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Abstract: We conducted a genome-wide transcriptomic analysis of three drought tolerant and sen-
sitive genotypes of common bean to examine their transcriptional responses to terminal drought
stress. We then conducted pairwise comparisons between the root and leaf transcriptomes from the
resulting tissue based on combined transcriptomic data from the tolerant and sensitive genotypes.
Our transcriptomic data revealed that 491 (6.4%) DEGs (differentially expressed genes) were upreg-
ulated in tolerant genotypes, whereas they were downregulated in sensitive genotypes; likewise,
396 (5.1%) DEGs upregulated in sensitive genotypes were downregulated in tolerant genotypes. Sev-
eral transcription factors, heat shock proteins, and chaperones were identified in the study. Several
DEGs in drought DB (data Base) overlapped between genotypes. The GO (gene ontology) terms
for biological processes showed upregulation of DEGs in tolerant genotypes for sulfate and drug
transmembrane transport when compared to sensitive genotypes. A GO term for cellular components
enriched with upregulated DEGs for the apoplast in tolerant genotypes. These results substantiated
the temporal pattern of root growth (elongation and initiation of root growth), and ABA-mediated
drought response in tolerant genotypes. KEGG (kyoto encyclopedia of genes and genomes) analysis
revealed an upregulation of MAPK (mitogen activated protein kinase) signaling pathways and plant
hormone signaling pathways in tolerant genotypes. As a result of this study, it will be possible to
uncover the molecular mechanisms of drought tolerance in response to terminal drought stress in the
field. Further, genome-wide transcriptomic analysis of both tolerant and sensitive genotypes will
assist us in identifying potential genes that may contribute to improving drought tolerance in the
common bean.

Keywords: transcriptomics; common bean; root; leaf; terminal drought stress; tolerant genotypes;
sensitive genotypes

1. Introduction

The common bean (Phaseolus vulgaris L.) is grown extensively in various regions,
from lowland tropical to semi-arid environments, either as a monoculture or intercropped.
As a legume, it is an abundant source of total protein, micronutrients, and energy [1].
In the event of terminal or intermittent drought, common bean yield can be negatively
affected by up to 60%, a loss that is only further worsened when soil moisture is reduced to
60–70% during grain filling [2–4]. Plants employ three key strategies to adapt to drought
conditions and respond appropriately. Drought escape through changes in molecular
mechanisms that allow them to adapt to the environment, drought avoidance through
modifications to morphological and physiological characteristics, and drought tolerance
by protein stabilization and osmotic adaptations to cope with dehydration [5]. As a result,
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a combination of morphological, physiological, biochemical, and molecular changes is
more than likely to be induced by changes in the upregulation of several regulatory and
functional genes to sense and respond to drought stress [6].

Studying signal perception, gene expression and regulation, and metabolic pathways
followed during drought stress is crucial for understanding how plants respond to drought
stress [7]. Furthermore, analysis of gene enrichment in metabolic pathways under drought
stress will aid in screening for potential genes and drought response mechanisms in diverse
plants [8]. It is essential to understand plants’ common and specific gene expression and
regulation during drought stress [9]. Due to metabolic and biological processes differing
between tissues above and below ground [5], energy production in the leaves is fine-tuned
based on the water availability in the roots. Understanding how plants respond to drought
stress can be improved by investigating differential gene expression patterns between
the tissues above and below ground [10]. Such a study may lead to the discovery of a
coordinated biological process, or a distinct pattern of processes followed by each type
of tissue. Therefore, a better understanding of drought-specific biological processes, and
crosstalk between the regulatory mechanisms of different tissues may contribute signifi-
cantly towards advancing knowledge of the general molecular mechanisms underlying
drought response [11].

Next-generation sequencing, such as RNA sequencing (RNA-Seq), has become increas-
ingly common in analyzing plants’ transcriptome under drought stress. The Andean [12]
and Mesoamerican [13] common bean genomes have been sequenced, with a total of
587 megabase pairs (Mbp) and 549.6 Mbp, respectively. These studies provide insight
into the genetic basis of biotic and abiotic stress responses [12]. Therefore, genomic infor-
mation favors the identification of genes that are drought responsive through the use of
transcriptomic analysis [2].

