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The word problem is one of the fundamental areas of research in infinite group the-

ory, and rewriting systems (including finite convergent rewriting systems, automatic

structures, and autostackable structures) are key approaches to working on the word

problem. In this dissertation, we discuss two approaches to creating bounded regular

convergent prefix-rewriting systems.

Groups with the falsification by fellow traveler property are known to have solvable

word problem, but they are not known to be automatic or to have finite convergent

rewriting systems. We show that groups with this geometric property are geodesically

autostackable. As a key part of proving this, we show that a wider class of groups,

namely groups with a weight non-increasing synchronously regular convergent prefix-

rewriting system, have a bounded regular convergent prefix-rewriting system.

Our second approach to creating prefix-rewriting systems is a more general ap-

proach. We design a procedure that, when provided with a finitely presented group

G = ⟨A | R⟩ and an ordering < on A∗, searches for a bounded convergent prefix-

rewriting system. We also create a class of orderings for which each step of this

procedure can be practically computed, and which guarantees that any bounded con-

vergent prefix-rewriting system is an autostackable structure.
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Chapter 1

Introduction

1.1 Introduction

One of the primary problems in geometric group theory is the word problem, intro-

duced by Dehn in 1911 [11]. Given a group and finite generating set G = ⟨A⟩, the

word problem asks whether there exists an algorithm which, given a word w ∈ A∗

as input, outputs whether or not w represents the trivial element in G. This prob-

lem was shown to be unsolvable for finitely presented groups by Novikov in 1955

[28] and Boone in 1958 [2], but there are procedures which, given a presentation for

a group, search for algorithmic solutions to the word problem, with these solutions

guaranteed to be correct if they are given as output. Two such procedures are the

Knuth-Bendix completion procedure [22], which searches for finite convergent rewrit-

ing systems, and the procedure by Epstein, Holt, and Rees [15], which searches for

automatic structures. These two types of word problem solutions are key tools in

studying groups.

Autostackability was introduced by Brittenham, Hermiller, and Holt [4] as a gen-

eralization of automaticity and the property of having a finite convergent rewriting

system. Autostackable structures provide a solution to the word problem for a wider

class of groups than either automatic structures or finite convergent rewriting systems,
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and are defined in terms of the Cayley graph ΓG,A for a group G with inverse-closed

generating set A. Given a spanning tree T in ΓG,A, a regular bounded flow function

for the triple (G,A, T ) is a function Φ from the set of directed edges of ΓG,A to the

set of directed paths in ΓG,A such that:

� (same endpoints) for any directed edge e of ΓG,A, the path Φ(e) has the same

initial vertex and the same terminal vertex as e;

� (boundedness) there exists a constant k ≥ 0 such that for each edge e of ΓG,A,

the path Φ(e) has length at most k;

� (fixed tree edges) if the undirected edge underlying e lies in the tree T , then

Φ(e) = e;

� (termination) there is no infinite sequence of edges e1, e2, e3, . . . such that each

ei+1 lies in the path Φ(ei) and each ei lies outside the spanning tree T ; and

� (regularity) the language of triples (nfΦ(ι(e)), label(e), label(Φ(e))) is a syn-

chronously regular language (where nfΦ(v) is the label of the unique non-

backtracking path from 1G to v in T , ι(e) is the starting vertex of the edge

e, and label(p) is the label of the path p).

(See Section 1.2 for notation and background on regular languages.)

Definition 1.1.1. [4] A group is autostackable if it admits a regular bounded flow

function.

Many classes of groups have been shown to be autostackable for certain generating

sets, including all prefix-closed automatic groups [4] and all groups with a finite

convergent rewriting system [4], Thompson’s group F [8], closed 3-manifold groups
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[6], the Baumslag-Gersten group [16], and Stallings’ finitely presented group which is

not of type FP3 [5].

Throughout this dissertation, we will also consider convergent prefix-rewriting

systems:

Definition 1.1.2. [4] A convergent prefix-rewriting system (CP-RS) for a group G

is a pair consisting of a finite alphabet A and a set R ⊆ A∗ × A∗ of ordered pairs of

words over A such that G is presented as a monoid by

G = Mon⟨A | {u = v | (u, v) ∈ R}⟩

and the set of rewritings uw →R vw with (u, v) ∈ R and w ∈ A∗ satisfies:

� (termination) there is no infinite chain of rewritings

w1 →R w2 →R w3 →R · · ·

and

� (normal forms) each element of G is represented by exactly one irreducible word

(i.e. a word which cannot be rewritten) over A.

A CP-RS R is said to be length non-increasing if for each (u, v) ∈ R, we have

|v| ≤ |u|, and bounded if there exists a constant k such that for each pair (l, r) in R, we

have there exist some words p, l′, r′ ∈ A∗ such that l = pl′, r = pr′, and |l′|+ |r′| ≤ k.

We will say that a CP-RS is end-normal if for all pairs (u, v) ∈ R with u = wa

for some irreducible word w ∈ A∗ and some letter a ∈ A, last(v) = last(nfR(v)). A

CP-RS is (synchronously) regular if the set R is a (synchronously) regular language.

If we have a system of positive finite weights on A (that is, a function wt : A → R+),
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then we define wt(a1a2 · · · an) =
∑n

i=1wt(ai); then R is weight non-increasing if for

each (u, v) ∈ R we have wt(v) ≤ wt(u). In particular, a length non-increasing CP-RS

is also weight non-increasing, where wt(a) = 1 for all a ∈ A.

Bounded synchronously regular convergent prefix-rewriting systems and autostack-

able groups are intimately connected. In particular:

Proposition 1.1.3. [4] A group G is autostackable if and only if G admits a bounded

synchronously regular convergent prefix-rewriting system. Moreover, there is an algo-

rithm which, given a bounded synchronously regular convergent prefix-rewriting sys-

tem R, can construct an autostackable structure such that the normal forms of this

autostackable structure are the same as the normal forms of R.

Autostackable structures are powerful tools in tackling the word problem. In this

dissertation, we extend the current knowledge of autostackable structures with two

key results. The first gives conditions under which we know that a group has an

autostackable structure:

Theorem 2.3.1. Suppose G = ⟨A⟩ has a weight non-increasing synchronously regular

CP-RS R. Then G has an autostackable structure which has the same normal forms

as R.

We then use this to show that all groups with the falsification by fellow traveler

property are autostackable.

Our second result is a procedure to search for autostackable structures, which

we call the prefix-Knuth-Bendix procedure. This allows us, on input of a group

G = Mon⟨A | R⟩ and an ordering < satisfying certain conditions, to have a computer

search for a bounded regular prefix-rewriting system and prove that it is convergent,

rather than using the ad hoc methods which have been common thus far.
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Theorem 3.3.7. Suppose that Rn is the result of using the prefix-Knuth-Bendix pro-

cedure with inputs of a monoid M = Mon⟨A | R⟩ and a well-founded strict partial

ordering < which is compatible with concatenation on the right. Then Rn is a bounded

convergent prefix-rewriting system for M .

We also define a new class of orderings, the k-bounded regular orderings, which

result in regular prefix-rewriting systems when used with the prefix-Knuth-Bendix

procedure. If the monoid is in fact a group, the resulting bounded regular convergent

prefix-rewriting system is an autostackable structure.

Corollary 3.4.5. Suppose that Rn is the result of using the prefix-Knuth-Bendix

procedure with inputs of a monoid M = Mon⟨A | R⟩ and a well-founded k-bounded

regular strict partial ordering < which is compatible with concatenation on the right,

and that no step of the prefix-Knuth-Bendix procedure required the comparison of two

words u and v which differ on a suffix of length greater than k. Then Rn is a bounded

regular convergent prefix-rewriting system for M , and is an autostackable structure if

M is a group.

This dissertation is organized as follows: Section 1.2 gives background information

that will be relevant throughout the dissertation. Chapter 2 includes discussion of

the falsification by fellow traveler property and our results involving it. Chapter 3

includes a description of the prefix-Knuth-Bendix procedure that we have developed

and of k-bounded regular orderings, along with our other results that are relevant to

these topics. We note that the results of Chapter 2 are also available in [9].
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1.2 Background

This section includes definitions, theorems, and notation that will be relevant to both

Chapter 2 and Chapter 3.

Throughout this dissertation, let G be a group with finite generating set A which

is closed under inversion. For words u, v ∈ A∗, we use u =A∗ v or u = v to mean that

u and v are identical words, and u =G v to mean that u and v represent the same

group element in G. We will use u to denote the group element represented by u and

use λ to denote the empty word.

Given a (prefix-) rewriting system R, each element (l, r) in R is called a rule of

R. We say that u =R v if there exist words w1, . . . , wn with u =A∗ w1, v =A∗ wn,

and either wi →R wi+1 or wi+1 →R wi for each i. Note that if R is a prefix-rewriting

system for G, then u =R v if and only if u =G v.

We use |u| to denote the length of u, u(n) to denote the prefix of u with exactly

n letters if n ≤ |u| and all of u if n ≥ |u|, first(u) to denote the first letter of u, and

last(u) to denote the last letter of u; we will use the convention that first(λ) = λ and

last(λ) = λ. For a group element g or a word u representing g, we use |g|G,A or |u|G,A

to denote the minimum length of any word w ∈ A∗ with w =G g. When we have

a set of normal forms N (i.e. a set of unique representatives of the elements of G),

we will use nf(u) to denote the normal form of the group element represented by u

and nf(g) to denote the normal form of g, and where we have multiple normal form

sets we will use subscripts based on the source of these normal forms (e.g. nfR(u)) to

specify which normal forms we mean. We will call any word which is not a normal

form reducible, and any reducible word of the form ul for some normal form u ∈ N

and letter l ∈ A minimally reducible.
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1.2.1 Formal Language Theory

In this subsection we provide definitions and background related to language the-

ory. The reader can refer to [21] for a more detailed treatment. A language over

an alphabet A is a subset of A∗. The regular languages consist of all finite lan-

guages, along with their closure under finitely many unions, intersections, comple-

ments, concatenations (P · S = {ps | p ∈ P, s ∈ S}), and Kleene stars (S0 = {λ},

Si = Si−1 · S for all natural numbers i, and S∗ =
⋃∞

i=0 S
i). While it is not immedi-

ate, the class of regular languages is also closed under quotients (P/S = {w ∈ A∗ |

there exists s ∈ S such that ws ∈ P}) [21, Theorem 3.6] and under homomorphic

image (given a map f : A → B∗, we extend f to a map f ′ : A∗ → B∗ by f ′(λ) = λ

and f ′(a1 . . . an) = f(a1) · · · f(an); then f ′(P ) is the homomorphic image of P under

f) [21, Theorem 3.5]. We use Ak to denote the set of all words over A of length

exactly k, and A≤k to denote the set of all words over A with length at most k.

Definition 1.2.1. [21, Page 17] A finite state automaton (FSA) consists of a finite

set of states Q, a finite input alphabet A, a transition function δ : Q × A → Q, an

initial state q0, and a set of accepting states P ⊆ Q. Given a finite state automaton

M , δ̂ : Q× A∗ → Q is the function given by δ̂(q, λ) = q and δ̂(q, aw) = δ̂(δ(q, a), w).

A word u is accepted by M if δ̂(q0, u) ∈ P , and the language accepted by M is the

set of all words which are accepted by M .

We will at times view finite state automata as labeled directed graphs with vertex

setQ. Under this view, the edges are given by the transition function, with δ(q, a) = q′

giving a directed edge from q to q′ labeled by a. A path in this graph from a state q

to a second state q′ is labeled by a word w with δ̂(q, w) = q′.

A language L is regular if and only if L is the language accepted by some finite

state automaton [21, Section 2.5]. We will use both the definition of regular languages
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and the equivalent idea of languages accepted by FSAs throughout this dissertation.

We will also frequently use synchronously regular languages:

Definition 1.2.2. [14, Definition 1.4.4] Given a language L ⊆ A∗
1 × · · · × A∗

n and

padding symbols $i ̸∈ Ai for each i, the language Lp over the padded alphabet B =

(A1 ∪ {$1})× · · · × (An ∪ {$n}) is defined as follows:

� For each n-tuple (w1, . . . , wn) ∈ L, let m = max{|wi| | 1 ≤ i ≤ n}.

� Let ŵi := wi$
m−|wi|
i = ci,1 · · · ci,m for some ci,j ∈ Ai∪{$i}. Let bj = (c1,j, . . . , cn,j) ∈

B. Then (w1, . . . , wn)
p := b1 · · · bm.

� Lp = {(w1, . . . , wn)
p ∈ B∗ | (w1, . . . , wn) ∈ L}.

Lp is the padded extension of L. A language L over A1 × · · · ×An is synchronously

regular if Lp is a regular language over B.

When we consider products of languages, we will consider them as padded lan-

guages unless otherwise specified. When we consider the concatenation of two lan-

guages over a product alphabet L·K, we will concatenate each entry of the tuple before

padding and subsequently move any pre-existing padding to the end; that is, Lp ·Kp is

defined to be (L ·K)p = {(u1v1, . . . , unvn)
p | (u1, . . . , un) ∈ L and (v1, . . . , vn) ∈ K}.

For any product alphabet A1 × · · · × An, the projection function πi : B → Ai is

the function given by πi(a1, . . . , an) = ai when ai ∈ Ai and πi(a1, . . . , an) = λ when

ai = $i.

Lemma 1.2.3. (Pumping Lemma, [21, Lemma 3.1 and Exercise 3.2]) Let L be a

regular language. Then there exists a natural number n such that for any word z

with |z| ≥ n and any words p, s with pzs ∈ L, we can decompose pzs =A∗ puvws

with |uv| ≤ n, |v| ≥ 1 so that for all i ≥ 0 the word puviws is an element of L. In
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particular, given an FSA M accepting L, we can take n to be the number of states of

M .

The smallest such n is the pumping number of L.
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Chapter 2

The Falsification by Fellow Traveler Property Implies

Geodesic Autostackability

2.1 Falsification by Fellow Traveler Property Background

For a group G with a finite inverse-closed set A which generates G, the falsification by

fellow traveler property (FFTP) is a purely geometric property of the Cayley graph

which was introduced by Neumann and Shapiro [24].

