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Plant phenotyping has been recognized as a rapidly growing field of research due to the 

labor-intensive, destructive, and time-consuming nature of traditional phenotyping 

methods. These phenotyping bottlenecks can be addressed by advancements in image-

based phenotyping like RGB and hyperspectral imaging for the assessment of plant traits 

important for breeding purposes. This study aims (1) to characterize the physical and 

biochemical traits of wheat and corn plants using RGB and hyperspectral imaging in the 

greenhouse, and (2) to estimate leaf nitrogen (N), phosphorus (P), and potassium (K) 

content using hyperspectral imaging and an analytical spectral device (ASD 

spectrometer) and compare the performance from both datasets. Sixty wheat plants with 

24 genotypes and 72 corn plants (a single genotype) with four different treatment 

combinations were manually measured and imaging was performed at different growth 

stages. RGB and hyperspectral images were processed to extract plant projected area 

(pixel count) and spectral reflectance, respectively. Partial Least Squares Regression 

(PLSR), Random Forest (RF), and Support Vector Regression (SVR) models were built 

to estimate N, P, and K contents from image-generated hyperspectral data, and from the 

ASD spectrometer. The results showed higher correlation for leaf area with plant pixel 

count with R2 of 0.75 for wheat and R2 of 0.68 for corn plants. For wheat plants, N was 

predicted more accurately with hyperspectral image datasets with R2 of 0.69 but P and K 



 
 

prediction was higher with ASD data using the PLSR model. For hyperspectral image 

datasets of corn plants, N prediction was higher using PLSR modeling with R2 0.66 

whereas P and K prediction was higher using the RF model with R2 of 0.74 and 0.87 

respectively. For corn plants using data from ASD, N, P, and K were predicted high by 

using the RF model with R2 of 0.67,0.41, and 0.69 respectively. RGB and hyperspectral 

imaging would reduce the need for manual measurement and chemical analysis of leaf 

tissue, and the technique can be validated in other crops with different architectures for 

high-throughput macronutrient estimation. The findings from this study can help 

integrate various disciplines of science, including plant breeding, agronomy, computer 

vision, mathematics, and engineering, for crop improvement. 
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Chapter 1 Introduction 
Precision agriculture (PA), also known as digital agriculture, is the use of large data 

sources in combination with advanced crop and environmental analytical tools to assist 

farmers in adopting the right management strategies at the right rates, times, and places, 

to achieve both economic and environmental goals. In recent years, there has been 

increased global interest in PA as a potential step toward meeting an unprecedented 

demand to produce more high-quality food and energy sustainably. Agriculture provides 

humanity with food, feed, fibers, fuels, and raw materials for sheltering. However, 

agriculture's role must be balanced with environmental sustainability, climate change 

adaptation, and a growing human population. In this challenging agricultural context, 

crop growth and status must be monitored in various locations and environments with 

varying spatial and temporal resolutions. Near-real-time monitoring is required not only 

to respond to extreme events due to climate change, thereby minimizing their impact on 

the global food system (Wheeler & Von Braun, 2013), but also to optimize management 

practices sustainably by optimizing externalities (Areal et al., 2018). One of the PA 

technologies that allow growers to measure, evaluate, and visualize crop and soil health 

conditions at various stages of crop production conveniently and cost-effectively is 

remote sensing (RS).  

1.1 Components of remote sensing technology and its working mechanism   

Remote sensing is an important tool as it provides a non-destructive means of providing 

information from the local to the global scale in a systematic manner, allowing for the 

characterization of spatiotemporal variability within a given area. Extracting agricultural 

information from remote sensing involves instruments or a sensor mounted on a platform 
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such as a UAV (Unmanned Aerial Vehicle), aircraft, or satellite, and a probe that helps 

the acquisition of information about an object from distance. These sensors measure 

electromagnetic radiation of certain wavelengths that are either reflected or emitted by 

the target. Table 1.1 shows different components of remote sensing technology including 

sensors, platforms, and the software that is commonly used to process the acquired data. 

Similarly, among various applications of remote sensing technology, some of the 

agriculture applications are: plant phenotyping, land use monitoring, yield forecasting, 

precision farming and ecosystems services.  

Table 1.1. Different components of remote sensing technology (Shamshiri et al., 2017) 

Sensors, Camera Platforms Software applied 

RGB 

Hyperspectral 

Multispectral 

NIR 

LiDAR 

Thermal 

Sonar 

Airborne 

• Satellite 

• Piloted 

UAV 

Flexible UAV 

• Fixed 

wing 

• Multi 

rotor 

Ground-based 

• Vehicle 

mount 

• handheld 

 

ArcGIS 

 

PIX4D 

 

Agisoft 

 

Quantum GIS 

 

The basic working principle of remote sensing technology with UAVs, satellites, and 

other platforms is almost the same. Energy, in the form of light, will travel from the Sun 

to the Earth. Light waves travel virtually like ocean waves – the distance between the 

peak of one wave to the peak of the next is known as wavelength. The energy emitted 



3 
 

 
 

from the Sun is known as electromagnetic energy and is part of the electromagnetic 

spectrum. The wavelengths that are commonly employed for agricultural applications 

cover a small fraction of the electromagnetic spectrum. When electromagnetic energy hits 

the plants during remote sensing in agriculture, one of three things can occur. The energy 

can be reflected, absorbed, or transmitted, depending on the wavelength of the energy and 

the characteristics of the plant itself. The reflected, absorbed, and transmitted energy can 

be detected by remote sensing technology. The relationship between the three 

components determines the spectral signature of the plants. This signature is unique to the 

biochemical and physiological properties of the plants. Each section of the 

electromagnetic spectrum has characteristics of energy level, wavelength, and 

frequencies associated with its photons Figure 1.1). Gamma rays have the highest energy 

and shortest wavelength whereas radio waves have the lowest energy and longest 

wavelength. The visible region ranges from 400-700 nm, the near-infrared region ranges 

from 700-1000 nm, and the shortwave-infrared ranges from 1000-2500 nm. For plant 

phenotyping research, visible, near-infrared, shortwave-infrared, and thermal infrared are 

the regions of the electromagnetic spectrum that are commonly used. The interaction of 

electromagnetic radiation with plants varies according to the wavelength of the radiation. 

The spectral reflectance of typical healthy vegetation is low at the visible region due to 

strong absorption by photoactive pigments (chlorophyll, anthocyanins, and carotenoids). 

In the near-infrared region, the reflectance is higher due to multiple scattering in the 

internal leaf tissue. Similarly, in the short-wave infrared region, the reflectance is lower 
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due to absorption by water, protein, and other leaf biochemical compositions. The typical 

spectral reflectance of a corn leaf in three different wavebands is shown in Figure 1.2. 
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Figure 1.1 Electromagnetic spectrum with different bands. (Energy: 

The Driver of Climate, 2019) http://www.ces.fau.edu/nasa/module-

2/radiation-sun.php 

Figure 1.2 Spectral reflectance of a corn leaf from 400 to 2500 nm in the visible, 

near infrared, and shortwave infrared regions. 
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1.2 Frequently used imaging sensors  

There are a variety of sensors available for obtaining images of crops at different 

wavelengths and resolutions, and with active or passive modes of operation. Active 

sensors are transducers that generates electric current or voltage directly in response to 

environment stimulation whereas passive sensors are transducers that produces a change 

in passive electrical quantity such as capacitance, resistance, or inductance as a result of 

the stimulation. Many phenotyping studies consider both passive RGB (Red, Green, 

Blue) and/or multispectral images, which are sometimes combined with an active LIDAR 

or sonar sensor. A study by (Bai et al., 2016), used a multi-sensor system for high 

throughput field phenotyping in soybean and wheat crops. Five different sensors; 

ultrasonic distance sensors, thermal infrared radiometers, NDVI sensors, portable 

spectrometers, and RGB web cameras were used to measure crop canopy at the plot 

scale. The result demonstrated a strong correlation between sensor-based plant traits and 

a significant correlation between sensor-based traits and grain yield at both early and late 

seasons with a person’s correlation coefficient (r) from 0.41-0.55 and 0.55-0.70 

respectively.  Similarly, (Thapa et al., 2018), studied LiDAR-based instruments for high-

throughput,3D measurement of morphological traits in maize and sorghum. A novel 

LiDAR-based instrument was developed to create 3D point clouds of a single plant. The 

morphological traits of plants including total leaf area, individual leaf inclination angle, 

and leaf angular distribution were derived and tested on maize and sorghum plants. The 

result from the study demonstrated a high correlation with R2 of 0.91 between individual 

leaf area and leaf area measured from the 3D model and R2 of 0.95 between total leaf 

area and trait measured from the 3D model.  Other sensing techniques, such as using 
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fluorescence to estimate chlorophyll and nitrogen content, have potential but are currently 

limited to handheld sensors due to technological issues (Tremblay et al., 2012). 

Furthermore, the thermal infrared spectral domain is underutilized because the signal 

varies in time depending on the plant microclimate (Munns et al., 2010).  

1.3 Different modeling approaches for crop traits prediction 

There are different ways to connect physical measurements of crops obtained through 

remote sensing with agronomic traits such as crop yield, either using empirical or 

mechanistic approaches, or a combination of both. Empirical methods use statistical 

techniques to directly link inputs and outputs, while mechanistic approaches focus on the 

underlying mechanisms and relationships between inputs and outputs (Baker et al., 2018). 

Each method has its advantages and limitations, and the best approach usually depends 

on the specific context and application. In practice, the main distinction is that 

mechanistic approaches rely on assumptions and models, whereas empirical approaches 

necessitate data collection.  Crop yield can be estimated using simple vegetation indices 

empirically based on satellite reflectance or using a combination of remotely sensed 

green area index (GAI) and process-based crop growth modeling in a mechanistic way. 

The empirical approach is simpler, but it may not be as accurate and may not be able to 

be extrapolated to other times and locations. The mechanistic approach is more detailed 

and provides more explanation, but it relies on assumptions that may not always be 

accurate, leading to higher uncertainty. 

In the past, several studies have been done to predict chlorophyll content using imaging 

sensors. The study by (H. Zhang et al., 2022) studied three imaging modules; RGB, 

hyperspectral, and fluorescence imaging separately and in a combination of three to 
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predict chlorophyll content in Sorghum plants. The model predicted R2 of 0.67-0.88 from 

RGB images, R2 of 0.77-0.78 using vegetation index from hyperspectral images, and R2  

of 0.79 from fluorescence images whereas features combined from three modules using 

PLSR modeling have R2  of 0.90. The study suggested a fusion of image features from 

different imaging modules using PLSR modeling significantly predicts chlorophyll 

contents in plants. Similarly, (Miao et al., 2021) studied automation of leaf counting in 

maize and sorghum plants using deep learning techniques. About 150,000 maize and 

sorghum plant images were generated and a subset of 17,783 was annotated of the 

position of the individual leaf tip. Two deep learning-based approaches were used. The 

first approach counting by regression based on CNN showed lower accuracy and 

increased biased for plants with large leaf numbers whereas detection based on faster R-

CNN demonstrated near-human accuracy.  Similarly, (Jöreskog et al., 2016) studied leaf 

counting in monocot plants using deep regression models to overcome the need for 

substantial training datasets and annotations. A deep neural network that does not require 

label leaf structures even with serious leaf overlapping in images was explored. The leaf 

skeleton was extracted, and the regression model was fed with original images, derived 

skeleton, and augmentation. The result demonstrated improved accuracy in leaf-counting 

with many overlaps and occlusions and reduces training costs compared to state-of-the-

art methods. LIDAR acquisitions, stereo RGB images, and sonar are primarily used to 

measure canopy height (Andrade-Sanchez et al., 2014), but much more information is 

expected from the generated 3D point clouds to describe the plant stand architecture, 

including the area, density, and orientation of the various plant parts (e.g., leaf, stem, ear, 

or flower). Because of the limitation of underground sensing, root zone measurements 
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were also investigated in field phenotyping experiments. However, a few attempts have 

been made to characterize the root architecture using camera or scanner technologies in 

clear rhizotron tubes or using electrical resistivity tomography by linking the measured 

signal to root water absorbance rates (Postic et al., 2019). 

