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Abstract 
Accurate and timely flood prediction can reduce the risk of flooding, bolster pre-
paredness, and help build resilience. In this study, we have developed a flood fore-
casting system prototype and checked its potential for carrying out operational 
flood forecasting in the state of Nebraska. This system builds upon some of the 
core components of the Iowa Flood Information System (IFIS), which is a state-of-
the-art platform widely recognized around the world. We implemented our plat-
form on a pilot basin in Nebraska (Elkhorn River basin) by installing eight stream 
sensors and setting up the hydrologic model component of IFIS, i.e., the Hillslope 
Link Model (HLM). Due to their importance in the Midwest, we particularly em-
phasized the snow processes and developed an improved HLM model that can ac-
count for different aspects of snow (rain-snow-partitioning, snowmelt, and snow 
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accumulation) through simple parameterizations. Results show that the more thor-
ough treatment of snow processes in the hydrologic model, as proposed herein, 
leads to better flood peak simulations. In this paper, we discuss different steps in-
volved in developing the flood forecasting system prototype, along with the associ-
ated challenges and opportunities. 

Keywords: Flood forecasting, Snow hydrology, IFIS, HLM, Bridge vulnerability    

1. Introduction 

The Midwestern United States region shows substantial spatial hetero-
geneity in flood peaks with discrete seasonality (Villarini et al., 2011). 
Nebraska has distinct hydrologic and hydroclimatic characteristics, 
which show sharp seasonal peaks in flood frequencies. One remark-
able feature of The Great Plains of Nebraska is the maximum summer 
rainfall (Zhang et al., 2001). The storms originating from the Rocky 
Mountains and traveling across Midwest and causing heavy precip-
itation, mainly from May to July over Nebraska, are responsible for 
some of the major floods in the Great Plains of Nebraska (Villarini et 
al., 2011). Flood peaks associated with these storms have a significant 
influence on the upper tail of the flood peak distribution of Nebraska 
(Villarini et al., 2011). 

1.1. Major floods, their drivers, and impacts in Nebraska 

Mesoscale convective system (MCSs) storms play an important role in 
Nebraska’s climatology, and they lead to a sharp seasonal flood peak in 
the region during late June of the year (Budikova et al., 2010; Chang-
non and Kunkel, 2006; Junker et al., 1999). These storms caused the 
disastrous flood in 1993 in Midwest, significantly impacting Nebraska 
(Kunkel et al., 1994). A similar anomalous total rainfall of 400mm, 
along with high surface soil moisture and antecedent conditions, re-
sulted in the flood of 2008 and massive damage worth more than two 
million dollars (Budikova et al., 2010; Xiao et al., 2013). The United 
States Geological Survey (USGS) has characterized both the 1993 and 
2008 floods in the Midwest as “500-year floods” (Dirmeyer and Kinter, 
2009). There is also a link between the tornadic system of thunder-
storms and the climatology of floods in the Great Plains of Nebraska 
(Zhang et al., 2001). Zhang et al. (2001) showed these characteristics 
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through a study of heavy floods in Pebble and Maple Creeks because 
of storms that occurred in late June and early August of 1996. Re-
cently in 2019, eastern Nebraska, western Iowa, and southeastern 
South Dakota got shallow temperatures and a historic high snowfall 
during the early days of the year, resulting in a large amount of SWE 
of 30–100 mm by March (Flanagan et al., 2019). During the same pe-
riod, this region had frozen rivers and ground with 60–90 mm frost 
depth, preventing the usual infiltration (Flanagan et al., 2019). These 
conditions, combined with the record-breaking storm causing rain-
on-snow events and rapid melting of snow, produced excessive runoff 
and overwhelmed the rivers and streams in the region (Flanagan et 
al., 2019). As of August 2019 estimates, this flooding cost has reached 
more than three billion dollars (Flanagan et al., 2019). These major 
flood events call for an efficient flood monitoring system for the state 
to mitigate the impacts of such disasters in the future. 

1.2. Existing flood monitoring efforts in Nebraska 

Currently, the Nebraska Department of Natural Resources (NeDNR) and 
the U.S. Army Corps of Engineers (USACE) monitor the incoming pre-
cipitations, carry out hydrologic modeling, and examine the variations 
in streamflow (NeDNR, 2022). NeDNR provides information regard-
ing present flood conditions in Nebraska through various flood maps 
(NeDNR, 2022). NeDNR’s Floodplain Interactive Map is an interactive 
interface that dispenses knowledge about floodplains and management 
(Interactive Maps Department of Natural Nebraska Department of Nat-
ural Resources, 2022). It runs with the support of resources like Federal 
Emergency Management Agency (FEMA) National Flood Hazard Layer 
data (NHFL), constituting the present-day flood data for the entire 
United States (FEMA, 2022). Besides FEMA-NFHL, NeDNR utilizes the 
service of USGS real-time flows and NOAA flood stage maps to monitor 
flood conditions in Nebraska (NOAA, 2022). NeDNR takes care of flood 
hazard mitigation in the state to reduce the risk and severity caused by 
flooding (NeDNR, 2022). Besides NeDNR, other agencies such as US-
ACE, FEMA, Nebraska Emergency Management Agency (NEMA), Ne-
braska Department of Transportation (NDOT), and National Flood In-
surance Program (NFIP) help in developing and interpreting flood and 
flood plain data as a part of their Floodplain Management Services 
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(NeDNR, 2022). National Weather Service (NWS) Advanced Hydro-
logic Prediction Services provides stream forecasts at certain locations 
in Nebraska (NOAA, 2022). Moreover, the state makes use of the Na-
tional Water Model (NWM) forecasts of streamflow at around 4000 lo-
cations in the continental United States (CONUS) and guides millions of 
sites that lack traditional stream forecasts (Office of Water Prediction, 
2022). National Center for Atmospheric Research’s (NCAR) Weather 
Research and Forecasting hydrologic model (WRF-Hydro) is the core 
model behind NWM (Gochis et al., 2020). Over the CONUS, the short-
range streamflow forecasts of NWM are available every hour (Maid-
ment and Dugger, 2016). 