Definition 2.1.1. [24] The pair (G,A) has the falsification by fellow traveler property

(FFTP) if there exists a constant k such that for each non-geodesic word u in the

generators and their inverses, there exists a word v such that |v| < |u|, u =G v, and

u and v k-fellow travel. That is, d(u(n), v(n)) ≤ k for all n ∈ N. Such a word v is

called a witness of u.

Cannon gave an example showing that FFTP depends on the generating set for

a group [24], but many choices of group G have at least one generating set A such

that the pair (G,A) has FFTP. Some examples include virtually abelian groups and

geometrically finite hyperbolic groups [24], Garside groups [19], Artin groups of large

type [20], Coxeter groups [27], and groups acting cellularly on locally finite CAT(0)

cube complexes with a simply transitive action on the vertices [26]. Certain particu-
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larly nice groups are known to have FFTP for every choice of generating set; abelian

groups [24] and finite groups are two examples, though even virtually abelian groups

can have generating sets such that (G,A) does not have FFTP [24] — we will use

one such example in Section 2.5. Furthermore, pairs (G,A) with FFTP have par-

ticularly nice properties, including regular geodesic language [24], at most quadratic

isoperimetric inequality [13], and almost convexity [13].

We extend Proposition 1.1.3, which shows that groups with a bounded syn-

chronously regular convergent prefix-rewriting system are autostackable, to groups

with weight non-increasing synchronously regular convergent prefix-rewriting systems

with the following theorem:

Theorem 2.3.1. Suppose G = ⟨A⟩ has a weight non-increasing synchronously regular

CP-RS R. Then G has an autostackable structure which has the same normal forms

as R.

We will also discuss a more restrictive version of autostackability in this chapter,

namely geodesic autostackability.

Definition 2.1.2. [3] Define α : E(ΓG,A) → Q by

α(e) =
1

2
(dG,A(1G, ι(e)) + dG,A(1G, τ(e))) .

A group G is geodesically autostackable if G has an autostackable structure with

normal form set N and flow function Φ such that each element of N labels a geodesic

in ΓG,A, and whenever e′, e ∈ E(ΓG,A) with Φ(e′) ̸= e′ and e′ an edge in the path Φ(e),

we have α(e′) < α(e).

Geodesically autostackable structures are significantly more restrictive than au-

tostackable structures. Geodesically autostackable structures provide a regular set of
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geodesic normal forms and require that the pair (G,A) is almost convex.

Proposition 2.1.3. [3] A geodesically autostackable group G = ⟨A⟩ is almost con-

vex with respect to the generating set for which G has a geodesically autostackable

structure.

(A definition of almost convexity is provided as Definition 2.2.2.)

We strengthen this result with Theorem 2.3.3 from the present chapter.

Theorem 2.3.3. Suppose G = ⟨A⟩ has a length non-increasing synchronously regular

convergent prefix-rewriting system. Then G is almost convex.

We also give sufficient conditions for our proof of Theorem 2.3.1 to build a geodesi-

cally autostackable structure from a length non-increasing synchronously regular CP-

RS with the following theorem:

Theorem 2.3.2. Suppose that G = ⟨A⟩ admits a length non-increasing end-normal

synchronously regular CP-RS R. Then the autostackable structure for G constructed

in the proof of Theorem 2.3.1 is a geodesically autostackable structure.

Our main theorem in this chapter is that all pairs (G,A) with FFTP are geodesi-

cally autostackable, which we prove by applying Theorem 2.3.2.

Theorem 2.4.2. [Main Theorem] Suppose the pair (G,A) has the falsification by

fellow traveler property. Then

(a) G admits a length non-increasing end-normal synchronously regular convergent

prefix-rewriting system R; and

(b) G is geodesically autostackable.
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There are several related implications between the theorems proved in this chapter

and other theorems mentioned in this section, Section 1.1, and Section 2.2. In order

to better visualize these implications, we have included a flowchart with the results

of this chapter and related results from previous papers as Figure 2.1.

The current chapter is organized as follows: In Section 2.2, we provide notation,

definitions, and theorems which are used in the remainder of the chapter. In Section

2.3, we give a constructive proof of Theorem 2.3.1, prove Theorem 2.3.2 as a conse-

quence of adding additional hypotheses to Theorem 2.3.1, and prove Theorem 2.3.3.

In Section 2.4, we prove Theorem 2.4.2, the main theorem of this chapter. In Section

2.5, we provide an example of a pair (G,A) with length non-increasing synchronously

regular CP-RS which do not have FFTP with the associated generating set. As a

consequence of this, the converse of part (a) of the main theorem fails.

2.2 Notation, Definitions, and Background

Let ΓG,A be the Cayley graph of G with respect to generating set A. Then for a

directed edge e of ΓG,A, we use ι(e) to denote the initial vertex of e, τ(e) to denote

the terminal vertex of e, and label(e) to denote the label from A associated to e. We

also denote the vertex corresponding to the identity element of G by 1G, and ey,a to

denote the directed edge with initial vertex y and label a. For an edge-path p in ΓG,A,

we use label(p) to denote the word in A∗ obtained by concatenating the labels of each

edge in p. We will use dG,A(u, v) to denote the path metric on ΓG,A.

Definition 2.2.1. For an alphabet A with a strict total ordering ≺, a word u is said

to be short reverse lexicographically smaller than a word v (u <srev v) if u ̸= v and

either

� |u| < |v|; or



14

FFTP
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Thm 2.3.2

[3]

Immediate

Thm 2.3.3

Immediate Thm 2.3.1

[4]

Figure 2.1: A flowchart of related results from this and other papers

� |u| = |v| and for each s ∈ A∗ such that u =A∗ u′s and v =A∗ v′s for some

u′, v′ ∈ A∗, we have last(u′) ⪯ last(v′).

The short reverse lexicographic ordering given above is essentially the shortlex

ordering reading right-to-left rather than left-to-right, and we use it in this chapter

rather than shortlex to make certain proofs and constructions simpler.

2.2.1 Almost Convexity

Definition 2.2.2. [7] A group G is almost convex with respect to a finite generating

set A if there is a constant k such that for all n ∈ N and g, h in the sphere S(n) (in

ΓG,A centered at 1G) with dG,A(g, h) ≤ 2, there exists a path inside the ball B(n) (in
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ΓG,A centered at 1G) of length at most k from g to h.

Almost convexity was introduced by Cannon [7]. Thiel showed that almost con-

vexity is dependent on generating set [30]. Elder showed that given a pair (G,A)

with FFTP, G is almost convex with respect to A [13].

2.3 Weight- and length-non-increasing CP-RSs

In this section, we prove that every weight non-increasing regular CP-RS gives a

bounded regular CP-RS, which yields an autostackable structure using Proposition

1.1.3, and that additional restrictions show geodesic autostackability and almost con-

vexity.

Theorem 2.3.1. Suppose G = ⟨A⟩ has a weight non-increasing synchronously regular

CP-RS R. Then G has an autostackable structure which has the same normal forms

as R.

Proof. Let R be a weight non-increasing synchronously regular CP-RS for G = ⟨A⟩

with normal form set N . Let

R′ = {(u, v) | (u, v) ∈ R and u is minimally reducible}

Then R′ is terminating, as an infinite sequence of rewritings in R′ would necessarily

be an infinite sequence of rewritings in R. Further, R′ is weight non-increasing since

it is a subset of a weight non-increasing CP-RS. Further, R′ = R∩ ((N ·A)×A∗), an

intersection of synchronously regular languages, hence R′ is regular. We have R′ ⊆ R,

so for all (u, v) ∈ R′, we have u =G v, hence G is a quotient of Mon⟨A | R′⟩. For any

word u which can be reduced with R, we see that u =A∗ u1u2 for some u1, u2 ∈ A∗

with u1 ∈ N and u1first(u2) ̸∈ N . But u1first(u2) can be rewritten over R, hence
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u1first(u2) is the left side of a pair in R′ and is reducible in R′. Therefore, the set

of irreducible words over R′ is the same as the set of irreducible words over R, so R′

has exactly one irreducible word over A for each element of G; this, along with the

fact that G is a quotient of Mon⟨A | R′⟩, gives that G = Mon⟨A | R′⟩, and that the

normal forms of G over R′ are the same as the normal forms over R. Thus R′ is a

weight non-increasing synchronously regular CP-RS for G with normal form set N .

Let M be an FSA accepting the padded extension of R′, and let k be the number

of states in M . Let N = 2k ∗max{wt(a) | a ∈ A}. Let

S1 = {(u, nfR′(u)) | u is minimally reducible and wt(u) < N}

and let

S2 = {(u1u2l, u1nfR′(u2lv
−1
2 )v2) |(u1u2l, v1v2) ∈ R′, wt(u2) < N,

wt(u2l) ≥ N, and v1 = v(min{|u1| , |v| − 1})}

(A visual representation of the rules in S2 in the Cayley graph ΓG,A is given in Figure

2.2.) Then let S = S1 ∪ S2. We claim that S is a bounded regular convergent prefix-

rewriting system for G with normal forms N . For this, we must prove five things:

that G = Mon⟨A | {u = v | (u, v) ∈ S}⟩; that S is bounded; that S is synchronously

regular; that S is terminating; and that N is the set of irreducible words over S.

We first prove that

G = Mon⟨A | {u = v | (u, v) ∈ S}⟩.
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1G

v1

u1 u2

nfR′(u2lv
−1
2 )

v2

l

Figure 2.2: For pairs in S2, the left word follows the top path from 1G to u1u2l, while
the right word reroutes via the nfR′(u2lv

−1
2 ) bridge.

We prove this by showing that each relation given by S is a relation in G, and that

each relation in R′ (which we know is a prefix-rewriting system for G) is a result of

relations in S.

We first consider relations uw =S vw arising from pairs (u, v) in S1: these are

relations in G, since uw =G nfR′(u)w =A∗ vw. Relations arising from pairs (u, v) in

S2 are also relations in G, as

uw =A∗ u1u2lw

=G u1u2lv
−1
2 v2w

=R′ u1nfR′(u2lv
−1
2 )v2w

=A∗ vw

Since R′ is a prefix-rewriting system for G, we see that the third equality is also true

in G, so u =G v. Thus, equality of two words over S implies equality of the same two

words in G.

Now, let (u, v) be a pair from R′. Our next goal is to show that u =S v. We

proceed by induction on wt(u). Note that the set {wt(u) | u ∈ A∗} is the set of non-

negative integer combinations of finitely many positive values, hence is well-founded,

so induction is a viable proof technique here.

For our base case, suppose that wt(u) < N ; then S1 contains the pair (u, nfR′(u)).
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We also see that wt(v) ≤ wt(u) < N because R′ is weight non-increasing, so either

v =A∗ nfR′(v) or S1 contains the pair (v, nfR′(v)). Since u =G v, we have that

nfR′(u) =A∗ nfR′(v), and we have both u =S nfR′(u) and v =S nfR′(u), so u =S v.

Now suppose that wt(u) = n ≥ N , and that whenever u′ =R′ v′ with wt(u′) < n

and wt(v′) < n, we have that u′ =S v′. Then let l = last(u), let u2l be the shortest

suffix of u with weight at least N , and let u1 be the prefix of u such that u = u1u2l. If

|v| ≥ |u1|, let v1 = v(|u1|), and v2 be the suffix of v such that v =A∗ v1v2; otherwise,

let v1 = v(|v| − 1) and let v2 be the suffix of v with length 1. We need to show that

u1u2l =S v1v2. We see that the pair (u1u2l, u1nfR′(u2lv
−1
2 )v2) is an element of S2, and

that nfR′(u1nfR′(u2lv
−1
2 )) =A∗ nfR′(v1).

Consider wt(nfR′(u2lv
−1
2 )). Recall that M is the finite state automaton accepting

all padded pairs from R′. Also recall from Definition 1.2.1 that δ̂(q, λ) = q for

all states q, and δ̂(q, aw) = δ̂(δ(q, a), w); that is, δ̂(q, w) is the state of M after

starting at the state q and reading the word w. Suppose that |v1| = |u1|; then we

see that q = δ̂(q0, (u1, v1)) is a state in M from which we can reach a state in P —

in particular, δ̂(q, (u2l, v2)
p) ∈ P since (u1u2l, v1v2)

p is accepted by M . But since

M has only k states, and we can replace any path in M by a path which does not

repeat states, we can replace this path by one of length at most k − 1 (potentially

touring through every state, and using k − 1 edges in total). This shorter path

corresponds to a pair of words (u′′
2, v

′′
2) such that (u1u

′′
2, v1v

′′
2) ∈ R′ and |u′′

2| ≤ k−1 and

|v′′2 | ≤ k − 1. Then we see that u1u
′′
2 =G v1v

′′
2 , hence u′′

2v
′′−1
2 =G u−1

1 v1. We also have

u1u2l =G v1v2, hence u2lv
−1
2 =G u−1

1 v1. Combining these gives us u′′
2v

′′−1
2 =G u2lv

−1
2 ,

so
∣∣nfR′(u2lv

−1
2 )
∣∣ ≤ ∣∣u′′

2v
′′−1
2

∣∣ ≤ 2k − 2. On the other hand, suppose that |v1| < |u1|.

Then |v2| = 1, and δ̂(q0, (u1, v)
p) is a state in M from which we can reach a state in

P . This again gives a path in M of length at most k − 1, corresponding to a path in

ΓG,A from u1 to v of length at most 2k− 2, which can be extended with a single edge
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to a path from u1 to v1 of length at most 2k − 1. Either way, we have

∣∣nfR′(u2lv
−1
2 )
∣∣ ≤ 2k − 1 (2.1)

This gives us that wt(nfR′(u2lv
−1
2 ) ≤ (2k − 1) ∗ max{wt(a) | a ∈ A} < N . We

can now use our induction hypothesis: wt(u1nfR′(u2lv
−1
2 )) < wt(u1u2l) = n, so

u1nfR′(u2lv
−1
2 ) =S nfR′(u1nfR′(u2lv

−1
2 )). Similarly, wt(v1v2) ≤ n, and since we have

|v2| ≥ 1, we must have wt(v1) < n, so by our induction hypothesis v1 =S nfR′(v1).