High Throughput Plant Phenotyping (HTPP) experiments that use images to study plant 

traits do not take full advantage of the information they obtain. Even though multispectral 

cameras are used, many experiments only establish statistical relationships or use 

machine learning algorithms to correlate vegetation indices with traits like chlorophyll, 

leaf area index, and nitrogen content. (Araus & Cairns, 2014)  highlighted this limitation 

in HTPP experiments. However, relatively few studies have applied radiative transfer 

models to simulate the radiative behavior of leaves or plant stands or have used model 

inversion techniques to infer physiological traits from multispectral images. Furthermore, 

in-field calibration of thermal infrared (TIR) sensors is more complex and delicate. 

Therefore, RGB images have been primarily used for classification or segmentation tasks 

(for example, plant and organ counting), while multispectral images are used to 

determine architectural traits (mostly green area index) or physiological traits (e.g., 

chlorophyll, water, nitrogen) through radiative transfer model inversion. While statistical 

and model inversion approaches can perform similarly in the context of phenotyping, the 

results may be limited if the dataset used to calibrate the statistical relationships is not 

large enough to represent a wide range of possibilities, including new cultivars (Jay et al., 

2017). In addition, using a generic 1D radiative transfer model may not be appropriate for 

describing crops at the considered spatial resolutions, particularly for row crops. To 

address these limitations and develop operational pipelines for specific species, there is a 
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need for further advancements in 3D modeling and inversion techniques, which can be 

supported by field phenotyping experiments using 3D point clouds generated through 

Structure from Motion (SfM) or LIDAR techniques (Liu et al., 2017). Typically, images 

from different sensors have been used separately to study specific traits. However, some 

recent studies have combined traits from different spectral domains to analyze more 

complex traits, often by establishing statistical relationships between them. For example, 

(Tilly et al., 2015) used canopy height from LIDAR or SfM applied to RGB images, 

along with vegetation indices, to estimate above-ground biomass. (Jay et al., 2017) used 

machine learning on high-resolution RGB images to estimate the green fraction of 

vegetation and applied a threshold value to a lower-resolution multispectral image to 

distinguish green pixels from the background and correct the bias in the estimation. 

However, there is potential to use sensor synergy in even more ways, such as combining 

plant height from LIDAR or stereo images and cover fraction from RGB images with 

thermal infrared (TIR) images to better understand the water balance of a plant stand.  

In a similar way, high throughput plant phenotyping (HTPP) allows for the collection of 

large training datasets that can be used to develop deep-learning models (Pound et al., 

2017). This has led to significant progress in image classification, segmentation, and 

object identification in plant stands through high-throughput phenotyping experiments 

(Singh et al., 2016).However, these techniques are supervised and require manual 

annotation to identify different classes, which is a time-consuming and labor-intensive 

process that requires expert knowledge (Kamali & Nazari, 2018). They are also sensitive 

to the composition of the learning dataset, the type of crop, the spatial and spectral 

resolution of the sensor, and the acquisition conditions (Mohanty et al., 2016). As a 
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result, they are only slightly transferable from one species to another or from one 

phenotyping platform to another. 

1.4 Plant breeding and phenotyping 

Plant breeding is the application of genetic principles to produce the most desirable traits 

in plants. After the discovery of Gregor Mendel's theory in 1900 AD, modern plant 

breeding based on genetics came into being. After that many discoveries were made 

based on his theory which led to the establishment of the field of genetics. Genetics is the 

study of the DNA of organisms, how DNA manifests as genes, and how those genes are 

inherited by offspring. Genes are passed to offspring in both sexual and asexual 

reproduction, and over time natural selection can accumulate variations amongst 

individuals on the group level, in the process known as evolution. The interaction of the 

genetic makeup of an organism and environmental factors which is termed as G*E 

interaction leads to the expression of traits which is known as phenotype. Plant breeders 

can utilize genomic data more effectively if it is easier to quantitatively measure plant 

anatomical, ontogenetical, physiological, and biochemical properties  (Walter et al., 

2015). 

Plant phenotyping is the assessment of complex plant traits such as growth, development, 

resistance to stresses, architecture, physiology, ecology, yield, and the basic measurement 

of individual quantitative parameters that form the basis for complex traits (L. Li et al., 

2014). In addition, crop phenomics can be defined as a multidisciplinary study of high-

throughput accurate analysis of multidimensional phenotypes on an organism-wide scale 

through crop development (Yang et al., 2020).It is an accurate and precise estimation of 

plant traits like growth rate, biomass, architecture, chemical contents, etc., ranging from a 
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cellular level to the whole plant canopy level (Rahaman et al., 2015).But the lack of cost 

effective and less labor intensive phenotyping is a limiting factor for genome-assisted 

crop improvement. Therefore, it is imperative to expand the use of high throughput plant 

phenotyping to optimize crop improvements. 

1.4.1 Importance of image-based phenotyping for plant breeding and commonly used 

phenotyping platforms 

People around the world on all continents used to live as hunter-gathers until the 

Pleistocene era (Diamond & Bellwood, 2003). With the advancement of time, the 

domestication of relatively few wild plants and animals started between 8500-2500 BC 

(Sforza et al., 1995). Hunters and gatherers included agriculture as their main path of 

expansion due to the major advantages gained from food production. The first advantage 

was higher food yield acre-which can support higher population densities. The second 

advantage was the sedentary nature of most food-producing societies, which could store 

surplus food and was essential for social stratification and centralized states. The third 

one was the development of new technology and resistance to epidemic infectious 

diseases (Diamond & Bellwood, 2003). The Selection of superior traits has been 

prevailing since the first plant was domesticated in 8500 BC (Damania, 1998). According 

to the United Nations Department of Economic and Social Affairs' World Population 

Prospects 2020, the global population is projected to reach 9.7 billion by 2050, up from 

an estimated 7.9 billion in 2021 and to meet the predicted food demand for a growing 

population, crop production needs to be doubled. Land clearing and more intensive use of 

existing cropland could contribute to meeting the demand, but the environmental cost 

would be higher (Godfray et al., 2010). Now the question arises: how to increase food 
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production sustainably. There are two divided opinions: the first recommends modern 

techniques like mechanization, irrigation, fertilizer application, and improved genetics, 

and the other recommends techniques that improve productivity without the application 

of synthetic fertilizer and pesticides. Both approaches offer a needed solution, and it 

would be more impactful to blend the best ideas of both. However, improving the genetic 

makeup of crops by breeding is one of the way to maximize progress in both organic and 

conventional systems (Mir et al., 2019). 

Traditional methods of phenotyping are often time-consuming, labor intensive, and 

involve destructive methods. They represent a major bottleneck for studies dealing with 

large numbers of genotypes and sample sizes (e.g., forward genetics and breeding 

experiments). Thus, this phenotyping bottleneck can be alleviated by  image-based 

phenotyping which has the potential to assess plant performance in a quantitative, time-

series, and cost-effective manner (Tausen et al., 2020). Although it is desirable to assess 

the growth rate of plants, it is challenging for breeders because it requires multiple 

measurements from planting until harvest and such manual and daily measurements may 

be impractical in large-scale studies (Walter et al., 2015). The existing methods for plant 

phenotyping are not sufficient and require further development and improvements to 

accurately capture physical, physiological, and biochemical traits related to plant 

mechanisms which is important to better understand the genetic mechanisms and biology 

underlying these traits. Therefore, image-based phenotyping could play a great role in 

relieving such phenotyping bottlenecks.  

Many phenotyping platforms in research or commercial settings have been developed 

(Granier & Vile, 2014). Image-based, high-throughput phenotyping platforms are the 
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systems that allow monitoring of plant growth, development, and yield-related traits in a 

non-destructive, fast, and high-throughput manner. According to (D. Li et al., 2021), high 

throughput phenotyping platforms are those that can collect massive amounts of 

phenotypic data from hundreds of plants every day with a high degree of automation. A 

wide range of phenotyping platforms either customized or self-developed have emerged, 

which can be divided into 1) greenhouses and growth chambers under a controlled 

environment, 2) ground-based proximal phenotyping in the field, and 3) drone, aerial, or 

satellite remote sensing. In research by (Bai et al., 2019), a large-scale, cable-driven 

integrated sensing and robotic system was developed at the University of Nebraska-

Lincoln field phenotyping facility. Four different sensors including a multispectral 

camera, thermal infrared camera and 3D scanning LiDAR, and visible near-infrared 

spectrometer were integrated into a system for plant measurement. The system is fully 

automated, robust, and anticipated to collect large-scale phenotypic data. Another study 

by (Bai et al., 2018), further explored soybean iron deficiency chlorosis (IDC) using RGB 

imaging with field-based scoring. The results from the study anticipated RGB images 

derived from field phenotyping platforms with real time IDC scoring models allows for 

more robust, fast and cost-effective scoring for soybean IDC screening and breeding 

purposes. Similarly (Virlet et al., 2017), developed an automated robotic field 

phenotyping platform with a dedicated sensor array. The sensors mounted were visible, 

fluorescence, thermal, and infrared, two hyperspectral imagers, and dual 3D laser 

scanners. These sensors in combination produce a detailed description of the canopy 

across the entire life cycle of plants. Similarly, (J. Li et al., 2019) studied the grain yield 

variation in winter wheat extracted from UAV imagery and investigated principal 
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variable selection to explain grain yield variation . 172 variables were extracted from 

each plot from vegetation index and plant height maps. A parametric (LASSO) and non-

parametric algorithm random forest (RF) were applied for variable selection. The result 

concluded high-resolution imagery derived from UAS can derive more features within a 

plot level which is very important for breeding purposes. 

Recently, high-throughput phenotyping platforms have been installed and operated in 

greenhouses or growth chambers (Australian Plant Phenotyping Facility).  Greenhouse-

based screening of plants offers various advantages over costly, time-consuming field 

trials, which typically do not evaluate entire plants. Additionally, the environment can be 

controlled which minimizes the effects of confounding biotic and abiotic factors and has 

good repeatability, auto-operation, and good resolution imagery. Furthermore, 

microclimatic conditions are also modified to suit the crop needs inside the greenhouse. 

Many of the complex phenotyping systems use conveyor belts to move plants to high-

quality imaging chambers (Perez-Sanz et al., 2017). In this study, controlled environment 

phenotyping is particularly described in detail as shown in Table 1.2 

Table 1.2.Overview of high throughput phenotyping platforms used in the greenhouse (D. 