Even though there are existing resources for flood-related assess-
ments, the state of Nebraska will benefit significantly from the devel-
opment of a state-of-the-art system to enable seamless flood monitor-
ing and forecasting. This will address some of the shortcomings of the 
existing resources. For example, increasing forecast lead and reduc-
ing forecast uncertainty are two pressing needs to provide accurate 
and timely warnings to the community. Also, many flood forecasting 
systems operate on a continental scale, where the underlying rainfall-
runoff models generally work with a larger spatial resolution. This fac-
tor can compromise the accuracy of flood prediction locally. Besides, 
many of the underlying models of the regional hydrologic monitoring 
systems in Nebraska do not consider snow processes, while the runoff 
generation in Midwestern basins is highly affected by snow accumu-
lation (Bradley et al., 2013; Flyr et al., 2013; HDR Engineering, 2013). 
This often leads to an inaccurate flood prediction. 

1.3. Applicability of the Iowa Flood Information System (IFIS) proto-
type in Nebraska 

There exist several state-of-the-art flood forecasting systems around 
the world. Table 1 provides details of some well-known operational 
flood forecasting systems. The details are taken from Emerton et 
al. (2016) and Kauffeldt et al. (2016). Many of these models include 
snow parameterizations. For instance, the WRF-Hydro model uses 
snowpack and frozen ground parameterizations based on Koren et 
al. (1999), which was later modified to incorporate the effects of can-
opy processes (Gochis et al., 2020; Niu and Yang, 2004). Similarly, 
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the variable infiltration capacity (VIC) model uses parameterizations 
equivalent to that proposed by (Anderson, 1968)to simulate snow ac-
cumulation and snowmelt (Liang et al., 1994). However, the flood fore-
casting systems using these models often lack focus on community-
level flood information and run on larger grid scales that might not 
coincide with the actual local-scale physical process. IFIS addresses 
these aspects of flood forecasting along with resolving several flood-
related challenges. 

IFIS is a web platform that provides facts and figures of real-time 
flood conditions, flood-related data, visualizations, flood forecasts, 
etc., for more than a thousand communities in Iowa (Krajewski et 
al., 2017). After the disastrous flood of 2008, the Iowa Flood Center 
(IFC) was established with one of the key goals of developing hydro-
logic models and real-time flood forecasting tools for better predic-
tions and information about floods (Krajewski et al., 2017). IFC de-
veloped a high-resolution streamflow forecasting system for Iowa 
state that works based on Hillslope Link Model (HLM) and could 
make predictions every 15 min for nearly 2000 locations (Krajew-
ski et al., 2017). Later, IFC developed the IFIS, a web-based plat-
form to provide real-time flood information to the communities of 
Iowa. IFIS’s operation is supported by a conceptual rainfall-runoff 
model HLM (Mantilla et al., 2022; Quintero et al., 2016, 2020b). This 
model consists of multiple Ordinary Differential Equations (ODEs) 
in a tree-structured format, representing the water flow and balance 
in each hillslope (Small et al., 2013). IFIS provides services that in-
clude flood inundation maps, real-time flood conditions, flood fore-
casts, flood-related data, applications, information, and visualiza-
tions (Demir and Krajewski, 2013).   

A critical strength of the IFIS system is real-time flood estima-
tions. IFIS calculates rainfall accumulations products at 5-min, daily, 
and two-week intervals (Krajewski et al., 2017). This enables IFIS to 
deliver flood information and alerts almost instantly. Compared to 
many other operational real-time flood forecasting systems, this is a 
remarkable feature, as given in Table 1. IFIS system runs the model 
at a higher resolution (hillslope scale of size 0.1 km2) compared to the 
flood forecasting systems in Table 1, and it provides risk estimates in a 
community-oriented way (IFC, 2022; Mantilla et al., 2022). HLM, the 
underlying model of the IFIS system, has been used in various studies, 
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demonstrating the strength of the model. El Saadani et al. (2017) show 
that the non-linear routing method used in HLM performs better than 
the routing in Routing Application for Parallel Computation of Dis-
charge (RAPID) which uses a Muskingum-based method. Quintero et 
al. (2020a) use HLM-based simulations to develop a flood potential 
index for Iowa. HLM has undergone several previous modifications to 
improve performance (Mantilla et al., 2022). 