Because v1 =G u1nfR′(u2lv
−1
2 ), we have nfR′(v1) =A∗ nfR′(u1nfR′(u2lv

−1
2 )). Stringing

this all together, we have

u =A∗ u1u2l

=S u1nfR′(u2lv
−1
2 )v2

=S nfR′(u1nfR′(u2lv
−1
2 ))v2

=A∗ nfR′(v1)v2

=S v1v2

=A∗ v

Thus, equality of two words over R′ implies equality of the same two words over

S, so equality of two words in G implies equality over S. Combining this with the

fact that equality over S implies equality in G (proved above), we see that S is a

prefix-rewriting system for G.

We now consider boundedness. Each rule in S1 rewrites a word of weight at most

N (and thus length at most N
min{wt(a)|a∈A}) to another word of weight at most N , hence

each rule in this subset of S rewrites a substring of bounded length to a substring of

bounded length.



20

Now, consider a pair (u1u2l, u1nfR′(u2lv
−1
2 )v2) from S2. We note that since

wt(u2) < N , we have |u2| < N
min{wt(a)|a∈A} , so |u2l| is bounded. By equation 2.1 above,∣∣nfR′(u2lv

−1
2 )
∣∣ ≤ 2k−1. Suppose for sake of contradiction that |v2| > |u2l|+1+(k−1);

then let v3 = v2(|u2l|), and let v4 be the suffix of v2 such that v2 = v3v4. Then the

path in M starting at δ̂(q0, (u, v1v3)) and labeled by (λ, v4)
p has length at least k, and

must repeat a state. This gives us a decomposition v4 = pzs with |z| > 0 such that

(u, v1v3pz
ns)p is accepted by M for all n, which is impossible since, for sufficiently

large n, v1v3pz
ns has weight larger than wt(u). Thus, |v2| ≤ |u2l| + k. Thus, each

rule in this subset rewrites a substring of bounded length to a substring of bounded

length, so S is bounded. Let b = max{|u2l| ,
∣∣nfR′(u2lv

−1
2 )v2

∣∣}.
We next consider regularity. Let D = {(a, a) | a ∈ A}. Let

L(u2l,v2) = ((R′)p ∩ ((A× A)∗ · ({u2l} × {v2})p)) /({u2l} × {v2})p

for each l ∈ A and u2l, v2 ∈ A≤b. We note that L(u2l,v2) is the set

{(u1, v1) | (u1u2l, v1v2) ∈ R′}. We then let P(u2l,v2) = π1(L(u2l,v2)) where π1 is the

projection map onto the first coordinate. Then P(u2l,v2) is the set of all u1 such that

there exists some v1 with (u1u2l, v1v2) ∈ R′. Then S2 is

⋃
u2l∈A≤b

⋃
v2∈A≤b

(
(P(u2l,v2) × P(u2l,v2)) ∩D∗)p · ({u2l} × {nfR′(u2lv

−1
2 )v2})p

Because synchronously regular languages are closed under finite unions, finite inter-

sections, products, projections, quotients, Kleene stars, and concatenation on the

right by finite languages, and S2 is built from regular languages (namely R′, D, and

several finite languages) using finitely many of these operations, S2 is synchronously

regular. Since S1 is finite, S1 is also synchronously regular. Thus, S is a union of two
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synchronously regular languages, hence S is synchronously regular.

We now consider termination. We define a strict partial order ≺ on directed

edges in ΓG,A as follows: For an edge e, define w(e) = nfR′(ι(e))label(e). Then e′ ≺ e

if wt(w(e′)) < wt(w(e)), or wt(w(e′)) = wt(w(e)) and there exists some rewriting

sequence in R′

w(e) = w0 → w1 → · · · → wn = w(e′)

Because there is no infinite chain of rewritings over R′, any infinite descending chain

e0 ≻ e1 ≻ e2 ≻ · · · must have some i with wt(ei) < wt(e0); repeating this argument

gives a subchain e0 = e′0 ≻ e′1 ≻ e′2 ≻ · · · with wt(e′i) < wt(e′i−1), contradicting the

well-foundedness of the possible weights of words in A∗. Thus, ≺ admits no infinite

descending chains, hence ≺ is well-founded.

Now, we extend this order on edges to an order on words in A∗ as follows: Assign

to each word u the set of directed edges Eu contained in the path in ΓG,A starting at

1G and labeled by u. Then u′ < u if there exists some e ∈ Eu such that for all e′ ∈ Eu′ ,

e′ ≺ e. The relation < is transitive, since whenever we have u < v and v < w, there

exist ev ∈ Ev and ew ∈ Ew with the property that for all e′ ∈ Eu, e
′ ≺ ev ≺ ew, hence

e′ ≺ ew. The relation < is also antisymmetric, since u < v and v < u would give

the existence of edges eu ∈ Eu and ev ∈ Ev with eu ≺ ev and ev ≺ eu, contradicting

antisymmetry of ≺. Further, < is irreflexive, since for any eu ∈ Eu, we have eu ̸≺ eu,

hence u ̸< u. Thus, < is a strict partial order on A∗. Further, any infinite descending

chain u0 > u1 > u2 > · · · would give an infinite descending chain e0 ≻ e1 ≻ e2 ≻ · · ·

with ei ∈ Eui
, violating well-foundedness of ≺; thus, < is well-founded.

We now show that S decreases <; that is, for every (u, v) ∈ S, we have v < u.

We have two cases to consider:

Suppose (u, nfR′(u)) ∈ S1. Let l = last(u) and u1 be the prefix of u such that
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u1l = u. Then let e be the edge in ΓG,A starting at u1 and labeled by l. Then we

have w(e) =G u, hence wt(w(e)) ≥ wt(nfR′(u)). This gives that for all e′ ∈ EnfR′ (u) we

have wt(w(e′)) < wt(w(e)), with possibly one exception: the final edge of the path

in ΓG,A starting at 1G that is labeled by nfR′(u). As such, e′ ≺ e for all but possibly

this final edge. Now, let e′ be the final edge of the path in ΓG,A starting at 1G that

is labeled by nfR′(u). We notice that because normal forms of R′ are closed under

prefixes, we have w(e′) = nfR′(u). Then there is some rewriting sequence in R′ taking

w(e) to nfR′(w(e)) =A∗ nfR′(u) =A∗ w(e′), so e′ ≺ e. Thus, all edges in EnfR′ (u) are

smaller than e ∈ Eu, so nfR′(u) < u, as desired.

Now, suppose (u1u2l, u1nfR′(u2lv
−1
2 )v2) ∈ S2. Let e be the edge labeled by

l starting at u1u2, and let e′ ∈ Eu1nfR′ (u2lv
−1
2 )v2

. Note that w(e) = u1u2l, since

nfR′(ι(e)) =A∗ nfR′(u1u2) =A∗ u1u2 and label(e) = l. We have four cases, depending

on the location of e′ in the path starting at 1G and labeled by u1nfR′(u2lv
−1
2 )v2:

Case 1: Suppose e′ is an edge in the subpath starting at 1G and labeled by u1. Then

w(e′) is a prefix of u1 since u1 is a normal form of R′ and normal forms of R′ are

closed under prefixes. Thus w(e′) is a proper prefix of w(e), so wt(w(e′)) < wt(w(e)),

showing that e′ ≺ e.

Case 2: Suppose e′ is an edge in the subpath starting at u1 and labeled by nfR′(u2lv
−1
2 ).

Then

wt(w(e′)) ≤ wt(u1) + 2k ∗max{wt(a) | a ∈ A}

= wt(u1) +N

< wt(u1) + wt(u2l)

= wt(w(e)),

so e′ ≺ e.
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Case 3: Suppose e′ is an edge in the path starting at u1nfR′(u2lv
−1
2 ) and labeled by v2,

but is not the last edge of this path. Then wt(w(e′)) < wt(v1v2) ≤ wt(u) = wt(w(e)),

hence e′ ≺ e.

Case 4: Suppose e′ is the final edge of the path starting at u1nfR′(u2lv
−1
2 ) and labeled

by v2. Then wt(w(e′)) ≤ wt(v1v2) ≤ wt(u) = wt(w(e)). Moreover, there is a single

rewriting from R′ which rewrites w(e) =A∗ u1u2l to v1v2. Let v =A∗ v1v2, l
′ = last(v)

and v′ be the prefix of v such that v′l′ =A∗ v. Then there is a sequence of rewritings

from R′ taking v′ to nfR′(v′). Appending this rewriting sequence to our rewriting

from w(e) to v1v2 gives a rewriting sequence from R′ that starts at w(e) and ends at

nfR′(v′)last(v) =A∗ w(e′). Thus, e′ ≺ e.

In all cases, we have e′ ≺ e (and, in particular, if R was length non-increasing,

dG,A(1G, ι(e
′)) ≤ dG,A(1G, ι(e)), which will be useful in the proof of Theorem 2.3.2);

thus, u1nfR′(u2lv
−1
2 )v2 < u1u2l, as desired. So S decreases a well-founded strict partial

ordering, hence S is terminating.

Finally, we show that S has a set of unique normal forms, namely the normal

forms over R′.

Suppose that w is reducible over R′. Then w has some maximal prefix u satisfying

that u is irreducible over R′. Since u is a proper prefix, there exists some l ∈ A such

that ul is a prefix of w. Then ul is not irreducible over R′, hence is a minimally

reducible prefix of w over R′. Then there is some rule (ul, v) in R′ which we can

apply to w. Further, if wt(ul) < N , then (ul, nfR′(ul)) is a rule in S1, so w is also

reducible over S; and if wt(ul) ≥ N , then ul is the left-hand side of a rule in S2, so

w is reducible over S. Either way, we have that w is reducible over S.

Alternatively, suppose that w is reducible over S. Then some prefix v of w is the

left-hand side of a rule from S1 or from S2, so v is reducible over R′. As v is a prefix

of w, this gives us that w is also reducible over R′.
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Thus, the words which are reducible over R′ are the same as the words which are

reducible over S. This gives that the irreducible words over both rewriting systems

are the same, so S has a set of unique normal forms, and NS = NR′ = NR.

With all of the above, we see that S is a bounded regular convergent prefix-

rewriting system for G. Applying Proposition 1.1.3, we see that G is autostackable

with normal form set N .

Note that, since any length non-increasing CP-RS is a weight non-increasing CP-

RS with each generator having length 1, this theorem shows that any group with a

length non-increasing CP-RS is autostackable. We now prove the following theorem

as an extension to Theorem 2.3.1 when we have additional restrictions on R:

Theorem 2.3.2. Suppose that G = ⟨A⟩ admits a length non-increasing end-normal

synchronously regular CP-RS R. Then the autostackable structure for G constructed

in the proof of Theorem 2.3.1 is a geodesically autostackable structure.

Proof. Suppose G = ⟨A⟩ admits a length non-increasing end-normal synchronously

regular CP-RS R. Let S be the bounded regular CP-RS for G constructed in the

proof of Theorem 2.3.1, and let Φ be the flow function constructed from S as in the

proof of [4, Theorem 5.3]. That is, for each group element y ∈ G and each letter

a ∈ A,

Φ(ey,a) =


ey,a if nfR(y)a ∈ NR or last(nfR(y)) = a−1

py,s−1t otherwise

where py,s−1t is the path starting at the vertex corresponding to y and labeled by the

word s−1t, with (nf(y)a, y′) ∈ S, nf(y) =A∗ ws, y′ =A∗ wt, and the words s and t do
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not start with the same letter. Then each directed edge e in ΓG,A falls into one of the

following cases:

Case 1: Suppose nfS(ι(e))label(e) ∈ NR. In this case, Φ(e) = e.

Case 2: Suppose |nfS(ι(e))label(e)| ≤ k + 1 and nfS(ι(e))label(e) ̸∈ NR. In this case,

label(Φ(e)) = s−1s′ for some suffix s of nfS(ι(e)) and some suffix s′ of nfS(ι(e)label(e)).

Recall from Definition 2.1.2 that α(e) = 1
2
(dG,A(1G, ι(e)) + dG,A(1G, τ(e))). For each

edge e′ in the path Φ(e) except for possibly the final edge, we have that e′ is an edge

in the path starting at 1G and labeled by a geodesic with length at most |nfS(ι(e))|,

hence α(e′) < |nfS(ι(e))| ≤ α(e). For the final edge ef of the path Φ(e), we have that

ef is a portion of the normal form of ι(e)label(e), so Φ(ef ) = ef .

Case 3: Suppose |nfS(ι(e))label(e)| > k+1 and nfS(ι(e))label(e) ̸∈ NR. In this case,

label(Φ(e)) is the word w obtained by freely reducing u−1
2 nfS(u2lv

−1
2 )v2 for some u2, v2,

and l as in the definition of S2. Each edge in the path starting at ι(e) and labeled

by w is also an edge in the path starting at ι(e) and labeled by u−1
2 nfS(u2lv

−1
2 )v2.

As we proved in the termination subsection of the proof of Theorem 2.3.1, each edge

e′ in the path starting at ι(e) and labeled by u−1
2 nfS(u2lv

−1
2 )v2 has dG,A(1G, ι(e

′)) ≤

dG,A(1G, ι(e)) and dG,A(1G, τ(e
′)) ≤ dG,A(1G, τ(e)), with equality only at possibly the

final edge ef of this path. From this, we see that α(e′) < α(e) except when e′ = ef .

But ef is the edge labeled by last(nfS(ι(e)label(e)) with endpoint ι(e)label(e), so ef

is a portion of the normal form of ι(e)label(e), giving Φ(ef ) = ef .

In all three cases, we have that whenever e′ is an edge in the path Φ(e), we have

either α(e′) < α(e) or Φ(e′) = e′. Thus, Φ is the flow function for a geodesically

autostackable structure.

We can also use the proof of Theorem 2.3.1 to prove almost convexity in the

following theorem. The proof is similar to those found in [18, Theorem B] and [3,
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Theorem 4.4] that groups with geodesic finite complete rewriting systems and geodesi-

cally stackable groups (respectively) are almost convex. We include the details of the

proof for the sake of completeness.

Theorem 2.3.3. Suppose G = ⟨A⟩ has a length non-increasing synchronously regular

CP-RS. Then G is almost convex with respect to A.

Proof. Suppose G = ⟨A⟩ has a length non-increasing synchronously regular CP-RS.

Define a bounded regular CP-RS S for G = ⟨A⟩ as in the proof of Theorem 2.3.1,

and let g, h ∈ G with g, h ∈ S(n) and dG,A(g, h) ≤ 2.