Li et al., 2021) 

Indoor 

HTPP 

Model  Sensors Throughp

ut 

(pots) 

Plants Traits Location 

Convey

or 

type 

Lemna 

Tec 

Scanalyze

r 3D 

 

RGB, NIR, 

FLUO 

 

 

 

312 Barley Biomass, 

plant 

height, 

width, 

compactne

ss, drought 

stress 

Germany 



15 
 

 
 

Lemna 

Tec 

Scanalyze

r 3D 

 

RGB, NIR, 

FLUO, 

Hyperspectr

al 

 

672 Sorghum, 

maize, 

barley 

Biomass, 

leaf water 

content 

USA 

Lemna 

Tec 

Scanalyze

r 3D 

 

RGB, NIR, 

FLUO, 

Hyperspectr

al 

 

2,400 Chickpea, 

wheat 

Nutrient 

stress, salt 

stress, 

water 

content, 

nitrogen 

content 

Australia 

Bellwethe

r 

RGB, NIR, 

FLUO 

 

1,140 Setaria Plant 

height, 

biomass, 

water-use 

efficiency, 

water 

content 

USA 

Bench 

type 

Phenovat

or 

Monochro

me 

1,440 Arabidops

is thaliana 

PLA, PSII 

efficiency  

Netherlan

ds 

Phenosco

pe 

 735 Arabidops

is thaliana 

Rosette 

size, 

expansion 

rate, 

evaporatio

n 

France 

Phenoarc

h 

RGB  ---- Maize The growth 

rate of ear 

and silk 

France 

Glyph RGB 120 Soybean Water use 

efficiency, 

drought 

stress 

Argentina 

Lemna 

Tec 

Scanalyze

r 

RGB, 

FLUO, NIR 

------ Arabidops

is 

thaliana 

Water 

stress 

USA 

      

 

1.5 Digital imaging module 

 A digital image is an image stored in digital form and divided into a matrix of pixels. 

Each pixel consists of a digital value of one or more bits and may represent, but is not 
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limited to, energy, brightness, color, intensity, sound, or a classified value derived 

through image processing. A digital image is stored as a raster and may contain one or 

more bands. Image acquisition is the process of obtaining a digital representation of a 

scene and the devices that are used to capture a scene are known as imaging sensors. 

Different types of imaging modules are practiced based on the objective and acquisition 

of specific traits of plants. Imaging at different wavelengths is used for different aspects 

of plant phenotyping. For example, RGB (visible) imaging is used to measure the 

physical characteristics of the plant's projected area, biomass, color, root architecture, 

yield, disease severity, seed morphology, seedling vigor, fruit number and distribution, 

etc. Thermal infrared imaging could be useful to characterize the plant temperature to 

detect plant response to the amount of water and transpiration rate for water stress 

assessment. Similarly, hyperspectral images have been used for the assessment of 

biochemical traits in plants like water contents, macronutrients including Nitrogen (N), 

Phosphorus (P) and Potassium (K) as well as several micronutrients and other chemical 

contents. Digital image analysis in a controlled environment offers high resolution, high 

throughput, and the precise evaluation of crop traits of interest comparable with human 

data collection. With current technological advancements (camera resolution, processing 

speed, storage, availability of image processing tools, etc.), the application of image 

analysis is anticipated to grow for practical applications in evaluating crop traits in an 

accurate and high-throughput manner. RGB and hyperspectral imaging modulus are 

discussed here in detail because of the focus of this study on these two imaging modules 

in both wheat and corn plants. 
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1.5.1 Different imaging techniques used for high throughput estimation of wheat and corn 

traits 

Wheat is the third most-produced cereal crop in the world, after maize (corn) and rice. In 

2021, world wheat production was 779.9 million metric tons, and it is expected to reach 

783.92 million metric tons in 2022/2023, which is 4.32 million tons more than the 

previous year (Wheat Production by Country | World Agricultural Production 

2022/2023). In the United States (USA), the total wheat production in 2020 was 49.7 

million metric tons, the average wheat yield was 3.34 metric tons per hectare (ha) and the 

total area planted was 17.99 million ha. Similarly, in 2021 the total production was 44.80 

million metric tons, the yield was 2.98 metric tons per ha and the total area planted was 

18.9 million ha (Crop Production 2021 Summary, 2022). Comparing the production from 

these two years, the production seems less in 2021 than in 2020 even though the total 

area planted was higher in 2021. 

To meet the demand of the growing population and to maintain constant yield, it is 

important to develop wheat varieties that are adaptable to various environmental 

conditions. With the constant breeding in wheat, breeders have developed numerous 

semi-dwarf cultivars that give higher yield, reduced lodging, and have an efficient 

response to applied nitrogen. Due to increased population growth and higher 

consumption of wheat, emphasis has been given to improving yield by applying various 

inorganic fertilizers.  According to (the US Department of Agriculture National 

Agricultural Statistics Service, 2022), the estimated amount of nitrogen fertilizer applied 

to wheat in the US for the 2021 crop year was 2.99 million metric tons (USDA Crop 

Production 2021 Summary). The physical traits such as height, biomass, leaf area, and 
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the biochemical traits such as macronutrients (N, P, K), micronutrients, chlorophyll 

content, and water content affect yield components that will eventually contribute to yield 

differences in wheat. Phenotyping of these traits is crucial and considered a major 

bottleneck for wheat improvement due to the labor-intensiveness, high-cost, time 

consuming, and different architecture of plant (Zhao et al., 2019). Literatures have 

explored applications of phenotyping in the assessment of plant architecture, seed 

characteristics, canopy growth, and root morphology in wheat (C. Zhang et al., 2018). In 

research from  (Correia et al., 2022) thermal and multispectral images were explored to 

determine evapotranspiration and biomass in wheat using image-extracted parameters. 

High-throughput phenotyping methods proved to be an efficient approach to 

quantitatively characterize the G*E interaction of complex traits like stress tolerance in 

wheat. Similarly, a study reported by (Rahaman et al., 2015), predicted yield in wheat 

using secondary traits; spectral reflectance and canopy temperature. The grain yield 

heritability ranged from 0.30 to -0.72 while the correlation between grain yield and 

spectral reflectance and canopy temperature ranged from -0.5 to 0.5. This study suggests 

secondary traits derived from phenotyping can accurately predict wheat grain yield 

allowing breeding programs for making a robust and rapid selection. The study by (C. 

Zhang et al., 2018) investigated seed/seedlings using digital image analysis. Images were 

collected using commercial digital cameras and analysis was done using custom-

developed algorithms. The data from image-based phenotyping and manual measurement 

of coleoptile were found significantly correlated (p<0.0001) with a correlation coefficient 

of (r) 0.69-0.91. (Morgounov et al., 2014) has suggested the change in NDVI among the 

genotypes from tillering to the flowering phase has a significant difference in yield. 
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Maize (Zea, mays L.) is a major staple food crop across the globe that plays a key role in 

agri-food systems. The maize production area globally is approximately 197 million ha 

with significant areas in sub-Sahara Africa, Asia, and Latin America (FAOSTAT, 2021). 

It is a versatile and multi-purpose crop that is used as feed and an important food crop in 

different parts of the world.  The USA is the biggest producer of maize globally and each 

year, US farmers plant about 90 million acres of maize, the majority of which is grown in 

the mid-west region with Iowa and Illinois as the top one-third producer of US maize 

(Economic Research Service, 2022). In the United States, the total area planted, and total 

area harvested in 2021 was 37.78 million ha and 34.56 million ha, respectively. Similarly, 

the yield was 11.11 metric tons per ha and production was 38.39 million metric tons in 

2021 (Crop Production 2021 Summary, 2022). 

Sudden extreme climatic events such as irregular rainfall, temperature fluctuations, 

floods, drought, hailstorms, and thunderstorms affect the growth and development of 

maize plant. The pressure of increasing maize production in the future is high due to the 

increase in the global population and its important role in food security. Water and 

nitrogen are considered as two important factors that account for the majority of growth 

and production in maize as they have a positive impact on biomass and grain yield. 

However, the excessive amount of nitrogen fertilizer applied to maize has impacted 

groundwater, air pollution, and nitrogen use efficiency (NUE). Therefore, further study 

and research should be done on the traits related to NUE for a sustainable increase in 

production, environmental protection, and resource constraints. The traits related to NUE 

are biomass, height, leaf area, chlorophyll content, etc. The assessment of these traits on 

large scale is difficult due to the destructive nature of phenotyping, high labor cost, more 
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time consumption, and low throughput data collection. Therefore, studies have 

investigated the HTPP of maize using imaging technologies to investigate diverse corn 

traits.  

A study by (Ge et al., 2016) investigated two different maize genotypes under two water 

treatments. RGB and hyperspectral images of maize genotypes were obtained from an 

automated imaging system at the University of Nebraska-Lincoln. An excessive green 

pixel extraction algorithm was used for RGB image analysis and leaf reflectance was 

obtained from hyperspectral images which were further analyzed using the partial least 

squares regression (PLSR) model. A strong correlation was found between plant 

projected area and destructively measured parameters such as Fresh Weight (FW), Dry 

Weight (DW), and Leaf area (LA). Hyperspectral imaging was found effective in 

estimating water content in maize using NDVI index (670nm as red and 770nm as NIR) 

with the coefficient of determination of 0.81- 0.92. Similarly, (Pandey et al., 2017) 

further investigated the potential of hyperspectral imaging to quantify biochemical 

properties of maize like water content, macronutrients (N, P, K) as well as micronutrients 

(Na, Fe, Mn, B, Cu, Zn) using pairwise score plot to compare first three principle 

component (PC1, PC2, PC3) of the plant spectra. Most of the spectral differences were 

due to water treatment followed by nutrient treatment, which had important implications 

in PLSR modeling. The prediction accuracy was found higher for water content (R2: 

0.93) followed by macronutrients (R2: 0.69-0.92). However, this study did not include 

different levels of nitrogen and their respective effect on crop growth, development, and 

morphology of corn plants. The research by (Liang et al., 2018) examined classical and 

hyperspectral time-series imaging of maize lines mainly used in field trials. This study 
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also supports the strong correlation between manual measurement and image-based 

measurements. However, there might be non-random measurement errors while 

measuring traits like biomass due to genotypic variation, which was not accounted for in 

this study. Another study by (Ge et al., 2019) investigated maize chlorophyll content, leaf 

water content (LWC) and specific leaf area (SLA), and nitrogen (N), phosphorous (P), 

and potassium (K) using visible, near-infrared, and short wave infrared (VIS-NIR-SWIR) 

spectroscopy in field condition. Partial least square regression (PLSR) and support vector 

regression (SVR) modeling was used to estimate leaf properties and several vegetation 

indices (GNDVI, RENDI, and NDVI) were also calculated from hyperspectral data. The 

chlorophyll content was estimated most accurately with R2 of  > 0.94, and N was 

predicted satisfactory with R2 of 0.85 but some VIs were not able to estimate other four-

leaf properties (LWC, SLA,N,P). The study suggested VIS-NIR-SWIR spectroscopy can 

be a promising tool to determine leaf physiological and chemical properties with low-cost 

and non-destructive approaches which can be a great benefit for the plant phenotyping 

community.  