Presently, there is a potential for improvement in the represen-
tation of snow processes in HLM. Although the model can receive 
snow forcing, it does not have any parameterizations to estimate SWE, 
snowmelt, or frozen ground. This absence of snow parameterization 
is speculated as the main reason for IFIS’s failure in the prediction 
of the historic spring flood that occurred in 2019 across the states of 
Iowa, Nebraska, and South Dakota. Snow could play a substantial role 
in the hydrology of catchments in the Midwest. This region receives 
significant snow during the winter (Suriano, 2022). Snow accumula-
tion heavily affects runoff generation in the Midwest (Suriano, 2022). 
Therefore, incorporating snow processes in flood prediction models 
in the Midwestern region, including Nebraska, is crucial. 

Through this work, we are trying to improve the HLM by introduc-
ing snow processes in the model structure. We modified the existing 
design by adding a new storage layer holding snow water equivalent 
(SWE). This new parameterization encompasses a simple degree day 
factor model (Martinec, 1975) for estimating meltwater. We introduced 
different rain-snow portioning schemes into the system and evaluated 
the performance of HLM. We also refined the present parameteriza-
tions to account for the occurrence of frozen ground and its effect in 
assessing streamflow. After successfully testing the parameterization, 
we implemented the upgraded model for a pilot basin in Nebraska to 
show the potential of an operational flood forecasting system for the 
state. To support our case, similar to the IFC, we installed streamflow 
gauging stations across the pilot basin where we can collect data and 
assimilate it into the model. We also developed a simple web interface 
showing simulated hydrographs anywhere in the basin. 

This article discusses the materials and methods required for im-
plementing an improved HLM model in a pilot basin in Nebraska, in-
cluding the improved model equations with snow parameterization. 
Then we show the results obtained, followed by some discussion about 
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possible amendments and challenges related to an operational flood 
forecasting system. Finally, we finish the article by concluding with 
remarks from this work. 

2. Materials and methods 

2.1. Data 

In this study, for the preliminary validation of the proposed param-
eterization of the snow process, which is newly added to the HLM 
structure, we used North American Land Data Assimilation System 
(NLDAS-2) precipitation, potential evapotranspiration, and tempera-
ture forcing from 2015 to 2020 (Mitchell et al., 2004; Xia et al., 2012). 
We used precipitation and temperature (aggregated into a daily res-
olution) for two different locations in Nebraska for the initial valida-
tion of modified model equations. The hourly temperature aggregated 
for the Elkhorn basin (Fig. 1) was used in HLM simulations. We pro-
vided monthly aggregated potential evapotranspiration, as a lower 
frequency does not significantly improve the results. 

Fig. 1. The Elkhorn River basin and discharge measurement locations. The inset map 
shows the location of the basin in the CONUS. S1-8 are the new sensor locations. 
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For validating the proposed snow parameterization, we acquired 
SWE data of Daily 4 km Gridded SWE and Snow Depth from Assimi-
lated In- Situ and Modeled Data over the Conterminous U.S., Version 1 
(Broxton et al., 2019; Zeng et al., 2018) from the National Snow and 
Ice Data Center (NSIDC). This data provides daily SWE and snow 
depth at a spatial resolution of 4km × 4km for the conterminous 
United States (CONUS). We collected the SWE data for the same pe-
riod as the simulation (2015–2020) and resampled it to the resolution 
of NLDAS-2 forcing data using linear interpolation. 

We use Multi-Radar Multi-Sensor Quantitative Precipitation Esti-
mate (MRMS-QPE) for precipitation forcing to the HLM model-based 
flood forecasts. MRMS QPE products have an update cycle of as low 
as 2 minutes and a latency of around 1.5 hours, making them suitable 
for operational flood forecasting systems (Zhang et al., 2016). MRMS 
system incorporates data from about 180 radars and almost 7000 rain 
gauges at an hourly scale to correct the biases in radar data. Many op-
erational flood forecasting systems in the eastern U.S. utilizes MRMS 
QPE products to monitor flood conditions (Zhang et al., 2016). 

We use the observed data obtained from USGS stations to evalu-
ate the model’s performance. There are eight USGS stations in the 
Elkhorn River basin for which we have hourly discharge data. Al-
though there is a gap in many of the discharge data during the win-
ter period, these were filled with estimated values by USGS (Kim-
brough et al., 2006; USGS, 2023). We also use the USGS observed 
data to update the river stages in our retrospective flood forecast-
ing model for 2019. 

The IFC has advanced streamflow gauging sensors, which auto-
matically collect the stream level data and transfer it to IFIS every 15 
minutes. This data can be later assimilated into the flood modeling 
system to correct the river flow estimates. We have installed eight 
sensors across the Elkhorn River basin, which are already functional. 
These sensors, mounted to the bridge side, emit sonar signals toward 
the stream to measure the distance from the sensor to the water level. 
Fig. 1 shows the locations of sensors we installed across the Elkhorn 
River basin. These locations were decided based on field visits and GIS 
analysis, where we tried to cover streams of different orders. 

