standard deviation of intercepts among years was 
zero, indicating low variation among years when con-
sidering other variables in the model.

Capped brood

When we assessed capped brood in September 2018, 
an average of 1.5 frames (± 0.2 frames) were capped, 
with a maximum of 3.3 frames and a minimum of 0.3 
frames. Our model selection results indicate a single 

Fig. 1  Correlation between change in colony cluster size of 
honey bees in Michigan, USA from 2015 to 2018 and aver-
age spring (March–May) precipitation (A), and average spring 
temperature (B). Each line of best fit, with shaded confidence 
interval, shows the relationship between model-fitted values 

of change in cluster size and each predictor variable. Vertical 
lines show the 30-year normal spring precipitation range (max-
imum and minimum as dashed lines) and median (solid line) 
across all apiary locations in this study
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model as the most parsimonious (land use + aver-
aged foraged pollen mass + July cluster size). This 
model accounted for 65% of model weights and the 
next best model was different based on a thresh-
old of ΔAICc ≥ 2 (Burnham and Anderson 2002) 
(ΔAICc = 2.5). Model estimates indicate that api-
aries surrounded by more agricultural land and less 
forested land supported a greater amount of capped 
brood in September (β = − 0.65; CI − 0.90, − 0.40) 
(Fig. 2). In addition to the correlation with land use, 
mean mass of foraged pollen throughout summer 
was positively correlated with area of capped brood 
in September (β = 0.43; CI 0.17, 0.69), whereas July 
cluster size was not (β = 0.09; CI − 0.17, 0.35).

Mass

Colonies on average gained 3.57 kg from early July to 
late July and 5.48 kg from early July to early August. 
By late August, colonies were only 2.70  kg heavier 
on average than they were in early July. In early Sep-
tember, colonies were only 0.42 kg heavier than early 
July, and were 0.37 kg lighter in late September than 
early July.

Candidate models for colony mass that included 
fall weather (September – November of the previous 
year) all ranked highly. The four models that included 
fall weather accounted for 76% of total model weights 
(~ 20% each). In the top model, fall precipitation 
showed a strong negative correlation with colony 
mass (β = −  2.91; CI −  4.01, −  1.80) (Fig.  3). As 
with change in colony cluster size, however, this trend 
seems to be driven by the 2016 and 2018 data, which 
fell outside of the 30-year-noraml fall precipitation 
range for the region. Most apiaries in 2016 experi-
enced drought-like conditions the previous fall, while 
the 2018 apiaries experienced excessive rainfall. 
Colonies put on slightly more mass in 2016 when fall 
precipitation was low and lost mass in 2018 when fall 
precipitation was extremely high (Fig. 3).

There was little support for the importance of 
land use composition in describing colony mass. 
While land use was included in both top models, it 
did not sufficiently improve the model based on AIC, 
and it was only weakly correlated with colony mass 
(β = 0.87; CI − 0.23, 1.97).

Fig. 2  Area of capped brood in honey bee colonies in Michi-
gan, USA in summer 2018, plotted against agriculture versus 
forest land use within 4 km of the apiary (A) and against aver-
age mass of foraged pollen throughout summer (B). Lines of 

best fit and shaded confidence intervals are shown for model-
fitted capped brood values and actual capped brood values are 
plotted as points
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Discussion

Through this four-year assessment of honey bee colo-
nies in Michigan, USA we demonstrate connections 
between multiple colony productivity outcomes and 
environmental factors, including seasonal precipita-
tion and landscape metrics. In particular, we high-
light the negative correlation between extreme spring 
and fall precipitation and change in colony mass and 
cluster size the following summer, respectively. Our 
results also indicate that colonies that collect more 
pollen and that are in more agricultural landscapes 
(as opposed to more forested landscapes) have more 
capped brood by September.