Different genotypes of common bean have been studied for differences in gene ex-
pression, co-expression of genes, and the relationship between several pathways and the
biological functions of specific genes during drought stress [2,14,15]. Genome-wide gene
expression analysis in the contrasting genotypes supports the identification of genetic
interactions responsible for diverse drought response patterns, genotype-specific drought
responses, and possible candidate genes for breeding drought tolerance [16–18]. Studying
drought responses in field conditions is likely to contribute to a better understanding of the
molecular mechanisms underlying drought responses and facilitate the development of
effective drought mitigation strategies [19].

Tolerant chickpea (Cicer arietinum) genotypes were found to be able to conserve water
during terminal drought stress, which was later utilized in reproductive stages. Yet there
were no significant differences in root traits between tolerant and sensitive genotypes.
Interestingly, roots temporal pattern of water uptake relates to drought tolerance [19,20].
Another study showed that the root-to-shoot ratio increased when plants were exposed to
the terminal and intermittent drought stress [21]. Thus, root and shoot growth are highly
coordinated in water deficit conditions [22]. In a comparison of differential gene expression
in response to the onset of water stress between three hybrid Brachiaria genotypes, it
has been suggested that faster root growth can offer advantages to the plant in terms of
extracting water from soil during a short period of rain [23].

In leaves of the signal grass (Brachiaria (Trin.) Griseb.) genotypes, a GO term for
carbohydrate and cell wall metabolism was enriched by upregulated DEGs compared to
downregulated DEGs in tolerant genotypes. Alternatively, DEGs for apoplastic peroxi-
dase activities, which involved lignification and elasticity of secondary cell walls, were
significantly downregulated in the roots of all genotypes, suggesting the pattern of gene
expression and the root structure may be influential in response to water stress [10]. In the
present study, it is anticipated that root DEGs derived from tolerant genotypes might be
enriched with respect to the temporal pattern of root activities, which include variation in
cellular response and signaling pathways when responding to drought stress, specifically
terminal drought stress in field conditions.
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Our study provides genome-wide transcriptomic analysis of six genotypes, three
tolerant and three sensitive, grown under terminal drought stress to drought conditions.
Our previous study tested these genotypes at two locations for broad temperate and
tropical adaptations [24]. Terminal drought stress (after flowering) was imposed on all
genotypes in the field. The transcriptomes of both leaves and roots have been generated,
and comparisons have been made between tolerant roots and leaves and sensitive roots
and leaves. It is anticipated that the described approach will lead to greater insight into the
molecular mechanisms of drought tolerance in common bean genotypes.

2. Materials and Methods
2.1. Field Experiment

Six genotypes of common bean (Phaseolus vulgaris L.) were used in the present
study. Tolerant genotypes: Merlot’//05F-5055-1/98020-3-1-6-2 (SB-DT3), and USPT-ANT//
‘Matterhorn’/98078-5-15-1(SB-DT2) [24], Matterhorn [25], and three sensitive genotypes:
Sawtooth [26], Merlot [27], and Stampede [28]. The field experiment was conducted as
described previously [29] (Figure 1). A field of silt loam soil (Typic Ustorthents) was
used for the cultivation of the common bean genotypes (41◦56.6′ N, 103◦41.9′ W, 1240 m
elevation). There was 75% silt, 15% sand, and 10% clay in the soil. In addition, it had
a cation exchange capacity of 17 meq/100 g, a pH of 7.8, and an organic matter content
of 14 mg/g. Since the field contained 20.5 kg of residual nitrogen and the manure credit
contained 25.9 kg of nitrogen, no additional nitrogen was applied to the field. Most plants
reached anthesis (flowering) before the drought was imposed. Until then, the plants were
irrigated by drip irrigation. The precipitation totaled 135.1 mm before flowering. This
includes irrigation of the plants twice (101.6 mm) and precipitation of 33.5 mm. The rainfall
after flowering totaled 16.3 mm, and the plants were not irrigated. Upon reaching almost
physiological maturity, the leaves and roots of the plants were collected and frozen in liquid
nitrogen. The samples were collected from three sensitive and three tolerant genotypes
grown under terminal drought stress in three replicates, resulting in 18 samples [(3 × 3)
+ (3 × 3)]. Agronomic characters of the tolerant and sensitive genotypes as well as their
starch and fat contents were analyzed in our previous study [29], Subramani et al., 2022.
For each genotype, RNA isolation and library preparation were performed separately.
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Figure 1. Experiments conducted under stress and non-stress conditions in the field.