IFC creates an ensemble of rating curves to account for the uncer-
tainty of channel roughness and energy surface slope. A set of 100 
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combinations for slope and Manning’s values sampled uniformly over 
their feasible ranges was selected. Each set of combinations gives a 
different rating curve. The resulting ensemble of equally likely rating 
curves can be described using quantiles that represent uncertainty 
through the range of variation of discharge and stage. The represen-
tation of ratings is presented in the form of the 50% (median), 5%, 
and 95% quantiles. 

Topographic and hydrologic information was provided by the Ne-
braska Department of Transportation (NDOT). Supplementary Fig. 1 
shows, in green, the cross sections surveyed for each site, and Sup-
plementary Table 1 shows the hydrologic data used to set up a steady 
flow model. Downstream boundary conditions were based on a nor-
mal depth assumption using an energy surface slope estimated from 
the bottom of the channel profile captured in the survey data near the 
downstream study limit. Manning’s coefficient range was set to be-
tween 0.03 and 0.045, which is used in the channel sections of the 
step-backwater HECRAS model. The selected range is supported by the 
experience of previous projects and the literature (Barnes, 1969; Gilles 
et al., 2012; Quintero et al., 2021). For the floodplain, we used the Ne-
braska land use data map - 2015 produced by the NeDNR (NeDNR, 
2022) to assign roughness values that were selected based on typical 
values provided by the HEC-RAS Hydraulic Reference Manual Version 
4.1 (Chow, 1959; French, 1985; U.S. Army Corps of Engineers, 2010) 
(Supplementary Fig. 2). A summary of datasets used in this study is 
given in Table 2. 

2.2. Hillslope Link Model (HLM) 

The current operational real-time flood monitoring system relies on 
HLM (Mantilla et al., 2022). This conceptual model employs the quint-
essential leaky bucket perception of a watershed. HLM divides the en-
tire watershed into a large number of individual hillslopes. Each hill-
slope has multiple water storage layers where water from each layer 
flows to the subsequent layer below as well as to the stream, based 
on parameterizations relevant to the processes. A schematic repre-
sentation of this parameterization (HLM-NoSnow) is given in Fig. 
2a. Equation (1), 2&3 represents a change of storage with respect to 
time in each layer of a hillslope. The change in each layer equals the 
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difference between the incoming and outgoing water flux. Equation 
(1) represents the change in storage in the ponding (top) layer, where 
the incoming flux is precipitation (P(t)), and outgoing fluxes are infil-
tration (qpT), surface runoff (qpL), and evaporation from surface (ep). 
For the second layer, represented by Equation (2), the incoming flux 
is infiltration, and outgoing fluxes are deep percolation (qTs) and evap-
oration from the second layer (eT). Similarly, for third layer, the in-
coming flux is deep percolation, and outgoing fluxes are subsurface 
runoff (qsL) and evaporation from the third layer (es), as represented 
by Equation (3). The hillslopes are connected in a tree-structured for-
mat where water from each hillslope adds up and contributes to the 
streamflow. This results in a massive system of ODEs linked as a tree 
structure. Solving this system of ODEs provides outputs of desired 
variables such as streamflow. 

dSp
  = P(t) – qpL – qpT – ep                                                          

(1) 
                                  dt

dST  = qpT – qTs – eT                                                                           
(2) 

                                  dt

dSs
  = qTs – qsL – es                                                                            

(3) 
                                  dt

Fig. 2. Schematic representation of different models in HLM. This study introduces 
the HLM-PSnow. 
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2.3. Improvements to the HLM model 

We introduce an updated conceptual model structure for HLM by in-
cluding snow processes (HLM-PSnow), as shown in Fig. 2b. In this up-
date, there are two major components we added to the system 1) rain-
snow partitioning (RSP) schemes and 2) a new storage layer of SWE. 
This study compares the two models (previous and updated) and re-
ports the results. 

We considered the option of using different rain-snow partitioning 
of the incoming precipitation. This precipitation provided as forcing is 
divided into snow and rainfall based on three different RSP schemes. 
These schemes are shown in Fig. 3. The first RSP scheme is premised 
on a base temperature (Tb). If the temperature exceeds Tb, all pre-
cipitation is considered rainfall and, otherwise, snow. The base tem-
perature (Tb) should be calibrated to find the optimum performance. 
The second RSP scheme is characterized by representing snow frac-
tion (fraction of snow in the incoming total precipitation) as a linear 
stepwise function of the air temperature (Jordan, 1991). The third RSP 
scheme is based on that proposed by Wang et al. (2019), where snow 
fraction is obtained following a sigmoid function of wet bulb temper-
ature. In this scheme, the parsimony of the model is compromised 
compared to earlier versions, as the implementation of this scheme 
requires an additional input of relative humidity. 

Fig. 3. Rain-snow partitioning (RSP) schemes used in the new modeling framework.