Weather

There was considerable variation around each of our 
observed correlations. Although models that included 
the influence of precipitation on colony growth 
and colony mass were selected based on AICc, 

uncertainty in effect sizes and model selection sug-
gests these finding should be interpreted with caution. 
Furthermore, reports in the literature on the relation-
ship between precipitation on honey bee colonies are 
mixed. Similar to our findings, a survey of honey bee 
colonies across the Northcentral U.S. showed that 
spring precipitation was negatively correlated with 
colony mass gain (Quinlan et  al. 2022). However, 
other studies have found that that winter precipitation 
is positively correlated with honey production (Báez 
et  al. 2019) and that annual precipitation is posi-
tively correlated with colony survival (Switanek et al. 
2017).

It may not be the magnitude (high or low) of pre-
cipitation, but how extreme it is (different from the 
norm). Excessive amounts of fall and spring pre-
cipitation appear to negatively impact honey pro-
duction and colony growth in the following season, 
respectively. Similar to our colony growth finding, 
Calovi et al. (2021) reported links between both high 
and low summer precipitation and decreased winter 
colony survival. Since colonies in our study did not 
arrive to apiaries until July of each year, the associa-
tion between extreme precipitation on colony mass 
and change in colony size is likely caused by indi-
rect effects of precipitation on floral resource abun-
dance and quality. Dudney et  al. (2017) found that 
in annual grasslands, high precipitation the previous 
fall decreased forb abundance while increasing grass 
abundance. The same authors found a similar trend 
for current-year spring precipitation, but the nega-
tive correlation between spring precipitation and forb 
abundance was not significant. This evidence from 
the literature, along with our findings, suggests that 
extreme weather may have unexpected impacts on 
colony development the subsequent year, mediated 
through floral resource abundance. Therefore, manag-
ing landscapes with climate-resilient floral resources 
may support pollinator health. Based on our find-
ings, future studies should examine the relationship 
between precipitation in the preceding fall and spring 
on floral resources to better understand summer col-
ony outcomes.

While summer precipitation was included in our 
models for change in colony size and mass, it had 
a comparatively small effect size and large uncer-
tainty in model estimates. Rain can directly inhibit 
bees’ ability to forage, can damage flowers, and it 
impedes other aspects of plant-pollinator interactions 

Fig. 3  Plot of cumulative mass change in honey bee colonies 
in Michigan, USA, versus fall (September–November) precipi-
tation from the year before. Colony mass is plotted for every 
two weeks from early July to late September. Points represent-
ing mass observations are shaped according to year. The line 
of best fit, with shaded confidence interval is shown for model-
fitted mass change values. Vertical dashed lines show the range 
(maximum and minimum), and the vertical solid line shows 
the median 30-year normal fall precipitation across all apiary 
locations
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(reviewed by Lawson and Rands 2019). Because of 
this, we would have expected to see a negative cor-
relation between hive mass change and growing sea-
son (summer) precipitation. There may not have been 
sufficient variation in summer precipitation among 
years to observe a difference. This reinforces the need 
for continued field monitoring of honey bee colonies 
to capture relationships between a range of seasonal 
weather conditions on colony productivity. Given that 
extreme weather events (heat waves and extreme pre-
cipitation) are expected to increase in this region due 
to climate change (Gao et al. 2012), such data could 
allow us to predict colony health and honey crop pro-
duction in a changing climate. Predictions of suit-
able honey bee habitats based on weather could also 
provide migratory beekeepers with decision support 
tools to avoid poor-weather regions and give sta-
tionary beekeepers information on when and how to 
manage their colonies (e.g., by supplementing feed 
in years with extreme weather). Additionally, crop 
insurance is available to beekeepers to mitigate losses 
associated with extreme precipitation (USDA 2017). 
A better understanding of lagged correlations with 
extreme weather could assist beekeepers in selecting 
the best insurance options for their region.

