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Highway-Rail Grade Crossings (HRGCs) present a significant safety risk to 

motorists, pedestrians, and train passengers as they are intersections where roads and 

railways intersect. Every year, HRGCs in the US experience a high number of crashes 

leading to injuries and fatalities. Estimations of crash and severity models for HRGCs 

provide insights into safety and mitigation of the risk posed by such incidents. The 

accuracy of these models plays a vital role in predicting future crashes at these crossings, 

enabling necessary safety measures to be taken proactively. 

In the United States, most of these models rely on the Federal Railroad 

Administration's (FRA) HRGCs inventory database, which serves as the primary source 

of information for these models. However, errors or incomplete information in this 

database can significantly impact the accuracy of the estimated crash model parameters 

and subsequent crash predictions. 

 This study examined the potential differences in expected number of crashes and 

severity obtained from the Federal Railroad Administration's (FRA) 2020 Accident 

Prediction and Severity (APS) model when using two different input datasets for 560 

HRGCs in Nebraska. The first dataset was the unaltered, original FRA HRGCs inventory 



 

 

dataset, while the second was a field-validated inventory dataset, specifically for those 

560 HRGCs. The results showed statistically significant differences in the expected 

number of crashes and severity predictions using the two different input datasets. 

Furthermore, to understand how data inaccuracy impacts model estimation for crash 

frequency and severity prediction, two new zero-inflated negative binomial models for 

crash prediction and two ordered probit models for crash severity, were estimated based 

on the two datasets. The analysis revealed significant differences in estimated 

parameters’ coefficients values of the base and comparison models, and different crash-

risk rankings were obtained based on the two datasets. 

The results emphasize the importance of obtaining accurate and complete 

inventory data when developing HRGCs crash and severity models to improve their 

precision and enhance their ability to predict and prevent crashes. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

 

Highway-rail grade crossings (HRGCs) are critical spatial locations of 

transportation safety because traffic crashes at highway-rail grade crossings are often 

catastrophic with profound consequences. According to the Federal Railroad 

Administration (FRA), more than 97% of highway-rail crossings across the US are at-

grade, meaning both the tracks and the crossing highway are located at the same 

elevation (Federal Railroad Administration, 2020). While trains have the right-of-way at 

HRGCs, there are numerous recorded crashes each year when motorists and other 

highway users fail to yield the right-of-way to passing trains. Due to train involvement, 

crashes reported at HRGCs are invariably more injurious than crashes elsewhere on the 

surface transportation network. Crash outcomes may exacerbate if a train or involved 

vehicle is carrying hazardous materials (Khattak and Thompson, 2012; Landry et al., 

2016; Khan et al., 2018; Farooq et al., 2016; Khattak and Farooq, 2023; Khattak et al., 

2023).  

For decades, the need to enhance HRGCs’ safety has been a significant concern in 

the US. The Moving Ahead for Progress in the 21st Century (MAP-21) included a 

separate program that supported safety improvements to reduce the number of fatalities, 

injuries, and crashes at public HRGCs (MAP-21, 2014). Likewise, the Federal Railroad 

Administration (FRA) also aims to reduce highway-railroad crossing and trespasser 

incidents and has initiated multiple programs dedicated to railroad safety, such as the 

Railroad Safety Management Program (FRA, 2019) and the Risk Reduction Program 
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(FRA, 2020). Nonetheless, HRGC crash counts, injury severity, and associated safety 

concerns remain high. In 2021, there were reportedly 2,131 HRGCs crashes resulting in 

237 fatalities and 653 injuries across the US (FRA, 2022). There is a continuous need to 

better understand crash mechanisms, recognize contributing factors to crash frequency 

and severity, develop countermeasures, and provide direction for policies aimed at 

improving HRGCs safety. There has been a general decline in the number of HRGCs 

crashes, injuries, and fatalities, though some years have seen increases when compared to 

the years immediately before them. However, these numbers continue to be alarming, and 

require attention (Figure 1.1). 

 

 

Figure 1.1 National HRGCs Crashes, Injuries and Fatalities from 2000 to 2022 (FRA) 
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The FRA Office of Safety Analysis manages HRGCs’ inventory data and reports 

on its publicly accessible data portal. This data portal shares railroad safety information, 

including accident, incident, and inventory data with the public. The FRA regulations on 

reporting railroad accidents/incidents are included in Title 49 Code of Federal 

Regulations (CFR) Part 225. The purpose of the regulations in Part 225 is to provide FRA 

with accurate information concerning hazards and risks that exist on the Nation’s 

railroads. FRA needs this information to efficiently conduct its regulatory and 

enforcement responsibilities under federal railroad safety laws. The FRA also uses these 

data to determine railroad safety trends and to establish hazard elimination and risk 

reduction programs aimed at preventing railroad-crash injuries and fatalities (FRA, 

2011).   

The FRA accident (also referred as crash) and inventory data on HRGCs include 

information on location of the crossings, functional classification, weather conditions, 

visibility, roadway conditions, warning devices, injury-severity levels, safety 

countermeasures, and many other factors (FRA, 2019). Analyzing the HRGCs’ inventory 

and crash data provides insights and assists in the identification of cause-and-effect 

relationships about crash probabilities and outcomes. Previously, researchers have 

utilized FRA’s inventory and crash data to process a variety of analytic methodologies to 

analyze factors that influence the risk of a crash and its severity occurrence at HRGCs. 

However, data accuracy is important because decisions are made on resource allocation 

and safety measures based on its analysis. 
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1.1.1 HRGCs Crash and Inventory Data Collection and Record Keeping 

 

 The US Congress passed the Accident Reports Act, Public Law No. 165, 

in 1910. The amended Accident Reports Act requires railroad carriers to file reports with 

the Secretary of Transportation on “all accidents and incidents resulting in injury or death 

to an individual or damage to equipment or a roadbed arising from the carrier’s 

operations during the month.” The Secretary of Transportation later delegated authority 

to the FRA to carry out the Accident Reports Act 103(c)(1) of the United States Code; 49 

CFR 1.49(c) (11). The accident/incident reporting regulations at 49 CFR Part 225 were 

originally issued in response to the 1910 Accident Reports Act. Afterwards, Congress 

passed the Federal Railroad Safety Act in 1970. The FRA’s accident/incident reporting 

requirements, 49 CFR Part 225, are currently issued under the dual statutory authority of 

the Accident Reports Act of 1910 and the Federal Railroad Safety Act of 1970 (FRA, 

2011). Important crash-related factors on US DOT crossings are documented and kept 

every month to provide a monthly report, as per the legislation mentioned above.  

Salient attributes of HRGCs accident/incident data are presented in Table 1.1. 

“Accident/Incident” is the term used by the FRA to describe the complete list of 

reportable events. These include collisions, derailments, and other events involving the 

operation of on-track equipment and causing reportable damage above an established 

threshold; impacts between railroad on-track equipment and highway users at crossings; 

and all other incidents or exposures that cause a fatality or injury to any person, or an 

occupational illness to a railroad employee (FRA, 2016). 
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Table 1.1 Key Features of FRA Crossing Accident/Incident Data (FRA, 2011) 

Accident/incident data key features 

Railroad code Day  Temperature  View obstruction Maintenance railroad grouping 

Railroad name Hour Visibility  Driver condition  Reporting railroad holding 

company 

0Report year Time Weather conditions Total injuries/ 

fatalities 

Number of vehicle occupants 

Incident number County/city/state Equipment type  Vehicle damage cost Employees killed in reporting 

railroad  

Incident year  Highway name Track type User struck by 

second train 

Number of people on train 

Incident month Public/private User age Crossing illuminated Video taken 

Grade crossing id Estimated vehicle 

speed 

User gender Driver in vehicle Report key 

Date Vehicle direction Highway user action Passenger killed for 

reporting railroad 

Reporting parent railroad name/ 

class 

Month Hazmat 

involvement 

Driver passed 
vehicle 

Narrative  

 

 

The FRA also maintains data on the current crossings’ inventory. The FRA’s 

“Guide for preparing U.S. DOT crossing inventory forms” is a comprehensive document 

intended to provide operating railroads and states with guidance on completing the US 

DOT crossing inventory form for inventory-recordkeeping of highway-rail and pathway 

crossings (FRA, 2016). These crossing inventory forms include valuable information on 

five key characteristics of HRGCs, which are listed in Table 1.2.  

The FRA’s database also records basic header information for all crossing types 

and includes information such as, date of revision, reporting agency, and reason for 

update. The primary operating railroad is required to update important data fields in the 

inventory database at least every three years as part of the periodic updating process 

(FRA, 2016; FRA, 2021). 
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Table 1.2 Data Features Recorded in U.S. DOT Crossing Inventory Forms (FRA, 2016) 

 

 

 

The quality of safety-related data including crashes and inventory is fundamental 

for the accuracy of analysis, appropriate resource allocation, and the design of effective 

countermeasures. Accuracy, completeness, consistency, integrity, reasonability, 

timeliness, uniqueness, validity, and accessibility are examples of popular data quality 

characteristics and dimensions (Figure 1.2). Since data accuracy is a key characteristic of 

high-quality data, a single incorrect data point can impact the analysis (Chapman, 2005). 

Decision makers cannot trust the data or make informed decisions unless it is accurate 

and reliable. This, in turn, can raise operational costs and cause problems for downstream 

users. Analysts end up relying on flawed reports and drawing incorrect conclusions based 

on their findings (Suer, 2021; Huh et al., 1990).  

 

 

Part I – location and 

classification 

information 

Part II – railroad 

information 

Part III – highway or 

pathway traffic control 

device information 

Part IV – physical 

characteristics and  

Part V – public 

highway information 

State/county/city 

municipality  

Total day and night 

through trains 

Signs or signals  Traffic lanes crossing 

railroad 

Highway system 

Highway type and 
number 

Maximum 
timetable speed 

Type of passive traffic 
control devices associated 

with the crossing 

 paved roadway/pathway  Functional 
classification of road at 

crossing 

Reporting agency Total switching 

trains 

Crossbucks assemblies  Illuminated crossing Highway speed limit 

Reasons for updating 

inventory 

Typical speed over 

crossing 

Pavement markings  Crossing surface Annual average daily 

traffic (AADT) 

Train traffic Type and counts of 

tracks 

Advance warning signs  If intersecting roadway 

within five hundred feet? 

Estimated percent 

trucks 
Quiet zones Type of train 

detection system  

Gate arms Does the track run down a 

street? 

Extensively used by 

school buses? 

Crossing type and 

purpose 

Monitoring devices Gate configuration (2/3/4 

quad) 

Smallest crossing angle Emergency services 

route 

Type of trains using 

the crossing 

Signaled track  Total county and types 

flashing lights 

Availability of commercial 

power 

Is crossing on state 

highway system? 

Latitude/ longitude Year of train count 
data 

Bells  Linear referencing 
system 

Average passenger 

train count per day 

Total transit trains Channelization devices    

Type of land use Check if less than 1 

movement per day? 

Private crossing sign    

  Non-train active warning   

  Highway monitoring devices    
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Figure 1.2 Factors Affecting Data Quality 

 

 

According to the “garbage in, garbage out” (GIGO) principle, the quality of input 

data is closely related to the analysis’ outputs (Oliveira et al., 2005). Past studies have 

already highlighted flaws in the veracity of U.S. DOTs crash data (Imprialou and 

Quddus, 2019; Abay, 2015; Alsop and Langley 2001; Amoros et al., 2006; Austin, 1995). 

However, data quality, on the other hand, is a subjective measure that relates to the 

degree to which data are appropriate for a given purpose (Imprialou and Quddus, 2019).  

The two main problems of data relate to completeness and misreporting. When 

key parameters used to integrate accident datasets with other explanatory datasets (e.g., 

traffic volume related data) or variables that define crash outcomes and circumstances 

(e.g., severity, contributory factors) are incorrect or missing, the problem becomes more 

apparent, and potentially more serious (Watson et al., 2013). 
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The data gathering methods, as well as the contents and details of the included 

attributes, are determined by the intended usage. As a result, data quality may suffer 

when datasets are used for purposes other than those originally intended. Road crash 

reports recorded by public authorities (mostly local police) are one example of such 

datasets with various uses (Imprialou and Quddus, 2019). Crash reports normally contain 

enough information for their primary purposes of providing evidence in legal cases and 

developing regional and national safety performance statistics. Despite the restrictions, 

police crash reports are the primary source of data for road safety research due to a lack 

of alternatives (Amoros et al., 2006). 

When analyzing transportation safety data, there are typically two goals: 

prediction — the ability to predict outcomes with future input variables, and inference — 

the extraction of information about how some key contributing factors are associated with 

the response variable. It should be noted that determining the essential crash contributing 

factors is an important task of highway safety analysis (Hezaveh and Cherry, 2018). 

Accurate crash prediction at HRGCs is important for assisting with decisions 

related to safety improvements. The safety data recorded by FRA on crossings inventory 

and accidents/incidents is important as in previous studies, crash and inventory data on 

rail crossings were used to estimate crash models thereby providing an understanding of 

crash phenomena, identifying associated factors in an effort to improve safety, and 

estimating crash-risk ranking of HRGCs for safety improvement resource allocation 

(Khattak et al., 2020; Pasha et al., 2020; Fischhaber, 2014).  These estimated models 

provide predictions of future accidents and the severity of those accidents.   
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The literature reviewed in the subsequent chapter delves into previous research 

studies that have examined the quality of data, with a specific focus on inventory data. 

Additionally, it will also discuss the various techniques employed in the past for 

analyzing crash frequency and crash severity and the importance of having accurate 

inventory data in order to rely on predictive models that are based on such data. This is of 

paramount importance as it ensures that the models are built on reliable data, and the 

predictions made by them can be trusted. 

In conclusion, this research aims to systematically investigate errors in the Federal 

Railroad Administration's (FRA) Highway-Rail Grade Crossings (HRGCs) inventory 

data by conducting comparative studies based on crash prediction and severity modeling. 

The research used field-validated data and the latest FRA data on HRGCs inventory. 

Crash prediction and severity models were developed using five years of crash data from 

the FRA crash database. Through this research, the following questions were addressed: 

(1) Do the latest FRA data have any missing information or errors? (2) Which variables 

in the data have the highest percentage of errors and missing information? (3) Are the 

differences in crash prediction and severity estimates by utilizing FRA and field-

validated data statistically significant? (4) Do Crash prediction and severity models based 

on FRA and field-verified data give statistically different estimates? By investigating 

these questions, the research aims to improve the accuracy of HRGCs inventory data and 

enhance the effectiveness of safety measures at these crossings. 
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1.2 Research Problem  

 

Data modeling approaches are currently one of the most used tools for 

transportation safety analyses. The use of multiple modeling methodologies to predict 

crashes at HRGCs and estimate their injury-severity is gaining popularity. However, 

there is little evidence of data accuracy while undergoing safety analysis. In most cases, it 

is assumed that the data used for crash prediction and severity analysis is correct, which 

is not validated in research and requires examination. In addition, the value and need for 

error-free data for HRGCs’ crash prediction and severity assessments are also not well-

discussed in the literature.  

These data are used to anticipate future crashes, and agencies utilize them to 

allocate resources and devise preventative measures. They are critical to creating cost-

effective improvements in rail-crossings safety. If the data are incorrect to begin with, 

there is a greater probability of miscalculations in crash prediction, putting many lives at 

danger of serious injury and death. Furthermore, accurate, timely, and standardized data 

enable decision-makers to distinguish the primary factors that contribute to the cause of 

crashes and their outcomes, develop, and evaluate effective safety countermeasures, 

support traffic (both train and vehicular traffic) safety operations, track progress in 

reducing crashes and their severity, design effective vehicle safety regulations, and target 

safety funding. 

As discussed previously, data quality is a subjective measure that relates to the 

degree to which data are appropriate for a given purpose (Imprialou and Quddus, 2019). 

Seeking 100 percent accuracy in safety data may be unrealistic, as the National Highway 

Traffic Safety Administration (NHTSA) in 2010 predicted that collecting and coding the 
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estimated 6.2 million police-reported crashes into a uniform format would cost about a 

billion dollars annually (NHTSA, 2010). Although the frequency of crashes at or near 

HRGCs is much lower than highway crashes, it nevertheless, necessitates a large 

financial budget, extreme precision in data collection, and is realistically, a time-intensive 

process. At the very least, authorities in charge of collecting data on HRGCs could devise 

a data recording plan in which they strive for the highest accuracy when recording those 

data variables that have previously been shown to have the greatest impact on crash 

prediction and severity at HRGCs (Saccomanno et al., 2003; Yau et al., 2003; Ries, 2007; 

Raub, 2009; Khattak et al., 2012; Khan et al., 2018; Yan at al., 2010; Gabree et al., 2014;  

Oh et al., 2006;  Nam and Lee, 2006; Haleem and Gan 2015; Eluru et al., 2012; Hu et al., 

2010; Salmon et al., 2013; Sharma and Pulugurtha, 2019; Young and Liesman, 2007; 

Hao et al., 2013; Fan et al., 2015; Das et al., 2021; Mathew and Benekohal, 2021; 

Mathew and Benekohal, 2020; Das et al., 2022). In addition, based on previous study 

trends, it is essential to ascertain which data variables require the most correction and 

updates and which factors are frequently inaccurate and have little intuitive impact on 

collision injury and severity estimation.  

 

1.3 Research Objective and Hypothesis 

   This study was undertaken to investigate errors in the FRA HRGCs 

inventory data by conducting comparative studies based on crash prediction and severity 

modeling using field-validated data and the FRA data on HRGCs’ inventory. For crash 

prediction and severity modelling, past crash data (2016-2020) from the FRA crash 

database were utilized.  
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The objectives of this research were: (1) to investigate accuracy and missing 

values in HRGCs inventory data and to examine if the missing values in the inventory 

data follow any pattern; (2) to investigate if there are any statistical differences in 

expected crashes estimated by using the 2020 FRA APS model by utilizing both FRA and 

field-validated data; (3) to investigate if there are any statistical differences in crash 

severity predictions obtained by employing the 2020 FRA APS model based on the FRA 

and field-validated data; (4) to assess the impact of data inaccuracy on crash frequency 

modelling, and lastly, (5) to assess the impact of data inaccuracy on crash severity 

modelling.  

 

The following 5 hypotheses were tested in this research.  

 

• Hypothesis 1: Missing values in FRA HRGCs inventory data do not follow a 

pattern (Alpha = 5%). 

➢ In this stage, various data visualization techniques and logical tests 

were employed to investigate whether the missing values in the 

inventory data adhered to a specific pattern or occurred randomly. The 

rationale behind this investigation was to understand the potential 

impact of missing data on the conclusions that could be drawn from 

the data and the methods that could be used for analysis. Given that the 

way in which data is missing can significantly influence the outcome 

of the analysis, it is crucial to properly understand the nature of 

missing data. 
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• Hypothesis 2: There is no difference in expected value of crashes estimated by 

utilizing FRA and field-validated data (Alpha = 5%). 

➢ For this stage, field-validated HRGCs inventory data were obtained 

from data-archives of a key prior Nebraska Department of 

Transportation (NDOT) study where inventory data from public rail 

crossings from nine counties (Lancaster, Cass, Douglas, Gage, 

Jefferson, Otoe, Saline, Sarpy and Saunders) were collected (Khattak 

et al., 2020).  The selection of these nine counties was based on 

railroad network considerations, urban/rural nature of a county, 

proximity to the University of Nebraska-Lincoln, and availability of 

funds in the project. Furthermore, data descriptive analytics were 

performed to better understand the field-validated dataset. Later, based 

on the field-validated and FRA inventory datasets, difference in crash 

prediction (expected crashes) was compared by utilizing 2020 FRA 

Accident Prediction and Severity (APS) model. 

• Hypothesis 3: There is no difference in severity prediction values estimated by 

utilizing FRA and field-validated data (Alpha = 5%). 

➢ For this stage, field-validated and FRA inventory datasets were 

utilized to estimate crash severity based on the 2020 FRA Accident 

Prediction and Severity (APS) model. Later, the difference in 

estimated crash severity was compared based on the two datasets.  
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• Hypothesis 4: There is no difference in estimated parameters’ coefficients of 

new crash frequency prediction models from the two datasets (FRA Vs Field-

Validated) (Alpha = 5%).  

➢ Following careful examination of the 2020 APS model, this portion of 

the research sought model development for crash frequency prediction 

to study the impact of data errors on prediction analysis. Two different 

Zero-inflated Negative Binomial (ZINB) models based on the FRA 

and field-validated data were estimated for this purpose, and 

differences in estimated parameter coefficients were analyzed. 