Koya  et  al .  in  Environmental  Modell ing  and  Software  164  (2023)        14

The SWE storage layer (Ssnow) is conceptually located above the 
ponding layer (Sp). This new layer stores the accumulated snow, and 
the change in SWE with respect to time is given by the addition of 
new snow and subtraction of outgoing melt water and snow evapora-
tion, as represented using Equation (4). The amount of meltwater is 
calculated using a simple degree day factor (DDF) model (Martinec, 
1975) as described in Equation (5), where D (mm°Cd–1) is the degree 
day factor. The amount of meltwater cannot be greater than the ex-
isting SWE. Therefore, the minimum of meltwater and SWE is taken. 
After portioning the total precipitation into rainfall (Prain) and snow 
(Psnow), the amount of snow is added to this layer, and rain is directly 
entered into the ponding layer. The ponding layer will have an addi-
tional meltwater component from the snow accumulation layer above 
it. As a result, the equation representing the ponding layer looks like 
Equation (6). For subsequent layers, there are no changes. Therefore, 
the equations remain the same as that of the earlier version. With the 
new snow layer implementation, the HLM can now simulate SWE as 
a new output variable which can be used to study further the role of 
snow in the hydrology and water resources of the region. We should 
note that a previous update in the HLM considered including SWE as 
an external forcing (Velasquez et al., in review). 

dSSWE  = Psnow – qmelt,p – esnow                                                    (4)                                    dt

qmelt,p = min(D ⋅ T(t), SSWE)                                (5) 

dSp  = Prain – qpL – qpT + qmelt,p – ep                                      (6)
 

                                   dt

2.4. Implementation of the improved IFIS system prototype 

In this study, we found that the absence of snow processes in the mod-
eling framework shortens the ability of HLM to predict streamflow 
efficiently, especially in the Midwest, where snow plays a vital role 
in the water cycle. We introduce a new simple parameterization, as 
discussed in Section 2.3. The methodology followed to implement the 
prototype flood forecasting system with the new parameterization is 
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shown in Fig. 4. Initially, we tested this new set of ODEs using MAT-
LAB ODE solvers. By writing a prototype code representing the vertical 
water flow in a single hillslope and solving the ODEs, we could obtain 
preliminary results of patterns of water in each storage layer, includ-
ing SWE from the newly added layer. This allowed a proof-of-concept 
on whether the new parameterization could be representative of the 
actual process before altering the source code. Once tested success-
fully, we updated the model source code by adding this improved HLM 
structure as a new model inside the numerical solver toolbox for HLM 
differential equations. Additional forcing of temperature can be pro-
vided in the format of regular storm files, binary storm files, or uni-
form storm files. When the updated source code was ready, we set up 
and compiled these source codes in Crane, a High-Performance Com-
puter of Holland Computing Center at the University of Nebraska-Lin-
coln. The required forcings are made available in Crane. In HLM, the 
inputs can be provided in several formats, including ASCII text files 
(e.g., .str, .ustr, and .mon files), databases (e.g., PostgreSQL database), 

Fig. 4. Flow chart showing the implementation of the Prototype flood forecasting 
system. 
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and binary files. In our case, precipitation files are stored in binary 
format, whereas temperature recordings are aggregated for the basin 
and provided through uniform storm (.ustr) files. Then we manually 
tuned the parameters to obtain the realistic runoff from the model 
and compared them with observed USGS discharge measurements. 
Next, we created a PostgreSQL (Stonebraker and Rowe, 1986) data-
base to insert observed discharge measurements from USGS stations 
and the newly installed sensors. This PostgreSQL database aids the 
smooth assimilation of sensor measurements into HLM. We can add 
the real-time measurements into this database and update the model 
simulated river discharges instantly. 

To convert the stream level data measured by new sensors into 
streamflow data, we developed rating curves. The IFC developed a 
methodology to obtain a stage-discharge relationship using the step-
back water model with the Hydrologic Engineer Center’s River Anal-
ysis System (HEC-RAS) (Quintero et al., 2021). We set up one-dimen-
sional (1D) hydraulic models for every location where sensors are 
installed to obtain a stage-discharge relationship (Supplementary Fig. 
1). Rating curves are subject to multiple sources of uncertainty. In par-
ticular, synthetic curves developed with hydraulic models are sensi-
tive to the characterization of the channel geometry (e.g., the num-
ber of cross sections and the spacing between them, bottom slope, 
and discretization of the finite-element mesh, among others) as well 
as model parameters (e.g., Manning’s roughness coefficient) of the 
channel (Quintero et al., 2021). The uncertainty for Manning’s rough-
ness coefficient is not available because this parameter is not directly 
measured but assessed through a visual comparison of previous stud-
ies (Arcement and Schneider, 1984). Despite extensive efforts to de-
termine channel roughness, its estimation continues to be subjective 
and can lead, even for common situations, to errors as high as 30% 
(Bray, 1979).   