In the case that dG,A(g, h) = 1, let a0 ∈ A such that ga0 =G h. Then nfS(g) = w0u0

with (w0u0a0, w0v0a1) being a rule in S for some w0, u0, v0 ∈ A∗, and a1 ∈ A. As

a consequence of the proof of termination in the proof of Theorem 2.3.1, the path

starting at w0 and labeled by v0 lies entirely within B(n). If a1 = last(nfS(h)), then

eha−1
1 ,a1

lies in B(n), and we see that the path labeled by u−1
0 v0a1 starting at g ends

at h, has length at most 2k + 2 + 2k + 2 + 1 = 4k + 5, and lies entirely within

B(n). Otherwise, we can repeat this process: w0v0a1 =G nfS(w0v0)a1 =A∗ w1u1a1,

with some rule (w1u1a1, w1v2a2) in S. In this way, we get a chain of equalities and

rewritings

w0u0a0 →S w0v0a1 =G w1u1a1 →S · · · →S wjvjaj+1

where aj+1 = last(nfS(h)), and |wiui| ≤ n and |wivi| ≤ n for all i. This gives a path

from g to h labeled by u−1
0 v0u

−1
1 v1 . . . u

−1
j vjaj+1 which lies entirely within B(n). Each

u−1
i vi piece of the path has length at most 4k + 4 (from the proof of boundedness

in Theorem 2.3.1). We cannot repeat any ai because having ai = ak for some k > i

would give a loop of rewritings wiuiai →S · · · →S wkukak, where both wiui and wkuk

are the unique normal form of ha−1
i . Thus, there are at most |A| pieces in our path



27

of the form u−1
i vi, plus the final edge aj+1. In this case, we have a path in B(n) from

g to h of length at most (4k + 4) |A|+ 1.

Now, we consider the case that d(g, h) = 2. Then h = gab for some a, b ∈ A.

There are three subcases. If d(1G, ga) = n−1, we have a path of length 2 from g to h

lying within B(n), namely the path starting at g and labeled by ab. If d(1G, ga) = n,

we can apply the distance 1 case twice, giving a path of length at most 2(4k + 4) |A|

from g to h lying within B(n). This leaves the case where d(1G, ga) = n + 1. Let

c = last(nfS(ga)), and g′ = gac−1. Note that g′ ∈ B(n) because |nfS(ga)| = n + 1,

and g′ is represented by the prefix of nfS(ga) with length n. We now need to provide

a path in B(n) from g to g′ of bounded length, and can repeat the process to make

a path from g′ to h. If g = g′, then the path of length 0 from g to g′ lies within

B(n), so suppose instead that g ̸= g′. Then nfS(g)a is not itself a normal form, hence

nfS(g)a = w0u0a0; this rewrites to w0v0a1, and again v0 lies entirely within B(n), by

the same argument as the distance 1 case. Again, we have a chain of equalities and

rewritings

w0u0a0 → w0v0a1 =G w1u1a1 → · · ·wjvjaj+1

where aj+1 = last(nfS(g
′)), and each wi, ui, vi ∈ B(n). This again gives a path of

length at most (4k+4) |A| from g to g′ lying within B(n). Repeating the process for

a path from g′ to h gives a path from g to h of length at most 2(4k + 4) |A|.

Thus, we have a path of length at most 2(4k+4) |A| from g to h in B(n) whenever

g, h ∈ S(n) and dG,A(g, h) ≤ 2, so G is almost convex with respect to A.

2.4 Proof of Theorem D

In this section, we produce a length non-increasing regular CP-RS with short reverse

lexicographic normal forms for a pair (G,A) with FFTP. We begin with a lemma that
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will allow us to handle geodesics which are not short reverse lexicographic normal

forms:

Lemma 2.4.1. Suppose the pair (G,A) has FFTP with fellow traveler constant k, A

is totally ordered, and u ∈ A∗ is a word representing g ∈ G which is not a short reverse

lexicographic normal form. Then there exists some word v with v =G u, v <srev u,

and u and v 2k-fellow travel.

Proof. Suppose (G,A) has FFTP with fellow traveler constant k, and u ∈ A∗ is a

word representing g ∈ G which is not a short reverse lexicographic normal form. If u

is not geodesic, we take v to be any witness of u; then v =G u, |v| < |u| so v <srev u,

and u and v k-fellow travel, hence also 2k-fellow travel.

Now, suppose u is geodesic. Then let w be the short reverse lexicographic normal

form of g, and u2 the longest common suffix of u and w, so u = u1u2 and w = w1lu2

for some w1 ∈ A∗ and l ∈ A. Then u1l
−1 is not a geodesic, having length |u1|+1 while

a geodesic representative of the same element has length |u1|− 1. Because (G,A) has

FFTP, there exists some word v′ with |v′| < |u1| + 1, v′ =G u1l
−1, and v′ and u1l

−1

k-fellow travel. If |v′| = |u1| − 1, we take v′′ = v′; otherwise, |v′| = |u1|, so there

exists some v′′ with |v′′| = |u1| − 1, v′′ =G v′, and v′′ and v′ k-fellow travel. Now,

let v = v′′lu2. Then v is short reverse lexicographically smaller than u, since the two

have the same length, v has a longer common suffix with w than u does with w, and

w is short reverse lexicographically smaller than u. Further, u and v 2k-fellow travel,

since u1 and v′′l 2k-fellow travel and u and v extend these by the same suffix.

The proof of Lemma 2.4.1 is illustrated in Figure 2.3. We now prove the main

theorem.

Theorem 2.4.2 (Main Theorem). Suppose the pair (G,A) has the falsification by

fellow traveler property. Then
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1G g
u2

u1

v′v′′

w1

l

Figure 2.3: While u1 and w1l might be quite far apart, we see that u1 and v′ k-fellow
travel, and similarly v′ and v′′ k-fellow travel.

(a) G admits a length non-increasing end-normal synchronously regular CP-RS R;

and

(b) G is geodesically autostackable.

Proof. Suppose (G,A) has FFTP with fellow traveler constant k. Let ≺ be a total

ordering on A, and let N be the set of short reverse lexicographic normal forms of G.

Let

L = {(u, v) | u =G v, v <srev u, and u and v 4k-fellow travel}.

We create an FSA M accepting Lp as follows:

The alphabet of M is A × (A ∪ {$}). For each element g ∈ G with |g| ≤ 4k, we

have two states: one labeled by nfsrev(g), and one labeled by nfsrev(g)$. We also have

one fail state F and one additional state λ′. The accept states of M are λ′ and λ$,

and the initial state is λ. We define the transition function δ with three parts:

diff(s, (a, b)) =


nfsrev(a

−1gb) if s is labeled by nfsrev(g),

by nfsrev(g)$, or by nfsrev(g)
′ for some g ∈ G

F if s = F
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vterm(s, (a, b)) =



F if s = F

$ if s ̸= F and b = $

F if s = nfsrev(g)$ for some g ∈ G and b ̸= $

λ otherwise

srev(s, (a, b)) =


1 if a, b ∈ A and b ≺ a

1 if s = λ′ and a = b

0 otherwise

(Note that in the first case for diff(s, (a, b)), we only have nfsrve(g)
′ when g =G 1.)

Now, we define our transition function by

δ(s, (a, b)) =



F if diff(s, (a, b)) = F

or vterm(s, (a, b)) = F

or |diff(s, (a, b))| > 4k

λ′ if diff(s, (a, b)) = λ,

vterm(s, (a, b)) = λ,

and srev(s, (a, b)) = 1

diff(s, (a, b))vterm(s, (a, b)) otherwise

The function diff(s, (a, b)) tracks the word difference between the two input words u

and v as long as these words 4k-fellow travel, u does not terminate before v, and v does

not have a padding letter between letters from A. The function vterm(s, (a, b)) tracks
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whether v has terminated and whether v has a padding letter between letters from

A. The function srev(s, (a, b)) tracks whether the most recent pair of non-identical

letters was in decreasing order.

We now prove that the language accepted by M is Lp. We first notice that vterm

prevents M from accepting any words which are not padded pairs, so we can restrict

our proof to deal only with padded pairs.

Suppose (u, v)p is accepted by M . Recall that δ̂(s, w) is defined to be the state

of M after starting at a state s and reading a word w. Then δ̂(λ, (u, v)p) is either

λ$ or λ′. In particular, this requires u−1v =G 1, since diff (which tracks the word

difference between prefixes of u and of v) ended at λ. Further, reading (u, v)p avoids

landing at F , so |diff| ≤ 4k at each step; thus, u and v must 4k-fellow travel. We

now consider the role of vterm: either this function ended at $, or vterm ended at λ

and srev ended at 1. In the first case, (u, v)p reached a padding letter in the second

coordinate, meaning that |v| < |u|, so v <srev u. In the second case, (u, v)p had no

padding symbols, so |u| = |v|, but srev ended at 1. Then either last(v) ≺ last(u), so

that v <srev u, or the state before reading the last letter of (u, v)p was also λ′ and

last(u) = last(v). Continuing this reasoning, we see that u =A∗ u1u2, v =A∗ v1u2, and

last(v1) ≺ last(u1) for some words u1, u2, v1 ∈ A∗. In this case, we again have that

v <srev u. Thus, the language accepted by M is a subset of Lp.

Now, suppose that (u, v)p satisfies v <srev u, u =G v, and u and v 4k-fellow travel.

Then starting at λ and reading (u, v)p, |diff| ≤ 4k at each step, since u and v 4k-fellow

travel and vterm is never F because (u, v)p is a padded pair, so we never reach the

state F . Since u =G v, δ̂(λ, (u, v)p) must be λ, λ$, or λ′. If |v| < |u|, then we have

vterm reaches $ after v ends, so we must end at λ$. Otherwise, since v <srev u, we

must have that v is reverse lexicographically smaller than u. Thus, srev ends at 1,

meaning that we end at λ′. In either case, M accepts (u, v)p, so Lp is a subset of the
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language accepted by M . Therefore, M accepts exactly the language Lp.

Now, we consider L. We first note that u =G v for all (u, v) ∈ L. Further, for

each word u which is not a short reverse-lexicographic normal form, there exists some

v ∈ A∗ with v <srev u and u and v 2k-fellow travel by Lemma 2.4.1, so (u, v) ∈ L. The

ordering <srev is well-founded, so each word which is not a short reverse-lexicographic

normal form can be rewritten to its normal form using finitely many rules from L, so

any two words which are equal in G can be rewritten to each other using finitely many

relations of the form u = v with (u, v) ∈ L. Thus, G = Mon⟨A|L⟩, so L is a prefix-

rewriting system for G. Because <srev is a well-founded ordering and for all (u, v) ∈ L

we have v <srev u, L is terminating, and because each word u ∈ A∗ which is not the

minimal representative of a group element under this strict total ordering is the left-

hand side of a pair, we have that L has unique normal forms, hence L is convergent.

Further, since Lp is the language accepted by M , L is synchronously regular. Finally,

since L never increases length, we have that L is a length non-increasing synchronously

regular convergent prefix-rewriting system for G with generating set A. By Theorem

2.3.1, G is autostackable.

To create a length non-increasing synchronously regular CP-RS which is also end-

normal , we consider a sequence of languages. First, let L′ = L ∩ (NA × A∗)p; that

is, L′ consists of pairs (u, v) such that every proper prefix of u is a short reverse

lexicographic normal form. By a similar argument as in the proof of Theorem 2.3.1,

L′ is still a length non-increasing synchronously regular prefix-rewriting system for G

with generating set A, with normal form setN . Next, we define L′
2 = L′∩(A∗×A∗$$),

L′
1 = L′∩(A∗×A∗$), and L′

0 = L′∩(A∗×A∗). That is, L′
i is the subset of L

′ consisting

of pairs (u, v) where |u| = |v|+ i. We next recursively define three languages for each
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letter in A, and two languages Li for i = 1, 2: let

L2,a = (L′
2 ∩ (A∗ × A∗a)p) \

(⋃
b≺a

π1(L2,b)× A∗

)p

,

L2 =
⋃
c∈A

π1(L2,c)× A∗,

L1,a = (L′
1 ∩ (A∗ × A∗a)p) \

(
L2 ∪

⋃
b≺a

(π1(L1,b)× A∗)

)p

,

L1 =
⋃
c∈A

π1(L1,c)× A∗, and

L0,a = (L′
0 ∩ (A∗ × A∗a)p) \

(
L2 ∪ L1 ∪

⋃
b≺a

(π1(L0,b)× A∗)

)p

.

That is, Li,a is the set of all (u, v)p ∈ L′ such that |u| = |v|+ i, last(v) = a, and there

is no v′ ∈ A∗ such that (u, v′) ∈ L′ and v′ <srev v. Again, using a similar argument as

at the start of the proof of Theorem 2.3.1, we have that L′′ = ∪2
i=0∪a∈ALi,a is a length

non-increasing synchronously regular prefix-rewriting system for G with generating

set A. Moreover, in Lemma 2.4.1 we showed that any non-normal form geodesic u

2k-fellow travels a word v with u =G v, |v| = |u| and last(v) = last(nfR(u)), so for

any pair (u, v) ∈ L′′ where u is a geodesic, we have that last(v) = last(nfR(u)). In the

case that u is not geodesic, since u is minimally reducible, we have that u must have

length at most |nfR(u)|+2, hence it k-fellow travels some shorter word v1, which then

k-fellow travels some geodesic v2, which then 2k-fellow travels some geodesic v with

last(v) = last(nfR(u)). Thus, each non-geodesic u 4k-fellow travels a geodesic word v

with last(v) = last(nfR(u)), so each rule (u, v) in L′′ has last(v) = last(nfR(u)). Thus,

L′′ is a length non-increasing end-normal synchronously regular CP-RS, completing

the proof of part (a) of the theorem. Now, L′′ satisfies the hypotheses of Theorem
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2.3.2, so there is a geodesically autostackable structure for G with generating set

A.

When working with the finite state automata constructed through Theorem 2.3.1,

we notice that there is some potential room for improvement when working with the

rewriting systems from pairs (G,A) with FFTP. In particular, rather than using the

pumping number for an FSA accepting L (or L′′), we can use four times the fellow

traveler constant. This can decrease the size of the automata created in Theorem

2.3.1. There are pairs (G,A) for which Theorem 2.3.1 is useful which do not have

FFTP, so we opted for a proof covering a wider class of groups rather than the more

efficient construction in Section 2.3.