2.2. RNA Isolation and cDNA Synthesis

Total RNA was isolated from leaves and roots using the Spectrum Total Plant RNA kit
(Sigma-Aldrich, St Louis, MO, USA) according to the manufacturer’s instructions. Genomic
DNA contamination was eliminated by using DNase I (Invitrogen, Waltham, MA, USA).
RNA concentration and purity were determined by the Nanodrop 2000 spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). Most RNA samples had a 260/280 ratio between
2 and 2.1. The RNA integrity was then assessed with agarose gel electrophoresis and
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Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). The complementary
DNA (cDNA) was synthesized from 1µg of total RNA according to the manufacturer’s
instructions using the ProtoScript II First Strand cDNA Synthesis kit (New England Biolabs,
Ipswich, MA, USA).

2.3. Library Preparation and Sequencing

The RNA-Seq libraries were prepared using the Illumina TruSeq Stranded mRNA
Sample Preparation Kit (Illumina Inc., San Diego, CA, USA). Briefly, Poly(A) tail mRNA
was enriched for first-strand c-DNA synthesis. Following the second strand synthesis,
multiple washes were carried out for the end repairs. A single A nucleotide was then
added to the 3′ ends. PCR was performed to enrich both ends of the shorter fragments with
adapters. The cDNA fragment pools were then loaded, and a paired-end read of 150 bp
sequencing was performed on the Illumina HiSeqTM 2500 at the Delaware Biotechnology
Institute in Newark, DE, USA.

2.4. Pre-Processing RNA- Seq Data

Phaseolus vulgaris v2.1, downloaded from phytozome v13, was used for genome
and gene references. The following URLs were accessed on 8 September 2021. ASTQC
(v0.11.9; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess
sequence quality, and Trim Galore (v 0.6.5; http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/) was used to trim adapters and reads based on Phred33 score 30,
and reads of at least 75 bases were retained. The quality-trimmed reads were mapped
to the STAR-indexed genome using STAR (v2.7.9a) [30]. The STAR mapping results, and
annotation files (GTF/GFF) were used for reference genome as input for the HTSeq package
(version 0.13.5) [31] to calculate the read counts for each gene feature for each sample. For
htseq-count, -m union and the -s reverse were used. A read count matrix for all samples
was generated by merging counts from all samples with custom Perl scripts.

2.5. Differentially Expressed Genes (DEGs) Identification

DEGs (differentially expressed genes) were identified using DESeq2 (v 1.32.0) [32].
Pairwise comparisons were made between Tolerant root vs leaves and Sensitive root vs
leaves. A read count matrix generated using HTSeq was used as input for DESeq2. Genes
with a non-zero read count in at least one sample were selected. Then zeros in the matrix
were replaced by ones to avoid infinite values being calculated for fold change. DESeq2
uses the negative binomial distribution based on the data model and performs specific
estimate variance–mean tests. DESeq2 determines significant DEGs using the Wald test.
p-value and adjusted p-values of false discovery rate (FDR) to correct for multiple tests
were added using DESeq2 based on the Wald test.

2.6. Functional Analysis of DEGs

ClusterProfiler (Version 4.0.5) [33], and R package (R Version 4.1.0) were used to per-
form Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment of significant differentially expressed genes in all pairwise comparisons (padj < 0.05
and log2 FC +/−2). Only the DEGs lists were included for analysis. To perform GO
analysis of corresponding DEGs, the Log2FC was included as input for agriGO v2 [34]
using Singular Enrichment Analysis (SEA) and parametric Analysis of Gene Set Enrichment
(PAGE) tools. We selected Phaseolus vulgaris species and custom GO database of P. vulgaris v
2.1 genome (downloaded from Phytozome v13) (accessed on 8 September 2021) and default
parameters such as complete GO database, significance cutoff 0.05, and Hochberg (FDR)
method as multiple test correction methods to perform agriGO. The statistically significant
GO terms associated with DEGs were derived.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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2.7. Volcano Plots

Volcano plots were generated to illustrate a pattern of significant DE genes using the
“EnhancedVolcano” R package (v1.10.0) (R version 4.1.0) (accessed on 16 November 2021)
using default options/parameters. The pattern and number of significant DE genes were
selected based on log2FC and padj < 0.05.