We downloaded the MRMS data from the archives of Iowa Envi-
ronmental MESONET of Iowa State University. These files were ini-
tially in GRIB format, which we later cropped for the Elkhorn region 
and converted to binary file format in Holland Computing Center HPC. 
These binary files are the fastest way for the model to read the forc-
ing data. Since in this work we intend to show the potential of a flood 
forecasting system for Nebraska through a retrospective analysis, we 
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forced the model for a time period of 2018 and 2019. Of this, 2018 is 
considered a spin-up time for the model. We saved the model “snap-
shot” at the end of 2018 (HLM provides the option of saving the model 
stages at any time-step as a .rec file) and provided it as an initial con-
dition for the 2019 simulation. We also set up a PostgreSQL database 
consisting of observed streamflow measurements from USGS, from 
which we regularly update the model streamflow stages. This process 
automatically replaces the model-produced values with observed val-
ues at these locations. 

The HLM works based on a system of ordinary differential equa-
tions arranged in a tree topology structure, as discussed in section 
2.2. The computation of solutions for this system of ODEs is achieved 
using the asynchronous (ASYNCH) software package created by IFC 
(Small et al., 2013). The primary application of ASYNCH solvers is 
finding solutions for distributed hydrologic models of catchments. 
ASYNCH uses dense output Runge-Kutta methods to solve the equa-
tions at each hillslope. The input forcing, such as precipitation, poten-
tial evapotranspiration, and temperature, can be transferred through 
several file formats as well as taken from a Structured Query Lan-
guage (SQL) database. Similarly, we can produce outputs in different 
formats and display and use them for studies. 

In the present world, web interfaces are the most viable way of pro-
viding information to the public. We developed a simple web inter-
face (code available in GitHub repository) that shows the stream net-
work map of the Elkhorn basin, where the user can click anywhere, 
and the hydrograph at that location will be displayed. This web inter-
face is developed using python with dash and plotly libraries (Plotly 
Technologies Inc., 2015). We use Mapbox tools to develop a basemap 
for this web interface. Fig. 5 shows the screenshot of the web inter-
face. It is essential to note that this interface is a part of our prototype 
flood forecasting system and a preliminary version to set the ground 
for improvisation. 

2.5. Bridge vulnerability 

For the eight newly installed sensor locations, we estimated the vul-
nerability of bridges to flood peril. Two critical factors on which the 
bridge vulnerability depends are the time-to-peak at these locations 
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and the elevation of bridges from the bottom of the river. The higher 
the time-to-peak, the lower the vulnerability, and the higher the ele-
vation of bridges, the lower the vulnerability. The time-to-peak val-
ues are calculated by ingesting the model with an arbitrary constant 
rainfall across the basin. This was realized with the uniform storm 
files (.ustr) type of forcing in HLM. Then we obtained the streamflow 
at these locations produced by the model and the time difference be-
tween the peak flow and centroid of the storm, which gives time-to-
peak. The elevation of bridges from the bottom of the river was al-
ready measured during their installation. Once these two quantities 
were obtained, simply plotting one across another would give a sense 
of the vulnerability of bridges to flood peril. 

3. Results 

From the prototype system of ODEs created in MATLAB for initial vali-
dation, with an additional storage layer for snow, we obtained the sim-
ulated SWE. Supplementary Fig. 3 shows the comparison of simulated 
SWE with that of observed values from NSIDC data. We compared this 

Fig. 5. Screenshot of web interface showing the flow rates across the Elkhorn basin.   
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for two different locations in Nebraska. Initial results were satisfac-
tory, as the output from the new storage layer could pick up the SWE 
patterns well. Supplementary Fig. 3b shows that the model produced 
similar values for the Norfolk region in 2019 and 2020. However, 
since these were preliminary results from a single grid data, it does 
not represent the connection between different hillslopes as in HLM. 

We simulated the hydrographs for 2019, as the historic flood dur-
ing March is our point of interest (Flanagan et al., 2019), using the 
currently used HLM and a new version of the model, including the 
snow parameterization. We compared both hydrographs with the ob-
served hydrographs at five locations across the Elkhorn basin. The re-
sults suggest that the HLM with Snow parameterization outperforms 
the current version of HLM in predicting the peak flow in the Mid-
west during March 2019. Fig. 6 shows that the HLM without snow 
could not capture the peak flow at any seven stations. In contrast, 
the hydrographs from the model with snow parameterization show 
peaks corresponding to observed peaks. This implies that snow pro-
cesses majorly drove the flooding in March 2019. Supplementary Fig. 
5 shows the model-simulated streamflow after assimilating the USGS 
data (note that we could not use streamflow measurements from the 
newly installed sensors because they were not available at the time of 
the 2019 Spring flood event). 

Fig. 7 shows the plot between the time to peak and bridge eleva-
tion, illustrating the different exposure levels of eight bridges across 
the Elkhorn River basin. The higher the time-to-peak, the lower the 
vulnerability, and the higher the elevation of bridges, the lower the 
vulnerability. Therefore, the vulnerability increases as we move closer 
to the plot’s origin. We can see that bridge near Stuart, NE, is the most 
vulnerable to flood disasters, whereas the bridge near Norfolk, NE, is 
the least vulnerable. The bridge vulnerability study demonstrates a 
practical application of HLM. We can use this model to assess bridge 
vulnerability for any point in the river network, given the height of 
the bridge, highlighting its application of the model in the transpor-
tation sector. 