2.5 Disproving the converse of part (a) of the Main Theorem

A natural question, given the first part of Theorem 2.4.2, is whether having a length

non-increasing regular CP-RS for a pair (G,A) implies that (G,A) has FFTP. In this

section, we answer the question in the negative, using the following example.

Example 2.5.1. The group G = Z2 ⋊ Z2 = ⟨a, b, t | [a, b] = 1, t2 = 1, tat = b⟩ has

a length non-increasing regular CP-RS with generating set A = {a, t}, but the pair

(G,A) does not have FFTP.

Proof. Consider G = Z2 ⋊ Z2 and A = {a, t}. Elder uses this example and proves

that the pair (G,A) does not have FFTP in [13]. Consider the shortlex normal form

set N with a < a−1 < t < t−1 as our ordering on A±1. An illustration of part of the

Cayley graph, with normal forms indicated, is given as Figure 2.4. We see that N

consists of {aitajt | i, j ∈ Z, j ̸= 0} together with all prefixes of words in this language.

Notably, N is regular. Further, whenever u, v ∈ N with d(u, v) = 1, we have that
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1G

Figure 2.4: A portion of the Cayley graph ΓG,A, with spanning tree of normal forms
drawn in bold. All horizontal and vertical arrows are labeled by a and point right or
up, while all diagonal arrows are labeled by t and are bidirectional.

u and v 4-fellow travel. The only non-trivial case to check for 4-fellow traveling is

when u = aitajt and v = ai+1tajt, with v =G ua. In this case, if i is non-negative,

u and v follow a common path of length i, then have a word difference of ta for a

single step, then have a word difference of tata for j letters, and finally have a word

difference of a at the final pair of vertices. If i is negative, we have a similar scenario.

All other options for u and v have either u as a prefix of v or v as a prefix of u, so

u and v 1-fellow travel. Thus, we have a regular language of shortlex normal forms,

with any pair of normal forms that differ by a single edge 4-fellow traveling, hence a

shortlex automatic structure [14, Theorem 2.3.5]. Every shortlex automatic structure

is a length non-increasing regular CP-RS (this follows from the proof of [29, Lemma

5.1]), so this example has a length non-increasing regular CP-RS but not FFTP. The
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set of rules R for this CP-RS is given below, for sake of completeness:

aia−sgn(i) → ai−sgn(i) for all i ∈ Z \ {0}

aitaja−sgn(j) → aitaj−sgn(j) for all i ∈ Z and j ∈ Z \ {0}

aitt → ai for all i ∈ Z

aitajt2 → aitaj for all i ∈ Z and j ∈ Z \ {0}

aitajtaϵ → ai+ϵtajt for all i ∈ Z, j ∈ Z \ {0}, and ϵ ∈ {1,−1}

It is worth noting that this CP-RS is end-normal , hence G is geodesically autostack-

able with the given generating set.
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Chapter 3

A Completion Procedure for Autostackable Structures

3.1 Introduction

Autostackable structures are a generalization of both automatic structures and finite

convergent rewriting systems. Both of these special cases have well-known procedures

to search for a structure. In the case of finite convergent rewriting systems (FCRSs),

the Knuth-Bendix completion procedure can, given a finite presentation G = ⟨A|R⟩

and a well-founded ordering < on A∗ which is compatible with concatenation, search

for a finite set of rules and determine whether such a set is an FCRS. In the case

of automatic groups, a procedure detailed by Epstein, Holt, and Rees in [15] can

search for a word acceptor and multiplier automata and decide whether a set of such

automata is an automatic structure.

The Knuth-Bendix completion procedure has been extended by several authors.

For example, Needham [23] extended the Knuth-Bendix completion procedure to

work with infinite convergent rewriting systems, while Andrianarivelo and Réty [1] ex-

tended the Knuth-Bendix completion procedure to prefix-preserving prefix-constrained

term rewriting systems.

This chapter does much the same for bounded convergent prefix-rewriting systems

in groups and monoids. We have created a completion procedure, which we call
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the prefix-Knuth-Bendix procedure, to search for bounded prefix-rewriting systems

and determine whether such a rewriting system is convergent, given a presentation

M = Mon⟨A|R⟩ and an ordering < on A∗ satisfying certain properties. This new

procedure has been implemented in Python, and details of this implementation are

provided in [10].

In contrast to Needham’s work, our procedure creates bounded rewriting systems.

Needham’s procedure involves rules such as dacd(ba)nc → adacd(ba)n, which rewrite

arbitrarily long subwords, while our procedure only creates prefix-rewriting systems

which rewrite subwords of bounded length. Needham’s procedure also requires or-

derings which are compatible with concatenation on both sides (as is the case with

standard Knuth-Bendix), while our procedure allows a larger class of orderings be-

cause we require only compatibility with concatenation on the right. In contrast

to Andrianarivelo and Réty’s work, our procedure does not require prefix-preserving

rules; that is, when interpreted in terms of string rewriting rather than the more

general term rewriting, Andrianarivelo and Réty’s work requires that for any pair of

prefix-constrained rules (notation defined in Section 3.3) L1 : l1 → r1 and L2 : l2 → r2,

if there exists w = pl1s such that p ∈ L1, s ∈ A∗, and w ∈ L2, then pr1s must also be

in L2. Our work avoids this limitation.

In addition to defining the prefix-Knuth-Bendix procedure, we define a class of

orderings (k-bounded regular orderings) and show that when one of these orderings

is used in the prefix-Knuth-Bendix procedure, each step of the procedure can be

calculated, and any resulting rewriting system is regular. In the case of groups, these

are autostackable structures.

This chapter is organized as follows: In Section 3.2, we provide notation, defini-

tions, and theorems which are used in the remainder of the chapter. In Section 3.3,

we describe the completion procedure that we have developed for prefix-rewriting sys-
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tems and prove that it is sound and that under certain conditions it gives a bounded

convergent prefix-rewriting system. In Section 3.4, we define k-bounded regular or-

derings, which allow us to effectively compute each step of our completion procedure

as long as we only need to compare words which differ on a suffix of length at most

k, and we show that when the prefix-Knuth-Bendix procedure halts with an output

while using one of these orderings with no step having required comparison of words

which differ on a suffix of length greater than k, then the result is a bounded regular

convergent prefix-rewriting system.

3.2 Background

In this section, we discuss definitions and theorems relevant to this chapter, along

with a description of the standard Knuth-Bendix completion procedure. Some of

the definitions from this section were discussed in less detail in Section 1.1, but it is

valuable to have a more detailed discussion here.

Let → be a binary relation on A∗, i.e. a collection of rules of the form l → r

for some l, r ∈ A∗. Let →∗ be the transitive and reflexive closure of → and let ↔∗

be the transitive, reflexive, and symmetric closure of →. A relation → is confluent

if whenever u ↔∗ v, there exists some w ∈ A∗ such that u →∗ w and v →∗ w; is

locally confluent if whenever x → u and x → v, there exists some w ∈ A∗ such that

u →∗ w and v →∗ w; and is terminating if there is no infinite sequence of words

u1 → u2 → u3 → · · · . If → is both confluent and terminating, then → is convergent.

Lemma 3.2.1. [25] A terminating relation is confluent if and only if it is locally

confluent.

We will deal primarily with binary relations in the form of prefix-rewriting systems.

A prefix-rewriting system is a relation → on A∗ such that whenever l → r, we have
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ls → rs for all s ∈ A∗. For the context of the Knuth-Bendix completion procedure, we

will also deal with rewriting systems ; these are relations → on A∗ such that whenever

l → r, we have pls → prs for all p, s ∈ A∗. A finite convergent rewriting system is a

set R of finitely many rules l → r such that the relation

{u →R v | u = pls and v = prs for some p, s ∈ A∗ and l → r in R}

is convergent. Similarly, a convergent prefix-rewriting system is a set R of rules l → r

such that the relation

{u →R v | u = ls and v = rs for some s ∈ A∗ and l → r in R}

is convergent.

A completion procedure is a procedure which takes as input a set E of equations

over A∗ and a set R of rules over A∗, and repeatedly modifies E and R through

inference rules. A single inference rule modifying the pair (E ,R) to the pair (E ′,R′)

is denoted as (E ,R) ⊢ (E ′,R′) or

(E ,R)

(E ′,R′)
.

A completion procedure is sound if u =E∪R v if and only if u =E ′∪R′ v whenever

(E ,R) ⊢ (E ′,R′).

A critical pair is a pair of rewriting rules R1 and R2 in R whose left-hand sides

have non-empty overlap, which results in a word x ∈ A∗ with rewritings x →{R1} u

and x →{R2} v such that u and v do not have an immediate common descendant

under {R1, R2}. This has the potential to cause the (prefix-) rewriting system R to

not be locally confluent.

A strict partial order < is compatible with concatenation on the right (on the left)
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if whenever u < v and w ∈ A∗, we have uw < vw (respectively wu < wv).

The Knuth-Bendix completion procedure [22] can be used to search for finite

convergent rewriting systems for groups and monoids; given a monoid presentation

M = Mon⟨A | R⟩ and a well-founded strict partial ordering < on A∗ which is

compatible with concatenation on both the left and the right (i.e. a < b implies

pas < pbs for all p, s ∈ A∗), it uses a collection of inference rules to create rewriting

systems for M , and terminates if one of these rewriting systems is convergent. These

inference rules are Orient (which replaces an equation u = v by a rule u → v or

v → u, using < to determine which direction the rule goes), Deduce (which adds an

equation from a critical pair), Simplify (which rewrites either side of an equation or

the right side of a rule), and Delete (which deletes an equation of the form u = u).

The Knuth-Bendix completion procedure uses two types of critical pairs: external

critical pairs, which are pairs of rules l1 → r1 and l2 → r2 with l1 = uv, l2 = vw,

and v ̸= λ; and internal critical pairs, which are pairs of rules l1 → r1 and l2 → r2

with l1 = ul2v and l2 ̸= λ. Our prefix-Knuth-Bendix procedure (detailed in Section

3.3) builds on the Knuth-Bendix completion procedure, though we are able to avoid

the need for < to be compatible with concatenation on the left, allowing us to use a

wider class of orderings.

3.3 The Prefix-Knuth-Bendix Completion Procedure

In this section, we introduce a procedure to build bounded regular prefix-rewriting

systems, which we call the prefix-Knuth-Bendix completion procedure, and prove that

this procedure is valid and results in a convergent prefix-rewriting system if it halts

with an output.

Throughout the prefix-Knuth-Bendix completion procedure, we will require infor-
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mation about prefixes. In order to keep track of this prefix information, we introduce

prefix-constrained equations and rules:

Definition 3.3.1. Let A be a finite alphabet. A prefix-constrained equation is a triple

P : u = v for some P ⊆ A∗ and u, v ∈ A∗, and a prefix-constrained rule is a triple

P : u → v for some P ⊆ A∗ and u, v ∈ A∗. Given a collection S of prefix-constrained

equations and prefix-constrained rules, we say that x ↔S y if x = pus and y = pvs

for some p, u, v with p ∈ P for some language P such that P : u = v, P : v = u,

P : u → v, or P : v → u is an element of S. We use =S to denote the transitive

closure of ↔S .

We note that equality relative to a set of prefix-constrained equations and rules

S is not generally the same as equality in the monoid

M = Mon⟨A | {u = v | P : u = v or P : u → v is in S for some P ⊆ A∗}⟩.

If each prefix language is A∗ then the two equalities =S and =M coincide.

Recall that D = {(a, a) | a ∈ A} is the diagonal of A, πi is the projection function

given by πi(a1, . . . , an) = ai when ai ∈ Ai and πi(a1, . . . , an) = λ when ai = $i, and

the quotient L/S is the set {w ∈ A∗ | there exists s ∈ S such that ws ∈ L}. We

next define three types of critical pairs:

Definition 3.3.2. Let P1, P2 ⊆ A∗ and l1, l2, r1, r2 ∈ A∗. Consider the pair of rules

P1 : l1 → r1 and P2 : l2 → r2.

Suppose that l2 is a non-empty subword of l1, i.e. l1 = ul2v for some u, v ∈

A∗. Then we have an interior critical pair between our rules, with resulting prefix-

constrained equation P1 ∩ (P2/{u}) : r1 = ur2v.
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Suppose that some non-empty proper suffix of l1 is a proper prefix of l2, i.e. there

exist non-empty words u, v, w ∈ A∗ with v ̸= λ, l1 = uv and l2 = vw. Then we have

an exterior critical pair between our rules, with resulting prefix-constrained equation

P1 ∩ (P2/{u}) : r1w = ur2.

Suppose that there exists some word in P1 which can be rewritten using P2 : l2 → r2

to a word in A∗ \ P1, i.e. the set (((P2 × P2) ∩D∗) · (l2, r2) ·D∗) ∩ (P1 × (A∗ \ P1))

is non-empty. Then we have a prefix critical pair between our rules, with resulting

prefix-constrained equation

π2 ((((P2 × P2) ∩D∗) · (l2, r2) ·D∗) ∩ (P1 × (A∗ \ P1))) : l1 = r1

We note that interior and exterior critical pairs correspond to the critical pairs

used in the standard Knuth-Bendix completion procedure. Prefix critical pairs are

important for prefix-Knuth-Bendix because we use prefix-constrained rules.

Lemma 3.3.3. Given a critical pair between rules R1 = P1 : l1 → r1 and

R2 = P2 : l2 → r2, the set of equalities implied by the prefix-constrained equation

resulting from this critical pair is also implied by the pair of rules R1 and R2.

Proof. We consider the three types of critical pairs in turn:

Interior critical pairs: Consider an interior critical pair with l1 =A∗ ul2v. Suppose

x =A∗ pr1s and y =A∗ pur2vs for some p ∈ P1 ∩ (P2/{u}) and s ∈ A∗. Let z =A∗

pul2vs =A∗ pl1s. Then p ∈ P1, so z ={R1} pr1s =A∗ x. Also, pu ∈ P2, so z ={R2}

pur2vs =A∗ y. Thus, x ={R1,R2} y, as desired.