Furthermore, the impact of a change in models’ estimated parameters 

on crash prediction was investigated by estimating average marginal 

effects. This aspect of the research helped to indicate how inaccuracies 

and misinformation within the inventory data of HRGCs may impede 

the task of developing reliable crash prediction models, underscoring 

the need for meticulous data validation.  

• Hypothesis 5: There is no difference in estimated parameters’ coefficients of 

new crash severity models from the two datasets (FRA Vs Field-Validated) 

(Alpha = 5%).  

➢ This portion of the research sought model development for crash 

severity prediction to study the impact of data errors on crash severity 

estimation. Two different Ordered Probit models based on the FRA 

and field-validated data were estimated for this purpose, and 

differences in estimated parameter coefficients were analyzed. 
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Furthermore, the impact of a change in crash severity models’ 

estimated parameters on crash severity was investigated by estimating 

average marginal effects.  

Figure 1.3 illustrates the design of the proposed research framework, highlighting the 

significance of this dissertation within the context of the existing literature on data gaps 

in Highway-Rail Grade Crossings inventory datasets and their impact on the prediction of 

crash frequency and severity. 
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Figure 1.3 Proposed Research Framework 
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1.4 Dissertation Organization 

 

This dissertation consists of six chapters. Chapter 1 introduces the study 

background, articulates the research problem, and presents the organization of the 

dissertation. It serves as an initiation to the work that follows and sets the stage for the 

subsequent chapters. Chapter 2 presents an in-depth examination of the published 

literature and open-accessed research reports. The literature review covers a range of 

topics, including studies on data quality, the impact of data inaccuracies on predictive 

modeling, previous crash prediction and crash severity studies on Highway-Rail Grade 

Crossings (HRGCs), and the various methodologies used to investigate crash prediction 

and crash severity. Additionally, the chapter also covers the Federal Rail 

Administration’s (FRA) 2020 crash prediction and severity model for HRGCs. The 

chapter ends with identification of gaps in existing research.  

Chapter 3 delves into the details of the data collection and field validation process 

of Highway-Rail Grade Crossing (HRGCs) inventory data. It explains the reasoning 

behind the selection of nine counties in Nebraska for inventory field validation, the 

limitations of data collection, and the geographic scope of data recording. The chapter 

also reports the percentages of total corrected and added missing values, identifies 

abandoned and non-existent HRGCs, and provides examples of data correction. 

Furthermore, it includes descriptive statistics for the Federal Rail Administration (FRA) 

and field-validated datasets, and highlights key insights gained from the data validation 

effort. Chapter 3 also explores the data errors and missing information within the dataset 

and presents statistical methodologies for data analysis and visualization. It investigates 
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logical errors in the dataset and utilizes heatmaps to illustrate the distribution of missing 

values in inventory data. Additionally, the chapter provides a detailed narrative of the 

inventory data, highlighting key insights from the Federal Rail Administration (FRA) and 

field-validated Highway-Rail Grade Crossing (HRGCs) inventory data. 

Chapter 4 presents the use of 2020 FRA Accident prediction and severity model 

to see if there are any statistical differences between crash prediction and severity values 

by using FRA and field-validated datasets. Chapter 5 presents analysis of developing new 

comparative statistical models on crash prediction and crash severity to see if there are 

difference in parameters of the models based on two different datasets. This chapter also 

provides modelling results, modelling interpretations, visualization of the models and 

sensitivity analysis by estimating average marginal effects of estimated parameters.  

Chapter 6 brings the dissertation to a close by summarizing the work that has been 

presented throughout the preceding chapters. It presents the key conclusions that have 

been drawn from the analysis, offering valuable insights into the state of data quality of 

FRA’s Highway-Rail Grade Crossing (HRGCs) inventory data. Additionally, the chapter 

provides limitations of the research, recommendations for improving the data quality of 

HRGCs inventory, proposes safety improvements at HRGCs in relation to inventory data, 

and suggests potential areas for future research.  

 

 

 

 

 



26 

 

CHAPTER 2  LITERATURE REVIEW 

 

 

2.1 Quality of Data and Reporting 

 

Data accuracy, completeness, consistency, and reliability are all aspects of data 

quality. It is a crucial factor because poor data quality can lead to incorrect conclusions, 

bad decisions, resource waste, and missed opportunities. On the other hand, reliable data 

promotes wise judgment, increased effectiveness, and superior performance. 

According to Wang et al. (2006) the field of data quality has witnessed significant 

advances in 21st century. Researchers have moved beyond establishing data quality as a 

field to resolving data quality problems, which range from data quality definition, 

measurement, analysis, and improvement to tools, methods, and processes. Furthermore, 

according to Tayi and Ballou (1998), the term “data quality” can best be defined as 

“fitness for use,” which implies that the concept of data quality is relative. Data that is 

deemed suitable for one purpose may not meet the quality standards for another purpose. 

The rising trend of utilizing data in various contexts, as evidenced by the popularity of 

data warehouses, has underscored the importance of addressing data quality issues. To 

ensure fitness for use, it is essential to move beyond the conventional focus on data 

accuracy and consider other factors that affect its usability. 

 In Veregin’s (1999) view, the meaning of 'quality' varies depending on the 

context in which it is applied. Defining quality for data can be more challenging than for 

manufactured goods, as data lack tangible characteristics that enable straightforward 

quality assessments. Instead, quality in data is determined by intangible properties like 
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completeness and consistency. However, upon closer examination, these distinctions may 

not be as substantial as they seem initially. Data are the outcome of a production process, 

and the approach in which this process is executed has a significant impact on the 

reliability of the data. 

 

2.1.1 Types of Errors in Data  

 

There are several types of errors that can occur in the data such as measurement 

errors, data entry errors, processing errors, non-response errors, selection errors, missing 

information, observational errors, execution errors, outliers, and others (Figure 2.1). The 

usual reasons for these errors include human errors, limitations in technology or 

measurement tools, and limitations in the sampling or data collection methods. For 

example, human errors can lead to mistakes in data entry or survey administration. 

Limitations in technology or measurement tools can lead to inaccurate or imprecise data. 

And limitations in sampling or data collection methods can lead to a biased sample 

(Westerlund, 2007; Helmreich, 2000; Klein et al., 1997). 
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Figure 2.1 Types of Errors 

 

 

Imperialou and Quddus (2019) conducted a study on the quality of crash data for 

road safety research. The study found that crash data used in safety analyses often contain 

inaccuracies or missing information. The authors identified the most significant data 

quality issues as inaccuracies in crash location and time, difficulties in linking data with 

traffic data due to inconsistencies in databases, misclassification of crash severity, 

inaccuracies, and incompleteness of information on involved users' demographics, and 

inaccurate identification of crash contributing factors. According to the study, there is 

variability in the scope and severity of data quality problems across attributes, and the 

degree to which they affect road safety analyses is not entirely clear. 

Senders et al. (2020) discussed in great detail, how human errors delve into the 

complexities of errors in the fields of psychology, engineering, and philosophy. Their 

work offers a detailed examination of fundamental and significant issues pertaining to the 

nature and causes of human errors, and it also touches on the factors that cause humans to 
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commit errors in relation to data collection and information collection.  Additionally, 

Jackle (2008) used historical data to examine measurement and data collection errors. He 

indicated that inaccurate reporting of event history data is common, either as a result of 

respondents forgetting to report events or providing incorrect dates. The study discovered 

that the estimates from the event history data were significantly skewed by measurement 

errors. 

Barchard and Pace (2011) studied the impact of various data entry methods on the 

accuracy of data and statistical results. They conducted an experiment where 195 

undergraduate students were randomly assigned to one of three data entry methods: 

double-entry, visual checking, and single-entry. After receiving training in their assigned 

method, participants entered 30 data sheets, each containing six types of data. The results 

showed that visual checking resulted in 2,958% more errors than double-entry and was 

not significantly better than single-entry. These data entry errors could have severe 

consequences on coefficients alphas, correlations, and t-tests. For example, 66% of the 

visual checking participants produced incorrect values for coefficient alpha, which was 

sometimes wrong by more than 40%. Furthermore, these data entry errors were difficult 

to detect, as only 0.06% of the errors were blank or outside of the allowable range for the 

variables. The authors suggested that researchers should replace single entry and visual 

checking with more effective data entry methods, such as double entry.  

Notably, these errors have a tendency to appear simultaneously and can 

accumulate, leading to more consequential inaccuracies in the data. Therefore, it is 

critical to detect and rectify errors as soon as possible during the data collection, 

processing, and analysis phases to reduce their influence on the outcomes. 
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2.1.2 Significance of Data Validation  

 

 Data validation is the process of ensuring that the data entered into a 

system is accurate, complete, and consistent. It is an important step in the data 

management process as it helps to ensure data integrity and fitness for its intended 

purpose. There are several ways to validate data; however, the common methods are data 

range validation, data type validation, data format validation, data consistency validation, 

and data completeness validation (Figure 2.2). 

 

 

Figure 2.2 Types of Data Validation 

 

 

Loo conducted a study in 2006 to validate the spatial variables in Hong Kong's 

crash data from 1993 to 2004. The validation process involved three data sources: crash 

data, road network data, and district board database. To minimize the need for human 
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resources and manual validation, a GIS-based system was utilized. The results showed 

that between 65-80% of police crash records from 1993 to 2004 contained correct road 

names and district board information. However, for the year 2004, the police crash 

database had an error rate of 12.7% for road names and 9.7% for district boards. These 

findings indicate that caution should be exercised by traffic safety researchers when 

analyzing crash databases, and thorough validation of spatial data should be conducted 

prior to any scientific analysis. 

In a recent study by Breck et al. (2019), a comprehensive data validation process 

was undertaken to enhance the accuracy and efficiency of machine learning research. The 

study resulted in the development of a data validation system capable of detecting 

anomalies. While the limitations and challenges of the new system were acknowledged, 

the study emphasized the potential benefits of early error detection, including improved 

quality of predictive models, reduced engineering hours spent on debugging, and a shift 

towards data-centric workflows in model development.  

Furthermore, Souleyrette et al. (2007) conducted validation of crash data from 

Iowa. The authors sought to examine the discrepancies between database records and 

crash narratives in the Iowa DOT’s Office of Traffic and Safety crash database, as well as 

the implications of these differences. According to the study, the regular statistical editing 

of data, combined with the provision of working databases to institutions such as the 

Center for Transportation Research and Education (CTRE)/Iowa Traffic Safety Data 

Service, the University of Iowa, and the Iowa Department of Transportation (Iowa DOT), 

had led to databases that, while considered incomplete by traditional standards, was still 

considered “public use” due to the dynamic nature of the central DOT database. 
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Furthermore, the study noted that the final analysis of serious crashes can be delayed, and 

the crash numbers can continue to change long after the incident year. To address these 

issues, the authors suggested that the Iowa DOT, its Office of Driver Services, and 

institutional data users/distributors must establish protocols for data use, distribution, and 

labeling. In order to do so, data must be collected to determine the extent of the 

difference between database records and crash narratives and diagrams. 

 

2.1.3 Data Errors in Inventory and Crash Data   

  

It is highly unlikely that the information collected and recorded in transportation 

related inventory and crash datasets would not contain inaccuracies or inconsistencies. 

These errors, which can happen at different points during data collection, entry, and 

analysis, can significantly affect the accuracy and validity of the data. 

Past research has shown that in most cases in crash datasets, there exist errors in 

crash locations. Crash location is reported with multiple different systems around the 

world such as linear referencing, offset from junction, coordinates and address. 

Considerable inaccuracies in crash locations have been reported for all systems (Burns et 

al., 2014, Brown et al., 2015). For instance, Miler et al. (2016) found that 33.5% of the 

crashes of a relatively large database (8,550 observations) had inaccurate crash location 

attributes. The inaccuracies may be due to human error, equipment failure (when GPS is 

used), limited training of personnel or can be inherent to the reporting method (Brown et 

al., 2015, Imprialou et al., 2015).  
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Furthermore, past studies have also revealed inaccurate data recording for crash 

times, crash involved users, crash contributory factors and crash injury severity (Stanton 

and Salmon, 2009; Cummings, 2002; Beanland et al., 2013; Erkut et al., 2007; Couto et 

al., 2016; Hao and Kamga, 2017). Some studies have also investigated how changes in 

operational and safety data affect the operational and safety outcomes of highway work 

zones and rail network (Haque and Sangster, 2018; Haque, 2022; Haque et al., 2023a; 

Haque et al., 2023b).  Misclassification of crash injury severity is not random, as it has 

been linked to specific crash or user characteristics; for example, sensitive user injuries 

seem to be over-classified (Amoros et al., 2006). In addition to the selection bias caused 

by crash under-reporting, classification bias may also affect analyses that use crash 

severity to explain crash occurrences, such as severity modeling or multivariate count 

regression models. To address this issue, some researchers have proposed linking crash 

data with hospital data prior to analyses (e.g., Watson et al., 2015), which could be quite 

effective but time and data intensive. 

Previous studies have also discussed data under-reporting in highway and bridge 

inventory databases; however, in these studies, errors in inventory data were not 

identified per se, but investigations were conducted to reduce the percentage of data 

errors in inventory data collection practices (Jalayer et al., 2014; Caddell et al., 2007; 

Bolukbasi et al., 2004). In the literature, however, no previous research has examined 

under-reporting issues in the FRA crash or inventory data, indicating the need to 

investigate the current state of data inaccuracy in this database.  

 

 

 



34 

 

2.2 Modeling Approaches and Methodology for Crash and Severity Prediction 

 

As previously stated, there are two goals in analyzing transportation safety data: 

prediction, which is the ability to predict outcomes with future input variables and, 

inference, which is the extraction of information about how key contributing factors are 

associated with the response variable (Figure 2.3). This section mentions some key 

studies on crash prediction and crash severity. Most of these studies have been done in 

highway safety analysis, and their methodologies were later used in rail-crossing safety 

research; a review of some of the salient aspects of the modeling approaches is presented 

next.  

Crash frequency is defined as the number of crashes per unit time (e.g., per year 

or per five years). It serves as the primary indicator of highway safety. Several variables 

such as driver behavior, road geometry, weather, vehicle characteristics, and roadway 

environment, can influence crash frequency. The impact of such variables on crash 

occurrence can vary from case to case, but previous research has shown that both 

behavioral factors related to driver errors and non-behavioral factors related to road 

geometry, vehicle, and environment can significantly affect traffic crashes. Researchers 

typically retrieve only a small number of factors from each class to be used as 

independent variables in the modeling process (Anderson et al., 2020; Lao et al., 2011).  

Lord and Mannering (2010) summarized the data and methodological issues in 

accident frequency analyses that should be addressed or taken into account in model 

development and data analyses in the following eleven aspects: over-dispersion, under-

dispersion, time-varying explanatory variables, temporal and spatial correlation, low 



35 

 

sample-mean and small sample size, injury severity and accident-type correlation, under-

reported accidents, omitted-variables bias, endogenous variables, functional form, and 

fixed parameters.   

 

 

Figure 2.3 Crash Prediction and Severity Models Used in the Past Research 
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A wide range of methods have been utilized over the years to deal with the data 

and methodological issues associated with crash frequency data — many of which could 

jeopardize the statistical validity of an analysis if not properly addressed. Table 2.1 lists 

the major existing models used in accident frequency analysis, along with peer research 

for each model.      

    

Table 2.1 Accident Frequency Literature 

Preliminary Modeling Approaches   Past accident frequency research  

Poisson regression model  Miaou (1994)  

Negative binomial/Poisson-Gamma model  Malyshkina and Mannering (2010)  

Zero-inflated model  Lord et al. (2007)  

Random-effects model  Wang et al. (2009)  

Random-parameter model  Anastasopoulos and Mannering (2009)  

Finite mixture/Markov switching  Park and Lord (2009)  

Hierarchical/multilevel model  Kim et al. (2007)  

Generalized additive model  Xie and Zhang (2008)  

  

 

The severity of trauma caused by crashes is typically evaluated using the term 

“crash injury severity”. The severity of injury caused to road users is typically used to 

determine crash injury severity. Typically, five ordinal categories of crash injury severity 

are modeled, but this can vary depending on the type of research. These are: no apparent 

injury (i.e., property damage only), possible injury, suspected minor injury, suspected 

serious injury, and fatal injury (Wang and Abdel-Aty, 2008b; Lord, 2006; Abdel-Aty et 

al., 2005). 

Savolainen et al. (2011) summarized data and methodological issues in crash-

injury severity analyses from eight perspectives, some of which are like those used in 

crash frequency analyses: under-reported crashes, ordinal nature of crash and injury 
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severity data, fixed parameters, omitted variable bias, small sample size, endogeneity, 

within-crash correlation, and spatial and temporal correlations. Crash severity analysis 

can be performed in a variety of ways depending on the purpose. 

Some researchers investigated how geometric, traffic, and environmental factors 

affect accident severity at specific traffic sites associated with different severity levels 

(e.g., fatal, seriously injured, injured). While these studies typically use each crash as a 

unit, analysis can also be done based on the driver vehicle units involved in crashes to 

assess individual severity. Statistical techniques such as the multinomial logit model, 

ordered logit or probit model, nested logit model, mixed logit models, mixed ordered 

logit model and others have been used to study crash-injury severities. Table 2.2 lists the 

primary models used for crash-injury severity analysis, along with case studies for each 

method. 

Table 2.2 Crash Injury Severity Literature 

Preliminary Modeling Approaches   Past crash injury outcome research  

Binary logit/probit model  Haleem and Abdel-Aty (2010)  

Classification and regression tree  Chang and Wang (2006)  

Multinomial logit/probit model  Islam and Mannering (2006)  

Nested logit model  Savolainen et al. (2011)  

Ordered logit/probit model  Wang and Abdel-Aty (2008a)  

Mixed logit model  Anastasopoulos and Mannering (2012)  

Mixed ordered logit model  Srinivasan (2002)  

Log-linear model  Chen and Jovanis (2000)  

Mixed generalized ordered logit model  Eluru et al. (2008)  

  

2.3 Crash Frequency-Based Analysis for HRGCs 

 

Several studies are available dealing with crashes on HRGCs; Table 2.3 presents 

a brief overview of these on estimating crash prediction at HRGCs, including the 

methodology used, data resources utilized, and explanatory variables considered in the 
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modeling process. Most of the studies have relied on generalized linear modelling where 

Poisson family models were used.  

Table 2.3 Past Relevant Studies on HRGCs Crash Prediction Modelling 

Year  Authors No of 

observations 

Data 

type 

Location Context Method 

used 

Types of explanatory 

variables  

2010 Yan at 

al.  

6244 train–

vehicle 

crashes 

27 years 

of FRA 

HRGCs 

database 

(1980-

2006) 

United 

States 

Using 

hierarchical 

tree-based 

regression 

model to 

predict train–

vehicle 

crashes at 

passive 

highway-rail 

grade 

crossings 

Hierarchical 

tree-based 

regression 

model 

Crossbucks only and 

crossbucks combined 

with stop signs, and 

stop-sign treatments 

2006 Oh et al.  Crash data of 

162 HRGCs 

1998- 

2002 

Korean 

national 

railroad 

accident 

database 

South 

Korea 

Accident 

prediction 

model for 

railway-

highway 

interfaces 

Poisson 

model, 

gamma 

model and 

zero-inflated 

Poisson 

model 

Traffic volume, average 

daily train volumes, the 

proximity of crossings to 

commercial areas, time 

duration between the 

activation of warning 

signals and gates, and 

the distance of the train 

detector from crossings 

2006 Nam and 

Lee 

100 

highway–rail 

grade 

crossings 

Korean 

national 

railroad 

accident 

database 

South 

Korea 

Accident 

frequency 

model using 

zero 

probability 

process 

Zero-

inflated 

models 

Roadway characteristics, 

guardrails, number of 

tracks, control device 

indicator, warning time 

2020 Lu et al.  Past 19 years 

crashes on 

5,713 

HRGCS 

FRA 

HRGCs 

safety and 

inventory 

data 

North 

Dakota, 

United 

States 

A gradient 

boosting crash 

prediction 

approach for 

highway-rail 

grade crossing 

crash analysis 

Gradient 

boosting 

(GB) model 

Traffic exposure factors: 

highway traffic volume, 

railway traffic volume, 

and train travel speed 

2016 Lu and 

Tolliver 

344 HRGCS 

data from 

1996- 2014 

FRA 

HRGCs 

safety and 

inventory 

data 

North 

Dakota, 

United 

States 

Accident 

prediction 

model for 

public 

highway-rail 

grade 

crossings 

Conway–

maxwell–

Poisson 

model 

Bernoulli 

model 

The hurdle 

poison 

model 

Warning devices, 

highway pavement 

condition, appearance of 

pavement markings, 

appearance of 

interconnection/pre-

emption, smallest 

crossing angle, 

appearance of pullout 

lane, functional 

classifications of 

highway, train traffic 

density, highway user 

types, weather 

conditions, track 

conditions, highway 

traffic density, 
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maximum train speed, 

location 

2019 Zheng et 

al.  