2.8. Quantitative Real-Time (qRT-PCR)

QRT-PCR was performed to validate the RNA-Seq results. The C-DNA was synthe-
sized from the root RNA samples. The primers were designed for the up and down-
regulated DEGs. The list of primers and the corresponding genes were provided in
Supplementary Table S6. The primers were designed using the primerQuest™ Tool (In-
tegrated DNA Technologies (IDT), Coralville, IA, USA). The primers were validated by
conventional PCR before being used in qRT-PCR. The qRT-PCR was performed on the
ABI 7500 real-time PCR (Applied Biosystems, Foster City, CA, USA). Each reaction was
carried out in a 25 µL master mix containing 100 ng of C-DNA, 10µM each of forward and
reverse primers, and 12.5µL of SYBR Green PCR Master Mix (Germantown, MD, USA).
The reaction was run at an initial denaturation of 95 ◦C for 10 min, followed by 40 cycles at
95 ◦C for 15 s and a final extension at 60 ◦C for 1 min. The samples were run in triplicate,
and the actin gene [35] was used to normalize qPCR samples and as an internal control.
The comparative CT method 2−∆CT [36] was used to calculate relative expressions.

3. Results
3.1. Data Quality and Summary of Reads

A total of 4615 million reads were obtained from the tolerant and sensitive root and
leaf samples. There were approximately 129 million reads from each sample (Table 1).
More than 92% of reads were mapped to the reference genome (Phaseolus vulgaris v2.1).
These confirmed the high data quality and could be used for further analysis. In order
to visualize the variation in RNA sequences between root and leaf samples, principal
component analysis was performed with DESeq2. There was a clear distinction between
root and leaf replicates from tolerant and sensitive genotypes on the PCA scatter plot
(Supplementary Figure S1). In addition, this will provide further confirmation that there is
great variation in gene expression between the roots and leaves.

Table 1. Summary of reads with average read counts for the individual samples and the cumulative
totals of both roots and leaves.

Tolerant Root Tolerant Leaves Sensitive Root Sensitive Leaves

Matt_7R 139,640,906 Matt_10L 107,711,956 Swa_4R 130,624,430 Swa_2L 130,454,386

Matt_7R 138,965,052 Matt_14L 116,817,638 Swa_5R 133,482,394 Swa_6L 110,347,824

Matt_9R 154,185,446 Matt_17L 117,538,996 Swa_6R 152,247,298 Swa_9L 125,654,646

Total 432,791,404 Total 342,068,590 Total 416,354,122 Total 366,456,856

Average 144,263,801 Average 114,022,863 Average 138,784,707 Average 122,152,285

MerX_10R 174,025,346 MerX_11L 162,408,546 Mer_1R 104,058,518 Mer_1L 160,053,034

MerX_11R 119,788,128 MerX_15L 119,504,092 Mer_2R 120,540,136 Mer_5L 144,966,788

MerX_12R 106,557,634 MerX_16L 110,960,258 Mer_3R 112,068,328 Mer_7L 128,432,570

Total 400,371,108 Total 392,872,896 Total 336,666,982 Total 433,452,392

Average 133,457,036 Average 130,957,632 Average 112,222,327 Average 144,484,131

USPT_13R 84,249,968 USPT_12L 168,923,136 Stam_16R 115,711,432 Stam_3L 110,748,340

USPT_14R 128,161,580 USPT_13L 107,542,292 Stam_17R 102,825,568 Stam_4L 140,862,648

USPT_15R 121,624,450 USPT_18L 138,913,792 Stam_18R 144,821,904 Stam_8L 129,873,270