Exterior critical pairs: Consider an exterior critical pair with l1 =A∗ uv and l2 =A∗

vw for some non-empty word v. Suppose x =A∗ pr1ws and y =A∗ pur2s for some

p ∈ P1 ∩ (P2/{u}) and s ∈ A∗. Let z =A∗ puvws =A∗ pl1ws =A∗ pul2s. Then p ∈ P1,
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so z ={R1} pr1ws =A∗ x, and pu ∈ P2, so z ={R2} pur2s =A∗ y. Thus, x ={R1,R2} y, as

desired.

Prefix critical pairs: Consider a prefix critical pair. Let x =A∗ pl1s and y =A∗ pr1s for

some p ∈ π2 ((((P2 × P2) ∩D∗)(l2, r2)D
∗) ∩ (P1 × (A∗ \ P1))), and let p1 ∈ A∗ such

that (p1, p) ∈ (((P2 × P2) ∩ D∗)(l2, r2)D
∗) ∩ (P1 × (A∗ \ P1)). Let z =A∗ p1s. Then

z =A∗ p2l2p3l1s for some p2 ∈ P2 and p3 ∈ A∗ such that p2l2p3 ∈ P1 but p2r2p3 ̸∈ P1.

Then z ={R2} p2r2p3l1s =A∗ x and z ={R1} p2l2p3r1s ={R2} p2r2p3r1s =A∗ y. Thus,

x ={R1,R2} y, as desired.

Note that the prefix language associated with each equation resulting from a

critical pair is exactly the set of prefixes on which that critical pair is relevant. For

interior and exterior critical pairs, this language is the language of prefixes where

both relevant rules can be applied. For prefix critical pairs, this language is all of the

words w which are not in P1, but which are the result of applying the rule P2 : l2 → r2

to a word in P1. In general these languages may not be computable, but in the case

that P1 and P2 are regular, closure properties of regular languages (see Subsection

1.2.1) show that all of these languages are themselves regular and can be computed.

Definition 3.3.4. A prefix-Knuth-Bendix completion procedure is a procedure which

starts with a finite set of equations E0 of the form P : u = v for some P ⊆ A∗ and

some u, v ∈ A∗, a finite set R0 of rules of the form P : u → v for some P ⊆ A∗

and some u, v ∈ A∗, and a well-founded strict partial ordering < compatible with

concatenation on the right, and constructs a derivation (E0,R0) ⊢ (E1,R1) ⊢ · · · ,

where (Ei+1,Ri+1) is obtained from (Ei,Ri) by applying one of the following inference

rules:

Augmentation:

(E ,R)

(E ∪ {P : u = v},R)



45

where P : u = v is the result of an interior critical pair, exterior critical pair, or

prefix critical pair between rules of R.

Orientation:

(E ∪ {P : u = v},R)

(E ∪ {P \ (Lv<u ∪ Lu<v) : u = v},R∪ {P ∩ Lu<v : v → u, P ∩ Lv<u : u → v}

where Lu<v (respectively, Lv<u) is a set of words w such that wu < wv (respectively

wv < wu).

Word simplification:

(E ∪ {P : u = v},R)

(E ∪ {P ∩ P ′ : u′ = v, P \ P ′ : u = v},R)

where wu →R wu′ for all w ∈ P ′.

Prefix simplification:

(E ∪ {P : u = v},R)

(E ∪ {P1 : u = v, P2 : u = v},R)

where P3 is (((P ′ × P ′) ∩ D∗) · (l′, r′) · D∗) ∩ (P × A∗) for some rule P ′ : l′ → r′ in

R, P1 = π2(P3), and P2 is P \ π1(P3). That is, P1 is the set of words which are the

result of applying the rule P ′ : l′ → r′ to a word in P , and P2 is the set of words in

P which cannot be rewritten using the rule P ′ : l′ → r′.

Boundary simplification:

(E ∪ {P : u = v},R)

(E ∪ {P1 : u′ = v′, P2 : u = v},R)

where u′ = r′z, v′ = xv, P1 = P ′ ∩ (P/{x}), and P2 = P \ P1 · {x} for some rule

P ′ : l′ → r′ in R with l′ = xy and u = yz for some y ̸=A∗ λ. That is, u′ is the result

of applying the rule l′ → r′ to the word xu, P1 is the set of all words w ∈ P ′ such that
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wx ∈ P , and P2 is the set of all words w ∈ P such that either w does not end with

the suffix x or w is not w′x for any w′ ∈ P ′.

Equal word deletion:

(E ∪ {P : u = u},R)

(E ,R)
.

Equation empty prefix deletion:

(E ∪ {∅ : u = v},R)

(E ,R)
.

Rule empty prefix deletion:

(E ,R∪ {∅ : u → v})
(E ,R)

.

It is worth noting that the Orientation inference rule requires the computation

of languages Lu<v and Lv<u, along with their intersections with P and the language

P \ (Lv<u ∪ Lu<v). Likewise, the three simplification inference rules each require a

computation which may not be possible in general, but is possible if P and P ′ are

regular. Detection of the empty set may not be possible in general, but is possible

if all of the languages involved are regular and given as regular expressions or as the

languages accepted by finite state automata. In Section 3.4 we will discuss a class

of orderings (the k-bounded orderings) which, when used in a prefix-Knuth-Bendix

completion procedure with no Orientation steps requiring comparison of words which

differ on a suffix of length greater than k, ensure that each prefix language we generate

is regular.

We now show that a prefix-Knuth-Bendix completion procedure is sound, and

that under appropriate hypotheses it produces bounded convergent prefix-rewriting
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systems.

Theorem 3.3.5. If (E ,R) ⊢ (E ′,R′), then the equivalence relations =E∪R and =E ′∪R′

are identical.

Proof. Suppose that (E ,R) ⊢ (E ′,R′). We must show that if this inference removed a

rule or equation, then all words which were equal under the removed equation remain

equal under (E ′,R′), and that if this inference added a rule or equation, then all words

which are equal under the new rule or equation were already equal under (E ,R). We

approach this one inference rule at a time.

Augmentation: This inference rule adds a single equation P : u = v which is the

result of a critical pair between rules of R. Suppose that w ∈ P . Then by Lemma

3.3.3, we have wu =R wv.

Orientiation: This inference rule replaces an equation P : u = v by a equation

and two rules. Suppose that w ∈ P ; then w is in one of P ∩ Lv<u, P ∩ Lu<v, or

P \ (Lu<v ∪ Lv<u), so wu =E ′∪R′ wv. Alternatively, if w is in one of P ∩ Lv<u,

P ∩ Lu<v, or P \ (Lu<v ∪ Lv<u), then w ∈ P , so wu =E wv.

Word simplification: This inference rule replaces an equation P : u = v by two

different equations.

Suppose w ∈ P , and consider the equation wu =E∪R wv. Then if w ̸∈ P ′, we have

wu =E ′ wv. Alternatively, if w ∈ P ′, we have wu =R′ wu′ =E ′ wv. In either case,

wu =E ′∪R′ wv.

Suppose w ∈ P ∩ P ′, and consider the equation wu′ =E ′∪R′ wv. We see that

wu′ =R wu =E wv, so wu′ =E∪R wv.

Suppose w ∈ P \P ′ and consider the equation wu =E ′∪R′ wv. We see that w ∈ P ,

so wu =E∪R wv.
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Prefix simplification: This inference rule replaces an equation P : u = v by two

equations.

Suppose w ∈ P , and consider the equation wu =E∪R wv. Then if w = pl′s for

some p ∈ P ′ and s ∈ A∗, we have wu =R′ pr′su =′
E pr′sv =R′ wv. Alternatively, if

w ̸= pl′s for any p ∈ P ′ and s ∈ A∗, then w ̸∈ π1(P3), so w ∈ P2, giving wu =E ′ wv.

In either case, wu =E ′∪R′ wv.

Suppose w ∈ P1, and consider the equation wu =E ′∪R′ wv. Then there exists some

w′ such that (w′, w) ∈ P3; in particular, w′ = pl′s and w = pr′s for some p ∈ P ′ and

s ∈ A∗. Thus, we have wu =R w′u =E w′v =R wv, so wu =E∪R wv.

Suppose w ∈ P2, and consider the equation wu =E ′∪R′ wv. Then w ∈ P , so

wu =E wv.

Boundary simplification: This inference rule replaces an equation P : u = v by two

equations.

Suppose w ∈ P , and consider the equation wu =E∪R wv. Then if w = px for some

p ∈ P ′, we have pxyz =R′ pr′z =E ′ pxv =A∗ wv. Alternatively, if w is not px for any

p ∈ P ′, we have wu =E ′ wv. In either case, wu =E ′∪R′ wv.

Suppose w ∈ P1, and consider the equation wu′ = wv′. Then w ∈ P ′, so wu′ =A∗

wr′z =R wl′z =A∗ wxyz =A∗ wxv =A∗ wv′, so wu′ =E∪R wv′.

Suppose w ∈ P2, and consider the equation wu = wv. Then w ∈ P , so wu =E wv.

Equal word deletion: This inference rule removes an equation P : u = u. We note

that wu =A∗ wu, hence wu =E ′∪R′ wu.

Equation empty prefix deletion and Rule empty prefix deletion: These inference rules

delete an equation or rule S of the form ∅ : u = v or ∅ : u → v. As the prefix language

is empty, there are no words x, y ∈ A∗ such that x ↔S y, so removing S from E ∪ R

does not affect the relation ↔E∪R, hence does not affect the relation =E∪R.
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Definition 3.3.6. A derivation (E0,R0) ⊢ (E1,R1) ⊢ · · · ⊢ (En,Rn) is fair if:

(a) R0 = ∅;

(b) For each equation P : u = v in E0, we have P = A∗;

(c) En = ∅; and

(d) E0 ∪ · · · ∪ En contains a complete set of equations resulting from critical pairs in

Rn.

Note that, because we remove at most one equation from E with each inference

rule, any fair derivation must have a finite initial set of equations E0. Additionally,

because we add at most two rewriting rules to R with each inference rule, Rn must

be finite.

Theorem 3.3.7. Suppose that (E0,R0) ⊢ (E1,R1) ⊢ · · · ⊢ (En,Rn) is a fair derivation

using the prefix-Knuth-Bendix completion procedure. Then Rn is a bounded conver-

gent prefix-rewriting system for the monoid

M = Mon⟨A | {l = r | A∗ : l = r is in E0}⟩.

Proof. We first consider termination. Each rule P : l → r in Rn was added in an

Orientation step. In this Orientation step, we required that P be a set of words w

such that wr < wl; thus, we have pl > pr for all p ∈ P . Because < is compatible

with concatenation on the right, we can extend this to pls > prs for all p ∈ P and

s ∈ A∗. Since < is well-founded, we see that →Rn is a terminating relation.

We next consider local confluence. Let z ∈ A∗, and suppose that z →R x and

z →R y. That is, there exist rules P1 : l1 → r1 and P2 : l2 → s2 and words p1 ∈ P1,

p2 ∈ P2, s1 ∈ A∗, and s2 ∈ A∗ such that

z =A∗ p1l1s1 →{P1:l1→r1} p1r1s1 = x
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and

z =A∗ p2l2s2 →{P2:l2→r2} p2r2s2 = y.

Without loss of generality, suppose that |p1| ≤ |p2|, so that p1 is a subword of p2. Note

that |l1| ≠ 0 and |l2| ≠ 0 because if λ > w for some word w, then by compatibility

with concatenation on the right we have w > w2 > w3 > · · · , which would violate

well-foundedness of <. We have several cases to consider:

Case 1 : Suppose that |p1l1| ≤ |p2|, so that p1l1 is a subword of p2. In this case,

p2 = p1l1u, so y →R p1r1ur2s2; additionally, x = p1r1ul2s2. If p1r1u ∈ P2, then

x →R p1r1ur2s2, so x and y have a common descendant. Otherwise, we have a prefix

cricital pair between our rules, and we have p1l1u ∈ P2 while p1r1u ̸∈ P2, with p1 ∈ P1.

This gives

(p1l1u, p1r1u) ∈ (((P1 × P1) ∩D∗) · (l1, r1) ·D∗) ∩ (P2 × (A∗ \ P2)),

so p1r1ul2s2 = p1r1ur2s2 is contained in the associated prefix-constrained equation.

Case 2 : Suppose that |p1| < |p2| < |p1l1| < |p2l2|. In this case, the subwords l1 and l2

overlap so that we have an external critical pair. In particular, l1 = uv and l2 = vw

for some u, v, w ∈ A∗, and we have z = p1uvws2, x = p1r1ws2, and y = p1ur2s2.

Since p1 ∈ P1 and p1u = p2 ∈ P2, we have p1 ∈ P1 ∩ (P2/{u}), so x = y is contained

in the prefix-constrained equation associated with this critical pair.

Case 3 : Suppose that |p1| < |p2| and |p2l2| ≤ |p1l1|. In this case, l2 is a subword of l1,

so we have an interior critical pair. In particular, l1 = ul2v for some u, v ∈ A∗, and we

have z = p1ul2vs1, x = p1r1s1, and y = p1ur1vs1. Since p1 ∈ P1 and p1u = p2 ∈ P2,

we have p1 ∈ P1 ∩ (P2/{u}), so x = y is contained in the prefix-constrained equation

associated with this critical pair.
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Case 4 : Suppose that |p1| = |p2| and |p1l1| < |p2l2|, so that p1 = p2 and l1 is a prefix

of l2.. In this case, l1 is a subword of l2, so we have an interior critical pair, with

l2 = ul1v for some v ∈ A∗ and u =A∗ λ. We have z = p2l1vs2, x = p2r1vs2, and

y = p2r2s2. Since p2 ∈ P2 and p2 = p1 ∈ P1, we have p2 ∈ P2 ∩ (P2/{u}, so x = y is

contained in the prefix-constrained equation associated with this critical pair.

Case 5 : Suppose that |p1| = |p2| and |p2l2| < |p1l1|, so that p1 = p2 and l2 is a prefix

of l1. This case is identical to case 4, with with x and y swapped.

Case 6 : Suppose that |p1| = |p2| and |p1l1| = |p2l2|, so that p1 = p2, l1 = l2, and

s1 = s2. In this case, we have an interior critical pair with u = v = λ. Then

z = p1l1s1, x = p1r1s1, and y = p1r2s1. Since p1 ∈ P1 and p1u = p1 ∈ P2, we have

p1 ∈ P1∩(P2/{u}), so x = y is contained in the prefix-constrained equation associated

with this critical pair.