Past 19 years 

data on 354 

crashes on 

5,713 

HRGCs 

FRA 

HRGCs 

safety and 

inventory 

data 

North 

Dakota, 

United 

States 

Predicting 

highway–rail 

grade crossing 

collision risk 

by neural 

network 

systems 

Neural 

network 

(NN) model 

AADT, presence of 

flashing lights, highway 

stop signs, presence of 

cross buck   

2020 Keramati 

et al.  

3,310 

Crossings, 

including 475 

crash records 

FRA 

HRGCs 

safety and 

inventory 

data 

North 

Dakota, 

United 

States 

A 

simultaneous 

safety analysis 

of crash 

frequency and 

severity for 

highway-rail 

grade 

crossings: the 

competing 

risks method 

Competing 

risks method 

Crash information, type 

of train service, train 

detection, availability of 

commercial power, 

distance to nearby 

roadway intersection 

2020 Brod et 

al.  

Data from 

9,870 at 

grade 

crossings 

FRA 

HRGCs 

safety and 

inventory 

data 

United 

States 

New model 

for highway-

rail grade 

crossing 

accident 

prediction and 

severity 

Zero-

inflated 

negative 

binomial 

model 

Exposure, AADT, 

maximum timetable 

speed, total trains, type 

of surface, warning 

lights and gates 

 

 

2.4  Crash Injury Severity-Based Analysis for HRGCs 

 

 Understanding the significant factors that influence crash injury severity at 

public HRGCs is critical for developing countermeasures to reduce deaths and injuries at 

these locations as part of the MAP-21 mission. Investigation of crash injury severity risk 

factors at HRGCs is more crucial compared to traditional roadways due to the additional 

complex interaction between highway users and the HRGCs environment. Table 2.4 

presents salient studies on HRGCs crash severity analysis.  
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Table 2.4 Past Relevant Studies on Injury Severity Analysis at HRGCs 

Year Authors No of 

Observations 

Data Type Location Context Method Used Explanatory 

Variables  

2012 Eluru et 

al. 

14,532 

observations 

HRGCs 

collision 

data   from 

1997 to 

2006 

United 

States 

A latent class 

modeling 

approach for 

identifying 

vehicle driver 

injury severity 

factors at 

highway-

railway 

crossings 

Latent 

segmentation 

based ordered 

logit model 

Driver age, time 

of the accident, 

presence of snow 

and/or rain, 

vehicle role in the 

crash and 

motorist action 

prior to the crash 

2015 Haleem 

and Gan  

5,528 public 

HRGCs 

2009 

through 

2013 FRA 

data on 

HRGCs 

United 

States 

Contributing 

factors of crash 

injury severity 

at public 

highway-

railroad grade 

crossings in the 

U.S. 

Mixed logit 

model 

Female highway 

users, young and 

middle-aged 

drivers, non-

passing of 

standing vehicles, 

presence of 

warning bells 

2015 Fan et 

al. 

7,414 crashes 

at public 

HRGCs 

2005 to 

2012 FRA 

data on 

HRGCs 

United 

States 

Analyzing 

severity of 

vehicle crashes 

at 

Highway-Rail 

Grade 

Crossings with 

multinomial 

logit modeling 

Multinomial 

logit model 

Truck-trailer 

vehicles in snow 

and foggy 

weather 

conditions, 

development area 

types (residential, 

commercial, 

industrial, and 

institutional), and 

higher daily 

traffic volumes 

2013 Hao and 

Daniel 

15,881 

highway–rail 

grade crossing 

crashes 

2002 and 

2011 FRA 

data on 

HRGCs 

United 

States 

Severity of 

injuries to 

motor vehicle 

drivers at 

highway–rail 

grade crossings 

in the United 

States 

Probit model  Peak hour, 

weather, 

visibility, vehicle 

type, vehicle 

speed, annual 

average daily 

traffic, train 

speed, driver age 

and gender, area 

type, and type of 

highway 

pavement 

2010 Hu et al. 410 HRGCs 

crashes  

2001 to 

2005 Public 

rail crossing 

data 

Taiwan Investigation of 

key factors for 

accident 

severity at 

railroad grade 

crossings by 

using a logit 

model 

Logit model Number of daily 

trains, trains 

speed, highway 

features, crossing 

features, and 

traffic controls  

2019 Zhao et 

al.  

1,409 train-

pedestrian 

crashes 

2007 to 

2016 

pedestrian 

crashes at 

HRGCs  

United 

States 

A clustering 

approach to 

injury severity 

in pedestrian-

train crashes at 

highway-rail 

grade crossings 

Latent class 

clustering 

(LCC) and 

Binary logit 

models 

Absence of 

flashing lights, 

advance 

warnings, rural 

areas, lower 

visibility 

conditions, and 

older pedestrians 
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2018 Zhao 

and 

Khattak 

303 crashes at 

or near 

HRGCs 

2002 to 

2013 data 

on reported 

motor 

vehicle 

crashes at 

or near 

HRGCs. 

Nebraska, 

United 

States 

Injury severity 

in crashes 

reported in 

proximity of 

rail crossings: 

The role of 

driver 

inattention 

Random 

parameters 

binary logit 

regression 

model 

Seatbelt usage, 

presence of 

passengers, 

driver’s age, 

gender, weather, 

train involvement, 

highway speed 

limit, road surface 

condition, and 

lighting condition 

 

2.5 2020 Accident Prediction and Severity Model (APS) by FRA  

State agencies have also contributed to crash prediction research at HRGCs. Since 

the late 1980s, the United States Department of Transportation’s Accident Prediction and 

Severity (APS) model has been utilized by federal, state, and municipal governments to 

analyze the likelihood of crashes at highway-rail grade crossings. The FRA Office of 

Research and Development was informed by state and local government agencies that the 

old APS gives similar outcomes for most crossings in their jurisdictions, making it 

impossible to distinguish among hazardous HRGCs. Most crossings with no incidents in 

the previous 5 years, as well as similar-site specific factors (such traffic volumes and 

warning systems), account for the low variance among APS-generated ratings. There was 

a need to address these difficulties by new consensus methods of analysis.  

In addition, the old APS model had three independent accident prediction models, 

one for each of the three principal types of grade crossing warning devices: passive 

(signage only), flashing lights, and gates. According to Brod et al. (2020), there’s no 

compelling need to break crash prediction into three different models when the warning 

device type might be treated as a grade crossing characteristic in a single model for all 

crossings. Furthermore, the results from the various models may be incongruent. For 

example, the APS predicts a higher risk for crossings with the identical features but for a 

more protective warning device for some combinations of grade crossing characteristics. 
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It’s simple to see how a grade crossing risk analysis in a corridor or region could produce 

extremely dubious assessments of relative risk between similar crossings with different 

warning device types (Brod et al., 2020).  

Another shortcoming in the APS model was that it didn’t provide a way to see if 

risk measures at different crossings differed statistically. For instance, consider two 

crossings with annual accident rates of 0.21 and 0.23, respectively. There is no factual 

basis for treating two crossings differently if the difference in estimated risk is not 

statistically significant. These were compelling reasons to establish a new grade crossing 

safety model, an alternative to the APS, is to effect evidence-based safety management of 

grade crossings. As a result, the FRA funded research into the development of a new 

model that considered current consensus analysis methods and data patterns. The new 

model also attempted to address several weaknesses in the old APS model, providing 

analysts with a more dependable tool (Brod et al., 2020).  

Below is a functioning version of the two-part 2020 accident prediction model. 

The first part is a count model, and the second part is a zero inflated model. Before 

considering the possibility of excess zeroes, the count model is for predicted crashes. The 

zero-inflation model is used to calculate the likelihood of an inflated zero. (An “inflated 

zero” is a zero-crash count that does not result from the characteristics of a grade 

crossing; rather, it is zero because the crossing accident risk is effectively zero.) The total 

number of trains is the explanatory variable for the zero-inflated model; that is, the fewer 

trains at a grade crossing, the greater the probability of an excess zero. 

 

𝑁𝑐𝑜𝑢𝑛𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑒[𝛽0+𝛽1∗𝐼𝐸𝑥𝑝𝑜+𝛽2∗𝐷2+𝛽3∗𝐷3+𝛽4∗𝑅𝑢𝑟𝑈𝑟𝑏+𝛽5∗𝑋𝑠𝑢𝑟𝑓𝐼𝐷2𝑠+𝛽6∗𝐼𝐴𝐴𝐷𝑇+𝛽7∗𝐼𝑀𝑎𝑥𝑇𝑛𝑆𝑝𝑒𝑒𝑑]         eq (1) 
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                                                                𝑃𝐼𝑛𝑓𝑙𝑎𝑡𝑒𝑑𝑍𝑒𝑟𝑜 =
𝑧

1+𝑧
                                                                    eq (2)  

 

                                                                 𝑧 =  𝑒[𝛾0+𝛾1∗𝐼𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑖𝑛𝑠]                                                          eq (3)  

 

                                 𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  𝑁 𝐶𝑜𝑢𝑛𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∗ (1 − 𝑃𝐼𝑛𝑓𝑙𝑎𝑡𝑒𝑑𝑍𝑒𝑟𝑜)                                               eq (4) 

 

Where 𝑁 𝐶𝑜𝑢𝑛𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 are predicted accidents of count model (data for left-hand 

side of regression are counts of accidents at crossings in 5-year period, 𝑃𝐼𝑛𝑓𝑙𝑎𝑡𝑒𝑑𝑍𝑒𝑟𝑜 is 

the probability that the grade crossing is an “excess zero”, 𝑁 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  are predicted 

accidents after accounting for excess zeroes, 𝐼𝐸𝑥𝑝𝑜 is the exposure, equal to average 

annual daily traffic times daily trains, 𝐷2 and 𝐷3 show indicator variable for warning 

device type lights and gates, 𝑅𝑢𝑟𝑈𝑟𝑏 shows rural or urban classification of road leading 

to HRGCs, 𝑋𝑠𝑢𝑟𝑓𝐼𝐷2𝑠 shows type of surface used (and can be timber, asphalt concrete, 

rubber and there combination), 𝐼𝑀𝑎𝑥𝑇𝑛𝑆𝑝𝑒𝑒𝑑 indicate maximum timetable speed 

(integer value between 0 and 99), 𝐼𝐴𝐴𝐷𝑇 shows average annual daily traffic, and 

𝐼𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑖𝑛𝑠 show total number of daily trains.  
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Following are the estimated coefficients (Table 4.1 in Brod et al., 2020): 

 

 

 

The FRA also developed a crash injury severity model that estimated the 

probabilities of three injury types: fatal, injury, or PDO. These estimates’ explanatory 

variables are grade crossing characteristics. As a result, the study attempted to model 

three variables: 

Probabilities to estimate – Fatal 

P( acctype =  fatal ∣ 𝐴)                                                                              eq (5) 

Probabilities to estimate - Injury 

P( acctype =  injury ∣ 𝐴)                 eq (6) 

Probabilities to estimate-PDO  

P( acctype = 𝑃𝐷𝑂 ∣ 𝐴)                  eq (7) 

 

keeping in mind that severity probabilities Sum to 1 
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P( fatal ∣ 𝐴) + P( injury ∣ 𝐴) + P( 𝑃𝐷𝑂 ∣ 𝐴) = 1                                                 eq (8) 

An ordered logit model was estimated to estimate crash injury severity of HRGCs 

crashes.  

Following are the estimated coefficients according (Table 5.1 Brod et al., 2020): 

 

where, lMaxTtSpdSq is a variable based on the square of maximum timetable 

speed (mtts) at a grade crossing, lThru is the number of daily through trains at the 

crossing, lSwitch is the number of daily switch trains at the crossing, and 𝑙 Aadt is the 

average annual daily highway traffic at the crossing. These variables were transformed by 

using the equation:  

 

𝐿(𝑋) = log [1 +
𝑋(𝑋‾−1)

𝑋
]         eq (9) 
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Where 𝑋‾  is the mean value of the variable 𝑋. The transformation achieves two 

objectives. The transformed variable is calculable at 0, and the value of the transformed 

variable is equal to the log of the untransformed variable at its mean value. 

 Accident Severity Forecast Formulas 

𝑍𝑖 = ∑  6
𝑘=1  𝛽𝑘𝑋𝑘𝑖 =  𝛽1 ⋅ 𝑙 MaxTtSpdSq 𝑞𝑖 +  𝛽2 ⋅ 𝑙 Thru 𝑖 + 𝛽3 ⋅  lSwitch 𝑖

+𝛽4 ⋅  lAadt 𝑖 + 𝛽5 ⋅  RuralUrban 𝑖 + 𝛽6 ⋅  D 𝑖                                 eq (10)
  

𝑃(𝑌𝑖 = 𝑃𝐷𝑂) =
1

1+exp (𝑍𝑖−𝜅1)
       eq (11) 

𝑃(𝑌𝑖 =  Injury ) =
1

1+exp (𝑍𝑖−𝜅2)
−

1

1+exp (𝑍𝑖−𝜅1)
    eq (12) 

𝑃(𝑌𝑖 =  Fatal ) = 1 −
1

1+exp (𝑍𝑖−𝜅2)
      eq (13) 

 Where, the subscript 𝑖 indicates a grade crossing, 𝑌𝑖 is the variable indicating 

accident type (fatal, injury or PDO). And 𝜅1 is a coefficient of the threshold separating 

PDO from injury accident, and 𝜅2 is a coefficient of the threshold separating injury from 

fatal accident. 

2.6 Gaps in the Literature 

There have been studies where prediction models have been used based on crash 

and inventory data from different surface transportation modes. But the credibility of 

these models is questionable because there is a higher likelihood of errors in the dataset 

that has been used to estimate those models. For rail-crossings, much of the associated 

research relied on data from the FRA’s public highway-rail grade crossings database, 
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ignoring the fact that the data became erroneous over time due to not being updated on a 

regular basis. This problem may lead to inaccurate crash forecasts and injury severity 

estimation at HRGCs, which are critical for railroad agencies’ resource allocation. This 

issue necessitated the development of a study that can use verified and up-to-date 

inventory and crash data to estimate predictors of crash frequency and severity at 

HRGCs, allowing for a more comprehensive understanding of crash hazards and better 

policy decisions on highway-rail grade crossings. 
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CHAPTER 3 RESEARCH DATA 

 

 

  This chapter discusses in detail the process of data collection, data filtration, data 

assessment and analytics.  

 

3.1 Data Collection 

 

The present study has utilized three datasets: (a) the FRA crash database on 

HRGCs, (b) the FRA inventory database on HRGCs, and (c) the field-validated inventory 

database on HRGCs. Crash history and inventory records of 560 HRGCs across nine 

counties in Nebraska were extracted from the publicly available FRA website for the 

analysis. Furthermore, inventory data of these 560 HRGCs were field validated for 

comparative analysis.  

 

3.1.1 Data Description of Crash Data 

  

 The FRA collects and analyzes data on rail crossing crashes. The annual 

crash data for HRGCs can be downloaded from the FRA safety data website. Following 

each grade crossing crash, railroads submit Form 6180.57 to the FRA, which contains 

crash information on HRGCs. Each crash is represented as a single row in Form 6180.57 

and data is downloaded as a single table (in Excel or Access formats). Crash data from 

the five-year period between 2016 and 2020 were examined for the analysis.  
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The crash database includes a wide range of useful information, such as the type 

of crossing, location of the crash, cause and outcome of each crash, the presence of safety 

devices, crash data summaries, vehicle and train information, injured occupant 

information, environmental and weather conditions at the time of the crash, hazmat 

involvement, time of the crash, visibility and temperature, driver condition, lightning  

conditions of the crossing, reporting railroad holding company, number of people on 

train, total fatalities and injuries etc. The available crash/accident data form and data 

fields are presented in Appendix B.  

 

3.1.2 Data Description of Inventory Data 

 

The Federal-Aid Policy Guide (FAPG 924.9(a)(1)) mandates that each state must 

maintain a system for collecting and preserving records of crash, traffic, and highway 

data, including the characteristics of both highway and train traffic at railway-highway 

grade crossings (U.S. Department of Transportation, 1991). The National Highway-Rail 

Crossing Inventory Reporting Requirements also require states and railroads to exchange 

information and promptly update crossing data records as changes occur, to ensure the 

crossing inventory serves as an effective database. Consequently, the FRA records 

information from each state and maintains a comprehensive database of HRGCs across 

the United States. 

Furthermore, the data recording of inventory features of HRGCs is governed by 

the “FRA Instructions for Electronic Submission of U.S. DOT Crossing Inventory Data, 

Grade Crossing Inventory System (GCIS), v2.9.0.0, Released: 7/2/2019.” Railroads, 

transit authorities, and States are responsible for electronically submitting updates for 
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grade crossing data through FRA Form 6180.71. Each grade crossing in the inventory is 

represented by its own row in the data, reflecting the latest information provided by the 

submitting agency. This inventory recordkeeping encompasses data on the location, 

design, functional classification, type of land use, quiet zones, channelization 

configuration, posted speed limits and other important safety features of each crossing. It 

also includes information on the ownership of the crossing, the number of tracks, and the 

average daily train and vehicle traffic.  

The FRA estimates that there are about 250,000 public and private highway-rail 

grade crossings in the United States (FRA, 2022). There are approximately 136,000 of 

these HRGCs, that are thought to be active, with at least one train passing through on a 

daily average. Approximately 85% of these active crossings have active warning 

mechanisms, like flashing lights and gates. The most common type of crossing is the 

“warning-device-only” crossing, which has active warning devices but no physical 

barrier to block vehicles. These crossings make up about 53% of the total inventory. The 

second most common type is the “passive” crossing, which has no active warning devices 

and relies on signage and pavement markings to alert drivers. These crossings make up 

about 25% of the total inventory. The remaining 22% of crossings are protected by a 

combination of active warning devices and physical barriers (FRA, 2019). 

Local coordinators typically submit updates to the HRGCs inventory data using 

FRA-approved guidelines for recording various field names and value assignments. 

Accordingly, updated values for the designated field names must be submitted by 

authorized users through field in-person data collection. The field names, field 

descriptions, and values used in this study are listed in Appendix A, based on the FRA 
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HRGCs inventory database. However, reporting updates for the inventory database does 

not always require verification from other agencies. As a result, some fields, like traffic 

and train volumes, and timetable speed are not routinely updated, potentially resulting in 

inaccurate or out-of-date data. This raises concerns for states and railroad companies and 

affects the reliability of crash prediction models based on the database. Additionally, 

FRA offers geospatial information to the public on rail networks, including the location 

of HRGCs and Amtrak stations, identified by latitude and longitude in the database 

(FRA, 2022; Khattak et al., 2020).  

In this research, inventory data and crash data were integrated to understand 

effects of data inaccuracies on crash prediction and severity models. For this purpose, 

various important fields are integrated in the data set such as crossing ID, State, Country, 

nearest city name, functional classification of roads, rural or urban nature of the area 

where HRGCs are located etc. The integrated data also consisted of other important 

aspects from HRGCs inventory data, including details on train traffic frequency at rail 

crossings, such as the number of daylight and nighttime thru trains, transit trains, and 

passenger trains, as well as the number of main, siding, yard, and transit tracks. The data 

also included important inventory characteristics related to crossing safety, such as the 

presence of signs and signals, the number of crossbuck assemblies, stop and yield signs, 

bells, flashing lights, channelization devices, and gate configurations. Additionally, the 

data encompassed information on the crossing highway, including the number of traffic 

lanes, pavement type, highway functional classification, street name, and posted speed 

limit, etc. 
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3.1.3 Data Description of Field-Validated Inventory Data 

 

The objective of the field-validation was to highlight inaccuracies in the Federal 

Rail Administration's inventory data and to assess the extent of errors present. This study 

involved the manual inspection and verification of 560 HRGCs in Nebraska as part of the 

2020 rail-crossing safety project by the Nebraska Department of Transportation (Khattak 

et al., 2020). A substantial number of database variables, including roadway speed limit, 

pavement type, warning devices at crossings, signs, signals, and land use, were 

thoroughly examined and confirmed.  