However, there are still some knowledge gaps that need to be fulfilled to establish image-

based phenotyping as a robust method for trait assessment. The measurement protocols 

used for image-based plant phenotyping are currently not standardized, making it difficult 

to compare results across multiple studies. Similarly, more robust image segmentation 

algorithms that can accurately extract meaningful data from digital images are required 

particularly for colors like yellow, and brown produced by nutrient deficiency or other 

diseases. While image-based plant phenotyping has the potential to be a valuable tool, 

researchers and industry have yet to embrace it because of the high cost of the 
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phenotyping platforms and need for advanced and more expertise in high throughput data 

analysis. Because of the costly phenotyping platforms, it can limit their adoption by 

smaller research groups or organizations. However, with ongoing research and 

development, these gaps will gradually be filled by effectively monitoring crops from a 

newer perspective. 

1.6 Role of image-based plant phenotyping and computer vision during Covid-19  

The COVID-19 pandemic had a significant impact on cereal crop production and the 

global food system. The lockdowns and restrictions on movement put in place to contain 

the spread of the virus disrupted supply chains and affected the availability of inputs such 

as seeds, fertilizers, and labor. This led to delays in planting and harvesting, and in some 

cases, reduced crop yields. The FAO estimates that the pandemic resulted in a decrease of 

up to 10% in global cereal production in 2020. However, the impact on cereal production 

has been uneven, with some countries and regions experiencing larger declines than 

others. The FAO has also warned of the potential for food insecurity and malnutrition to 

increase in vulnerable populations because of the pandemic's effects on agriculture and 

food systems. It is important to note that the impact of the pandemic on cereal production 

and the global food system is ongoing and dynamic, and the full extent of its effects is 

still being assessed. During the COVID-19 pandemic, image-based phenotyping has 

played a critical role in supporting plant and crop research and development, as it allows 

researchers to continue their work while maintaining social distancing and other safety 

measures. It allows researchers to collect data on plant traits such as growth, 

development, and stress responses without the need for manual measurements or 

destructive sampling. For example, image-based phenotyping can be used to study plant 
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responses to different environmental conditions, such as changes in temperature, light, or 

water availability, which can inform the development of more resilient crop varieties. In 

addition, image-based phenotyping can be used to monitor the health and growth of crops 

remotely, which can be especially useful in the current context where fieldwork and 

travel may be restricted. This can help researchers to identify potential problems or 

stressors affecting crop performance and make informed decisions about management 

practices.  

Overall, image-based phenotyping can be a valuable tool for plant and crop researchers to 

continue their work and advance our understanding of plant biology and crop production 

during the COVID-19 pandemic. As a result, more research and development are 

required to establish image-based phenotyping as a frontier for crop improvement and 

gene discovery, ultimately contributing to food security. 

1.7 Objectives 

There are two broad objectives of this study. The first objective is to investigate the 

relationship between plant pixel information derived from RGB image analysis and 

manually measured physical traits for wheat and corn plants. Specifically, this study aims 

to determine the degree of correlation between plant pixels or total plant projected area 

extracted from RGB image analysis and physical traits such as leaf area (LA) for corn, 

total biomass area for wheat, fresh weight (FW), and dry weight (DW). The study will 

utilize statistical analyses and various image segmentation algorithms to determine the 

strength of the correlation between the two sets of data and evaluate the feasibility of 

using RGB image analysis as a non-invasive and efficient method for measuring plant 

physical traits. 
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The second objective of this study is to evaluate the accuracy of predicting biochemical 

traits using reflectance data obtained from hyperspectral images and a handheld non-

imaging spectrometer (ASD). Specifically, the study will focus on predicting nitrogen 

(N), phosphorous (P), and potassium (K) levels in wheat and corn plants using three 

different machine learning models; partial least squares regression (PLSR), random forest 

(RF), and support vector regression (SVR) and the performance of each model will be 

compared. 

Overall, this study aims to contribute to the field of plant science by evaluating the 

feasibility and accuracy of using RGB and hyperspectral imaging to measure and predict 

plant physical and biochemical traits, respectively. The outcomes of this study will 

provide insights into the development of non-invasive and efficient methods for plant 

trait measurement, ultimately contributing to crop improvement, advancement of plant 

breeding, and agriculture research.
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Chapter 2 Materials and Methods 

2.1 Plant materials and growing condition 

The wheat and corn phenotyping experiments were carried out at the Greenhouse 

Innovation Center, University of Nebraska-Lincoln, using the LemnaTec Scanalyzer3D 

system (LemnaTec GmbH, Aachen, Germany). Peatmoss mix (18 bags total) was used as 

the growth media for wheat, which was divided into two preparations of nine bags each. 

Two osmocote formulations, 2184.1 g/m of lime, and 103.131 liters/m of water were 

mixed for every nine bags. The two Osmocote formulations were based on fertilizer 

release, with one having a 2–3 month release of 15-9-12 (N-P-K) fertilizer and the other 

having a 5–6 month release of 15-9-12 (N-P-K) fertilizer. A total number of 200 pots 

were used, 192 with wheat plants and 8 empty pots with growth media only to estimate 

the evaporative loss. 1000 grams of pot mix was used per pot. At first, wheat genotypes 

were chosen and sown on December 16th, 2021, and vernalized for three months to 

stimulate flowering and seed production. On March 17th, 2022, seedlings were inspected, 

and vigorous seedlings were transplanted into pots. Pots were kept in a separate 

greenhouse for a few days after transplantation to allow seedling establishment before 

transporting them to the conveyor belt for imaging. To monitor the growth and 

development of the wheat plants, the pots were transported to a conveyor belt and 

automated imaging was performed. The greenhouse's temperature was kept between 20-

25 °C during the day and 15-17 °C at night, with relative humidity (RH) of ~ 60%. The 

daytime photosynthetic active radiation (PAR) was supplemented with 200 mol m-2 s-1 
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LED red/blue light lamps. The total photoperiod was kept at 17 hours. Throughout the 

study period, all pots were kept well-watered until the wheat plants reached full maturity. 

The maize phenotyping experiment used a single inbred, corn line B-73. Premier tech 

horticulture pro-mix plus media was used, with 2184.1 grams of lime added per meter. 

The pots used had a diameter of 241.3 mm, a height of 259.08 mm, and a capacity of 

9.082 liters. They were filled and weighed to the nearest gram. The greenhouse 

temperature, like the wheat crop, was kept between 17 and 25°C. RH of nearly 60%, 

PAR of 200 µmol m-2 s-1and a total photoperiod of 17 hours were maintained, which was 

comparable to the wheat crop. 

2.2 Experimental Design 

Twelve pairs of winter wheat genotypes were chosen for the wheat phenotyping study. 

Nine pairs differed in NDVI and three pairs did not differ in NDVI, from a previous field 

screening experiment. The experimental design was a complete randomized design 

(CRD) with eight replications. Extra wheat genotypes were also grown outside the belt 

for destructive sampling. 

One commercial inbred line, B-73, was used for the maize phenotyping study. A 

completely randomized design (CRD) was used, with four treatments: two nitrogen levels 

(High and Low), two water levels (well-watered (WW), and drought (D). High N + WW, 

High N+D, low N + WW, and low N + D were the four different treatment combinations 

that were used. Each treatment was applied to 25 plants. The Hoagland formulation was 

used to create the 100% ammonium solution and the 0% ammonium solution. In total, 

120 corn plants were grown, 100 on the conveyor belt and 20 in a separate greenhouse 

chamber outside the belt. From mid-July, 2022 to the 16th of September 2022, imaging 
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was performed by transporting 100 pots to the conveyor belt. The corn plants were 

monitored every week and destructive/manual measurement was taken at various growth 

stages ranging from V6 to R5 stages. Following imaging, an equal number of plants from 

each treatment were chosen for destructive sampling from the conveyor belt. 

2.3 Data collection 

In total, sixty wheat plants were destructively measured at five growth stages starting 

from stem elongation, booting, anthesis, early grain filling, and physiological maturity. 

The plants were monitored based on Zadok’s scale.  At first, imaging was done by 

passing the wheat plants through automated imaging chambers before the destructive 

sampling. Genotypes were selected randomly, and above ground portion of the plants was 

cut, and five traits were recorded: Leaf area (LA), total fresh weight (FW), total dry 

weight (DW), chlorophyll content, and spectral reflectance as a ground truth 

measurement. Total plant leaf area was measured using a leaf area meter LI-3100C (LI-

COR Inc., Lincoln, NE) and total shoot fresh weight was measured using a digital 

balance. The chlorophyll content was measured using an MC100 chlorophyll meter 

(Apogee Instruments, Inc., Logan, UT) on three leaves from each plant and three 

positions on each leaf starting from the base to the apex (nine measurements from each 

plant in total). Leaf level spectral properties of the plants were determined using a 

handheld spectrometer (Analytical Spectral Device, or ASD) with a spectral range of 

350-2500 nm. A total of nine measurements were taken from each plant (three positions 

on each leaf) following the same protocol as chlorophyll content. After every nine 

measurements, the spectrometer was calibrated with a spectral panel (Labsphere, Inc., 

North Sutton, NH) with >99% reflectance for white referencing. Finally, all nine scans 
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were averaged and taken as an average spectral reflectance per plant for further statistical 

analysis. After all these measurements, samples were kept in a walk-in oven for drying at 

60°C for 72 hours and dry weight was taken immediately. All the samples were sent to 

Ward Laboratories (Kearney, NE) for routine plant tissue analysis to determine nitrogen, 

phosphorus, potassium, and other micronutrient content in plants. Similarly, images were 

also captured for the same plants just before the destructive sampling.  

The same set of traits was recorded for the corn experiment as wheat; leaf area, fresh 

weight, dry weight, chlorophyll content, and spectral reflectance. For the leaf area, leaves 

were separated from the stem and passed through the leaf area meter and a similar 

protocol was followed for measuring fresh weight, and dry weight. For chlorophyll 

content and spectral reflectance, the fifth leaf was selected counting from the top, and 

measurement was taken on the middle portion, three on one side of mid-rib and three on 

another side. In total, six measurements were taken and averaged for further analysis. 

Both black and white reference panels were used while scanning leaves from the ASD 

spectrometer to see the difference in reflectance. In total, 74 corn plants were 

destructively sampled weekly starting from V6 to R5 stages. The treatments were applied 

weekly with 250 ml of 100% ammonium solution as high nitrogen and 250 ml of 0% 

ammonium solution as low nitrogen in each pot. All the pots were automatically 

watered/weighed at the station and imaged daily. Similar to wheat, after drying the leaf 

samples in a walk-in oven for 72 hours, dry weight was measured, and all the leaf 

samples were sent to Ward Laboratories located at Kearney, Nebraska for N, P, and K 

and other micronutrient determination. 
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2.4 High throughput imaging 

The high-throughput plant phenotyping facility at Greenhouse Innovation Center, 

University of Nebraska-Lincoln has four; RGB, hyperspectral/NIR, thermal, and 

fluorescence imaging chambers. The system also incorporates an automated weighing 

and watering station where the change in pot weight because of water evaporation and 

transpiration can be quantified, and prescribed amounts of water can be precisely applied. 