In each of these cases, x and y either have a common descendant from existing

rules, or they are included in the prefix-constrained equation resulting from a critical

pair in Rn. In the latter case, they are included in a prefix-constrained equation in

Ei for some i, and this equation was simplified to a certain point, rewriting x and y

to some descendents x′ and y′, and either these common descendents were equal as

words or they were oriented in an Orientation inference rule. Either way, x and y

have a common descendent using the entirety of Rn, so Rn is locally confluent. By

Lemma 3.2.1, Rn is a confluent rewriting system.

Finally, we must show that Rn is a bounded confluent prefix-rewriting system for

the monoid M = Mon⟨A | {l = r | A∗ : l = r is in E0}⟩. Because our derivation is

fair, we have that P = A∗ for each equation P : u = v in E0, so equality in E0 is

identical to equality in M . By Theorem 3.3.5, equality in Rn is identical to equality
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in E0, hence is identical to equality in M . Thus,

M ∼= Mon⟨A | {l = r | P : l → r is in Rn for some P ⊆ A∗}⟩.

This gives us that Rn is a confluent prefix-rewriting system for M . Additionally, the

maximum length of l or r in any rule P : l → r in Rn is bounded by some finite

number because we only have finitely many prefix-constrained rules in Rn, so Rn is

a bounded CP-RS.

3.4 A new class of orderings for prefix-Knuth-Bendix

In this section, we define a class of strict partial orderings which, when used in

the prefix-Knuth-Bendix completion procedure, allow effective computation of each

inference rule, and give examples of orderings in this class. In order to collect related

definitions together, we first define strict partial orderings with ties, which we will

not use until later in the section:

Definition 3.4.1. A strict partial ordering with ties is a pair of relations (<,∼) such

that < is a strict partial order, and ∼ is an equivalence relation satisfying all of the

following:

� If x ∼ y, then x and y are incomparable under <.

� Whenever x ∼ y and x < z, then y < z.

� Whenever x ∼ y and z < x, then z < y.

If u ∼ v, we will say that u and v are tied under (<,∼). We note that every strict

partial ordering < gives a strict partial ordering with ties (<,=), and every strict

partial ordering with ties gives a strict partial ordering by ignoring ∼. If (<,∼) is a
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strict partial ordering with ties over the set of words A∗, then we say that (<,∼) is

compatible with concatenation on the right (respectively, on the left) if < is compatible

with concatenation on the right (respectively, left) and whenever x ∼ y and z ∈ A∗,

we have xz ∼ yz (respectively, zx ∼ zy).

We next introduce k-bounded regularity, which allows effective computation in

prefix-Knuth-Bendix:

Definition 3.4.2. We say that a strict partial ordering < is (synchronously) k-

bounded regular if the language

L<,k = {(u, v) | u < v} ∩
(
D∗ ·

(
A{0,1,...,k} × A{0,1,...,k}))

is (synchronously) regular.

We say that a strict partial ordering with ties (<,∼) is (synchronously) k-bounded

regular if < is (synchronously) k-bounded regular and the language

L∼,k = {(u, v) | u ∼ v} ∩
(
D∗ ·

(
A{0,1,...,k} × A{0,1,...,k}))

is (synchronously) regular.

Moreover, if < or (<,∼) is k-bounded regular for all k ∈ N, then we say that < or

(<,∼) is bounded regular. If the set {(u, v) | u < v} ({(u, v) | u ∼ v}, in the case of

an equivalence relation ∼) is regular, then we say that < (respectively ∼) is regular.

A strict partial ordering with ties (<,∼) is regular if both < and ∼ are regular.

The language L<,k (respectively, L∼,k) is the set of all pairs of words (u, v) with

u < v (respectively u ∼ v) such that u and v differ only on a suffix of length at most

k. Note that bounded regularity is a stronger condition than k-bounded regularity

for any specific value of k. It is also worth noting that (k + 1)-bounded regularity
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implies k-bounded regularity (since L<,k = L<,k+1 ∩
(
D∗ ·

(
A{0,1,...,k} × A{0,1,...,k})),

and L∼,k can similarly be constructed from L∼,k+1), but k-bounded regularity does

not imply (k+1)-bounded regularity. Similarly, regularity implies bounded regularity,

but bounded regularity does not imply regularity (see Example 3.4.6 below).

We are interested in k-bounded regular orderings because they ensure regularity

(and thus computability) of the various prefix languages involved in the prefix-Knuth-

Bendix completion procedure, provided our derivation begins with regular prefix con-

straints for each rule and equation and does not require the comparison of words

which differ on a suffix of length more than k.

Theorem 3.4.3. Let < be a k-bounded regular strict partial ordering. Then, given

a finite set E of prefix-constrained equations and a finite set R of prefix-constrained

rules such that the prefix language for each equation in E and for each rule in R is

regular, and for each equation P : u = v in E we have both |u| ≤ k and |v| ≤ k,

any inference rule (E ,R) ⊢ (E ′,R′) in the prefix-Knuth-Bendix completion procedure

is computable and results in each prefix language from (E ′,R′) being regular.

Proof. Suppose that < is k-bounded regular and the prefix languages for all equations

in E and all rules in R are regular and given as regular expressions or finite state

automata. We approach this one inference rule at a time.

For Augmentation, we need to compute the prefix-constrained equation associated

with a critical pair between P1 : l1 → r1 and P2 : l2 → r2. The words in these prefix-

constrained equations are each concatenations of subwords of l1, l2, r1, and r2, which

are computable. The prefix language is a regular language constructed from P1, P2,

and appropriate subwords of l1, l2, r1, and r2 (using constructions under which regular

languages are closed) in all three cases, so P is both computable and regular.
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For Orientation, suppose that P : u = v is an equation in E , and that u and v differ

only on a suffix of length at most k. Let Lv<u = π1(L<,k/{(v, u)p}) and let Lu<v =

π1(L<,k/{(u, v)p}). Then Lv<u is the set of all words w ∈ A∗ such that wv < wu,

and similarly Lu<v is the set of all words w ∈ A∗ such that wu < wv. We note that

Lv<u and Lu<v are regular (because regular languages are closed under quotients and

homomorphic images — see Subsection 1.2.1), so the languages P ∩ Lv<u, P ∩ Lu<v

and P \ (Lv<u ∪ Lu<v) are aslo regular. Thus, the three languages that we add as

prefix languages in this Orientation step are regular, and can be computed.

We note that if we have any equation P : u = v such that u and v differ on a

suffix of length more than k, then the prefix languages required in Orientation may

not be regular. In our Python implementation of the prefix-Knuth-Bendix procedure,

such equations are skipped in hopes of simplifying the equation using one of the three

simplification inference rules.

For Word simplification, if wu →R wu′ as a result of a rule P1 : l1 → r1 in R,

then we must have u = pl1s with wp ∈ P1. We note that P ′ = P1/{p} is the set of

all w such that wu → wu′ via P1 : l1 → r1, and is a regular language. This also gives

regularity for P ∩P ′ and P \P ′ , so the two prefix-constrained equations added with

this inference rule are computable and have regular prefix languages.

For Prefix simplification and Boundary simplification, we construct P1 and P2

with regular languages (using only constructions under which regular languages are

closed), so these are also computable and regular.

For Equal word deletion, we delete an entire rule, with no limitation on the prefix

language P .

For Equation empty prefix deletion and Rule empty prefix deletion, we note that

the empty language detection problem is solvable for regular languages by finding the
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breadth-first search normal form of the associated finite state automaton. Thus, we

can detect when P is empty for any equation P : u = v or rule P : u → v.

Thus, each of our inference rules can be computed, and result in regular prefix

languages for all equations in E ′ and rules in R′ for which we can construct the

appropriate regular expressions or finite state automata.

Note that we do not bound the length of words in prefix-constrained equations or

rules in (E ′,R′). This means that while a k-bounded regular ordering can be sufficient

so long as our words do not grow too long, it can be helpful to have a bounded regular

ordering to avoid the problem of words growing too long.

Combining Theorem 3.4.3 with Theorem 3.3.7 gives the following useful corollary:

Corollary 3.4.4. Suppose that Rn is the result of using the prefix-Knuth-Bendix

procedure with inputs of a monoid M = Mon⟨A | R⟩ and a well-founded k-bounded

regular strict partial ordering < which is compatible with concatenation on the right,

and that no step of the prefix-Knuth-Bendix procedure required the comparison of two

words u and v which differ on a suffix of length greater than k. Then Rn is a bounded

regular convergent prefix-rewriting system for M , and is an autostackable structure if

M is a group.

We proceed next to examples of k-bounded regular orderings. We first show that

all strict partial orderings which are compatible with concatenation on both sides are

bounded regular:

Lemma 3.4.5. Let < be a strict partial order which is compatible with concatenation

on both the left and the right. Then < is k-bounded regular for all k.

Proof. We note that the set Sk = {(u, v) | u < v and |u| ≤ k and |v| ≤ k} is finite,

since Sk is a subset of the set of pairs of words of length at most k, which is itself
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finite. Then the set L<,k is D∗ ·Sk. This is a concatenation of two regular languages,

hence is regular, so < is k-bounded regular.

(It is perhaps worth noting that the finite state automata for L<,k can only be

constructed if < is recursive.) This shows that any ordering which can be used

for standard Knuth-Bendix can also be used for prefix-Knuth-Bendix (though the

resulting rules will necessarily have A∗ as their prefix languages, so prefix-Knuth-

Bendix gives no rewriting systems beyond those given by standard Knuth-Bendix if

we restrict ourselves to these orderings). We can use this to find examples of bounded

regular orderings which are not regular.

Example 3.4.6. Consider the recursive path ordering (see, for example, [12] for a

definition) <rpo on {a, b}∗ given by a < b. Then <rpo is bounded regular but not

regular.

Proof. By Lemma 3.4.5, <rpo is bounded regular. Consider the pair of words anbn and

bnan. We note that anbn <rpo b
nan, so (anbn, bnan) ∈ L<rpo , but for any decomposition

uvw = (anbn, bnan) with |uv| ≤ n and |v| ≥ 1, we have v = (ai, bi). Then uv0w =

(an−ibn, bn−ian), and an−ibn >rpo bn−ian, so uv0w ̸∈ L<rpo . This is a violation of the

pumping lemma, so L<rpo cannot be regular. Thus, <rpo is bounded regular but not

regular.

We next introduce a modification of shortlex orderings which is compatible with

concatenation on the right but not on the left.

Definition 3.4.7. Let A be a finite alphabet, let M be a finite state automaton over

A with start state 1M , and for each state s of M , let ≺s be an ordering on A. We

define the regular-split shortlex ordering <M on A∗ as follows:

� If |u| < |v|, then u <M v.
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� If |u| = |v|, let p be the longest common prefix of u and v, and let u′ and v′

be suffixes of u and v such that u = pu′ and v = pv′. Let s = δ̂(1M , p) (recall

that δ̂(q, p) is the state reached by starting at state q and reading the word p).

If first(u′) ≺s first(v
′), then u′ <M v′.

These regular-split shortlex orderings have already proven useful; we will discuss

a Coxeter group which has no finite convergent rewriting system with a shortlex

ordering on the standard generating set, but which does have a bounded regular

CP-RS with a regular-split shortlex ordering in Example 3.4.11.

Theorem 3.4.8. Every regular-split shortlex ordering is a well-founded regular strict

total ordering compatible with concatenation on the right.

Proof. Let <M be a regular-split shortlex ordering on A∗. We must prove several

things: that <M is a strict total ordering; that <M is well-founded; that <M is

compatible with concatenation on the right; and that <M is regular.

<M is a strict total ordering: We begin by proving irreflexivity. When comparing a

to itself, we have |a| = |a|. The longest common prefix of a and itself is a, and this

gives u′ = v′ = λ. By definition, first(λ) = λ, and λ ⊀s λ for all states s of M . Thus,

a ≮M a.

We next consider asymmetry. Suppose a <M b. Then we have two cases:

Case 1: Suppose |a| < |b|. Then |b| ≮ |a| and |b| ≠ |a|, so b ≮M a.

Case 2: Suppose |a| = |b|. Then a and b have a longest common prefix p with a = pa′

and b = pb′ for some words a′ and b′. Let s be the state in M reached by p. We see

that first(a′) ≺s first(b
′), and thus first(b′) ⊀s first(a

′). Thus, b ≮M a. In both cases,

b ≮M a, so <M is asymmetric.
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We next consider transitivity. Suppose a <M b and b <M c. There are two cases

to consider.

Case 1: Suppose |a| < |b| or |b| < |c|. Then |a| < |c|, so a <M c.

Case 2: Suppose |a| = |b| and |b| = |c|. Then |a| = |c|. Let p1 be the longest common

subword of a and b, let p2 be the longest common subword of b and c, and let p3 be

the longest common subword of a and c. We have several subcases:

Subcase i: Suppose that |p1| = |p2| = |p3|; then a = p1a
′, b = p1b

′, and c = p1c
′ for

some words a′, b′, c′, and p1 = p2 = p3. Let s be the state in M reached by p1. Then

first(a′) ≺s first(b
′) ≺s first(c’), so first(a′) ≺s first(c

′), and hence a <M c.

Subcase ii: Suppose that |p1| = |p2| < |p3|. Then p1 = p2 is a prefix of p3; in

particular, a = p1a
′, b = p1b

′, and c = p1c
′ for some words a′, b′, and c′. But

we see that first(a′) = first(c′) because |p3| > |p1|, while first(a′) ≺s first(b′) and

first(b′) ≺s first(c
′), so that ≺s cannot be an ordering. Thus, this case is impossible.

Subcase iii: Suppose that |p1| = |p2| > |p3|. Then p1 = p2 is a common prefix of a, b,

and c, which is longer than p3. This case is impossible.

Subcase iv: Suppose that |p1| < |p2|. Then p1 is the longest common prefix of a and

c. Let s be the state of M reached by p1. We see that a = p1a
′, b = p1b

′, and c = p1c
′

for some a′, b′, c′; moreover, first(a′) ≺s first(b
′) = first(c′). Thus, a <M c.