The study considered public, at-grade, and operational grade crossing locations. A 

manual inspection of public rail crossings in Lancaster County was conducted, and field 

conditions were compared to the database, leading to correction of any inaccuracies and 

addition of missing information as found. Based on elements like the railroad network, 

the county’s urban/rural characteristics, proximity to the University of Nebraska-Lincoln, 

and the availability of project funding, this validation process was later expanded to eight 

additional counties, including Cass, Douglas, Gage, Jefferson, Otoe, Saline, Sarpy, and 

Saunders.  

3.2 Data Assessment  

This section covers in detail the process of verification of inventory information 

for 560 HRGCs in Nebraska. Additionally, it discusses the identification of missing 

values and logical errors in the inventory data. Data validation checks are performed, and 

missing values are highlighted through data visualization techniques such as heat maps, 

Upset plots, density plots and MCAR test. Finally, the section concludes with a 
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descriptive analysis of the field-validated data for understanding and summarizing the 

main characteristics of the dataset.    

 

3.2.1 Data Filtration 

In order to comprehend the geographic distribution of HRGCs in Nebraska, a 

filter was applied to the inventory database to select only the HRGCs that were 

operational, public, and at-grade crossings throughout the state. This helped visualize the 

pattern of HRGCs land use and was essential in formulating a data acquisition plan. The 

result of this filtering process revealed 2,853 public, operational, and at-grade crossings 

in Nebraska, as illustrated in Figure 3.1. 

 

Figure 3.1 Locations of FRA-provided all Public, At-grade, and Operational HRGCs in 

Nebraska 
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Nine counties were chosen for the study, as previously mentioned, based on 

factors such as population, railroad network considerations, a county's urban/rural 

makeup, accessibility, and the project's financial resources. The locations of 560 public, 

at-grade, and operational HRGCs in a subset of nine Nebraska counties (Lancaster, Cass, 

Douglas, Gage, Jefferson, Otoe, Saline, Sarpy, and Saunders) are depicted on a map in 

Figure 3.2.  

 

 

Figure 3.2 Locations of FRA-provided Public, At-grade, and operational HRGCs in 

selected nine counties in Nebraska 
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Figure 3.3 FRA HRGCs Data Filtration Process for a Sample County (Cass) 

 

The data filtration process and inventory database variables used for the county of 

“CASS” are depicted in Figure 3.3. Out of the 58 rail crossings present in the FRA 

HRGCs database, only 55 HRGCs were selected after exclusion of private, elevated 

(grade-separated), and closed crossings. Similar data filtration was conducted for the 

remaining eight counties as well.  
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Figure 3.4 demonstrated how HRGCs were chosen for field validation through a 

filtering procedure by screening rail crossings that were operational, private, and public. 

In order to better comprehend a data validation case, HRGCs from Lancaster County 

were considered; there were initially 565 counties in the county, of which 204 were 

operational, 495 were at-grade, and 418 were public. 112 crossings were collected with 

all three attributes present, so a total of 112 crossings were field validated. Of these 112 

crossings, field validation revealed that 7 crossings inventory-data in the FRA dataset had 

missing information or data errors. 

 

 

Figure 3.4 Results for Filtration Process for Lancaster County 
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For every HRGCs visited, a comprehensive examination of 53 database variables 

was conducted and digital images were acquired. Any inaccuracies in the database were 

rectified in accordance with field conditions, and missing values were added if those 

attributes were found on the field.  The disparity between the recorded information in the 

FRA HRGCs inventory database and the actual conditions at crossing 064112B is vividly 

exemplified in Figure 3.5, which highlights a discrepancy in the presence of yield signs, 

pavement type, approach surface type, and pavement markings. Additionally, crossing 

storage distances were validated. For example, Figure 3.6 illustrates how the storage 

distance in the FRA data is measured as 64 feet, but field validation changed the value to 

40 feet. The safety of HRGCs has been strongly correlated with storage distance 

(Keramati et al., 2020). 

Figure 3.5 Data Correction Example, Crossing 064112B (Khattak et al., 2020) 
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Figure 3.6 Data Correction Example, Crossing 072946C 
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Figure 3.7 Data Correction Example, Crossing 064130Y 

 

 

The illustration in Figure 3.7 is about data validation for a specific location 

(crossing 064130Y) where a discrepancy was found between the actual number of 

flashing light pairs (4) and the number recorded in the Federal Railroad Administration's 

(FRA) inventory data set (2). The validation involved a field check and revealed the 

difference, indicating that the FRA inventory data set was incorrect. 

 

 

 

 

 

 



60 

 

 

  

 

Furthermore, Figure 3.8 depicts a case example of an abandoned crossing 

(identified by ID 083524P) that remains listed in the Federal Railroad Administration's 

High Rail Grade Crossing inventory database. 

Furthermore, to fulfill the objectives of the study, crash data from the past 5 years 

were extracted from the FRA crash database. The fields (discussed in Table 1.1) 

available in the crash database consist of a series of categories, such as crash information, 

crossing information, train information, environmental factors, highway characteristics, 

etc. For instance, the crash information includes time of crash, AM or PM, injury severity 

outcome, number of injuries or fatalities of roadway users, number of injuries or fatalities 

of railroad employees, number of injuries or fatalities of train passengers, etc. 

Environmental factors at the time of crash consist of temperature, weather conditions, 

lighting conditions, etc. Train information includes number of cars, number of 

locomotives, type of train, train speed, etc. Additionally, other important factors such as 

release of hazardous materials are also included.  

Figure 3.8 An Example of an Abandoned Crossing 083524P (Khattak et al., 2020) 
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To fulfill the objectives of the study, crash data from the past 5 years were also 

extracted from the FRA crash database. The available fields in the crash database, 

outlined in Table 1.1 (Chapter 1), encompass various categories such as crash 

information, crossing information, train information, environmental factors, highway 

characteristics, and more. For example, the crash information category includes details 

such as the time of the crash, whether it occurred in the AM or PM, the severity of 

injuries, and the number of injuries or fatalities for roadway users, railroad employees, 

and train passengers. The environmental factors at the time of the crash, such as 

temperature and weather conditions, as well as lighting conditions, were also taken into 

consideration. Train information, such as the number of cars, locomotives, type of train, 

and train speed, were also incorporated in the integrated dataset.  

The crash data on our selected 560 HRGCs revealed that for a 5-year period 

(2016-2020), a total of 34 crashes were recorded on 28 HRGCs. However, for all public 

and open crossings in Nebraska, 171 crashes were recorded. This illustrates that our 

sample HRGCs accounted for approximately 17% of the total crashes recorded in 

Nebraska in the past 5 years.  

 

3.2.2 Identification of Logical Errors and Missing Values 

Identifying inaccuracies in HRGCs inventory data is critical for the objective of 

this study. Inaccuracies in data can take the form of missing values, transcription errors, 

or errors caused by illogical values in the data. Although 560 crossings were chosen for 

field validation due to their proximity to the University of Nebraska-Lincoln, the 

availability of funds in the project, and other factors described above, an initial in-office 

data validation of the complete set of public and operational crossings in Nebraska was 
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performed to determine the magnitude of logical errors in the overall dataset. Certain 

rules were established for initial validation purposes, and if a variable was discovered to 

contradict the rule, that specific crossing from the inventory dataset would fail the 

validation test. Crossings that showed no-failing based on validation rules, on the other 

hand, are considered “Passed” crossings. Figure 3.9 and Table 3.1 highlight key findings 

from the initial data validation of the FRA inventory dataset, which used validation rules 

to evaluate logical errors in the data.  

 

 

Figure 3.9 Initial Data-Validation to Check for Logical Errors in Inventory Data 

(N=2853) 

 

 

Initial data validation of the entire Nebraska operational and public crossings 

shown in Figure 3.9 revealed that the functional classification variables in the data 

contained the most logical errors. According to the "Functional Classification 

(Development)" variable, 53 crossings were considered to be in rural areas according to 
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the FRA data, when they were actually in cities with respect to "Nearest" variable. In the 

same manner, 11 crossings were indicated to be illuminated in inventory data which were 

not illuminated in case of crashes (in crash data). This step demonstrated that most 

crossings have logical values in the data and passed the initial data-validation.  

Table 3.1 Validation Rules for Testing for Logical Errors in Inventory Data 

Variables                         Validation Rule 

Validation 

Warnings 

AADT 

AADT=0 For crashes where reportedly 

vehicles were involved  

0 

Day & Night Thru 

Trains 

DayThru=0 or NightThru=0 but a crash was 

reported 

2 

MaxTtSpd 

MAXTtsp (Maximum trains speed) > 

(Recorded train speed during crash +10 mph) 

3 

Xbuck Crossbuck=6 for a one lane highway  0 

Gates Number of Gates=0, with Gate Configuration  0 

TraficLn Traffic Lanes=0 with AADT>0 1 

Illuminated 

Not illuminated crossings where crash data 

shows crossing illumination 

11 

School-Bus Count 

School bus Count >0, for crashes involving 

"School Buses" in "Highway User" Category 

0 

Functional 

Classification 

(Development) 

Functional Classification "Rural" for "In City" 

category in "Nearest" Variable 
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It was also determined that missing values account for most errors (Table 3.2) in 

inventory data. Furthermore, the missing values are analyzed additionally to discover if 

trends may be found in the missing values of the FRA inventory dataset. This would aid 

in determining whether missing data in important candidate variables for crash prediction 

models were random or followed a trend. The analysis of missing data can be used to 

make suggestions on which variables should be targeted to ensure prevention of missing 

values. Data on all public crossings in Nebraska were kept for analysis before examining 

560 sample HRGCs to assess the nature and degree of missing values. Following the 
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same process as the initial in-office data-validation, the complete inventory data of 

Nebraska public crossings were checked for missing values before analyzing the missing 

values in the selected inventory data of 560 HRGCs.  

 

Table 3.2 Missing Values in Candidate Variables in Nebraska HRGCs Inventory Data 

(N=2853) 

Variable  Number of Missing Values Variable Number of 

Missing 

Values 

AADT 18 Cross Bucks 5 

Percentage of Trucks 23 Max Train 

Speed 

81 

Highway Speed 194 Total Trains 326 

Crossing Illuminated 1287 E-Monitor 

Device 

1706 

Traffic Lanes 21 Health Monitor 1782 

Bells 40 Pavement 

Marking 

16 

Gate Config 238 Monitoring 

Device 

2312 

Gates 9 Crossing Surface 

IDs 

16 

 

The heat map in Figure 3.10 shows that the highest percentage of missing values 

are in E-monitoring device, Health-monitoring (health state awareness monitoring of the 

entire wheel-track system), LED indicator, illuminated crossings, monitoring device 

indicator and highway distance from crossings. However total trains have 11.43% of 

missing values, number of bells have 1.4 % of missing values. The least percentage of 

missing values were observed in AADT, maximum train speed, gates, and total daily 

trains. Following the analysis of the entire Nebraska crossing dataset, the missing values 

for sample 560 HRGCs were investigated further. In addition to heatmaps, various plots 

were created to display different aspects of missing values in the data. Additionally, 
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variables that were either candidate variables or had been previously used for crash and 

severity predictions were evaluated.  

 



66 

 

6
6
 

 

 

Figure 3.10 Heat Map of Missing Values in Candidate Variables of FRA HRGCs Inventory Data for Nebraska (N=2853) 
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Figure 3.11 Heat Map of Missing Values in Candidate Variables of FRA HRGCs Inventory (N=560) 
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Individual heat map of 560 HRGCs inventory data showed that important 

candidate variables such as AADT, maximum timetable speed, warning device type light, 

count of flashing lights, gate arms, bells, surface type of main track, cross bucks and 

storage distance all had missing values.  The highest percentage of missing values was 

observed in storage distance, bells, and crossing surface type of main track (Figure 3.11) 

 

 

 

 

Another depiction of missing values in crash and inventory data for 560 HRGCs 

in Figure 3.12 showed that the highest percentage of missing values were observed in 

storage distance, crossing surface type for main track and crossbuck assemblies. It is seen 

in the data that though some variables didn’t have many missing values such as AADT, 

highway speed, etc., but they have rather impractical values that are deemed incorrect. 

For example, observing an AADT value of 1, 2, or 3 in inventory data appears 

Figure 3.12 Number of Missing Values for each variable (N=560) 
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impractical. Furthermore, Up-Set plot; an alternative to Venn diagram was used to 

determine whether missing values were consistent among variables of specific rows in 

the dataset. The Up-Set plot in Figure 3.13 depicts that there were no consistencies in the 

missing values among variables of certain rows. As for missing values in “storage 

distance” indicator, there was no intersection with other sets of missing values for 150 

rows(cases). However, the plot showed that in only 4 cases in dataset, there was an 

intersection in the missing values of identified variables.  

 

 

Figure 3.13 UpSet Plot for Missing Values of Variables with the Highest Percentage of 

Missing Values (N=560) 

 

Furthermore, Figure 3.14 illustrates density plot for missing values in number of 

bells, Storage distance and crossbuck assemblies. The figure shows that for most cases of 

missing values in three variables, there were no reported crashes (2016-2020) at HRGCs.  
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Figure 3.14 Density Plots for Missing Values for Number of Bells, Crossbuck 

Assemblies, and Storage Distance 
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The way that data is missing can significantly affect the inferences that can be 

made about the data and the methods that can be used to analyze it, so it is crucial to 

determine whether missing values in data occur in a predictable pattern or randomly. If 

missing values are discovered to be missing at random, it means that neither the missing 

value itself nor any other variable, observed or unobserved, is related to the probability of 

a value being missing. Methods like “listwise deletion” or “mean imputation” can be 

applied in this situation to handle the missing data without introducing bias (Kaiser, 

2014).  

On the other hand, if missing values are found to be non-random, it means that the 

probability of a value being missing is related to the missing value or some other 

variable. This is known as “non-ignorable missingness”. In this case, more advanced 

methods such as “multiple imputation” or “inverse probability weighting” may be needed 

to manage the missing data without introducing bias. Checking if missing data is missing 

at random or not helps to determine the appropriate methods to oversee missing data and 

avoid potential bias in the analysis and conclusion (Kaiser, 2014). 

Based on Little’s missing completely at random (MCAR) test (Little, 1988), the 

missing data in important candidate variables were evaluated for randomness. The test’s 

null hypothesis was that the data with missing values were missing completely at random 

and the test statistic was a chi-squared value. Based on lower p-value, it was concluded 

that the data was not missing completely at random and followed patterns. The MCAR 

test (Table 3.3) and plots shown previously have helped to justify the need for field 

validation of the HRGCs inventory data to eliminate missing values.  
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Table 3.3 MCAR Test for Missing Values in HRGCs Inventory Data 

Statistic Degree of Freedom (df) P-Value Missing Patterns  

227 97 0.00000 22 

 

The MCAR test performed here also addressed Hypothesis 1, which was initially 

formulated in this research to determine whether the missing values in the FRA inventory 

data were missing at random or following a specific pattern. 

 

3.2.3 Descriptive Statistics of Field-validated Data 

 

A total of 53 inventory-related database variables were checked for each field-

visited HRGCs, and digital pictures of the HRGCs were obtained. Any incorrect values 

in the database were corrected according to field conditions, and missing values were 

added if they were available in the field. Table 3.4 presents a summary of the corrections 

and missing value additions for the nine Nebraska counties from field visits. In 

aggregate, 560 HRGCs were field-investigated and 5 (Approx. 1%) were found to be 

either abandoned or non-operational, or altogether non-existent. This effort resulted in 

2,241 values to be corrected and 1,732 missing values to be added, giving an average of 

7.4% of the database values that were changed at each HRGCs. 
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Table 3.4 Summary of Corrections and Added Missing Values from Field Validation 

County Number of 

Corrected 

Values 

Number of 

Missing Values 

Added 

HRGCs 

Visited 

Abandoned/Non-existent Percent 

Corrected and 

Added Missing 

Values  

Lancaster 376 657 112 0 (Private HRGCs removed) 9.2 

Cass 307 83 56 0 (Private HRGCs removed) 7.1 

Douglas 286 108 67 4 5.9 

Gage 115 347 41 0 (Private HRGCs removed) 11.3 

Jefferson 174 25 45 0 (Private HRGCs removed) 4.3 

Otoe 285 46 77 1 4.2 

Saline 119 37 61 0 (Private HRGCs removed) 4.1 

Sarpy 144 59 25 0 (Private HRGCs removed) 8.1 

Saunders 435 370 76 0 (Private HRGCs removed) 10.6 

Total 2241 1732 560 0 (Private HRGCs removed) 7.4 

 

According to Table 3.5, 74.11% of crossings in our sample HRGCs data had a 

single track. Likewise, two-tracked crossings accounted for 18.93% of total crossings. 

However, there was only one crossing in the data with 6 and 7 total tracks. The table also 

reveals that most HRGCs were in public spaces (60.71%), had two crossbuck assemblies 

(90.71%), had no gates (71.07%), and had two lanes crossing the railway track (91.25%).  
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Table 3.5 Key Features of Field-Validated Inventory Data (N=560) 

Variable Categories  Frequency of Total Tracks Percentage 

 

 

 

Total Tracks 

1 415 74.11% 

2 106 18.93% 

3 27 4.82% 

4 4 0.71% 

5 1 0.18% 

7 1 0.18% 

6 1 0.18% 

Not Operational/Not Accessible  5 0.89% 

 

 

 

Land Use Type 

Open Space 340 60.71% 

Commercial 84 15.00% 

Industrial 70 12.50% 

Residential 58 10.36% 

Institutional 3 0.54% 

Not Operational/Not Accessible  5 0.89% 

 

 

 

Crossbuck 

Assemblies  

No Crossbuck Assemblies  7 1.25% 

1 8 1.43% 

2 508 90.71% 

3 11 1.96% 

4 17 3.04% 

6 2 0.36% 

8 1 0.18% 

 

 

 

Roadway Gate 

Arms 

0 398 71.07% 

2 150 26.79% 

3 1 0.18% 

4 4 0.71% 

5 1 0.18% 

8 1 0.18% 

Not Operational/Not Accessible  5 0.89% 

 

 

Number of 

Lanes 

1 13 2.32% 

2 512 91.42% 

3 6 1.07% 

4 16 2.86% 

5 4 0.71% 

6 2 0.36% 

8 2 0.36% 

Not Operational/Not Accessible  5 0.89% 
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Data analytics of the field validated data also revealed that 75.86% of HRGCs 

were in rural areas however, 24.14% of HRGCs were in urban areas (Figure 3.15). 

Furthermore, functional classification based on road function indicated that majority of 

the crossings were at local access (67.93%). However, major, and minor collectors 

accounted for 19.03% and 4.32% of HRGCs in the field-validate data (Figure 3.16).  
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(Development) 
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Figure 3.17 presents the distribution of the HRGCs by posted speed limits. The 

figure indicates that the highest percentage of HRGCs had posted speed limit of 50 mph 

on the roads intersecting the subject rail crossings. However, 55 mph and 25 mph speed 

limits were posted on roads intersecting 3.24% and 27.93% of the total HRGCs in field-

validate inventory data.  

 

 

Figure 3.18 indicates that majority of the HRGCs had gravel as an approach 

surface type (49.55%) However, brick approach surface type was only in 3 cases of 

HRGCs in the data.  
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Figure 3.19 shows a histogram plot demonstrating the distribution of the studied 

HRGCs by natural logarithmic values of AADT. Based on the figure, it can be observed 

that the maximum and minimum values of AADT are around 39,000 vehicles per day 

and one vehicle per day, respectively. The average AADT for all considering crossings is 

approximately 1352 vehicles per day.  
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Figure 3.19 Distribution of HRGCs by AADT (Natural Logarithm) 
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3.3 Chapter Summary  

  

This chapter presented the data collection and assessment process performed in 

this research. Three datasets were utilized: the FRA crash database on HRGCs, the FRA 

inventory database on HRGCs, and the field-validated inventory database on HRGCs. To 

conduct the analysis, crash history, and inventory records of 560 HRGCs across nine 

counties in Nebraska were extracted from the publicly available FRA website. 