A specific number of plants were selected at each growth stage randomly and loaded 

manually on a conveyor belt to image on the same day before destructive sampling. 

Image acquisition was done every day from 10 am to 2 pm to minimize the effect of 

temporal variation. Pots move through the conveyor belt and the imaging process starts as 

they enter the chambers. This study focuses on images acquired from the RGB (Basler 

AG, Ahrensburg, Germany) and hyperspectral (Headwall Photonics, Fitchburg, MA, 

USA) cameras. The RGB camera is responsive to the wavelength range from 400-700 nm 

and the image has a resolution of 6576*4384 pixels. Images were taken from 10 different 

views (0°, 36°, 72°, 90°, 108°, 144°, 216°, 252°, 288°, and 324°) and one top view (90°) 

to get the 3D view of the plant. The hyperspectral camera has a push broom type of 

imaging spectrometer with halogen bulbs as a source of illumination. A total of 243 

images of each plant were captured, each image with a spectral resolution of ~4.5-5nm, 

and the camera has a wavelength ranging from 545-1700nm (Pandey et al., 2017). Upon 

exiting the hyperspectral chamber, pots (including reference pots, with no plants) were 

automatically weighed and water was applied at 75% of field capacity to well-watered 

treated plants and 50% of field capacity to drought-treated plants. 
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Image analysis for both RGB and hyperspectral images was done by using MATLAB 

R2022a. The major objective of image segmentation is to extract the foreground from the 

background. RGB images were transformed to a single band using excessive green pixel 

index, 𝐸𝑥𝐺 =  2 ∗ 𝑔 − 𝑟 − 𝑏, where g, r, and b are the green, red, and blue components. 

After excessive green pixel extraction, the single band image was converted to a binary 

image by applying a specific threshold value. For wheat, a threshold of 0.05, and for corn 

a threshold of 1.1, was found to segment plant pixels effectively from the background. 

The resulting binary image may still contain noise. Therefore, morphological opening 

was performed to remove noise and any other non-plant material. The morphological 

opening function in MATLAB is a basic image processing operation which is composed 

of two steps: erosion of the image followed by dilation of the same image using the 

structuring element. This operation is useful to remove small details such as noise and 

thin lines while preserving the larger structure in an image. The excessive green index 

algorithm was applied to all the images from ten side views and the extracted plant pixel 

from each side was averaged as the total plant pixel of a given plant. The top view image 

was not included in the analysis due to errors in some images. Figure 2.1 shows the 

original image and the resultant binary image after RGB image segmentation in wheat 

plants. 
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For corn plants, RGB image segmentation was done by using two methods: Excessive 

green pixel extraction algorithms and HSV (Hue, Saturation, Value) color segmentation 

algorithms. At first, the correlation was performed by using green pixels only (Figure 

2.2); second, correlation was performed by adding green pixels derived from excessive 

green pixel algorithm and yellow and brown pixels from HSV color segmentation 

algorithm (Figure 2.3). Third, correlation was performed using plant pixels extracted 

from HSV color segmentation algorithm only including green, yellow, and brown pixels 

(Figure 2.4).  

The hue refers to the actual color of the image and its value ranges from 0 to 360 degrees. 

The Saturation indicates the intensity or purity of color, and the value ranges from 0 to 

100 percent where 0 indicates a gray color and 100 indicates a fully saturated color. 

Similarly, the value indicates the brightness or lightness of the color represented by a 

percentage. A lower value indicates a darker color whereas a higher value indicates a 

brighter color.  For HSV segmentation, at first, the RGB image was converted to HSV 

color space. The range of HSV values for the specific color was determined and the 

Figure 2.1 Original and binary image after RGB image segmentation in wheat plants 
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resultant image was converted to a binary image by applying a specific threshold value. 

The resultant image has some noise, therefore, morphological operations were performed.  

 

 

 

Figure 2.2 Original and binary image after RGB image segmentation in corn 

Figure 2.3 Yellow and brown pixel segmentation using HSV color segmentation 

algorithm in corn plants 
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For hyperspectral image processing, a customized algorithm was built in MATLAB 

R2022a to convert 243 images per plant into a 3D image cube that represents the full 

range of spectra covered. At first, an NDVI image was calculated using the image band at 

27 (670nm) and band 48(770nm), (670𝑛𝑚 − 770𝑛𝑚) ÷ (670𝑛𝑚 + 770𝑛𝑚). A mask 

was developed to recognize the plant materials in all images. A threshold value of 0.25 

for wheat and threshold of 0.27 for corn was found effective to separate foreground and 

background from the plants. The wavelengths 670nm and 770nm were chosen due to 

their effectiveness, popularity, and low level of noise. The resulting NDVI image consists 

of the pixels of plant materials including both stem and leaves. Therefore, another image 

at band 132(1160 nm) was chosen in which the leaves were brighter than the stem. This 

image along with the NDVI image was used together to further classify stem and leaf 

Figure 2.4 Green, yellow and brown pixel segmentation using HSV color segmentation 

algorithm in corn plants 
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pixels. For this specific study, pixels belonging to plant leaves were used to extract leaf-

level spectral reflectance from all hyperspectral bands.  Figure 2.5 and Figure 2.6 shows 

the hyperspectral image segmentation process for wheat and corn plants, respectively. 
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Figure 2.5 Hyperspectral image segmentation process of wheat plants 
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2.5 Statistical methods 

Partial least squares regression (PLSR) is a generalized form of multiple linear regression 

model that is suitable for highly correlated spectral data due to robustness in the presence 

of noise. This method reduces the available variables to a smaller set of predictors and 

performs regression which is mostly used when there is multicollinearity among the 

variables. The model was applied to predict biochemical content in wheat and corn using 

spectral data derived from two methods: the spectral data collected from the ASD 
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Figure 2.6 Hyperspectral image segmentation process of corn plants 



36 
 

 
 

spectrometer and the reflectance extracted from hyperspectral images. The dataset was 

divided into 70% training and 30% testing. The size of the PLSR model (number of latent 

variables) was selected based on the number of latent variables giving the first lowest 

mean squared error of cross-validation and the selected variables capture the maximum 

covariance between predictor and response variables.      

Similarly, random forest (RF) and support vector regression (SVR) models were also 

tested on the same datasets to compare the performance of the three models. RF model 

uses multiple decision trees, called number of estimators, which are merged for a more 

accurate prediction. The basic logic behind the random forest model is multiple 

uncorrelated models (the individual decision trees) perform better as a group than alone. 

The decision trees in random forest models were trained using bagging, bootstrapping, 

and aggregation. Bagging is an ensemble method that combines predictions from multiple 

machine learning algorithms to make more accurate predictions than an individual model. 

Bootstrapping randomizes the input data; the row of original data is picked randomly 

with replacement i.e. the same row can be presented in the dataset more than once. 

Aggregation reduces the sample datasets into summary statistics based on the observation 

and combines them. 

SVR model finds a best-fit hyperplane that has a maximum number of points. The 

hyperparameters used in this model are kernel, C, and gamma. The kernel used was the 

radial basis function (rbf) which converts lower dimensional datasets to a higher 

dimension and helps to search a hyperplane in higher dimensional space. The C 

parameter helps to choose a decision boundary and controls how much importance the 

model places on minimizing errors in training data. A low C value produces a large 
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margin, more errors and underfit the training data but may better fit the unseen data 

whereas a high C value produces a small margin, less error but may overfit the unseen 

data. The gamma parameter decides how much curvature we want in a decision boundary 

and controls the distance of influence of a single data sample.  

The chlorophyll content prediction in corn plants was done by calculating the modified 

chlorophyll absorption ratio index  (MCARI)  from the reflectance data obtained by using 

the black reference panel and white reference panel. The simple linear regression model 

was followed using the MCARI index as an independent variable and chlorophyll content 

as a dependent variable. The dataset was divided into a calibration set of 70% and a 

validation set of 30%. The total number of data points was 72 and the result was 

presented for the validation set only. The equation of MCARI index is given as: 

𝑀𝐶𝐴𝑅𝐼 𝑖𝑛𝑑𝑒𝑥 = (𝑅700 − 𝑅670) − 0.2 × (𝑅700 − 𝑅550) (
𝑅700

𝑅670
) 

 

2.5.1 Model performance 

Coefficient of determination (R2 ) is used to evaluate the overall goodness of fit of the 

model. It represents the proportion of variance in the dependent variables that is 

explained by the independent variables in the model. The value usually ranges from 0 to 

1 and the higher value indicates that the model fits better. The equation of Pearson’s 

correlation coefficient is given as: 

r =
Σ(𝑥𝑖 − 𝑥𝑖̅)(𝑦𝑖 − 𝑦𝑖̅)

√{Σ{(𝑥𝑖 − 𝑥𝑖̅)
2Σ(𝑦𝑖 − 𝑦𝑖̅)}

2
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Similarly, RMSE measures the average squared distance between the predicted and actual 

values in a dataset, and then takes the square root of that value. It indicates the average 

model prediction error or the average magnitude of the error or residuals between 

predicted and actual values. The lower value of RMSE indicates a better model fit. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑥𝑖)

2

𝑛

𝑛

𝑖
 

Where: 

𝑥𝑖 is the measured value   

𝑦𝑖 is the predicted value  

𝑥𝑖̂ is the mean of measured values 

𝑦𝑖̂ is the mean of predicted values 

n is the number of observations 

Overall, R2 was used to evaluate the overall goodness of fit of the model, RMSE was 

used to evaluate the accuracy of the model and bias measured the systematic error that 

the model makes when it tries to approximate a target value. All three in combination 

were used to evaluate the performance of the three models.  

2.5.2 Linear mixed effect model 

The linear mixed effect (LME) model was performed among manually measured wheat 

datasets and using lme (Comprehensive R Archive Network (CRAN), 2023) package in 

Rstudio (R: The R Project for Statistical Computing, n.d.). LME is a statistical technique 

that accounts for both fixed and random effects. Twelve pairs of wheat genotypes were 

treated as fixed effects and replication within each genotype was treated as a random 

effect. The equation of the model is given as: 

y = β + β1 × xi + γ + ϵ 
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where, 

y is the response variable; Leaf area (LA), Fresh weight (FW), and Dry weight (DW) 

𝛽  is the global intercept 

xi is the fixed effect of 24 different (12 pairs) wheat genotypes 

𝛾 is the random effect of replication  

𝜀 is a normal distribution of residuals 

Again, a linear mixed model with yield as the response and replication as a random 

model effect was used to determine if there is significant difference in yield among the 

genotypes. 