Subcase v: Suppose that |p1| > |p2|. Then p2 is the longest common prefix of a and

c. Let s be the state of M reached by p2. We see that a = p2a
′, b = p2b

′, and c = p2c
′

for some a′, b′, c′; moreover, first(a′) = first(b′) ≺s first(c
′). Thus, a <M c.

In all cases we have a <M c, so <M is transitive.

Next, we show that <M is a strict total (rather than partial) ordering. Suppose

that a ̸= b. If |a| < |b| then a <M b, and if |a| > |b| then b <M a. If |a| = |b|,

then the two words have some longest common prefix p, which reaches some state

s in M . We have a = pa′ and b = pb′ for some words non-empty words a′ and b′



60

in A∗, and first(a′) ̸= first(b′). Either first(a′) ≺s first(b′), in which case a <M b, or

first(a′) ≻s first(b
′), in which case b <M a. Thus, either a <M b or b <M a, so <M is

a strict total ordering.

<M is well-founded: Suppose, for sake of contradiction, that there exists an infinite

sequence a1 >M a2 >M a3 >M · · · . For each n, there are only finitely many words

of length at most n, and by transitivity and asymmetry of <M we cannot repeat

any word in this sequence, so this infinite sequence must contain some word ai of

length at least |a1| + 1; but ai >M a1, which is a contradiction. Thus, <M must be

well-founded.

<M is compatible with concatenation on the right: Suppose a <M b and u ∈ A∗. We

have two cases to consider:

Case 1: Suppose |a| < |b|. Then |au| < |bu|, so au <M bu.

Case 2: Suppose |a| = |b|. Then let p be the longest common prefix of a and b, and

let s = δ̂(1M , p). Then a = pa′ and b = pb′ for some non-empty words a′ and b′ with

first(a′) ≺s first(b′). We have |au| = |bu|, and the longest common prefix of au and

bu is p. Moreover, au = pa′u and bu = pb′u. We see that first(a′u) = first(a′) ≺s

first(b′) = first(b′u), so au <M bu.

In both cases, au <M bu, so <M is compatible with concatenation on the right.

<M is regular: We construct a finite state automaton accepting the language

L<M
= {(u, v) | u <M v} as follows:

There are |M | + 4 states: one state corresponding to each state from M , along

with states labeled “FAIL”, “u SHORT”, “u LEX”, and “v LEX”.

The initial state is the state corresponding to the initial state of M .

The accept states are the states labeled “u SHORT” and “u LEX”.

We define the transition function δ as follows:



61

For each state s corresponding to a state in M and each letter a ∈ A, let δ(s, (a, a))

be the state corresponding to δM(s, a).

For each state s except for the state labeled “FAIL” and each letter a ∈ A, let

δ(s, ($, a)) be the state labeled “u SHORT”.

For each state s corresponding to a state in M and each pair of letters a, b ∈ A with

a ≺s b, let δ(s, (a, b)) be the state labeled “u LEX”, and let δ(s, (b, a)) be the state

labeled “v LEX”.

For each pair of letters a, b ∈ A, let δ(“u SHORT”, (a, b)) = “u FAIL”, let

δ(“u LEX”, (a, b)) = “u LEX”, and let δ(“v LEX”, (a, b)) = “v LEX”.

For each pair of letters a, b ∈ A ∪ {$}, let δ(“FAIL”, (a, b)) = “FAIL”.

For each state s and each letter a ∈ A, let δ(s, (a, $)) = “FAIL”.

For each state s, δ(s, ($, $)) = “FAIL”.

This finite state automaton emulates M on the longest common prefix p of u and

v, then shifts to checking shortlex with the ordering ≺s associated with the state s

that is reached by starting at 1M and reading p. The four added states are a fail state

“FAIL”, a state “u SHORT” which is reached whenever |u| < |v|, and states “u LEX”

and “v LEX” which are reached whenever the appropriate word is lexicographically

smaller under ≺s. Thus, we have a finite state automaton accepting L<M
, so <M is

regular.

We can extend the number of k-bounded regular strict partial orderings signifi-

cantly with the following theorem:

Theorem 3.4.9. Given two k-bounded regular well-founded strict partial orderings

with ties (<1,∼1) and (<2,∼2) over A
∗ which are both compatible with concatenation

on the right, the pair of relations (<1,2,∼1,2) given by a <1,2 b if a <1 b, or a ∼1 b
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and a <2 b; and a ∼1,2 b if a ∼1 b and a ∼2 b; is a k-bounded regular well-founded

strict partial ordering with ties which is compatible with concatenation on the right.

Proof. We must show that (<1,2,∼1,2) satisfies several properties: that <1,2 is a strict

partial ordering; that ∼1,2 is an equivalence relation; that if x ∼1,2 y then x and y are

incomparable under <1,2; that if x ∼1,2 y and x <1,2 z then y <1,2 z; that if x ∼1,2 y

and z <1,2 x, then z <1,2 y; that (<1,2) is well-founded; that both <1,2 and ∼1,2

are compatible with concatenation on the right; and that (<1,2,∼1,2) is k-bounded

regular.

<1,2 is a strict partial ordering: We first show irreflexivity. We note that a ≮1 a,

a ∼1 a, and a ≮2 a, so a ≮1,2 a. Thus, <1,2 is irreflexive.

We next show asymmetry. Suppose a <1,2 b. Then either a <1 b, or a ∼1 b and

a <2 b. In the first case, we see that b ≮1 a and b ̸∼1 a, so b ≮1,2 a. In the second

case, we see that b ≮1 a, b ∼1 a, and b ≮2 a, so b ≮1,2 a. Thus, <1,2 is asymmetric.

Finally, we show transitivity. Suppose a <1,2 b and b <1,2 c. We have four cases.

Case 1: Suppose that a <1 b and b <1 c. By transitivity of <1, we have that a <1 c,

and hence a <1,2 c.

Case 2: Suppose that a <1 b and b ≮1 c. Then b ∼1 c, so a <1 c, and hence a <1,2 c.

Case 3: Suppose that a ≮1 b and b <1 c. Then a ∼1 b, so a <1 c, and hence a <1,2 c.

Case 4: Suppose that a ≮1 b and b ≮1 c. Then a ∼1 b and b ∼1 c, so a ∼1 c. Further,

a <2 b and b <2 c, so a <2 c. Thus, a <1,2 c.

Thus, <1,2 is transitive, and is a strict partial ordering.

∼1,2 is an equivalence relation: We see that for any a ∈ A∗, a ∼1 a and a ∼2 a, so

a ∼1,2 a, so ∼1,2 is reflexive.

Now, suppose a ∼1,2 b. Then a ∼1 b and a ∼2 b, so b ∼1 a and b ∼2 a, so b ∼1,2 a,

so ∼1,2 is symmetric.
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Finally, suppose that a ∼1,2 b and b ∼1,2 c. Then a ∼1 b ∼1 c and a ∼2 b ∼2 c, so

a ∼1,2 c. Thus, ∼1,2 is transitive, and is in fact an equivalence relation.

a ∼1,2 b implies that a and b are incomparable under <1,2: Suppose that a ∼1,2 b.

Then a ∼1 b and a ∼2 b, so a ≮1 b and a ≮2 b, so a ≮1,2 b. Similarly, b ≮1,2 a.

a ∼1,2 b and a <1,2 c implies b <1,2 c: Suppose a ∼1,2 b and a <1,2 c. We have two

cases:

Case 1: Suppose that a <1 c. Then b <1 c as well, so b <1,2 c.

Case 2: Suppose that a ∼1 c and a <2 c. Then b ∼1 c and b <2 c as well, so b <1,2 c.

In either case, we have that b <1,2 c.

a ∼1,2 b and c <1,2 a implies c <1,2 b: This is analogous to the previous point, with

direction of inequalities reversed.

<1,2 is well-founded: Suppose, for sake of contradiction, that there exists an infinite

sequence a1 >1,2 a2 >1,2 a3 >1,2 · · · . If we consider this sequence in terms of (<1,∼1),

we see that we have ai >1 ai+1 or ai ∼1 ai+1 for all i ∈ N. This gives two cases:

Case 1: Suppose that there are infinitely many indices i such that ai >1 ai+1. By

transitivity of ∼1, this gives an infinite sequence a1 ∼1 ai1 >1 ai1+1 ∼1 ai2 >1 · · · for

some indices i1, i2, . . . . By compatibility of ∼1 with <1, this simplifies to an infinite

sequence ai1 >1 ai2 >1 · · · , contradicting well-foundedness of >1.

Case 2: Suppose, on the contrary, that there are only finitely many indices i such

that ai >1 ai+1. Then there exists some n ∈ N such that for all j ≥ n, we have

aj ∼1 aj+1 and aj >2 aj+1. This gives an infinite sequence an >2 an+1 >2 an+2 >2 · · · ,

contradicting well-foundedness of >2.

In either case, we reach a contradiction, so >1,2 is well-founded.

(<1,2,∼1,2) is compatible with concatenation on the right: Suppose that a <1,2 b and

u ∈ A∗. We have two cases:
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Case 1: Suppose a <1 b. Then by compatibility with concatenation on the right of

<1, we have au <1 bu. Thus, au <1,2 bu.

Case 2: Suppose a ∼1 b and a <2 b. Then by compatibility with concatenation on

the right of ∼1 and <2, we have au ∼1 bu and au <2 bu, so au <1,2 bu.

Thus, <1,2 is compatible with concatenation on the right.

Now, suppose that a ∼1,2 b and u ∈ A∗. Then a ∼1 b and a ∼2 b, so by

compatibility with concatenation on the right of both ∼1 and ∼2, we have au ∼1 bu

and au ∼2 bu, so au ∼1,2 bu. Thus, ∼1,2 is also compatible with concatenation on the

right.

The pair (<1,2,∼1,2) is k-bounded regular : We construct the languages L<1,2,k and

L∼1,2,k as follows:

L<1,2,k = L<1,k ∪ (L∼1,k ∩ L<2,k)

and

L∼1,2,k = L∼1 ∩ L∼2,k

We note that both of these are constructed by finitely many intersections and unions

of regular langauges, hence are regular. Thus, (<1,2,∼1,2) is a k-bounded regular

strict partial ordering with ties.

We say that an ordering constructed in this way is a tiebreak ordering, with <2

breaking ties from (<1,∼1). We can use this to construct new orderings from familiar

orderings. For example:

Definition 3.4.10. Let A be a finite alphabet and let wt : A → R+ be a system

of positive weights on A, and for any word u = a1a2 · · · an, let wt(u) =
∑n

i=1w(ai).

Define the weight strict partial order with ties (<wt,∼wt) by u <wt v whenever wt(u) <

wt(v), and u ∼wt v whenever wt(u) = wt(v). Let <M be any regular-split shortlex
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ordering. Then the regular-split weightlex ordering given by wt and M is the tiebreak

ordering with <M breaking ties from <wt.

Regular-split weightlex orderings are a natural analog of weightlex orderings.

We conclude with the following example of a bounded regular CP-RS which we

discovered by using our implementation of prefix-Knuth-Bendix with a regular-split

shortlex ordering.

Example 3.4.11. Let M be the finite state automaton with four states labeled A,

B, C, and D, alphabet {a, b, c, d}, start state A, and transition function δ(s, a) = A,

δ(s, b) = B, δ(s, c) = C, and δ(s, d) = D for all states s. Then the Coxeter group

C = ⟨a, b, c, d |a2 = b2 = c2 = d2 = 1, abab = baba, acac = caca,

ada = dad, bcb = cbc, bdbd = dbdb, cdcd = dcdc⟩

has a bounded regular CP-RS using the regular-split shortlex ordering given by the

finite state automaton M with orderings a ≺A b ≺A c ≺A d, b ≺B c ≺B d ≺B a,

c ≺C d ≺C a ≺C b, and d ≺D a ≺D b ≺D c.

Hermiller noted that this Coxeter group has no finite convergent rewriting system

with the standard generating set [17]. Our procedure, as implemented in Python,

finds an autostackable structure; we have provided the set of rules in Appendix A.



66

Appendix A

Bounded Regular Convergent Prefix-Rewriting System for C

The rules below form a bounded regular CP-RS for the Coxeter group given in Exam-

ple 3.4.11. They have been grouped based on prefix languages for sake of readability.

P Rules u → v such that P : u → v

A∗ aa → λ, bb → λ, cc → λ, dd → λ

A∗{a} ∪ {λ} dad → ada, dacdcd → adacdc, dabdbd → adabdb,

dabdbcdcd → adabdbcdc

A∗{b, c, d} ada → dad

A∗{b} abab → baba

A∗{a, c, d} ∪ {λ} baba → aba, babcaca → ababcac, babdad → ababda,

babcacdad → ababcacda, babdacdcd → ababdacdc,

babdabdbd → ababdabdb, babcacdacdcd → ababcacdacdc,

babcacdabdbd → ababcacdabdb, babdabdbcdcd → ababdabdbcdc,

babcacdabdbcdcd → ababcacdabdbcdc

(Rules continue on next page.)
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A∗{c} bcb → cbc, bcdbdb → cbcdbd, bcabab → cbcaba,

bcdbdabab → cbcdbdaba

A∗{a, b, d} ∪ {λ} cbc → bcb

A∗{d} cdcd → dcdc

A∗{a, b, c} ∪ {λ} dcdc → cdcd, dcdacac → cdcdaca, dcdbcb → cdcdbc,

dcdacabcb → cdcdacabc, dcdbcdbdb → cdcdbcdbd,

dcdbcabab → cdcdbcaba, dcdacabcdbdc → cdcdacabcdbd,

dcdacabcabab → cdcdacabcaba, dcdbcdbdabab → cdcdbcdbdaba,

dcdacabcdbdabab → cdcdacabcdbdaba

A∗{a, b} ∪ {λ} dbdb → bdbd, dbdabab → bdbdaba

A∗{c, d} bdbd → dbdb, bdbcdcd → dbdbcdc

A∗{a, d} ∪ {λ} caca → acac, cacdad → acacda, cacdacdcd → acacdacdc,

cacdabdbd → acacdabdb, cacdabdbcdcd → acacdabdbcdc

A∗{b, c} acac → caca, acabcb → cacabc, acabcdbdb → cacabcdbd,

acabcabab → cacabcaba, acabcdbdabab → cacabcdbdaba
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