Additionally, the inventory data of these 560 HRGCs were field validated for 

comparative analysis. Furthermore, the chapter discussed in detail the FRA Form 

6180.57, which contained crash information on HRGCs. In addition, the inventory data 

collection process by the FRA was also described in detail, with a discussion on the 

aspects of inventory covered in Form 6180.71. Furthermore, various aspects of field 

validation and manual inspection of HRGCs inventory data were discussed. It is 

noteworthy that for this research, public, at-grade, and operational grade crossing were 

considered. The chapter also explained the process involved in crash and inventory data 

integration to complete the planned tasks of the study. 

After giving insights about data collection and data integration, this chapter 

delved into thorough assessment of data, the process of verification of HRGCs inventory, 

identification of missing information, and data validation checks by using data 

visualization techniques such as heat maps, density and Upset plots etc. The initial data 

validation of the inventory aspect of all public and at-grade crossings in Nebraska 

highlighted several illogical errors. For instance, the functional classification of 53 

HRGCs were reported as “Rural,” but at the same time, they were marked as “In city” in 
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the “Nearest” variable. Density plots for missing values for the number of bells, 

Crossbuck assemblies, and storage distance provided further information on the missing 

details in the inventory dataset. 

Further investigation was conducted to determine whether the missing values in 

the data occurred in a predictable pattern or randomly (Hypothesis 1 of this research). 

The MCAR test showed that the data were not missing at random and followed a set 

pattern. In addition, the descriptive statistics for validated inventory revealed that in the 

dataset, 5 (roughly 1%) HRGCs were found abandoned, non-operational, or altogether 

non-existent. In the field-validation process, a total of 2,241 values were corrected and 

1,732 missing values were added, resulting in an average of 7.4% of the database values 

being changed at each HRGC. Field-validation of the inventory also revealed that 74.11% 

of crossings in the study sample had a single track, 60.71% HRGCs were in public 

spaces, 71.07% had no gates, and 49.55% of the HRGCs had gravel as an approach 

surface type. 

The data description and preliminary data assessment undertaken in this chapter 

have proven to be beneficial, providing a comprehensive understanding of the subject 

data and laying the groundwork for devising effective strategies for crash and severity 

predictions, as well as model estimation based on the data at hand. Through this process, 

important insights into the nature of the data were gained, enabling more informed 

decisions about the appropriate analytical techniques and tools to employ in future 

analyses.  
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CHAPTER 4 PREDICTING CRASH FREQUENCY AND SEVERITY WITH 2020 APS 

MODEL: FIELD-VALIDATED VS FRA INVENTORY DATA  

 

4.1 Background  

Accurate inventory data of highway-rail grade crossings (HRGCs) is critical for 

the correct prediction of crashes and their severity by using the 2020 Federal Railroad 

Administration (FRA) crash prediction model. The model is utilized for resource 

allocation and strategical planning to limit potential causes of crashes at grade crossings. 

The FRA relies on this information to make informed decisions and implement effective 

measures to improve safety at HRGCs. However, if the inventory data are not accurately 

verified to reflect the actual physical attributes of the crossings, the crash and severity 

prediction models will produce incorrect results. 

 

4.2 Criteria for Comparison 

 

In this pursuit, the original FRA HRGCs inventory data and the field-validated 

inventory data (both merged with the FRA HRGCs Accident/Incident database) for the 

560 HRGCs were used to assess the effects of erroneous or missing information on crash 

prediction utilizing the FRA’s 2020 APS model (Equation 1-14).  
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Figure 4.1 Approach for Crash Prediction and Severity Comparison Utilizing the FRA’s 

2020 APS Model 

 

The two sets of crash predictions (expected crashes) and crash severity were then 

statistically evaluated for differences. Figure 4.1 illustrates the approach utilized for 

crash count and severity prediction comparison. 

 

4.3 Results and Interpretation of the Comparison 

 

To fulfill the study’s objectives, crash data were retrieved from the FRA crash database 

for the past five years. Furthermore, FRA data were incorporated into the FRA’s 2020 

crash prediction model and plotting the results. The same process was carried out using 

field validated data. The plots indicated a noticeable difference in crash predictions based 

on the two datasets. 
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Figure 4.2 Expected Crashes Based on 2020 APS Model (FRA Data) 

To better understand the extent of these differences, the percentage differences 

were calculated and plotted. As seen in Figure 4.2-4.3, there is a visible difference 

between expected crash values derived from the two inventory datasets. 
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Figure 4.4 displays the percentage differences between the FRA and Field 

Validated (FV) data crash predictions. It is evident from the data that the range of 

percentage differences varies from 0 to 120%, indicating that the expected crashes could 

be either approximately double or half the actual crash count, highlighting the issue of 

data inaccuracies. These findings reveal a significant discrepancy between the crash 

predictions estimated using FRA and field-validated datasets.  

 

Table 4.1 presents the absolute values of percentage difference between FRA and 

Field-validated expected crashes. It can be observed that, based on the two datasets, the 

majority of HRGCs exhibited expected crashes within a 0-20% percentage difference. 

However, a higher percentage difference in expected crashes was only observed in seven 

HRGCs. 
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Table 4.1 Percentage Difference Between FRA and FV Data Based Expected Crashes 

Percentage Difference in Expected Crashes  Number of HRGCs 

0-20% 390 

20-40% 144 

40-60% 4 

60-80% 2 

80-100 % 8 

100-120 % 7 

Total 555 

 

To determine the normality of both estimated predictions (based on FRA and 

field-validated data), a Q-Q plot was utilized. This plot is a graphical representation that 

compares the quantiles of the expected crashes with the quantiles of a standard normal 

distribution. When the data are normally distributed, the points on the Q-Q plot should 

form a roughly straight line. As depicted in Figure 4.5, the data appear to weakly align 

with a straight line, indicating some normality in the distribution.  

 

 

Figure 4.5 Q-Q plots for checking normality of expected crashes (FRA vs FV) 

 

The Q-Q plots used to visualize the distribution of predicted crashes based on two 

datasets were found to be unclear. Therefore, histograms were developed to better 
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illustrate the distribution of these data. Figure 4.6 provides a clear representation of the 

fact that both datasets do not exhibit a normal distribution.  

 

 

Figure 4.6 Histograms for Expected Crashes (FRA vs FV) 

 

However, the predicted crashes based on FRA data showed a slight inclination 

toward a normal distribution, whereas the field-validated inventory data did not appear to 

be normally distributed. To further analyze the normality of the predicted crashes based 



86 

 

on FRA and field validated data, the Shapiro-Wilk test was utilized. This test provides a 

clear and formal way to determine whether or not the data are normally distributed (Yap 

and Sim, 2011). When conducting a Shapiro-Wilk test, a p-value less than 0.05 indicates 

that the data in at least one of the data columns (expected crashes) is not normally 

distributed. In such cases, a non-parametric statistical test is a good option to compare 

differences between the two datasets, such as the Wilcoxon rank-sum test (also known as 

the Mann-Whitney U test) or the Kruskal-Wallis test (Yap and Sim, 2011). Unlike t-tests 

or ANOVA, these tests do not assume normality in the data and are often used as 

alternatives when normality assumptions are not met.  

 

Table 4.2 Shapiro-Wilk Test Normality Test for Expected Crashes 

Variable  W  P-value 

Original FRA data crash prediction 0.87519 2.2e-16 

Field-validated data crash prediction 0.84692 2.2e-16 

 

The null hypothesis of the Shapiro-Wilk normality test (Table 4.2) was that the 

data were normally distributed. The test output showed the test statistic “W” and the 

corresponding “p-value.” For expected crashes based on two datasets, the “p-value” was 

less than 0.05, indicating convincing evidence against the null hypothesis. This meant 

that the data were unlikely to be normally distributed. The values of the test statistic “W” 

for both columns (expected crashes) were between 0 and 1. The closer “W” was to 1, the 

more normal the data were. Both columns had “W” values less than 1, which suggested 

that the data were not very normal. In summary, the results of the Shapiro-Wilk normality 
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test suggested that expected crashes based on FRA and field-validated inventory data 

were not normally distributed. 

Due to the absence of normality in the predicted crashes, it was determined that a 

non-parametric statistical test would be the most suitable for comparing the differences 

between the two datasets. Accordingly, the Wilcoxon rank-sum test, also known as the 

Mann-Whitney U test, was employed in the study, and the corresponding findings are 

presented in Table 4.3. The Wilcoxon Rank Sum Test is often described as the non-

parametric version of the two-sample t-test. This test addressed Hypothesis 2 of this 

research. 

 

Table 4.3 Wilcoxon Rank Sum Test for Differences in Expected Crashes 

Variables  W P-Value  

Original FRA Vs FV data crash 

predictions 

122640 3.622e-10 

 

 

Alternative hypothesis True location shift is not equal to 0 

 

The results of the test revealed a “p-value” of less than 0.05 and test statistic “W” 

of 122640; saying that there is convincing evidence to suggest that the medians of the 

two distributions differ. The alternative hypothesis, which was stated as "the true location 

shift is not equal to 0," indicates that one population's distribution is shifted either to the 

left or right of the other, thus implying different medians. Since this was a non-parametric 

test, parameters such as the mean were not estimated. Instead, the test was performed 

solely to find evidence that one distribution was shifted to the left or right of the other. 
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Furthermore, inventory and crash data (2016-2020) for 560 HRGCs were utilized, 

revealing that only 28 of the selected grade crossings experienced at least one crash 

during this period, resulting in a total of 34 crashes. To predict the probability of a crash 

resulting in fatalities, injuries, or property damage, the 2020 APS model was employed, 

using Equation 1-14 to calculate accident severity prediction probabilities, and 

Hypothesis 3 of the research was tested.  The observed ordinal variable representing the 

type of crash severity (PDO, injury, or fatality) was utilized as the dependent variable for 

the model. 
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Figure 4.8 Crash Severity Predictions Based on 2020 APS Model (FV Data) 

 

Two datasets were employed to run the model, and the findings indicated that 

erroneous data on HRGCs’ inventory can impact crash severity prediction. Figures 4.7-

4.8 present evidence of the observed disparities in the cumulative probabilities of three 

types of crash severity (i.e., PDO, injury, and fatality) when using the two datasets.  

Additionally, a comparative analysis revealed that while the disparity between 

FRA and field-validated crash severity predictions is not drastic, it is noticeable and 

implies that using incorrect HRGCs inventory datasets can lead to errors in severity 

prediction modeling.  
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Figure 4.9 illustrates percentage differences between crash severity predictions 

based on FRA and field-validated data. 

To investigate if probabilities of PDO, injury and fatal crashes estimated by using 

the FRA and field validated data on 2020 FRA Accident Severity Model were 

statistically significantly different, Wilcoxon Rank Sum Tests were performed which 

indicated statistically significant differences between the probabilities of PDO, injury and 

fatal crashes. This analysis addressed Hypothesis 3 of this research (Table 4.4).  

 

Table 4.4 Wilcoxon Rank Sum Test for Differences in Crash Severity Prediction 

Variables  W P-Value  

Prob. of PDO Crash 623 0.00050 

Prob. of Injury Crash 675.5 0.00231 

Prob. of Fatal Crash 488.5 0.00274 

Alternative hypothesis True location shift is not equal to 0 
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4.4 Chapter Summary 

 

This chapter focused on analyzing how data inaccuracies and missing information 

in inventory data of HRGCs can affect crash frequency and crash severity prediction. For 

this part of the research, two datasets (i.e., FRA unaltered HRGCs inventory data and 

field-validated HRGCs inventory data) were employed on the 2020 Accident Prediction 

and Severity Model (APS). In addition, the two datasets used for the analysis were also 

merged with the FRA HRGCs Accident/Incident database. The two sets of crash 

predictions (expected value of crashes) and crash severity were then statistically 

evaluated for differences. Furthermore, FRA data were incorporated into the FRA’s 2020 

crash prediction model and results were plotted. The same process was carried out using 

field-validated data. The plots indicated a noticeable difference in expected crashes based 

on the two datasets. The analysis showed that there was a significant discrepancy 

between the expected crash values derived from the two inventory datasets. Furthermore, 

the percentage differences between the FRA and Field Validated (FV) data’s expected 

crashes were estimated. From the data it was revealed that the range of percentage 

differences varies from 0 to 120%, indicating that the predicted crash risk could be either 

about double or half the actual crash counts. To understand, if the differences in crash 

predictions were statistically significant, the normality of both estimated predictions 

(based on FRA and field-validated data) were estimated by developing Q-Q plots. Based 

on data visualization, histograms were developed and Shapiro-Wilk test for normality 

was estimated. Furthermore, Wilcoxon rank-sum test was performed which is a non-

parametric statistical test, that statistically compared differences between the two 
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expected crashes. The results of the test revealed robust evidence to suggest that the 

medians of the two distributions of crash predictions differ, implying differences in 

predictions, which addressed Hypothesis 2 of this research.  

Furthermore, crash severity predictions based on the FRA’s 2020 crash and 

severity model were also estimated by using the FRA and field-validated dataset. As, 

2020 APS was based on past 5-year crashes, the study utilized inventory data and crash 

data from 2016 to 2020 for 560 HRGCs, revealing that only 28 of the selected grade 

crossings experienced at least one crash during this period, resulting in a total of 34 

crashes. The findings indicated that erroneous data on HRGCs’ inventory can 

substantially impact crash severity prediction. Additionally, a comparative analysis 

revealed that while the disparity between FRA and field-validated crash severity 

predictions was not drastic, it was noticeable and implied that using incorrect HRGCs 

inventory datasets can lead to errors in severity prediction modeling. For crash severity 

predictions, Wilcoxon Rank Sum Tests were performed that revealed statistically 

significantly different probabilities for PDO, injury and fatal crashes when using FRA 

and filed validated datasets.  
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CHAPTER 5 CHAPTER 5 DATA ERRORS AND THEIR IMPACTS ON 

CRASH/SEVERITY MODEL ESTIMATION 

 

 

This chapter is dedicated to examining the impact of errors and missing 

information in the FRA's HRGCs inventory data on estimated crash frequency and 

severity model parameters. For this purpose, the original (unaltered) FRA inventory 

dataset and field verified dataset for 560 HRGCs were used. Identical parameters were 

utilized during model estimation of comparative crash frequency models in order to 

conduct a more comprehensive analysis of how one parameter's coefficient differentiated 

from others and to what extent. 

 

 

Figure 5.1 Approach Followed for Crash Prediction Models Estimation 
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Furthermore, two crash severity models were developed with identical 

parameters. Crash data from the past 15 years (2007-2021), as well as FRA and field 

validated HRGCs inventory data, were incorporated into the models. Only crashes that 

had previously been reported on the 560 studied HRGCs were considered for this 

analysis. Figure 5.1 illustrates the approach followed for crash frequency and severity 

prediction model estimation based on the two datasets. A base model was first estimated 

by utilizing the original FRA inventory data and then another comparison model was 

estimated using the field-validated inventory data. 

 

5.1 Crash Frequency Modelling 

 

 Two zero-inflated negative binomial (ZINB) models were estimated to 

study how data completeness and accuracy affect the parameters of a crash frequency 

models based on field-validated and unaltered inventory datasets. The main rationale for 

using the ZINB model instead of other count models is that the response variable (crashes 

at HRGCs) exhibited significant over-dispersion (variance > mean) with many zeros. The 

zero-inflated model is designed to manage response variables that have more zeros than 

one would anticipate in a typical count data scenario, or a significant percentage of zero 

values. Figure 5.2 presents a few attributes, limitation and assumptions of ZINB model.  
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Figure 5.2 Key attributes, assumptions and limitations of ZINB model 

 

Transportation safety analysts often prefer using zero-inflated (ZI) models for 

analyzing crash data, as these models have been shown to provide better statistical fit 

compared to traditional Poisson and Negative Binomial (NB) models. By explicitly 

accounting for the excess zeros commonly observed in crash data, ZI models can provide 

more accurate and reliable estimates of the underlying crash frequency and help identify 

the factors that contribute to crashes on the surface transportation network (Sharma and 

Landge, 2013).  
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A ZINB model assumes that zero outcomes are the result of two distinct 

processes. For example, in the case of crashes at HRGCs, the two processes are: (1) the 

occurrence of a crash at HRGCs, and (2) no crash at HRGCs. If there was no crash at 

HRGCs, the only possible outcome would be zero. If there was a crash at HRGCs, it was 

treated as a count process. The zero-inflated model consists of two parts: a binary model, 

usually a logit model, which models which of the two processes the zero outcome is 

associated with, and a count model, which in this case is a negative binomial model, used 

to model the count process for crashes at HRGCs. The expected count is expressed as a 

combination of the two processes. It is worth noting that the ZI-Poisson model is similar 

to the ZINB model, but the former assumes that the non-zero counts follow a Poisson 

Figure 5.3 Simulated Zero-inflated Negative Binomial Distribution 
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distribution, while the latter assumes that they follow a Negative Binomial distribution 

(Brod et al., 2020).  

The general formula for ZINB model according to Miaou (1994) is presented as: 

 

𝑦𝑖  = 0,1,2 … …  with probability 
Γ(

1

𝛼
+𝑦𝑖)

Γ(
1

𝛼
)Γ(𝑦𝑖+1)

(
1

1+𝛼∗𝜆𝑖
)

1

𝛼
(

𝛼∗𝜆𝑖

1+𝛼∗𝜆𝑖
)

𝑦𝑖

       Eq (15) 

             
𝜆𝑖  = 𝑒𝛽𝑖𝑥𝑖

                                                                                              Eq (16) 

 

where 𝑥𝑖 is 𝑖th  independent variable, and 𝛽𝑖 is the coefficient of regression 

 

For Zero Inflated Negative Binomial regression 

       𝑦𝑖 = 0, with probability 𝑝0 + (
1

1+𝛼∗𝜆𝑖
)

1

𝛼
                                                        Eq (17) 

 

where p0 illustrates the probability model that includes the effects of independent 

variables, such as logit model. 

            𝑝0 =
𝑒𝑟′𝑤𝑖

1+𝑒𝑟′𝑤𝑖
                                                                                               Eq (18) 

 

𝑟 is the matrix’s coefficient and wi is the ith  independent variable. Furthermore, 

Γ(.) is Gamma function; and  𝛼 represents the rate of over dispersion. 

 Maximum likelihood estimation (MLE) is a widely used method for estimating 

parameters in Poisson, Negative Binomial, and Zero-Inflated regression models (Dong et 

al., 2014; Raihan et al., 2019). This method involves finding the parameter values that 

maximize the likelihood function, which measures the probability of the observed data 

given the model. The MLE method is favored because it has been demonstrated to be 
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effective for a variety of statistical models and offers precise and effective estimates of 

the model parameters (Myung, 2003). 

To evaluate the performance of the ZINB models, the Akaike Information 

Criterion (AIC) and BIC (Bayesian Information Criterion) are commonly used. The AIC 

is a measure of the quality of a model, considering both the goodness of fit and the 

complexity of the model. A lower AIC value indicates a better model fit, as it penalizes 

models with a larger number of parameters. However, the idea behind BIC is that the best 

model is the one that maximizes the likelihood of the data while penalizing for the 

number of parameters in the model. Therefore, AIC and BIC are often used to compare 

varied models and select the one that best fits the data (Bozdogan,1987).  

 

5.1.1 Candidate Variables 

 

Table 5.1 displays the variables present in both the FRA and field-validated 

inventory datasets that were deemed suitable for explaining the factors contributing to 

HRGCs crashes. These variables have been classified based on their nature as either 

discrete or continuous.  
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Table 5.1 Candidate Variables for Inclusion in Crash Prediction Model 

Discrete Variables  Continuous Variables  

Flashing lights Number of bells  

Gates Number of crossbucks 

Rural/Urban classification Number of total tracks 

Pavement markings  AADT 

Crossing surface type Total daily trains 

Crossing Illuminated  Maximum timetable speed 

Crossing angle Number of traffic lanes  

 

It is not necessary to compute Tolerance (TOL) or Variance Inflation Factor (VIF) 

when fitting a ZINB model. In linear regression models, these metrics detect 

multicollinearity. To ensure the stability and dependability of the model results, it may be 

helpful to assess the presence of multicollinearity in the data given that ZINB models 

frequently include several continuous predictor variables (Park et al., 2018; Chatterjee 

and Hadi, 2006). Collinearity between the predictor variables can result in unstable 

parameter estimates and inflated standard errors, even though the ZINB model can handle 

excess zeros and overdispersion. Therefore, it is crucial to look for multicollinearity and 

lessen its effects by removing or changing variables. Multicollinearity can be addressed 

to produce more accurate and reliable estimates of the model parameters, which enhances 

the ZINB model’s interpretability and generalizability.  