𝑦𝑖𝑗| 𝛾𝑗~𝑁(𝜇𝑖𝑗 , 𝜎
2) 

𝛾𝑗~𝑁(0, 𝜎𝑗
2) 

Where, 

𝑦𝑖𝑗  is the yield of ith genotypes at jth replication 

 µ is the overall mean 

𝜏𝑖 is the fixed effect of 24 different (12 pairs) wheat genotypes 

𝛾𝑗 is the random effect of replication  

𝜖𝑖𝑗 is a normal distribution of residuals 
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2.5.3 Repeated measure model 

RGB image analysis was performed for 192 wheat plants which were imaged daily in the 

greenhouse and plant pixels were extracted. 24 wheat genotypes were replicated eight 

times and the pixel count was extracted at four different time points; booting, stem 

elongation, anthesis and physiological maturity and the yield of each genotype was also 

recorded at the end of the experiment. The repeated measure model was used to 

determine if pixel count of each genotype is significantly different over time. The 

covariance structure used was an autoregressive parameter and the degrees of freedom 

was adjusted using a Kenward Rodgers adjustment. The same plant (i.e., same genotype) 

was measured at multiple time points. The equation of the model is given as:                    

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝑠𝑖𝑘 + 𝑤𝑖𝑗𝑘 

𝑠𝑖𝑘~ 𝑁(0, 𝜎𝑘
2) 

𝒘𝑖𝑘~𝑁(𝟎, 𝚺𝑖𝑘) 

𝒘𝑖𝑘 = [𝑤𝑖1𝑘, 𝑤𝑖2𝑘, 𝑤𝑖3𝑘, 𝑤𝑖4𝑘]
𝑇 

𝚺𝑖𝑘 = 𝜎𝑤 
2

[
 
 
 
1 𝜌 𝜌2 𝜌3

1 𝜌 𝜌2

1 𝜌

1 ]
 
 
 
 

                                    Where 𝜌 is the autoregressive parameter. 

Where, 

𝑦𝑖𝑗𝑘 is the pixel count for the kth replication of the ith genotype at the jth time point 

µ is the overall mean of the pixel count 

𝛼𝑖 is the effect of the ith genotype 

𝛽𝑗 is the effect of the jth time point 
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(𝛼𝛽)𝑖𝑗  is the interaction effect between the jth time point and the ith  genotype 

𝑠𝑖𝑘 is the effect of the kth replication at ith genotype (random effect) 

𝑤𝑖𝑗𝑘 is the residual error term 
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Chapter 3  Results 

3.1 RGB image analysis of wheat plants 

The linear regression analysis was performed on 39 wheat plants from three different 

growth stages: booting, stem elongation, and anthesis. One plant was removed from the 

analysis as an outlier. Figure 3.1 shows the correlation between destructively measured 

physical traits: total leaf area, fresh weight, and dry weight with plant pixel count. The 

correlation was  higher for total leaf area with pixel count, with the coefficient of 

determination (R2) of 0.756 followed by fresh weight (R2 = 0.740) and dry weight (R2 

=0.597) as demonstrated in Figure 3.1(a), Figure 3.1(b), Figure 3.1(c) respectively. The 

R2 of 0.756 for leaf area represents about 75.6% of variation in leaf area can be explained 

by pixel count. For total leaf area, the estimated coefficient for intercept was 15.195, and 

for average pixel count it was 143.64. The p values for all three traits indicate pixel count 

is statistically significant (p<0.05) in predicting total biomass area, fresh weight, and dry 

weight in wheat plants.  
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              a 

 

              b 

 

                c 

 

Figure 3.1.Correlation between total leaf area (a), fresh weight (b), and dry weight (c) 

with plant pixels derived from RGB image analysis of wheat plants 
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3.2 N, P, and K prediction using spectral reflectance from hyperspectral images and ASD 

in wheat plants 

The hyperspectral image processing of wheat plants was done to extract leaf reflectance 

to predict macronutrient (N, P, K) content in plants. Figure 3.2 shows N, P, and K 

prediction among wheat genotypes using PLSR modeling. The leaf reflectance was 

extracted from hyperspectral images with wavelengths ranging from 546 to 1700 nm, 

which served as an input for the PLSR model. The number of samples used for the PLSR 

model was 57 wheat plant images taken on the same day before their destructive 

sampling. The wheat genotypes were selected randomly for manual measurement. Data 

from hyperspectral images showed the prediction accuracy was highest for nitrogen with 

R2 of 0.690 followed by potassium (R2 = 0.684) and phosphorous (R2 = 0.436) as shown 

in Figure 3.2.The number of latent variables used were 5, 7, and 4 for the N, P, and K, 

respectively. Similarly, for N, P and K prediction using ASD, the result was shown in 

Figure 3.3. The prediction accuracy for K was found highest with R2 of 0.772, followed 

by P (R2 = 0.702) and N (R2 = 0.673) as shown in Figure 3.3(c), Figure 3.3(b) and Figure 

3.3(a) respectively. 

The prediction accuracy for the N, P, K prediction from both datasets were compared. 

The N prediction accuracy was comparable among both datasets using PLSR modeling 

with an R2 of 0.673 and RMSE of 0.807% from ASD and R2 of 0.690 and RMSE of 

0.814% from the hyperspectral image dataset. The correlation was higher from 

hyperspectral image dataset whereas the accuracy was higher from ASD with lower 

RMSE. But there was large variation in P and K prediction among the two datasets. The 

P prediction was higher from ASD datasets with R2 of 0.702 and RMSE of 0.229% and K 
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prediction was also higher from ASD datasets with R2 of 0.772 and RMSE of 0.898%. 

Similarly, the reflectance from hyperspectral images shows negative bias of -0.037%, -

0.003% and -0.104% for N, P and K prediction respectively. This shows the model 

underestimates the true value of N,P, and K and the predicted values are slightly lower 

than the actual values. Also, the ASD data shows positive bias of 0.019% for N, 0.046% 

for P and negative bias of -0.072% for K as shown in Table 3.1 with their respective R2, 

RMSE, bias, and the numbers of latent variables used. 

 

a 

 

b 

 

c 
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Figure 3.2.N, P and K prediction using PLSR model from hyperspectral images of wheat 

genotypes 

 
a 

 
b 
 

                                                                                                  
  

 
              c 

 

Figure 3.3.N, P and K prediction using PLSR model from ASD reflectance data of wheat 

genotypes. 
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Table 3.1 N, P and K prediction using both hyperspectral images and ASD in wheat 

genotypes using PLSR modeling 

  R2 RMSE 

(%) 

Bias Number of 

latent 

variables  

 

 

N 

Hyperspectral images 0.690 0.814 - 0.037 5 

ASD Spectrometer 0.673 0.807 0.019 5 

 

 

P 

Hyperspectral images 0.436 0.317 - 0.003 

 

7 

ASD Spectrometer 0.702 0.229 0.046 5 

 

 

K 

Hyperspectral images 0.684 1.119 - 0.104 4 

ASD Spectrometer 0.772 0.898 - 0.072 5 

 

 

3.3 Linear mixed effect model among wheat genotypes 

 A linear mixed effect model was performed to determine if there was any significant 

difference between wheat genotypes for manually measured physical traits. The 

genotypes for manual measurement were randomly selected. The result showed there was 

significant difference in dry weight, fresh weight, and biomass among the selected wheat 

genotypes for destructive sampling as the p-value was 0.0121, 0.0549, and 0.0045 

respectively for all three traits. 

Table 3.2 showed genotypes 67 and 83 have significantly different fresh weights with p-

value of 0.0165 and 0.019 respectively. Similarly, genotype 67 has a coefficient of  
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59.403 and a standard error of 23.54 whereas genotype 83 has a coefficient of -44.18 with 

a standard error of 17.93. 

Table 3.3 shows that genotypes 51, 67 and 83  have significantly different fresh weight as 

all of their p-values was less than 0.05. Similarly, Table 3.3 shows genotypes 69, 86, 88, 

and 114 have significantly different dry weights with their respective p-value of  <0.05.  

Table 3.2.Wheat genotypes with significantly different fresh weight 

 Coefficient Standard 

error 

DF t-value p-value 

Intercept 75.3771 11.82 34 6.37 0.000 

Genotype 67 59.403 23.54 34 2.522 0.0165 

Genotype 83 -44.18 17.937 34 -2.46 0.0190 

 

Table 3.3.Wheat genotypes with significantly different leaf area 

 Coefficient Standard 

error 

DF t-value p-value 

Intercept 1503.59 225.59 34 6.665 0.000 

Genotype 51 707.149 315.357 34 2.2423 0.0316 

Genotype 67 1627.4062 476.74 34 3.413 0.0017 

Genotype 83 -958.0856 363.047 34 -2.639 0.0125 

 

Table 3.4.Wheat genotypes with significantly different dry weight 

 Coefficient Standard 

error 

DF t-value p-value 

Intercept 20.29 6.49 34 3.12 0.0036 

Genotype 69 19.294 6.66 34 2.893 0.0066 

Genotype 86 16.82 7.306 34 2.302 0.0276 

Genotype 88 13.98 6.669 34 2.097 0.0434 

Genotype 114 39.066 11.035 34 3.539 0.0012 
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Similarly, a linear mixed model with yield as the response and replication as a random 

model effect was used. The result showed there was significant difference in yield among 

the genotypes with p value <0.0001 as shown in Table 3.5. A plot of the least squares 

means yield and the confidence intervals is included in the figure. A pairwise comparison 

was done to see the yield difference among the genotypes. Only significantly different 

results were included in the table. Similarly, a plot of the least squares means yield and 

the confidence intervals was included in the Figure 3.4.  

Table 3.5 Type III test of fixed effects 

Effect Num DF Den DF F Value Pr > F 

Genotype 23 161 4.78 <.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 LS-Means of yield of each wheat genotypes 
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A pairwise comparison was done to see the yield difference among the wheat genotypes. 

Only significantly different results are included in the table. 

3.5 RGB image analysis of corn plants 
RGB image analysis of corn plants was done in three different ways as explained in 

chapter 2 of this study. Figure 3.5 shows the distribution of green pixel count and yellow 

and brown pixel count after RGB image segmentation. Corn plants that received water 

and high nitrogen have the highest green pixels and the plants with drought and low 

nitrogen have the lowest green pixels count as shown in Figure 3.5 (a). Similarly, plants 

with drought and high nitrogen have higher green pixels compared to plants with water 

and low nitrogen. As shown in Figure 3.5 (b) plants with drought and low nitrogen and 

water and low nitrogen treatment has the highest yellow pixels with a slightly larger 

range for water and nitrogen treatment as expected. Nitrogen and water are considered 

the most important components for supporting the growth and development of plants. 

Nitrogen is a part of the chlorophyll molecule and gives green color to plants that are 

involved in creating food through the photosynthesis process. Therefore, lack of enough 
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nitrogen in plants shows yellowing (chlorosis) of the plants which is shown clearly in the 

figure. 

 

         a 

 

b 

Figure 3.5 Distribution of green pixels (a) and yellow and brown pixels (b) among 

different treatment combinations; D+0N (Drought and low nitrogen), D+N (Drought and 

high nitrogen), W+0N (well-watered and low nitrogen), and W+N (well-watered and 

high nitrogen) 

The linear regression model was applied to 72 corn plant samples.  

Figure 3.6 shows the correlation between physical traits and plant pixel count, the 

correlation was higher between leaf area and plant pixels with R2 of 0.679, followed by 

dry weight (R2   = 0.398) and fresh weight (R2   = 0.382) respectively. Overall, the plants 

that received water and high nitrogen are seen higher in the scatter plots and the plants 

with drought and low nitrogen treatment were at the lower end of the scatter plot.  
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          a                                                           b                           

 c 

Figure 3.6 Correlation between leaf area, dry weight, and fresh weight with plant pixels 

from excessive green pixel extraction algorithm in corn plants. 