Fig. 8 shows the results of synthetic rating curves obtained with 
the hydraulic model for each site. The solid black line and the gray 
area around it show the median and the 5% and 95% quantiles of the 
uncertainty range based on the 100 rating curves using the model. 
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4. Discussion 

This study investigated the potential of a real-time flood forecasting 
system for Nebraska by implementing a prototype on the Elkhorn 
River basin. We used the hydrologic model (HLM) of the IFIS system 
and enhanced it to account for snow processes. Our results demon-
strate how a simple conceptual modification in the model can sig-
nificantly improve its performance, which is also supported by the 
literature (Mai et al., 2022; Roy et al., 2017a). In Nebraska, snow 
processes produce the major portion of runoff (Barnett et al., 2005). 
A recent flood in 2019 showed the importance of snow-generated 

Fig. 6. Simulated hydrographs from HLM with and without snow at USGS stations in 
the Elkhorn River. The forcings used (precipitation and temperature) are on the top. 
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runoff in the occurrence of peak flows (Flanagan et al., 2019). By in-
cluding snow parameterizations, HLM could more realistically sim-
ulate the hydrology of snow processes, thus improving its peak flow 
prediction performance. We implemented the HLM source codes on 
the University of Nebraska-Lincoln’s high-performance computer. 
This flood forecasting framework can be expanded to a larger re-
gion, including snow-dominated areas, with minimal requirements 
for forcing data. Since the HLM conducts simulations by solving 
ODEs at the hillslope scale, which corresponds to the actual hydro-
logic processes, it can provide discharge estimates at any stream lo-
cation (though the accuracy of the first few orders of streams can be 
low, as seen in Fig. 6). The decomposition of hillslope links from the 
DEM of a region can be done easily with the help of openly available 
tools (GitHub, 2023). A major strength of HLM, making it suitable 
for flood forecasting, is that it is less susceptible to the spatial vari-
ability of parameters (Mantilla et al., 2022). The error associated 
with each hillslope simulation gets canceled as it travels from lower 
to higher orders of streams, a hypothesis proven by Mandapaka et 

Fig. 7. Different exposure levels of the eight bridges across the Elkhorn basin. The 
larger the circle, the larger the vulnerability of the bridge.



Koya  et  al .  in  Environmental  Modell ing  and  Software  164  (2023)        22

al. (2009). While HLM can serve as a hydrologic model to simulate 
river discharge, it requires further work to transform it into an op-
erational real-time flood forecasting system. 

An operational flood forecasting system should include collecting 
and inputting the most recent forcing data (such as precipitation and 
temperature depending on the model used), solving the model across 

Fig. 8. Synthetic Rating Curves at new sensor locations.
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multiple basins, assimilating the observed discharge data (and poten-
tially other variables) from sensors, and timely updating a user in-
terface to disseminate the flood information to the stakeholders. The 
most critical and challenging task is to make all these components run 
simultaneously and seamlessly in an automatic manner. 

It is crucial to integrate real-time forcing data with the maximum 
possible lead time. There are several potential candidates for this. For 
example, Multi-Radar/Multi-Sensor Quantitative Precipitation Esti-
mation (MRMS-QPE) rainfall products are useful to ensure lower la-
tency, which means that we can predict an imminent flood well ahead 
of time, thereby providing effective early warning. Satellite-based pre-
cipitation estimates can also be used for near-real-time streamflow 
monitoring (Roy et al., 2017b, 2017c, 2020). Numerical precipitation 
forecasts, such as Global Forecasting Systems (GFS), are useful for 
forecasting streamflow ahead of time. Streamflow information from 
upstream can be used to predict streamflow with lead time down-
stream. Furthermore, time series modeling of streamflow can help 
generate forecasts with lead. 

The IFC uses NEXRAD radar-based rainfall accumulation data, pro-
cessed every 5 minutes from 7 radars covering Iowa (Krajewski et al., 
2013; Seo and Krajewski, 2015). Every 15 minutes, they pull the rain-
fall estimates (up to the forecast issuance time) to produce a stream-
flow forecast for up to 10 days. One of the ways to potentially improve 
forecast skills would be through the use of robust quantitative precipi-
tation forecasts (QPF). The efficiency of the QPF method used for flood 
forecasting is critical, as the error in QPF would propagate to flow 
predictions. In IFC, exploring the potential of QPF methods is an on-
going activity (Krajewski et al., 2017). We could also implement time 
series modeling (using statistical and machine learning methods) to 
estimate streamflow. In any case, it is important that the forecast er-
rors and uncertainties are thoroughly analyzed and their sources are 
detected and addressed as necessary.   

The flood forecasting system we worked on is based on HLM simu-
lations and streamflow observations. We could leverage data and re-
sources from a variety of sources (e.g., NWS, USGS, USACE, NOAA) 
and integrate them into the proposed system. This would enable us 
to disseminate several layers of information. We can add open-flow 
modeling to provide 3D flood inundation views at several locations 
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across the state, which would assist in efficient communication with 
the public. This will require the collection and processing of bathym-
etry data of the channels. Inundation maps can be generated focusing 
on the communities, and such maps can also assist National Flood In-
surance Program (NFIP). 