 To counter multicollinearity among independent variables, those continuous 

variables were excluded that had VIF > 10 and TOL < 0.1 (Farooq and Ahmad, 2017). 

Table 5.2 highlights the values of VIF and Tolerance estimated for the candidate 

variables. All candidate continuous variables that are not found to be collinear are 
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included in model estimation. As the base-crash prediction model is for FRA data, these 

multicollinearity diagnosis indices are estimated for variables in FRA data.  

 

Table 5.2 Multicollinearity Diagnosis Indices for Candidate Variables (FRA Data) 

Candidate Variables  Coding Tolerance  VIF 

Flashing Light Indicator  1 if there are flashing lights at 

crossing, 0 otherwise 

0.625 1.60 

Gates Indicator 1 if there are gates at crossing, 0 

otherwise 

0.633 1.579 

Urban Functional Classification 

Indicator  

1 if crossing is in urban area, 0 if 

crossing is in rural area 

0.7153 1.398 

AADT  Ln transformed 0.7692 1.300 

Number of Bells  Count 1.01317 0.987 

Number of Crossbucks Count 0.82372 1.214 

Number of Total Tracks Count 0.75930 1.317 

Number of Traffic Lanes Count 0.98619 1.014 

Total Daily Trains Ln transformed 0.92764 1.078 

Maximum Timetable Speed Ln transformed 0.91157 1.097 

Crossing Surface Type “Concrete” 

Indicator 

1 if crossing surface is concrete, 0 

others 

0.62101 1.611 

Crossing Surface Type “Asphalt” 

Indicator 

1 if crossing surface is asphalting 0 

others 

0.75930 1.318 

Crossing Illuminated Indicator 1 if crossing surface is illuminated, 

0 others 

0.71801 1.393 

X-angle Type 1  1 if crossing angle is type I, 0 

others 

0.64511 1.551 

X-angle Type II 1 if crossing angle is type II, 0 

others 

0.65700 1.523 
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 Furthermore, to assess which discrete variables should be included in the model, 

only those grade crossings were considered with a 5-year crash history greater than 0. 

Next, the discrete variables were grouped according to their different levels and analysis 

was done through a boxplot chart. Due to the limited number of crossings with non-zero 

crash counts (only 28 crossings), the box plots did not yield any meaningful insights. In 

light of this, the study was kept limited to the Variance Inflation Factor (VIF) and 

Tolerance (TOL) indices. 

5.1.2 Interpreting Base Crash Prediction Model Output 

 

Table 5.3 presents the estimated base ZINB model that utilized the original FRA 

(unaltered) HRGCs inventory data. The coding of the estimated covariates is presented in 

Table 5.2. Multiple models were estimated using different sets of candidate variables. 

However, the final model was selected based on the lowest AIC (Akaike Information 

Criterion) and BIC (Bayesian Information Criterion) values. It is important to note that 

the model estimation was based on the requirement that the same parameters had to be 

chosen for both the base and comparison models, to facilitate comparative studies.  
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Table 5.3 Estimated Base ZINB Model Based on Original FRA Inventory Data 

Variable (code name) Estimate Std. Error Z-Value P-value 

Count model coefficients (negative binomial with log link) 

Constant (_cons)  -8.7615 2.5845     -3.39   0.000 

Ln-transformed AADT (IAADT)   0.47160    0.1674      2.81    0.004 

Warning flashing lights (WDTLIT)  -2.1517    0.6984      -3.08    0.002 

Ln-transformed max train speed (IMAXTSPD)  1.40840     0.5615     2.508    0.012 

Ln (theta) 10.0436 107.89 0.093 0.925 

Zero-inflation model coefficients (binomial with logit link) 

Constant (_cons) 2.2206    1.0151     2.188    0.028 

Ln-transformed total daily trains (ITDTRAINS)   -0.9539    0.3596     -2.652    0.007 

Pearson Residuals 

     Min        1Q              Median       3Q              Max  

-0.72413    -0.21093    -0.11057     -0.05989     26.92213  

Summary Statistics 

Number of observations   = 555 

Theta = 23008.3433 

Number of iterations = 85 

Log-likelihood = -98.01 

Degrees of freedom = 7 

Inflation model   = logit 

AIC = 210.0122 

BIC = 240.2197 
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To explain the base ZINB model in a mathematical term, equation (16) for count 

part of the ZINB model may be written as:  

𝜆𝑖  = 𝑒𝛽0+𝛽1∗IAADT+𝛽2∗WDTLIT+𝛽3∗IMAXTSPD                  Eq (19) 

𝜆𝑖  = 𝑒−8.7615+0.47160∗IAADT−2.1517∗WDTLIT+1.40840∗IMAXTSPD             Eq (20) 

 

In addition, equation (18) presenting the zero-inflation part of the ZINB model 

can be written as:  

                   𝑝0 =
𝑒𝑟0+ 𝑟′𝑤𝑖

1+𝑒𝑟0+𝑟′𝑤𝑖
=

𝑒2.2206−0.9539∗𝐼𝑇𝐷𝑇𝑅𝐴𝐼𝑁𝑆

1+𝑒2.2206−0.9539∗𝐼𝑇𝐷𝑇𝑅𝐴𝐼𝑁𝑆                               Eq (21) 

 

The ZINB model was estimated in R (open-source programming language), using 

the zeroinfl () function from the pscl package. The output in Table 5.3 provides 

information about the model fitting, coefficient estimates and their standard errors, z-

values, and p-values. The first part of the output, “Count model coefficients (negative 

binomial with log link)”, shows the coefficients and their standard errors, z-values, and p-

values for the count part of the model. The coefficients are the estimated parameters of 

the model and are used to predict the response variable, however, the standard errors are 

a measure of the precision of the coefficient estimates. The z-values are the standardized 

coefficients and are used to test the null hypothesis that the coefficient is equal to zero. 

The p-values are the probability of obtaining a z-value as extreme or more extreme than 

the observed one under the null hypothesis.  

The Ln (theta) is the natural logarithm of the dispersion parameter. Furthermore, 

"Zero-inflation model coefficients (binomial with logit link)", shows the coefficients and 
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their standard errors, z-values, and p-values for the zero-inflation part of the estimated 

ZINB model based on FRA dataset. The zero-inflation part of the model was used to 

predict the probability of a zero count.  The third part of the output, “Pearson residuals”, 

shows the distribution of the residuals of the model. The residuals are a measure of how 

well the model fits the data. Ideally, the residuals should be normally distributed with a 

mean of zero and a constant variance. The Pearson residuals were calculated as the ratio 

of the observed minus the fitted value and the square root of the fitted value. In the ZINB 

model output based on FRA data, the minimum, first quartile, median, third quartile, and 

maximum of the residuals can also be seen. 

Furthermore, the dispersion parameter is denoted by Theta and its estimated value 

is 23008.3433. In addition, the optimization algorithm used to estimate the coefficients 

required 85 iterations. The log-likelihood is a measure of the goodness of fit of the 

model, with a higher log-likelihood indicated a better fit. The coefficient of natural log-

transformed Average Annual Daily Traffic (AADT) showed a positive significance with 

the likelihood of crashes at HRGCs, which was significant at a 5% level. On the other 

hand, flashing lights as a warning device (WDTLIT) showed a negative association with 

predicted crashes. Additionally, the coefficient of Ln-transformed maximum timetable 

speed (IMTTSPD) showed a positive association with crash prediction. In conclusion, the 

estimates revealed that crash prediction increases with an increase in maximum timetable 

speed, AADT, and total daily trains. However, the presence of flashing lights as a 

warning device was associated with a lower crash prediction at HRGCs. 
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Figure 5.4 Crash Frequency Model Interpretation by Residual, Normal QQ, and QQline 

Plots 

 

 

The residual plots and Q-Q plots were used to check the assumptions of the 

estimated ZINB model. The residual plot shows the residuals (the difference between the 

observed and predicted values) on the y-axis and the fitted values (predicted values) on 

the x-axis. A good model should have residuals that are randomly distributed around 

zero. If the residuals are not randomly distributed, it indicates that the model is not fitting 

the data well. Furthermore, the Q-Q plot, or quantile-quantile plots, were used to check if 

the residuals were normally distributed. In a normal Q-Q plot, the residuals are plotted 



106 

 

against a theoretical normal distribution. If the residuals follow a straight line, it indicates 

that the residuals are approximately normally distributed. If the residuals deviate from a 

straight line, it indicates that the residuals are not normally distributed. Also, The Q-Q 

line plot was also developed which is an extension of the normal Q-Q plot and is used to 

check if the residuals are normally distributed. In a normal Q-Q plot, the residuals are 

plotted against a theoretical normal distribution. The Q-Q line plot adds a line of best fit 

to the normal Q-Q plot, which allows to see if the residuals deviate systematically from 

the theoretical normal distribution. 

The residuals plot of the estimated ZINB model prediction showed a random 

pattern, which suggested that the model was fitting the data well. The Q-Q plot showed 

that the residuals were approximately normally distributed, which was consistent with the 

assumption of the ZINB model (Figure 5.4). Furthermore, the Q-Q line plot showed that 

the residuals were approximately normally distributed. The residuals followed a straight 

line which was in agreement with the Q-Q plot. The residuals were closely aligned with 

the line of best fit, which meant that the residuals were approximately normally 

distributed. This was a good indication that the assumptions of the estimated ZINB model 

were met, and the model was fitting the data well. 

To understand the effect of change of covariates on crash frequency, average 

marginal effects values were estimated (Table 5.4). The average marginal effects 

represent the change in the predicted probability of crashes at HRGCs for a one-unit 

change in the predictor variable, holding all other predictor variables constant. For the 

predictor variable IAADT, the average marginal effect was estimated to be 0.02681 

which means that for a one-unit increase in the IAADT, the predicted probability of 
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crashes at HRGCs increased by 0.02681 on average. Furthermore, for the predictor 

variable WDTLIT, the AME was estimated to be -0.12232 which means that for a one-

unit increase in the WDTLIT, the predicted probability of crashes decreased by 0.12232 

on average. 

 

Table 5.4 Estimated Base ZINB model Average Marginal Effects Based on Original 

FRA Inventory Data 

Variable Effect Std. Error Z Value   P value 2.5 %    97.5 % 

IAADT   0.02681     0.01099    2.440 0.0146774   0.005   0.048 

WDTLIT  -0.12232     0.04714   -2.595 0.0094708 -0.214 -0.029 

IMTTSPD   0.08008     0.03567    2.245 0.0247619   0.010   0.149 

ITDTRAINS   0.02431 0.01124   2.391 0.0166414 0.004   0.003 

 

For the predictor variable IMTTSPD, the estimated AME was 0.08008 which 

means that for a one-unit increase in the IMTTSPD, the predicted probability of HRGC’s 

crashes increased by 0.08008 on average. Figure 5.5 provides a visual representation of 

the average marginal effects, showing how a unit change in each covariate affects crash 

prediction for the estimated Zero-Inflated Negative Binomial (ZINB) model based on the 

unaltered FRA inventory data for HRGCs.  
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5.1.3 Interpreting Crash Prediction Output (Comparison Model) 

 

The same parameters used in the previous model estimation based on FRA data 

were utilized to estimate a comparison ZINB model based on field-validated data, to 

understand how differences in inventory data affect crash prediction modeling. The 

output of the comparison ZINB model is presented in Table 5.5, and the coding of the 

variables used in the model can be found in Table 5.2.  

 

 

 

 

 

 

 

 

Figure 5.5 Average Marginal Effects for Crash Prediction 

Model Based on FRA Data 
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Table 5.5 Estimated ZINB Comparison Model Based on Field-Validated Inventory Data 

Variable (code name) Estimate Std. Error Z-Value P-value 

Count model coefficients (negative binomial with log link) 

Constant (_cons)  -8.9899 2.5874     -3.47   0.000 

Ln-transformed AADT (IAADT)   0.4422    0.1648      2.68    0.007 

Warning flashing lights (WDTLIT)   -2.0443    0.6982      -2.92    0.003 

Ln-transformed max train speed (IMAXTSPD)  1.5135     0.5667     2.67    0.007 

Ln (theta) 10.4522 129.44 0.81 0.936 

Zero-inflation model coefficients (binomial with logit link) 

Constant (_cons) 2.1266    1.0165     2.092    0.036 

Ln-transformed total daily trains (ITDTRAINS)   -0.8793    0.3484     -2.524    0.011 

Pearson Residuals 

     Min        1Q              Median       3Q              Max  

-0.55149    -0.22451    -0.11469     -0.05974     26.7747  

 

Summary Statistics 

Number of observations   = 555 

Theta = 34620.8247 

Number of iterations = 84 

Log-likelihood = -97.36 

Degrees of freedom = 7 

Inflation model   = logit 

AIC = 208.7161 

BIC = 239.0117 
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To explain the comparison ZINB model (based on field validated data) in a 

mathematical term, equation (16) for count part of the ZINB model is presented below:  

 

𝜆𝑖  = 𝑒−8.9899+0.4422∗IAADT−2.0443∗WDTLIT+1.5135∗IMAXTSPD               Eq (22) 

 

In addition, equation (18) presenting the zero-inflation part of the ZINB model 

can be written as:  

 

                   𝑝0 =
𝑒2.1266−0.8793∗𝐼𝑇𝐷𝑇𝑅𝐴𝐼𝑁𝑆

1+𝑒2.1266−0.8793∗𝐼𝑇𝐷𝑇𝑅𝐴𝐼𝑁𝑆                                           Eq (23) 

 

The coefficients of the variables of the comparison ZINB model suggested that an 

increase in Ln-transformed Average Annual Daily Traffic (IAADT) and maximum 

timetable speed (IMTTSPD) was associated with an increase in the number of HRGCs 

crashes, while the presence of warning flashing lights (WDTLIT) was associated with a 

decrease in the number of crashes. Furthermore, the coefficient of Ln-transformed total 

daily trains (ITDTRAINS) suggested that an increase in the number of daily trains 

passing through the crossings was associated with a decrease in the probability of zero 

crashes. The value of theta in the model was 34620.8247, which represented the 

overdispersion parameter which captures the extra variation in the outcome not 

accounted for by the mean. The log-likelihood of the model was -97.36 on 7 degrees of 

freedom, and the model was optimized using the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) algorithm with 84 iterations. Overall, this model suggested that the number of 

crashes at HRGCS was influenced by Average Annual Daily Traffic (AADT), flashing 
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lights as warning device types at HRGCs, maximum timetable speed of trains 

(IMTTSPD), and total daily trains passing through the crossings (ITDTRAINS). Similar 

to the base ZINB model, the comparison model actually showed a better fitness of the 

ZINB model (Figure 5.6).  

 

Figure 5.6 Comparison Crash Frequency Model Interpretation by Residual, Normal QQ, 

and QQ-line plots 

 

Furthermore, in light of the comparison model output, it can be seen that the field 

validated data exhibited superior congruence with the estimated ZINB crash prediction 

model, as compared to the unaltered data from the FRA. This assertion is corroborated by 
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the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

values, which indicated a higher level of model fitness for the field validated data. Hence, 

it can also be implied that the utilization of field validated data in the estimation of the 

ZINB crash prediction model could yield more reliable and accurate results (Table 5.3-

5.7). 

To understand how change in independent variables affect the crash prediction 

estimated by the ZINB model, average marginal effects were estimated (Table 5.6). The 

results indicated that a one-unit increase in Average Annual Daily Traffic (IAADT) was 

associated with an average increase of 0.02546 crashes, holding all other variables 

constant. This effect was statistically significant at the 0.05 level, with a p-value of 

0.018636. The presence of warning flashing lights (WDTLIT) was associated with an 

average decrease of 0.11768 crashes, holding all other variables constant. This effect was 

also statistically significant at the 0.05 level, with a p-value of 0.012539. 

 

Table 5.6 Estimated Comparison ZINB model Average Marginal Effects Based on Field 

validated FRA Inventory Data 

Variable Effect Std. Error Z Value   P Value 2.5 %    97.5 % 

IAADT   0.02546     0.01082    2.353 0.018636   0.00425    0.04667 

WDTLIT  -0.11768     0.04713   -2.497 0.012539 -0.21006 - 0.0252 

IMTTSPD   0.08714     0.03704    2.352 0.018663   0.01453   0.15974 

ITDTRAINS 0.02383 0.01124 2.2912 0.021725 0.00375 0.03781 
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Furthermore, A one-unit increase in IMTTSPD was associated with an average 

increase of 0.08714 predicted crashes, holding all other variables constant. This effect 

was also statistically significant at the 0.05 level, with a p-value of 0.018663. Overall, 

these results suggested that increases in the Average Annual Daily Traffic (IAADT) and 

the maximum timetable speed of trains (IMTTSPD) were associated with an increase in 

the number of predicted crashes at HRGCs, while an increase in mean of flashing lights 

as warning device type (WDTLIT) at HRGCs was associated with a decrease in the 

number of crashes. 

 

  

 

 

 

 

 

 

Figure 5.7 Average Marginal Effects for Crash Prediction 

Model Based on FV Data 
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Furthermore, to address Hypothesis 4 of this research, a hypothesis test based on 

a study by Clogg et al. (1995) was performed to determine whether the estimated 

coefficients of parameters from the base and comparison ZINB models were statistically 

significantly different from each other. The results of the test revealed that the differences 

between the estimated parameters’ coefficients from the two models were not statistically 

significant (Table 5.7). However, there were differences in the observed crash-risk 

rankings of HRGCs based on the two datasets (Table 5.8).  

 

Table 5.7 Comparison of Coefficients of the Base and Comparison ZINB models 

Comparing Regression Coefficients of the Base and Comparison ZINB models 

H0: There is no statistically significant difference between coefficients of the two models 

Compared Parameters Z statistic P Value 

 IAADT 0.00802 0.9935 

WDTLIT -0.10875 0.9134 

IMAXTSPD 0.13174 0.8951 

ITDTRAINS -0.14899 0.8815 
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Table 5.8 Comparison of HRGCs Crash-Risk Ranking based on the FRA and Field 

Validated Data 

RANK Crossing ID Predicted Value of Crash  RANK Crossing ID Predicted Value of Crash 

1 074952M 0.801611 1 064128X 0.581035 

2 074945C 0.60131 2 064129E 0.580275 

3 064128X 0.566004 3 074929T 0.389984 

4 064129E 0.565867 4 073326S 0.387601 

5 074929T 0.370379 5 074938S 0.3775 

6 073326S 0.36809 6 073456N 0.372149 

7 816859H 0.359193 7 816859H 0.362821 

8 073456N 0.351613 8 073342B 0.351083 

9 074938S 0.347665 9 073345W 0.351083 

10 073342B 0.330426 10 073455G 0.351083 

11 073345W 0.330426 11 074940T 0.33412 

12 073455G 0.330426 12 074956P 0.333596 

13 073044B 0.314477 13 074954B 0.333596 

14 074940T 0.314077 14 073316L 0.328288 

15 073316L 0.307595 15 073320B 0.328288 

16 073320B 0.307595 16 073340M 0.328288 

17 073340M 0.307595 17 073341U 0.328288 

18 073341U 0.307595 18 073459J 0.328288 

19 073459J 0.307595 19 073044B 0.310565 

20 074956P 0.304715 20 074860A 0.306302 

21 074954B 0.304715 21 073449D 0.275392 

22 074860A 0.286267 22 813669U 0.273927 

23 074406N 0.277264 23 074406N 0.268641 

24 813669U 0.262674 24 813592J 0.262829 

25 073449D 0.255035 25 813596L 0.262829 

26 813592J 0.251339 26 083524P 0.249749 

27 813596L 0.251339 27 074942G 0.229268 

28 083276T 0.221569 28 073292A 0.226686 

29 073292A 0.215593 29 073314X 0.226686 

30 073314X 0.215593 30 083276T 0.223615 
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5.1.4 Comparative Analysis of Estimated ZINB Models 

 

Key factors from the regression output of base and comparison crash prediction 

models are as follows: 

• The coefficients for Ln-transformed Maximum Timetable Speed 

(IMAXTSPD) and Average Annual Daily Traffic (IAADT) have positive 

signs in both models. However, expected magnitude differ in both models 

where the base model gives a higher coefficient expected-magnitude for 

IAADT as compared to the comparison model. Moreover, for IMAXTSPD, 

comparison model gives a higher coefficient expected-magnitude. The 

average marginal effect estimates presented in Table 5.3 and Table 5.5 show 

that a unit change in IAADT increases predicted crashes by 0.02681 in base 

model and 0.02545 in the comparison model.  