The plants with water and low nitrogen as well as the plants with drought and low 

nitrogen treatment were seen at the lower end, which shows nitrogen has a significant 

role in the growth and development of corn plants. However, the plants that received high 

nitrogen and well-watered has the points at the upper end of the regression line. Even 
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though the result from the RGB image analysis using the green pixel extraction algorithm 

was lower compared to other studies, it might have implications with different treatment 

combinations of nitrogen and water. Overall, the correlation was found to be stronger for 

plants that received nitrogen as well as water treatment.  

Another RGB image segmentation approach was followed by extracting yellow and 

brown pixels using the HSV color segmentation algorithm. The green plant pixels 

extracted from the green pixel extraction algorithm and the yellow and brown pixels 

extracted from HSV color segmentation algorithms were added and counted as a total 

plant pixel count of each plant. A linear regression model was applied to see the 

difference in correlation, but the correlation was lower compared to the excessive green 

pixel extraction algorithm as shown in Figure 3.7.The highest correlation from this 

method was obtained for dry weight with R2 of 0.478, followed by fresh weight (R2 = 

0.442) and leaf area (R2   = 0.252) as shown in Figure 3.7.Overall, the correlation for 

plants with water and nitrogen treatment was higher which was consistent with the 

excessive green pixel extraction algorithm.  

Similarly, the result from the HSV segmentation algorithm extracting all green, yellow, 

and brown pixels is presented in Figure 3.8. The correlation was higher for dry weight 

with pixel count with an R2  of 0.214 followed by fresh weigh (R2=0.192) and leaf area 

(R2 =0.190) as shown in Figure 3.8. The correlation between leaf area and pixel count 

was comparable with the previous algorithm presented in Figure 3.7 but the correlation of 

pixel count with fresh weight and dry weight than the previous algorithm. 



54 
 

 
 

 

a 

 

b 

 

c 

 

Figure 3.7 Correlation between leaf area, dry weight, and fresh weight with plant pixels 

from the excessive green index and HSV color segmentation algorithm 
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                      a                                                                 b 

 

                       c 

Figure 3.8 Correlation between leaf area, dry weight, and fresh weight with plant pixels 

extracted from HSV color segmentation algorithm including green, yellow, and brown  
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3.6 N, P, and K prediction using reflectance from hyperspectral images and ASD in corn 

plants using three different machine learning algorithms 

Table 3.6 shows the comparison between three different machine learning models; PLSR, 

RF, and SVR to predict N, P, and K content using reflectance from hyperspectral image 

datasets and reflectance from ASD spectrometer in corn plants. For hyperspectral image 

datasets, N prediction was higher from the PLSR model with the R2 value of 0.663, 

RMSE of 0.271%, and bias of 0.092% as shown in Figure 3.9 (a). Similarly, P was 

predicted higher from the RF model with R2 of 0.740, RMSE of 0.019%, and negative 

bias of – 0.0023% and K was also predicted higher from the RF model with R2 of 0.876, 

RMSE of 0.27%, with positive bias of 0.044%.as shown in Figure 3.9 (b) and Figure 3.9 

(c) respectively. 

For the spectral reflectance data obtained from the ASD spectrometer, the result shows N, 

P, and K prediction was higher than the RF model. The R2 for N prediction was 0.676 

with an RMSE of 0.34% and negative bias of -0.075%. Similarly, the R2 value for P 

prediction was 0.41 with an RMSE of 0.027% with negative bias of – 0.0033%. Among 

N, P, and K from spectral reflectance datasets, the K prediction accuracy was higher with 

R2 of 0.69, RMSE of 0.382 %, and negative bias of -0.063 as shown in Figure 3.10. 

Although the performance of the PLSR and RF models was comparable, the SVR model 

showed lower prediction for N, P, and K contents from either dataset. Comparing the N 

prediction from both datasets, the prediction accuracy was found to be similar from both 

PLSR and RF model with R2 of 0.66 and 0.67 respectively. However, the RF model was 

effective in prediction P and K from both datasets with a coefficient of determination 
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slightly higher in hyperspectral image datasets compared to reflectance data from ASD as 

demonstrated in Table 3.6.                                         



58 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

M
a

cr

o
n

u
tr

i

en
ts

 

D
a

ta
se

ts
 

N
u

m
b

e
r 

o
f 

S
a

m
p

le
 

si
ze

 

N
u

m

b
er

 

o
f 

la
te

n

t v
a

ri
a

b
le

s 

P
a

rt
ia

l 
le

a
st

 s
q

u
a

re
 

re
g
re

ss
io

n
 (

P
L

S
R

) 

R
a
n

d
o

m
 f

o
re

st
 

re
g
re

ss
io

n
 (

R
F

) 

S
u

p
p

o
rt

 v
ec

to
r 

re
g
re

ss
io

n
 (

S
V

R
) 

 
 

 
 

R
2

 
R

M
S

E
 

(%
) 

B
ia

s 
R

2
 

R
M

S

E
 (

%
) 

B
ia

s 

(%
) 

R
2

 
R

M
S

E
 (

%
) 

B
ia

s 

 

N
it

ro
g

en
 

H
y

p
er

sp
ec

tr

al
 i

m
ag

es
 

7
2
 

5
 

0
.6

6
3
 

0
.2

7
1
 

0
.0

9
2
 

0
.5

9
1
 

0
.3

6
2
 

-0
.0

2
4
 

0
.1

2
4
 

0
.4

4
1
 

0
.0

1
2
2

 

A
S

D
 

7
2
 

4
 

0
.5

9
6
 

0
.3

3
3
 

0
.1

1
9
 

0
.6

7
6
 

0
.3

4
4
 

-0
.0

7
5
 

0
.0

3
7
 

0
.5

5
4
 

0
.0

6
2
 

 

P
h

o
sp

h
o

ro
u

s 

H
y

p
er

sp
ec

tr

al
 i

m
ag

es
 

7
2
 

7
 

0
.2

5
5
 

0
.0

2
8
 

0
.0

1
0
 

0
.7

4
0
 

0
.0

1
9
 

-0
.0

0
2
3
 

_
 

0
.0

4
3
 

0
.0

2
3
 

A
S

D
 

7
2
 

4
 

0
.0

5
5
 

0
.0

2
8
1

 
0
.0

0
1
 

0
.4

1
3
 

0
.0

2
7
 

-0
.0

0
3
3
 

_
 

0
.0

4
3
 

0
.0

2
7
 

 

P
o
ta

ss

iu
m

 

H
y

p
er

sp
ec

tr

al
 i

m
ag

es
 

7
2
 

7
 

0
.6

3
0
 

0
.4

7
2
 

0
.2

9
3
 

0
.8

7
6
 

0
.2

7
 

0
.0

4
4
 

0
.4

7
1
 

0
.5

6
7
 

0
.1

3
1
 

A
S

D
 

7
2
 

6
 

0
.6

8
0
 

0
.3

8
1
 

0
.2

0
2
 

0
.6

9
0
 

0
.3

8
2
 

-0
.0

6
3
 

0
.0

1
4
 

0
.6

4
5
 

0
.1

1
7
 

 

T
ab

le
 3

.6
.N

, 
P

 a
n
d
 K

 p
re

d
ic

ti
o
n
 u

si
n
g
 t

h
re

e 
d
if

fe
re

n
t 

m
ac

h
in

e 
le

ar
n
in

g
 m

o
d
el

s 

u
si

n
g

 h
y
p
er

sp
ec

tr
al

 i
m

ag
e 

d
at

as
et

s 
an

d
 A

S
D

 d
at

as
et

s 
in

 c
o
rn

 p
la

n
ts

 



59 
 

 
 

 

 

 

a                                                                                                                                                                                                                
 

 

b 

 

c 

Figure 3.9 . Highest N (from PLSR model), P (from RF model), and K (from RF model) 

predicted with hyperspectral images reflectance among three different machine learning 

models 
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Figure 3.10 . Highest N (RF), P (RF), and K (RF) predicted from ASD reflectance among 

three different machine learning models 
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3.7 Chlorophyll content prediction 

Table 3.7 shows there is a highly significant relationship between chlorophyll content and 

MCARI index as the p-value is <0.001  for both reflectance data using a black and white 

reference panel. The estimated effect of the MACARI index using a black reference panel 

was  0.97 with a standard error of 0.068 whereas the estimated effect of the MACARI 

index using a white reference panel was found 1.002 with a standard error of 0.031. 

Overall, the correlation was higher for chlorophyll content prediction using a white 

reference panel with R2 of 0.97 and RMSE of 12.66 µmol/m2  as indicated in Figure 3.11 

(a). Similarly, R2 of 0.89 and RMSE of 26.58 µmol/m2  was obtained from the black 

reflectance panel, as shown in Figure 3.11 (b). This result is consistent with other studies 

that used hyperspectral spectral data to estimate leaf chlorophyll content, which generally 

yielded R2 values > 0.90 (J. Li et al., 2023 and Wijewardane et al., 2023). 
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a 

 

b 

 

Figure 3.11 Correlation between predicted and measured chlorophyll content using 

MCARI index with reflectance from white reference panel (a) and reflectance from black 

reference panel (b) 

 

Table 3.7.Chlorophyll content prediction using a linear regression model with ASD 

reflectance data taken from the black and white reference panel. 

  Estimates Standard  

Error 

t-value Pr(>|t|) 

Black 

reference 

panel 

Intercept 16.13 16.97 0.95 0.352 

MACARI 

index 

0.97 0.068 14.17 1.54e-12*** 

White 

reference 

panel 

Intercept 4.98 7.77 0.641 0.528 

MACARI 

index 

1.002 0.031 31.96 <2.2e-16*** 
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Chapter 4  Discussion 

The main objective of this study was to characterize the physical and biochemical traits 

of wheat and corn plants using high throughput image analysis. To quantify this objective 

wheat and corn plants were grown on the LemnaTec greenhouse plant phenotyping 

facility at the University of Nebraska Lincoln. The RGB and hyperspectral images of the 

plants were captured regularly using an automated imaging system and the ground truth 

measurements of the plants were taken through destructive sampling. The whole study 

was based on the hypothesis that high throughput plant phenotyping using image analysis 

techniques, especially RGB and hyperspectral imaging, could accurately and effectively 

determine physical and biochemical traits in plants. To test this hypothesis, the 

experiment was performed, and different methodologies were followed as described in 

Chapter 2 of this thesis.  

The first objective of the study was to determine the degree of correlation between plant 

pixel information derived from RGB image analysis with manually measured physical 

traits for wheat and corn plants. The findings from RGB image analysis demonstrate that 

the correlation was higher for leaf area followed by fresh weight and dry weight for both 

wheat and corn plants. The correlation was found higher when the plants were at earlier 

growth stages and the correlation started to decrease at the later developmental stage of 

plants. The overall correlation of plant pixels with manually measured physical traits was 

found to be higher for wheat plants compared to corn plants. The wheat plant architecture 

is different compared to the plants like maize and sorghum on which the studies were 

done before. Therefore, the correlation might be affected due to the difference in the 
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architecture of the wheat plants. Also, the distance from the camera to the object was also 

larger in RGB and hyperspectral imaging for wheat plants which could be the other factor 

for affecting correlation in wheat plants.  