Establishing an operational flood forecasting system comes with 
multiple challenges. One among them is integrating all components 
of the flood forecasting system efficiently. This involves running the 
model, collecting and assimilating data, and circulating the informa-
tion. For such a task to accomplish, we need experts from the fields 
of hydrology, water resource engineering, computer science, and so-
cial science working together. While hydrologists and water resource 
engineers work on the modeling and conceptual sides of the system, 
computer scientists are necessary to aid them in terms of data man-
agement, utilizing high-performance computing resources, and web 
interface. Social scientists can add different dimensions of the com-
munity and efficiently gather stakeholder feedback. In Nebraska, we 
can utilize the Holland Computing Center (HCC) at the University of 
Nebraska-Lincoln for computational resources. 

Another big challenge in setting up an operational flood forecast-
ing system is the calibration of the model across all basins in the state. 
The HLM currently does not have an automatic calibration scheme. To 
calibrate the model, we have to identify sensitive parameters based 
on experience in model runs and manually tune the parameters to 
give the best results. This process is supported by knowledge about 
the catchment properties. Manually calibrating the model is often te-
dious because it involves several trial-and-error simulations, as there 
can be many combinations with few sensitive parameters. One solu-
tion to this problem is to structure an automatic calibration frame-
work for HLM. The way HLM is set up (i.e., at every hillslope), it pro-
duces a large number of parameters for a given basin, which can 
be computationally way too expensive to tackle for the commonly 
used automatic calibration algorithms. However, parameter region-
alization techniques, where distributed model parameters are derived 
from other hydroclimatic and catchment features, can be useful in 
this regard. 

In addition to the abovementioned challenges, we must continu-
ously monitor an operational flood forecasting system to maintain its 
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efficiency. Some of the undertakings necessary to achieve this are (1) 
frequent examinations of the sensors, (2) data management: check-
ing and filtering the data coming into the model, (3) bug identifica-
tion and fixing in the model source code, and (4) upkeeping the web 
interface. A dedicated team of experts is essential to accomplish these 
tasks. Along with that, we must constantly work to pursue the chal-
lenges of model uncertainties and how the uncertainty in hydrologic 
predictions can be communicated to decision makers and the general 
public, as proposed by 23 unsolved problems in hydrology (Blöschl et 
al., 2019). From a technical standpoint, it will be important to develop 
a system that translates the river stages obtained from model simula-
tions to estimated flood depths and extends. We could think of a Py-
thon library that includes all the necessary functions for information 
extraction. The IFC currently has a similar library, which can be im-
plemented for the Nebraska basins. This would help in the develop-
ment of the information system for efficient communication with the 
public through interactive maps and other visualizations. 

Water infrastructures, such as reservoirs and groundwater wells, 
can influence the hydrologic processes which affect the occurrence of 
floods (Dang et al., 2016). We have not looked into the role of water 
infrastructure in regulating floods in the region in this study. NeDNR, 
together with USACE, constructs various structures, such as dams and 
levees, to divert water away from areas that might cause more dam-
age (NeDNR, 2022). It would be interesting to study how these struc-
tures impact flood mitigation. 

5. Conclusions 

This article presents the methodology we followed to implement a 
flood forecasting system prototype for a pilot basin in Nebraska. We 
discuss the IFIS system and our improvements to its underlying hy-
drologic model (HLM) to include snow processes. We set up the com-
ponents of a flood forecasting system prototype which includes (1) 
sensors measuring stream level, (2) synthetic rating curves, (3) hydro-
logic model (upgraded HLM) with necessary inputs, (4) assimilation 
of the observed stream data into the model, and (5) web interface. We 
discuss the opportunities and challenges in developing a full-fledged 
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operational flood forecasting platform. Besides, we analyzed the vul-
nerability of eight bridges to flood peril based on a methodology that 
can be expanded to other bridges. 

Our results substantiate the fact that incorporating snow processes 
is crucial in flood forecasting in cold regions (e.g., Nebraska, in this 
case). This was evident in the simulation of the 2019 Spring flood, 
where accounting for snow processes improved the simulation of the 
peak flow. More specifically, the addition of our proposed snow pa-
rameterizations to the HLM showed significant improvement in pre-
dicting the 2019 March flood in the Elkhorn River basin as compared 
to the version of the model without snow parameterizations. Further-
more, our results also show that oftentimes simple improvements to 
the model structure can significantly improve the accuracy of a model. 
From a modeling perspective, HLM appears to be a strong candidate 
for the operational implementation of a flood monitoring and fore-
casting platform in the state of Nebraska. Findings from this work 
strongly support the idea of a statewide expansion of the platform 
and the development of an operational flood information system tar-
geting community welfare and engagement. A platform like this will 
also provide policymakers with accurate information and gainful facts 
about flooding in a timely manner, thereby enabling more informed 
decision-making. 
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