• The coefficients for warning device type as flashing lights (WDTLIT) are 

negative for both models (i.e., compared to passive devices, warning flashing 

lights reduce predicted crashes). However, coefficient expected-magnitudes 

and average marginal effects of WDTLIT differ in both models where the 

base model estimates a higher negative value compared to the comparison 

model.  

• The coefficients of Ln-transformed total daily trains (ITDTRAINS) in the 

zero-inflated part in both base and comparison models are negative indicating 

that the probability of excess zeros decreases with the increase in number of 

trains, as expected. However, coefficient expected-magnitudes of 

ITDTRAINS differ in both models. 
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• All the coefficients retained in both models indicate strong statistical 

significance, however based on AIC and BIC values, ZINB model based on 

field validated HRGCs inventory data shows a better fit.  

• The hypothesis tests performed in Table 5.7 indicated that the parameter’s 

coefficients estimated using two different datasets on the comparative ZINB 

models were not statistically significantly different (Hypothesis 4 of this 

research). However, different crash-risk rankings were observed based on the 

predicted values of crashes obtained using the field-validated and FRA 

datasets on the estimated base and comparison ZINB models (Table 5.8).  
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Figure 5.8 Multivariate Ggplots for Predicted Crashes of Base (FRA) and Comparison 

Model (FV) for Maximum Train Speed, AADT, and Flashing Light Indicator 

 

 

Figure 5.8 illustrates a “Predicted crashes (expected crashes) verses AADT 

(natural logarithm)” charts for flashing light indicator. The charts indicated that for cases 

of HRGCS with no flashing lights in the original FRA dataset, the model gave higher 

crash predictions for maximum timetable speed ranging from 25 to 45 mph. However, the 

presence of flashing lights decreased predicted crashes but only for low-speed trains. The 

trend of predicted crashes in the field-validation based model was different. It also 
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illustrates estimation of higher crash predictions for no flashing lights indicator with 

higher speeds.  

Furthermore, for convenient comparison of average marginal effects of the ZINB 

models, based on FRA and field validated HRGCs inventory data, Figure 5.9 is 

presented.  

 

 

 

 

 

Figure 5.9 Comparison of Average Marginal Effects of Estimated Covariates of ZINB 

Model Based on FRA and Field Validated Data 

 

Figure 5.9 indicated that estimated crash prediction model parameters and their 

respective average marginal values were different for when the models were based on 

unaltered FRA HRGCs inventory database and the corrected and complete (field 

validated) HRGCs inventory data.  

 

Average Marginal Effects Comparison (FRA versus FV ZINB Model) 
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5.2 Crash Severity Modelling 

 

According to the FRA, recorded crashes on HRGCs are organized into three 

severity categories: fatal, injury, and property damage only (PDO). A grade crossing 

crash is classified as fatal if it results in at least one fatality, as injury if it leads to at least 

one injury, and as PDO if there are no injuries or fatalities. These severity categories are 

arranged in a specific order, with fatal crashes being the most severe, followed by injury 

crashes, and then PDO crashes, which are the least severe. By categorizing crashes based 

on their severity level, authorities can prioritize and allocate resources to improve safety 

at grade crossings, with the ultimate goal of preventing or reducing the frequency and 

impact of accidents (Brod et al., 2020). 

To investigate the effects of data inaccuracies in HRGCs inventory data on crash 

severity model estimation, further analysis was conducted by estimating a crash severity 

model based on the FRA and field-validated dataset. As mentioned earlier, only 34 

crashes were recorded on the selected 560 HRGCs in Nebraska in the 5 year-period 

(2016-2020), which is a small sample size for suitable crash severity model estimation. 

Thus, the crash severity model was estimated by integrating past 15 years (2007-2021) 

crash dataset with the inventory dataset of the corresponding HRGCs. Comparative 

studies were then performed to determine if field-validated data showed significant 

differences in the estimated parameter of crash prediction model when compared with the 

FRA dataset-based crash severity model. 

A combination of different ordered logit and probit models with varying 

parameters was used for selection of the final crash severity model. It is noteworthy that 
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the study abided by the requirement of estimating two comparative models with the same 

parameters so that a meaningful comparison could be made. Consequently, an ordered 

probit model was estimated with a suitable model fitness and the same parameters. 

Figure 5.10 presents some key attributes, assumptions and limitations of ordered probit 

model. 

 

Figure 5.10 Key Attributes, Assumptions and Limitations of Ordered Probit Model 

 

An ordered probit model is a statistical model used to analyze ordinal categorical 

data, which involves categories with a natural ordering (Daykin and Moffatt 2002; 

Farooq and Khattak, 2023). It is predicated that the observed ordinal responses are based 

on the relative position of the latent variable within those intervals, and that the 
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dependent variable is generated by an underlying continuous latent variable that is 

partitioned into a set of ordered intervals. The model estimates the relationship between 

the latent variable and one or more predictor variables, typically using maximum 

likelihood estimation (Kockelman and Kweon, 2002).  

 

               

For the ordered probit model with three ordered categories of HRGCs crash 

severity, the probabilities for each crash category are presented below. In the ordered 

probit model, it is assumed that the cumulative distribution function (CDF) follows a 

normal distribution, and the model estimates the parameters of this distribution to 

estimate the probabilities of the observed outcomes. The probabilities of estimating a 

fatal, injury and PDO crash are given as follows. 

 

Probabilities to estimate – Fatal HRGC crash 

P( crash type =  fatal HRGC crash ∣ 𝐴)                                                       eq (24) 

Probabilities to estimate – HRGC crash with Injury 

Figure 5.11 Simulated Ordered Probit Model (Shi, 2019) 
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P( acctype =  injury causing HRGC crash ∣ 𝐴)                    eq (25) 

Probabilities to estimate-PDO HRGC crash  

P( acctype = 𝑃DO HRGC crash ∣ 𝐴)                                       eq (26) 

Crash severity probabilities Sum to 1 

P( fatal crash ∣ 𝐴 ) + P( injury crash ∣∣ 𝐴 ) + P(PDO crash ∣ 𝐴) = 1   eq (27) 

  

The dependent variable of the model is an observed ordinal variable X (in this 

study, HRGC crash severity type). The model assumes that there is a continuous, 

unmeasured latent variable, X∗, whose values determine the value of the observed ordinal 

variable X. The variable X∗ has two threshold points represented by 𝜅 (the lowercase 

Greek letter kappa). 

The value of the observed variable X depends on whether X* has crossed a threshold, as 

shown below: 

The relationship between 𝑋 and 𝑋∗ is presented in equation 28.  

𝑋𝑖 = {

PDO HRGC Crash,  if 𝑋𝑖
∗ ≤ 𝜅1

 Injury HRGC Crash,  if 𝜅1 ≤ 𝑋𝑖
∗ ≤ 𝜅2

 Fatal HRGC Crash,  if 𝑋𝑖
∗ ≥ 𝜅2

                                                        eq (28) 

The HRGCs inventory characteristics are a function of the latent variable X. As a 

result, the following gives the ordered probit model to estimate for a given specification 

(i.e., for a chosen set of explanatory variables from the HRGCs inventory dataset): 

𝑃(𝑋𝑖 = 𝑃𝐷𝑂 𝐻𝑅𝐺𝐶 𝐶𝑟𝑎𝑠ℎ) =
1

1+exp (𝑍𝑖−𝜅1)
       eq (29) 

𝑃(𝑋𝑖 =  Injury HRGC Crash) =
1

1+exp (𝑍𝑖−𝜅2)
−

1

1+exp (𝑍𝑖−𝜅1)
    eq (30) 
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𝑃(𝑋𝑖 =  Fatal HRGC Crash) = 1 −
1

1+exp (𝑍𝑖−𝜅2)
      eq (31) 

Where, the subscript 𝑖 indicates an index of a recorded HRGC crash, 𝑋𝑖 is the 

variable indicating HRGC crash type (fatal, injury or PDO). And 𝜅1 is a coefficient of the 

threshold separating PDO from injury crash, and 𝜅2 is a coefficient of the threshold 

separating injury from fatal crash (Kockelman and Kweon, 2002). Furthermore, the 

distribution of different ordinal severity levels of crashes at 560 selected HRGCs over a 

15-year period (2007-2021) is presented in Figure 5.12. Of the total 83 crashes, 62 

percent resulted in property damage only, 30 percent resulted in at least one reported 

injury, and unfortunately, 8 percent of crashes reported at least one fatality. 

 

 

 

Figure 5.12  Severity of Crashes at Selected 560 HRGCs (2007-2021) 
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5.2.1 Interpreting Base Crash Severity Model Output 

 

Table 5.9 presents the estimated base crash severity model that utilized the 

original FRA (unaltered) HRGCs inventory data. Multiple models were estimated using 

different sets of candidate variables. However, the final model was selected based on the 

lowest AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) 

values. The ordered probit was developed in R by using “ordinal” package and “clm” 

function.  

Table 5.9 Estimated Base Crash Severity Model Based on Original FRA Inventory Data 

Variable (code name) Estimate Std. Error Z-Value P-value 

Coefficients 

Flashing light indictor (1 if the HRGC has flashing 

lights as a warning device, 0 otherwise) 

-0.8661      0.3842   - 2.254    0.0242 

Rural_Xng indicator (1 if the HRGC is in rural area, 

0 otherwise)  

0.5330      0.2939    1.996    0.0459 

Rdwithin_500ft indicator (1 if the HRGC is within 

500 ft of the road, 0 otherwise)   

0.9982      0.3971    2.513    0.0120 

Threshold Coefficients 

PDO HRGC Crash | Injury HRGC Crash    0.5191      0.2511    2.067 - 

Injury HRGC Crash |Fatality HRGC Crash        1.7004      0.2989    5.689 - 

Summary Statistics 

Number of observations   = 83 

Log-likelihood = -66.33 

Ordered model   = Probit 

AIC = 142.66 

BIC = 164.21 
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The results presented in Table 5.9 can be interpreted as follows:  

• Flashing Light: The coefficient of -0.8661 indicated that HRGCs with flashing 

lights as a warning device exhibited a lower log-odds of moving up one severity 

level compared to crossings without flashing lights, holding other variables 

constant. This coefficient is statistically significant at the 5% level (p-

value=0.0242). 

• Rural_Xng: The coefficient of 0.5330 indicated that HRGCs in rural areas 

exhibited a higher log-odds of moving up one severity level compared to HRGCs 

in non-rural areas, holding other variables constant. In addition, this coefficient is 

statistically significant at the 5% level (p-value=0.0459). 

• Rdwithin_500ft: The coefficient of indicator variable showing the crossing near 

500 ft of a road was positively estimated to be 0.9982 indicating that HRGCs 

within 500 ft of the roadway showed a higher log-odds of moving up one severity 

level compared to crossings further away from the roadway, holding other 

variables constant. This coefficient is statistically significant at the 5% level (p-

value=0.0120). 

The threshold coefficients estimate the cut points between the severity categories. 

The estimated threshold for the cut point between PDO and Injury was 0.5191. This 

means that if the model predicts a value greater than 0.5191, the observation is more 

likely to fall into severity level 2 (Injury) than level 1 (PDO). Furthermore, the estimated 

threshold for the cut point between Injury and Fatality was 1.700. meaning that if the 

model predicts a value greater than 1.700, the observation is more likely to fall into 

severity level 3 (Fatality) than level 2 (Injury). Overall, the results suggested that HRGCs 

with flashing lights as a warning device and crossings further away from the roadway 

indicated lower probabilities of more severe injuries in the event of a rail crossings’ 

crash.  
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The HRGCs crash severity equation for base model based on unaltered FRA data 

takes the form:  

𝑍𝑖 = ∑  3
𝑘=1  𝛽𝑘𝑋𝑘𝑖 =  𝛽1 ⋅  Flashing_Lit +  𝛽2 ⋅ Rural_Xng + 𝛽3 ⋅ Rdwithin_500ft  eq (32) 

 

𝑍𝑖 =  −0.8661 ⋅  Flashing_Lit +  0.5330 ⋅ Rural_Xng + 0.9982 ⋅ Rdwithin_500ft  eq (33) 

 

𝑃(𝑋𝑖 = 𝑃𝐷𝑂 𝐻𝑅𝐺𝐶 𝐶𝑟𝑎𝑠ℎ) =
1

1+exp (𝑍𝑖−𝜅1)
       eq (34) 

𝑃(𝑋𝑖 =  Injury HRGC Crash) =
1

1+exp (𝑍𝑖−𝜅2)
−

1

1+exp (𝑍𝑖−𝜅1)
    eq (35) 

𝑃(𝑋𝑖 =  Fatal HRGC Crash) = 1 −
1

1+exp (𝑍𝑖−𝜅2)
      eq (36) 

 

Using marginaleffects functions in R, average marginal effects values were used 

to analyze how changes in covariate affect each ordinal category of crash severity at 

HRGCs. The marginal effects indicate the shift in the probability of the outcome variable 

when the independent variable changes from 0 to 1, while holding all other independent 

variables constant, when the independent variables are indicator variables (also known as 

dummy variables), which take on values of 0 or 1. The function computes the marginal 

effect using the partial derivative of the regression equation with respect to the 

independent variable (Farooq and Khattak, 2023; Farooq et al., 2021). 
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Table 5.10 Average Marginal Effects for Base Crash Severity Model Based on Original 

FRA Inventory Data 
Group Variable (code 

name) 

Estimate Std. Error Z-Value P-value 

 

1 (PDO) 
Flashing_Lit 0.295753 0.120519 2.454004 0.014128 

Rural_Xng -0.182 0.094577 -1.9244 0.054305 

Rdwithin_500ft -0.34087 0.121841 -2.79763 0.005148 

 

2 (Injury) 
Flashing_Lit -0.17277 0.072793 -2.3734 0.017625 

Rural_Xng 0.106314 0.055894 1.902079 0.057161 

Rdwithin_500ft 0.199108 0.075319 2.643519 0.008205 

 

3 (Fatality) 
Flashing_Lit -0.12299 0.062203 -1.97718 0.048021 

Rural_Xng 0.075689 0.04585 1.650822 0.098775 

Rdwithin_500ft 0.141759 0.065285 2.17137 0.029903 

 

For Group 1, HRGCs without flashing lights had a 29.6 percentage point 

reduction in the probability of a more severe crash for each grade crossing with flashing 

lights added, while crossings located within 500 feet of a road intersection had a 34.1 

percentage point reduction. Furthermore, rural HRGCs had an 18.2 percentage point 

reduction (Table 5.10).  

For Group 2, HRGCs with flashing lights had a 17.3 percentage point reduction in 

the probability of a more severe crash for each crossing without flashing lights, while 

rural crossings had a 10.6 percentage point increase, and crossings located within 500 

feet of a road intersection had a 19.9 percentage point increase. For Group 3, HRGCs 

with flashing lights had a 12.3 percentage point reduction in the probability of a more 

severe crash for each crossing without flashing lights, while rural HRGCs had a 7.6 

percentage point increase, and crossings located within 500 feet of a road intersection had 

a 14.2 percentage point increase. In conclusion, the study found that the presence of 

flashing lights and the location of the crossing more than 500 feet from a road 

intersection were associated with a reduced probability of a more severe crash, while 

rural crossings were associated with an increased probability of a more severe crash. 
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5.2.2 Interpreting Comparison Crash Severity Model Output 

 

Table 5.11 Estimated Crash Severity Model Based on Field-Validated Inventory Data 

Variable (code name) Estimate Std. Error Z-Value P-value 

Coefficients 

Flashing light indictor (1 if the HRGC has flashing 

lights as a warning device, 0 otherwise) 

-0.8148      0.3817 - 2.135   0.03277 

Rural_Xng indicator (1 if the HRGC is in rural area, 

0 otherwise) 

0.8902      0.3431     2.594   0.00947 

Rdwithin_500ft indicator (1 if the HRGC is within 

500 ft of the road, 0 otherwise)   

1.0708      0.3953    2.709   0.00675 

Threshold Coefficients 

PDO HRGC Crash | Injury HRGC Crash    0.5036      0.2143    2.350 - 

Injury HRGC Crash |Fatality HRGC Crash        1.7283      0.2745    6.295 - 

Summary Statistics 

Number of observations   = 83 

Log-likelihood = -64.61 

Ordered model   = Probit 

AIC = 139.21 

BIC = 159.17 
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The results presented in Table 5.11 were interpreted as follows:  

• Flashing Light: The estimated coefficients show that the indicator variable for 

warning device type flashing light showed a negative coefficient, indicating that 

the presence of flashing lights as a warning device at the crossing reduces the 

severity of crashes. The coefficient is statistically significant at the 5% level (p-

value = 0.03277). 

• Rural_Xng: The indicator variable showing that HRGCs situated in a rural area 

"Rural_Xng" showed a positive coefficient, indicating that crashes in rural areas 

are more severe than those in urban areas. The coefficient is statistically 

significant at the 1% level (p-value = 0.00947). 

• Rdwithin_500ft: The indicator variable showing that the crossing is situated 

withing 500 ft of the road (Rdwithin_500ft) also showed a positive coefficient, 

indicating that crashes that occur within 500 ft of the roadway are more severe 

than those that occur farther away. The coefficient is statistically significant at the 

1% level (p-value = 0.00675). 

 

The threshold coefficients estimated the cut points between the crash severity 

categories. The estimated threshold for the cut point between severity levels 1= PDO and 

2= Injury is 0.5036, and the estimated threshold for the cut point between severity levels 

2=Injury and 3=Fatality was 1.7283. Overall, the results suggested that the presence of 

flashing lights as a warning device can reduce the severity of crashes, and crashes in rural 

areas and those close to the roadway tend to be more severe. 
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The HRGCs crash severity equation for comparison model based on field-validated 

data takes the form:  

𝑍𝑖 = ∑  3
𝑘=1  𝛽𝑘𝑋𝑘𝑖 =  𝛽1 ⋅  Flashing_Lit +  𝛽2 ⋅ Rural_Xng + 𝛽3 ⋅ Rdwithin_500ft  eq (37) 

 

𝑍𝑖 =  −0.8148 ⋅  Flashing_Lit +  0.8902 ⋅ Rural_Xng + 1.0708 ⋅ Rdwithin_500ft  eq (38) 

 

𝑃(𝑋𝑖 = 𝑃𝐷𝑂 𝐻𝑅𝐺𝐶 𝐶𝑟𝑎𝑠ℎ) =
1

1+exp (𝑍𝑖−𝜅1)
       eq (39) 

𝑃(𝑋𝑖 =  Injury HRGC Crash) =
1

1+exp (𝑍𝑖−𝜅2)
−

1

1+exp (𝑍𝑖−𝜅1)
    eq (40) 

𝑃(𝑋𝑖 =  Fatal HRGC Crash) = 1 −
1

1+exp (𝑍𝑖−𝜅2)
      eq (41) 

Table 5.12 presents the average marginal effects of parameters of ordered probit 

model based on the field-validated data. The output was divided into three groups based 

on the values of the independent variables. For example, group 1 represents cases where 

Flashing_Lit, Rural_Xng, and Rdwithin_500ft are all at their minimum values. Similarly, 

group 2 represents cases where all the independent variables are at their mean values, and 

group 3 represents cases where they are all at their maximum values. Flashing light 

showed a positive effect on HRGCs crash severity in group 1 and a negative effect in 

groups 2 and 3.  
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Table 5.12 Average Marginal Effects for Comparison Crash Severity Model Based on 

Field Validated Inventory Data 

Group 
Variable (code 

name) 
Estimate Std. Error Z-Value P-value 

 

1 (PDO) 
Flashing_Lit 0.270566 0.118078 2.291415 0.021939 

Rural_Xng -0.29561 0.101398 -2.91531 0.003553 

Rdwithin_500ft -0.35557 0.115823 -3.06991 0.002141 

 

2 (Injury) 
Flashing_Lit -0.15879 0.07127 -2.22802 0.025879 

Rural_Xng 0.173479 0.062812 2.76188 0.005747 

Rdwithin_500ft 0.208665 0.071175 2.931731 0.003371 

 

3 (Fatality) 
Flashing_Lit -0.11177 0.058808 -1.90064 0.057349 

Rural_Xng 0.122128 0.054693 2.232958 0.025552 

Rdwithin_500ft 0.146901 0.064628 2.273036 0.023024 

 

Rural_Xng and Rdwithin_500ft both showed negative effects on predicted 

HRGCs crash severity in category 1, indicating that the severity of PDO crashes decrease 

when they occur in rural areas or farther away from city limits. However, the severity of 

injury and fatality showed an increase in cases of crashes occurred in rural areas and for 

crossings within 500 feet of the road. According to group 3, with HRGCs being within 

500 ft of the roads increased the probability of fatality to 14 percent, however, crossings 

in rural areas showed that the probability of an injury crash would increase to 7.5 percent. 