Landscape metrics

In our study, apiaries spanned a gradient of agricul-
tural to forested land, and those in more agricultur-
ally dominated landscapes had more capped brood by 
September. This is expected, given that dense decidu-
ous forests in this region provide very limited nutri-
tional resources for bees by late summer (Mola et al. 
2021) and colonies in our study were not positioned 
in study apiaries during spring forest nectar flow. 
Agricultural landscapes can support honey bee colo-
nies (Naug 2009; Sponsler and Johnson 2015; Danner 
et al. 2016). Using a model selection approach, Spon-
sler and Johnson (2015) found that in Ohio, honey 
bee colony wax and honey production were positively 
associated with area of cropland around research api-
aries. These authors suggest that weeds in crop mar-
gins support honey bee colonies’ nutritional needs 
(Sponsler and Johnson 2015). Indeed, studies assess-
ing honey-bee foraged pollen in the Midwestern U.S. 
found a high proportion of non-native, weedy species 
in pollen collected by bees (Smart et al. 2017; Quin-
lan et  al. 2021a, b). The crops themselves may also 

provide resources to honey bee foragers. Other stud-
ies have identified potentially detrimental relation-
ship between agricultural land on honey bee colony 
outcomes, from inconsistent availability of resources 
to the risk of pesticide exposure (Dolezal et al. 2016, 
2019; Colwell et al. 2017; McArt et al. 2017; Graham 
et  al. 2021). While our results suggest that agricul-
tural land is more supportive of honey bee colonies 
than forested land (which provides few late-season 
floral resources) agriculture may only be less harmful 
than forests in late summer. We are not able to draw 
conclusions on correlations with other types of land 
use based on apiary locations in our study and our 
analytical approach. Based on potential risks posed 
by agricultural land, and landscape scale studies in 
the literature (Smart et  al. 2016, 2018), we expect 
that natural and semi-natural forage land use would 
be even more supportive of honey bee colonies than 
agricultural land. Overall, these results highlight the 
importance of temporally consistent floral resources 
for pollinators at a landscape scale.

While land use was related to capped brood area, 
land use was not an important factor in either the col-
ony mass or foraged pollen models. There are several 
factors that could have confounded this mechanism. 
For example, the relationship between pollen forag-
ing and brood production is bidirectional. That is, 
colonies that collect more pollen raise more brood, 
and colonies with more brood collect more pollen 
(Pankiw et al. 1998). Pollen hoarding is also a genetic 
trait that is associated with the proportion of pollen 
foragers in the colony (Page et al. 1995), which may 
explain colony-level variation in pollen foraging that 
we observed. Additionally, variation in pollen mass 
could have been introduced by moisture content. 
To avoid this potentially confounding factor, future 
studies should consider lyophilizing pollen samples 
before weighing. Likewise, neither Shannon diversity 
of land covers nor mean patch size improved any of 
the models. Honey bees’ ability to communicate the 
location of high quality resource patches within the 
surrounding landscape through dance may make them 
particularly resilient to land fragmentation and habi-
tat heterogeneity (Beekman and Lew 2008; Nürn-
berger et al. 2017). Future studies that capture an even 
broader gradient of these landscape metrics could be 
useful for understanding the extent of this adaptation.
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Colony-level metrics

Varroa mites are recognized as one of the leading 
stressors of honey bee colonies in the USA (Rosen-
kranz et  al. 2010), but there was not support in our 
model for an association with varroa mites. This may 
be due to the timing of our study, as many of the 
negative effects of varroa are seen later in the sea-
son (Amdam et al. 2004; Rosenkranz et al. 2010), or 
because colonies in this study also received standard 
management, limiting variation in mite levels.

Conclusion

Our models identified several variables, particularly 
weather, as important for describing multiple colony 
productivity outcomes. Honey bee colonies are sub-
jected to a complex assembly of biotic and abiotic 
stressors in the field (Goulson et al. 2015; Potts et al. 
2010; Vanengelsdorp and Meixner 2010), which can 
manifest across levels of colony organization, from 
foraged resources, to developing brood, to colony 
growth. The synergy of these factors makes drawing 
conclusions on drivers of overall honey bee colony 
productivity extremely difficult. Our observational 
study points to excessive precipitation across mul-
tiple seasons as important to describing colony out-
comes. To support overall colony productivity, land 
managers, researchers, and beekeepers may need 
to consider multiple weather, land use, and colony 
conditions and their potential interactions. By tak-
ing an integrated perspective, our findings provide a 
roadmap for future studies to develop interventions 
(such as climate-resilient, temporally consistent floral 
resources) based on a mechanistic understanding of 
overall honey bee colony productivity and to enhance 
inference on broad-scale stressors such as extreme 
weather associated with climate change.
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