The second objective of the study was to determine biochemical traits prediction 

accuracy between hyperspectral imaging and non-imaging spectrometer (ASD). The 

result showed reflectance data obtained using hyperspectral image processing was as 

effective as reflectance data obtained using ASD to predict nitrogen content in both 

wheat and corn plants. However, the prediction accuracy of P and K differed largely in 

both crops. For wheat crops, N prediction from hyperspectral images and N prediction 

from ASD reflectance were found similar using PLSR modeling whereas P and K 

prediction was found higher from ASD reflectance data. 

Similarly, the third specific objective was to determine the best predictive machine 

learning model to determine biochemical traits using both hyperspectral image datasets 

and ASD reflectance specifically on corn plants. Three different machine learning 

algorithms were performed and compared: PLSR, RF, and SVR. The result showed, for 

hyperspectral image datasets, nitrogen prediction accuracy was higher using PLSR 

modeling whereas P and K prediction was higher using the random forest model. For 

ASD datasets, the N, P, and K prediction accuracy was found higher from the random 

forest model.  

This study highlighted the benefits of image analysis techniques to capture a large 

amount of data in a relatively short amount of time and provided a good insight for 

performing experiments on plants like wheat that has different architecture from corn. 

This study also explored more image segmentation algorithms for plants treated with 
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various nitrogen and water levels and could set a standard benchmark protocol for ground 

truth measurement. This study has provided insights regarding the time and labor 

required for plant phenotyping, allowing for more efficient and effective breeding 

programs where a large number of plants should be screened to identify desirable traits.  

However, it is well noted that this study has some limitations and challenges that need to 

be addressed.  More robust and standardized measurement protocols need to be 

established during imaging and ground truth data collection to further improve the 

results. Since the nitrogen dose applied was usually lower than the normal rate for corn 

plants, it was not sufficient for the effective growth and development of corn plants. 

Therefore, even high nitrogen-treated plants developed yellow color, and the plant with 

lower nitrogen treatment had worse symptoms in the early growth stages, which may 

have influenced the correlation with RGB imaging for corn plants. So, the appropriate 

amount of nitrogen application should be considered during future studies.
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Chapter 5 Conclusion and Future work 

In conclusion, this study has demonstrated the potential to characterize the physical, 

biochemical and physiological traits of wheat and corn plants using high throughput 

image analysis. Overall, the correlation was higher for leaf area/total biomass area with 

plant pixel followed by fresh weight and dry weight for both wheat and corn plants. The 

correlation between manually measured physical traits and data from RGB image 

analysis was found higher for wheat plants compared to corn plants. The nitrogen 

prediction was higher using PLSR modeling in both crops. The nitrogen prediction 

accuracy was comparable using data from hyperspectral images and ASD spectrometer, 

whereas the prediction accuracy of P and K differed largely in both crops.  

It can be concluded that the use of image analysis techniques has the potential to 

revolutionize the field of plant phenotyping to measure desired plant traits more 

efficiently and accurately on a large scale. While there are still challenges to be 

addressed, such as developing standardized protocols for image acquisition and 

improving the accuracy of machine learning algorithms used for plant trait quantification. 

For future studies, the potential of other imaging techniques, such as fluorescence and 

thermal, can be further explored to determine other physiological traits. 

In conclusion, the issues and challenges addressed in this thesis will help future 

researchers to replicate and improve the methods and show the extent and possibilities of 

using high throughput plant phenotyping using image analysis techniques. The findings 

from this study can also be useful in replicating similar experiments in other crop species 

having different architecture. These image analysis techniques have the potential to 

revolutionize the field of plant phenotyping by advancing our understanding of important 
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plant traits, which ultimately contribute to crop improvement addressing global 

challenges related to food security and climate change. 
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APPENDIX 

APPENDIX A. Some glimpses during experimental set up and ground truth data 

collection. 
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APPENDIX B. A pairwise comparison between genotypes at each time point for pixel 

count. (Only genotypes that have significantly different pixel count  is included in the 

table ). 

 

Simpl

e 

effect 

Genotyp

e 

_Genotyp

e 

Estimat

e 

Standar

d error 

Adj.p Adj.lowe

r 

Adj.uppe

r 

time 3 6 88 0.00379 0.001 0.029

6 

0.00016 0.00743 

time 3 16 23 0.00448 0.001 0.002 0.00084 0.00812 

time 3 16 68 0.00397 0.001 0.015

6 

0.00033 0.00761 

time 3 23 24 -0.0038 0.001 0.030

1 

-0.0074 -0.0002 

time 3 24 88 0.00464 0.001 0.001 0.001 0.00828 

time 3 33 88 0.00402 0.00097 0.008

2 

0.00049 0.00756 

time 3 34 88 0.00411 0.00103 0.015

7 

0.00034 0.00788 

time 3 37 88 0.00417 0.001 0.007

2 

0.00053 0.00781 

time 3 38 88 0.0042 0.001 0.006

4 

0.00056 0.00784 

time 3 84 88 0.00367 0.001 0.045

3 

0.00003 0.00731 

time 4 5 23 0.00466 0.001 0.000

9 

0.00102 0.00829 

time 4 5 86 0.00366 0.001 0.047

3 

1.7E-05 0.0073 

time 4 5 88 0.00394 0.001 0.017

8 

0.0003 0.00758 

time 4 6 23 0.00502 0.001 0.000

2 

0.00138 0.00866 

time 4 6 86 0.00402 0.001 0.013

1 

0.00038 0.00766 

time 4 6 88 0.0043 0.001 0.004

3 

0.00066 0.00794 

time 4 15 68 0.00413 0.001 0.008

6 

0.00049 0.00777 
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time 4 15 69 0.00377 0.001 0.032

8 

0.00013 0.0074 

time 4 15 70 0.00424 0.001 0.005

4 

0.0006 0.00788 

time 4 15 85 0.00391 0.001 0.019

7 

0.00027 0.00755 

time 4 15 87 0.00391 0.001 0.019

8 

0.00027 0.00755 

time 4 15 113 0.00442 0.001 0.002

6 

0.00078 0.00806 

time 4 16 68 0.00367 0.001 0.045

2 

0.00003 0.00731 

time 4 16 70 0.00379 0.001 0.030

5 

0.00015 0.00742 

time 4 16 113 0.00396 0.001 0.016

2 

0.00032 0.0076 

time 4 23 24 -0.0044 0.001 0.002

8 

-0.008 -0.0008 

time 4 23 34 -0.0042 0.00103 0.011

5 

-0.008 -0.0004 

time 4 23 37 -0.0043 0.001 0.003

9 

-0.008 -0.0007 

time 4 23 52 -0.005 0.001 0.000

2 

-0.0086 -0.0013 

time 4 23 67 -0.0041 0.001 0.010

7 

-0.0077 -0.0004 

time 4 24 88 0.00368 0.001 0.043

2 

4.4E-05 0.00732 

time 4 37 88 0.0036 0.001 0.056

4 

-4E-05 0.00724 

time 4 38 86 0.00487 0.001 0.000

3 

0.00123 0.00851 

time 4 38 113 0.00366 0.001 0.047

3 

1.7E-05 0.0073 

time 4 51 68 0.00421 0.001 0.006

2 

0.00057 0.00785 

time 4 51 69 0.00385 0.001 0.024

4 

0.00021 0.00749 

time 4 51 70 0.00433 0.001 0.003

8 

0.00069 0.00796 

time 4 51 85 0.00399 0.001 0.014

5 

0.00035 0.00763 

time 4 51 87 0.00399 0.001 0.014

6 

0.00035 0.00763 

time 4 51 113 0.0045 0.001 0.001

8 

0.00086 0.00814 
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time 4 52 86 0.00396 0.001 0.016

2 

0.00032 0.0076 

time 4 52 88 0.00424 0.001 0.005

4 

0.0006 0.00788 

time 4 68 84 -0.0039 0.001 0.023

5 

-0.0075 -0.0002 

time 4 70 84 -0.004 0.001 0.015

4 

-0.0076 -0.0003 

time 4 83 86 0.0043 0.001 0.004

2 

0.00066 0.00794 

time 4 83 88 0.00458 0.001 0.001

3 

0.00094 0.00822 

time 4 84 85 0.00364 0.001 0.049

7 

1.95E-06 0.00728 

time 4 84 87 0.00364 0.001 0.05 2.13E-07 0.00728 

time 4 84 113 0.00415 0.001 0.007

8 

0.00051 0.00779 

 

 

APPENDIX C. A pairwise comparison between genotypes for yield difference. (Only 

genotypes that have significantly different yield is included in the table). 

Genotypes _Genotypes Estimates Standard 

error 

Adj.p Adj.upper Adj.lower 

5 51 16.7125 3.6797 0.0025 3.0917 30.3333 

5 52 19.0125 3.6797 0.0002 5.3917 32.6333 

5 84 15.1375 3.6797 0.0126 1.5167 28.7583 

6 52 14.7375 3.6797 0.0185 1.1167 28.3583 

15 51 18.875 3.6797 0.0002 5.2542 32.4958 

15 84 17.3 3.6797 0.0013 3.6792 30.9208 

24 51 14.2375 3.6797 0.0293 0.6167 27.8583 

24 52 16.5375 3.6797 0.003 2.9167 30.1583 

33 52 14.1674 3.5773 0.0216 0.9255 27.4094 

37 51 17.9375 3.6797 0.0006 4.3167 31.5583 

37 84 16.3625 3.6797 0.0036 2.7417 29.9833 

38 51 16.025 3.6797 0.0052 2.4042 29.6458 

38 52 18.325 3.6797 0.0004 4.7042 31.9458 

38 84 14.45 3.6797 0.0241 0.8292 28.0708 

51 68 -14.975 3.6797 0.0148 -28.596 -1.3542 

51 69 -16.113 3.6797 0.0047 -29.733 -2.4917 

51 70 -16.613 3.6797 0.0028 -30.233 -2.9917 

51 85 -13.663 3.6797 0.0483 -27.283 -0.0417 

51 87 -16.488 3.6797 0.0032 -30.108 -2.8667 
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51 113 -17.1 3.6797 0.0016 -30.721 -3.4792 

51 114 -16.138 3.6797 0.0016 -29.758 -2.5167 

52 67 -15.85 3.6797 0.0016 -29.471 -2.2292 

52 68 -17.275 3.6797 0.0016 -30.896 -3.6542 

52 69 -18.413 3.6797 0.0016 -32.033 -4.7917 

52 70 -18.913 3.6797 0.0016 -32.533 -5.2917 

52 85 -15.963 3.6797 0.0016 -29.583 -2.3417 

52 87 -18.788 3.6797 0.0016 -32.408 -5.1667 

52 88 -13.788 3.6797 0.0016 -27.408 -0.1667 

52 113 -19.4 3.6797 0.0016 -33.021 -5.7792 

52 114 -18.438 3.6797 0.0016 -32.058 -4.8167 

69 84 14.5375 3.6797 0.0016 0.9167 28.1583 

70 84 15.0375 3.6797 0.0016 1.4167 28.6583 

84 87 -14.913 3.6797 0.0016 -28.533 -1.2917 

84 113 -15.525 3.6797 0.0016 -29.146 -1.9042 

84 114 -14.563 3.6797 0.0016 -28.183 -0.9417 
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