Overall, the average marginal effects give intuitive estimates like the effects calculated 

for the base crash severity prediction mode. However, the values of these marginal 

effects for all the three categories of severity are different from each other (Table 5.12).  
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Table 5.13 Comparison of Coefficients of the Base and Comparison OPM models 

Comparing Regression Coefficients of the Base and Comparison OPM models 

H0: There is no statistically significant difference between coefficients of the two models 

Compared Parameters Z statistic P Value 

Flashing Light Indicator -0.09472 0.9245 

Rural Crossing Indicator  0.79067 0.4291 

Road within 500 ft  0.12957 0.8969 

 

Furthermore, to address Hypothesis 5 of this research, a hypothesis test based on 

a study by Clogg et al. (1995) was performed to determine whether the estimated 

coefficients of parameters from the base and comparison Ordered Probit models were 

statistically significantly different from each other. The results of the test revealed that 

the differences between the estimated parameters’ coefficients from the two models were 

not statistically significant (Table 5.13).  
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5.2.3 Comparative Analysis of Estimated Ordered-Probit Models 

 

Key factors from the regression output of ordered-probit base and comparison models are 

as follows: 

 

• The coefficients for the indicator variable for flashing lights (Flashing_Lit) in 

both the base and comparison models for predicting crash severity showed 

negative signs. However, the expected magnitudes differed in both models, 

where the base model gave a higher coefficient expected-magnitude for 

Flashing_Lit as compared to the comparison model. Furthermore, the 

coefficients of average marginal effects for the indicator variable for flashing 

lights (Flashing_Lit) in both models showed different estimates for all 

categories (Table 5.7-5.10).  

• The coefficients for the indicator variable for rural HRGCs (Rural_Xng) in 

both the base and comparison models to predict crash severity showed 

positive signs, indicating that crash severity increases if the crash occurs at a 

rural grade crossing. However, the expected magnitudes of these coefficients 

differed in the two models, with the base model giving a lower expected 

magnitude for Rural_Xng compared to the comparison model. Additionally, 

the coefficients for the average marginal effects of the indicator variable for 

rural grade crossing (Rural_Xng) in both models had different estimates for 

all categories. (Table 5.7-5.10).  

• The coefficients for the indicator variable for HRGCs within 500 feet of the 

road (Rdwithin_500ft) in both the base and comparison models for predicting 

crash severity had positive signs. However, the expected magnitudes differed 

in both models, where the base model gave a lower coefficient expected-

magnitude for Rdwithin_500ft as compared to the comparison model. 
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Furthermore, the coefficients of average marginal effects for the indicator 

variable for HRGCs within 500 feet of the road (Rdwithin_500ft) in both 

models had different estimates for all categories (Table 5.7-5.10).  

 

 

 

 

Figure 5.13 Comparison Plots of Average Marginal Effects Based on FRA 

and FV Ordered-Probit Model 



136 

 

• Figure 5.13 presented a comparative analysis of the average marginal effects 

values for all categories of crash severity estimated for the base and 

comparison ordered probit models. From the figure, it is evident that the effect 

on the response variable by a change in the indicator variable for the two 

different models was significantly different for each case.  

• All the coefficients retained in both models indicated a strong statistical 

significance, however based on AIC and BIC values, ordered probit model 

based on field validated HRGCs inventory data showed a better fit. 

• There was a substantial difference between the observed and predicted value 

plots estimated for the base and comparison ordered probit models for crash 

severity prediction for selected HRGCs. Figure 5.14 showed that the field-

validated model predicted a few PDO crashes as injury crashes, while the 

FRA-based ordered probit model predicted many PDO crashes to be injury 

crashes. Similarly, the field-validated model estimated more fatality crashes 

for observed crash severity of PDO crashes compared to the ordered probit 

crash severity model based on unaltered FRA data. 

• The hypothesis tests performed in Table 5.13 indicated that the parameter 

coefficients estimated by the comparison OPM models, using two different 

datasets were not statistically significantly different.  
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Figure 5.14  Observed Vs. Predicted Crash Severity Based on FRA and FV Ordered-

Probit Model 
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5.3 Chapter Summary 

 

This important chapter examined the impact of inaccuracies in HRGCs inventory 

data on crash prediction and severity models. To conduct a thorough analysis of how a 

specific parameter's coefficient differs from others and to what extent, identical 

parameters were used in the estimation of comparative crash frequency and severity 

models. 

To predict crash frequency at HRGCs, two Zero-Inflated Negative Binomial 

models (ZINB) were estimated, using both unaltered (FRA-provided) and field-validated 

data for 560 selected HRGCs in Nebraska. The ZINB model was selected because the 

response variable, crash frequencies at HRGCs, exhibited significant over-dispersion 

with many zeros. To evaluate the models' performance, the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) were used. Candidate variables for 

model estimation were tested for multicollinearity to ensure the stability and 

dependability of the results. As volume-related factors tend to have a skewed 

distribution, they were Ln-transformed to meet the assumption of normality required for 

many statistical models. The estimated ZINB models revealed that Ln-transformed 

Average Annual Daily Traffic (AADT) had a positive association with the likelihood of 

crashes at HRGCs, while flashing lights as a warning device (WDTLIT) had a negative 

association with predicted crashes. Additionally, the coefficient of Ln-transformed 

maximum timetable speed (IMTTSPD) had a positive association with crash prediction. 
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Furthermore, the zero-inflated part of both crash prediction models revealed a 

negative association of Ln-transformed total daily trains (ITDTRAINS) with the 

occurrence of zero counts for crash prediction. All the coefficients retained in both 

models indicated strong statistical significance, but based on AIC and BIC values, the 

ZINB model based on field validated HRGCs inventory data showed a better fit. Finally, 

by estimating the average marginal effects for parameters of both ZINB models, it was 

found that the estimated parameters and their respective average marginal values were 

different for when the models were based on unaltered FRA HRGCs inventory database 

and the corrected and complete (field validated) HRGCs inventory data. Furthermore, 

two Ordered Probit models were utilized to predict crash severity, incorporating the past 

15 years' crash data (2007-2021) with the corresponding inventory dataset of the HRGCs. 

The research performed comparative analysis to determine if the field-validated data 

demonstrated any significant disparities in the estimated parameter of the crash 

prediction model when contrasted with the FRA dataset-based crash severity model. For 

both Ordered Probit models, a statistically significant correlation was observed between 

the severity of the crash at the HRGCs and the indicator variables for rural crossings 

(Rural_Xng), crossings within 500 ft of the road (Rdwithin_500ft), and flashing lights 

(Flashing_Lit). However, the estimated average marginal effects for the parameters of 

the two Ordered Probit models showed statistically significant differences. Furthermore, 

the severity model based on the field validation and complete inventory dataset exhibited 

a better model fitness. 
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CHAPTER 6 SUMMARY, CONCLUSIONS AND FUTURE RESEARCH 

 

This dissertation aimed to achieve five research objectives: (1) to investigate 

accuracy and missing values in HRGCs inventory data and to examine if the missing 

values in the inventory data follow any specific pattern; (2) to investigate if there are any 

statistical differences in expected value of HRGCs crashes estimated by employing the 

2020 FRA APS model by utilizing both FRA and field-validated data; (3) to investigate if 

there are any statistical differences in HRGCs crash severity predictions obtained by 

employing the 2020 FRA APS model based on the FRA and field-validated data; (4) to 

assess impact of data inaccuracy on HRGCs crash frequency modelling, and lastly, (5) to 

assess impact of data inaccuracy on HRGCs crash severity modelling. 

This chapter provides a summary of the research findings, conclusions, and 

recommendations aimed at improving the quality of data and reporting of HRGCs 

inventory data. It also highlights the limitations and contributions of this research and 

identifies future research avenues for enhancing the data quality of HRGCs inventory 

records. The ultimate objective of this research is to promote safety at HRGCs.  

To achieve this goal, it is crucial to ensure that the HRGCs inventory data are 

accurate and up-to-date. Therefore, the recommendations proposed in this chapter address 

the identified limitations and provide recommendations for improving the quality of data 

and reporting. Moreover, this chapter underscores the significance of this research and its 

contributions towards enhancing the safety of HRGCs. It highlights the need for further 

research to build upon these findings and ensure that safety remains a top priority in the 

rail transportation sector. Briefly, this chapter serves as a critical resource for 
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stakeholders in the rail transportation industry, including policymakers, researchers, 

regulatory bodies, and practitioners, who are committed to improving the quality of 

HRGCs inventory and enhancing rail crossing safety. 

 

6.1 Summary 

 

The study began by examining the details of FRA Form 6180.57 and Form 

6180.57, which contained inventory and crash information for HRGCs. Subsequently, 

three datasets were employed to identify data errors: the FRA crash database on HRGCs, 

the FRA inventory database on HRGCs, and the field-validated inventory database on 

HRGCs. Records of inventory and crash history for 560 public, at-grade, and operational 

HRGCs across nine counties in Nebraska were obtained from the FRA website. Upon 

data assessment, it was discovered that the FRA data contained several errors, such as 

illogical data entries and missing information. Further investigation through field 

validation of 560 HRGCs revealed that 5 (approx. 1%) HRGCs were either abandoned, 

non-operational, or non-existent in reality, despite being reported as operational in the 

FRA data. In addition, a total of 2,241 values were corrected, and 1,732 missing values 

were added, resulting in an average of 7.4% of the database values being altered at each 

HRGC. It was found that important inventory aspects, such as AADT, maximum 

timetable speed, warning device type light, count of flashing lights, gate arms, bells, 

surface type of main track, crossbucks, and storage distance, all had missing values. 

Additionally, it was observed that some inventory-related variables, such as AADT or 

highway speed, had impractical values that were incorrect.  
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To achieve the first objective, further data investigation was performed to 

ascertain whether the missing values in the inventory data occurred in a pattern or 

randomly. The MCAR test indicated that the data were not missing at random and 

exhibited a pattern. In addition, the descriptive statistics for validated inventory revealed 

that 74.11% of crossings in the study sample had a single track, 67.93% were on local 

streets (road-functional classification), 50% HRGCs had posted speed of 50mph, 60.71% 

HRGCs were in public spaces, 71.07% had no gates, and 49.55% of the HRGCs had 

gravel as an approach surface type.  

To accomplish the third and fourth objective, the 2020 Accident Prediction and 

Severity Model (APS) was utilized with two different datasets: the unaltered HRGCs 

inventory data from FRA and the field-validated HRGCs inventory data. The crash 

predictions (expected crashes) and severity were compared between the two datasets 

through statistical analysis. A visual inspection of the crash and severity predictions for 

all 560 HRGCs was conducted by plotting the results of both datasets in the 2020 FRA 

crash prediction model. The analysis revealed differences between the two sets of 

predictions, with percentage differences ranging from 0 to 120%.  

To determine if the differences in expected crashes were statistically significant, 

normality tests were conducted using Q-Q plots, histograms, and the Shapiro-Wilk test. 

Additionally, a non-parametric statistical test, the Wilcoxon rank-sum test, was used to 

compare the differences between the two crash predictions. The test results suggested that 

the medians of the two distributions of crash predictions differed, indicating differences 

in predictions. Moreover, the findings indicated that inaccurate data on HRGCs' 

inventory had a substantial impact on crash severity prediction for the study. 
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Additionally, hypothesis tests showed that the difference between FRA and field-

validated crash severity predictions were statistically significant.  

The fourth and fifth objective involved examining statistical differences between 

estimated parameters’ coefficients of comparative crash prediction and severity models 

based on the FRA and field validated datasets. To thoroughly analyze the extent of a 

particular parameter’s coefficient compared to others, identical parameters were included  

in the specifications of comparative crash frequency and severity models. Two Zero-

Inflated Negative Binomial models (ZINB) were used to predict crash frequency at 560 

selected HRGCs in Nebraska, using both unaltered (FRA-provided) and field-validated 

data. The ZINB model was chosen due to the significant over-dispersion with many zeros 

in the response variable “past-5 years crashes at HRGCs.” To ensure the stability and 

reliability of the results, candidate variables for model estimation were tested for 

multicollinearity. The Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) were used to evaluate the models’ performance.  

The ZINB models estimated that Ln-transformed Average Annual Daily Traffic 

(AADT) had a positive association with the likelihood of crashes at HRGCs, while 

flashing lights as a warning device (WDTLIT) had a negative association with predicted 

crashes. Moreover, Ln-transformed maximum timetable speed (IMTTSPD) had a positive 

association with crash prediction. In addition, the zero-inflated part of both crash 

prediction models revealed that Ln-transformed total daily trains (ITDTRAINS) had a 

negative association with the occurrence of zero counts for crash prediction. All 

coefficients in both models showed strong statistical significance, but the ZINB model 

based on field validated HRGCs inventory data had a better fit according to AIC and BIC 
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values. Finally, the estimated parameters’ coefficients and their respective average 

marginal values were apparently different for when the models were based on unaltered 

FRA HRGCs inventory database and the corrected and complete (field validated) HRGCs 

inventory data. However, based on the hypothesis tests, the differences in the estimated 

parameters’ coefficients of the ZINB model were not statistically significant.  

Furthermore, two Ordered Probit models were utilized to make predictions about 

crash severity by incorporating the past 15 years’ crash data (2007-2021) along with the 

corresponding inventory dataset of the HRGCs. The study then compared the field-

validated data to the FRA dataset-based crash severity model to determine if there were 

any significant disparities in the estimated parameters’ coefficients of the comparative 

crash prediction models. Both Ordered Probit models showed a statistically significant 

correlation between the severity of the crash at the HRGCs and the indicator variables for 

rural crossings (Rural_Xng), crossings within 500 ft of the road (Rdwithin_500ft), and 

flashing lights (Flashing_Lit). However, there were no statistically significant differences 

in the estimated parameters coefficients of the two Ordered Probit models. Furthermore, 

the severity model based on the field validation and complete inventory dataset 

demonstrated better model fit with smaller estimated standard errors for coefficient 

estimates of the models based on the field validated data.  
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6.2 Conclusions and Recommendations 

 

The following conclusions are drawn from the research’s findings. 

 

1. The examined FRA HRGCs inventory data suffer from inaccuracies and 

incompleteness. While the incidence of errors and missing data is not high 

(roughly 7% based on the sample studied), it is important to note that such 

discrepancies can impact the allocation of resources, assessment of safety-

risks, and decision making. 

 

2. The crash frequency and severity predictions from the 2020 FRA APS models 

may be questionable as crash and severity predictions differed depending on 

the sample datasets used. 

 

3. While the coefficients of estimated parameters of the crash frequency and 

severity prediction models were not statistically significantly different, the 

crash and severity models estimated using field-validated data exhibited a 

better fit. This implies more precise estimated model coefficients (smaller 

standard errors of estimated coefficients). 
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The following recommendations are made considering the findings to assist in 

raising the quality of the data on HRGCs inventory. 

 

1. There is a need for an in-depth review of the entire FRA HRGCs inventory 

database. A comprehensive study is needed to identify the sources of existing 

inconsistencies, inaccuracies, and missing data in the FRA inventory as a step 

toward completeness.  

 

2. The use of a corrected HRGCs inventory database in the 2020 FRA APS models 

will produce more reliable crash frequency and severity predictions. 

 

3. Utilizing a corrected HRGCs inventory database would result in better-fitted crash 

and severity models with more precise estimated coefficients. 

 

 

Managing inventory data and record-keeping is an arduous process that requires time, 

funding, and human resources. However, if more attention is paid to the accuracy of the 

data from the outset, the resulting predictive models and risk assessment will be more 

reliable and more useful for decisions regarding safety at HRGCs. 
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6.3 Research Limitations and Contribution 

 

There are several limitations of this research as discussed below.  

 

1. This research utilized inventory data specific to Nebraska, which may constrain 

the generalization of the research findings to the broader population of HRGCs 

across the United States due to differences in general topography as well as in 

motor vehicle drivers’ behaviors.  

 

2. The research relied on FRA crash data that met certain reporting thresholds, 

which could have led to underreporting. 

 

3. The field validated data elements were limited to physical HRGCs characteristics 

with dynamic characteristics (e.g., AADT, daily train traffic) unverified. 

 

4. The relatively small sample used for estimating the crash severity model 

consisted of only 83 crashes reported during 2007-2021.  

 

5. The crash frequency and severity models were estimated based on a criterion of 

having similar significant covariates, which may have resulted in the exclusion of 

important variables in the models and resulted in unknown degree of 

misspecification in the estimated models. 
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6.4 Future Research 

 

Some recommendations for future research are presented below.  

 

1. As 2020 FRA model was based on (2016-2020) data, validation of the crash and 

severity predictions can be performed once five years of crash data (2021-2025) 

become available in the future. 

 

2. Future study is needed to account for the effects of dynamic factors such as 

AADT, and train volume on crash and severity predictions. 

 

3. A cost-benefit analysis of validation of the HRGCs inventory data will ensure that 

the safety benefits of proposed research recommendations outweigh the costs.  

 

 

 

 

 

 

 

 

 

 

 



149 

 

6.5 Research Contributions  

The contributions of this research are listed below.  

 

1. Using field-validated HRGCs data, inaccuracies, errors, and missing values and 

patterns were identified in the FRA inventory data. 

 

2. Different crash frequencies and severity predictions were reported using the 2020 

APS model and the two inventory databases. 

 

3. Based on field-validated HRGCs inventory data, new crash and severity 

prediction models were estimated. This will provide guidelines to agencies and 

researchers for modeling crash and severity predictions based on complete 

datasets. 
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APPENDIX A U.S. DOT CROSSING INVENTORY FORM 
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APPENDIX B U.S. DOT CROSSING CRASH/INCIDENT FORM 
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INSTRUCTIONS FOR COMPLETING BLOCK 33 

Only if Types 1 - 6, Item 32 are indicated, mark in Block 33 the status of the warning devices at the 

crossing at the time of the accident, using the following codes: 

1. Provided minimum 20-second warning. 

2. Alleged warning time greater than 60 seconds. 

3. Alleged warning time less than 20 seconds. 

4. Alleged no warning. 

5. Confirmed warning time greater than 60 seconds. 

6. Confirmed warning time less than 20 seconds. 

7. Confirmed no warning. 

If status code 5, 6, or 7 was entered, also enter a letter code 

explanation from the list below: A. Insulated rail vehicle. 

B. Storm/lightning damage. 

C. Vandalism. 

D. No power/batteries dead. 

E. Devices down for repair. 

F. Devices out of service. 

G. Warning time greater than 60 seconds attributed to accident-involved train stopping short of the 

crossing, but within trackcircuit limits, while warning devices remain continuously active with no 

other in-motion train present. 

H. Warning time greater than 60 seconds attributed to track circuit failure (e.g., insulated rail joint or 

rail bonding failure, trackor ballast fouled, etc.). 

J. Warning time greater than 60 seconds attributed to other train/equipment within track circuit limits. 

K. Warning time less than 20 seconds attributed to signals timing out before train’s arrival at the 

crossing/island circuit. 

L. Warning time less than 20 seconds attributed to train operating counter to track circuit design 

direction. 

M. Warning time less than 20 seconds attributed to train speed in excess of track circuit’s design 

speed. 

N. Warning time less than 20 seconds attributed to signal system’s failure to detect train approach. 

P. Warning time less than 20 seconds attributed to violation of special train operating instructions. 

R. No warning attributed to signal system’s failure to detect the train. 

S. Other cause(s). Explain in Narrative Description. 
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FORM FRA F 6180.57 (Rev. 08/10) OMB approved 7/30/2022, Approval expires 07/31/2023 

 

 

 

 

This collection of information is mandatory under 49 CFR 225 and is used by FRA to monitor 

national rail safety. Public reporting burden is estimated to average 2 hours per response, 

including the time for reviewing instructions, searching existing databases, gathering, and 

maintaining the data needed, and completing and reviewing the collection of information.  The 

information collected is a matter of public record, and no confidentiality is promised to any 

respondent.  Please note that an agency may not conduct or sponsor, and a person is not 

required to respond to a collection of information unless it displays a currently valid OMB control 

number. The OMB control number for this collection is 2130-0500. 
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