Total 334,035,998 Total 415,379,220 Total 363,358,904 Total 381,484,258

Average 111,345,333 Average 138,459,740 Average 121,119,635 Average 127,161,419

Matt—Matterhorn; MerX—MerlotX; Swa—Sawtooth; Mer—Merlot; Stam—Stampede.
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3.2. Specific Gene Expression within Tolerant and Sensitive Genotypes

Using the two pairwise comparisons (Tolerant genotypes roots vs. leaves, Sensitive
genotypes roots vs. leaves), the total number of responsive genes identified with the re-
striction to FDR < 0.05 was 15,685 for the tolerant and 16,226 for the sensitive genotypes
(Supplementary Tables S1 and S2). With FDR < 0.05 and log 2FC± 2, 491 (6.4%) upregulated
DEGs were unique to the tolerant genotype. Similarly, 396 (5.1%) were enriched in sensitive
genotypes (Figure 2). These DEGs are likely to play an important role in response to termi-
nal drought. Furthermore, the scatter plot was constructed based on the log2fold change
and −log10 padj to determine the upregulated and downregulated genes by restricting
FDR < 0.05 and log2fold change ±2. In total, 3319 DEGs were upregulated, and 3561 genes
were downregulated in the tolerant genotypes comparisons. In the sensitive genotypes
comparisons, 3224 DEGs were upregulated, and 3652 were downregulated (Figure 3).
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3.3. GO Enrichment Analysis

A GO annotation analysis was performed to analyze DEGs based on padj < 0.05,
associated with cellular components, molecular functions, and biological processes. In both
the genotypes comparisons, biological process enrichment revealed that DEGs enriched in
photosynthesis, light harvesting, response to oxidative stress, recognition of pollen, defense
response, lipid biosynthetic process, response to biotic stimulus, and response to auxin
(Figure 4). Among the selected DEGs 2726 of the tolerant genotypes comparisons, 345 genes
were involved in diverse biological processes. In contrast, out of 2706 DEGs, 303 genes
were involved in biological processes for the sensitive genotypes. It was found that sulfate
transport and drug transmembrane transport were the two biological processes enriched
specifically in tolerant genotype comparisons (Figure 4). The gene ratios were almost
identical between the two genotypes for each biological process (Supplementary Table S3).
Among 3576 DEGs, 133 and 92 were enriched for cellular component function for tolerant
and sensitive genotype comparisons, respectively. The DEGs specific to cellular compo-
nents, such as the apoplast, were enriched in the tolerant genotypes compared to the
sensitive genotypes. In each cellular component function, the gene ratios were similar.
However, the tolerant genotypes were more enriched than the sensitive genotypes for the
molecular function category. These include xenobiotic transmembrane transporter activity,
antiporter activity, secondary active sulfate transmembrane transporter activity, sulfate
transmembrane transporter activity, electron transfer activity, and xyloglucan:xyloglucosyl
transferase activity. Also, specific molecular functions enriched for sensitive genotypes
were hydrolase activity, acting on ester bonds, and two iron, two sulfur cluster binding.
Higher DEGs ratios for heme binding were 189 out of 3448 and 186 out of 3424 for the
tolerant and sensitive genotypes, respectively. The differences in the DEGs enrichment
may indicate the possible biological functional differences in the tolerant and sensitive
genotypes in response to drought stress.
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DEGs were annotated against the GO database. The GO enrichment was based on the padj < 0.05.

3.4. KEGG and DEGs

In addition, KEGG enrichment function analyses were performed for both the tolerant
and sensitive genotype comparisons. In both the tolerant and sensitive genotype compar-
isons, the number of genes enriched for the plant hormone signal transduction pathway
followed by phenylpropanoid biosynthesis was higher than the other pathways (Figure 5).
MAPK signaling pathway was specific to tolerant genotype comparisons, while monoter-
penoid biosynthesis, cyanoamino acid metabolism, zeatin biosynthesis, ABC transporters,
and tyrosine metabolism were exclusive to sensitive genotype comparisons. More path-
ways in sensitive than tolerant genotype comparisons were identified. DEGs for starch and
sucrose metabolism were comparatively upregulated in sensitive genotypes. Differences in
the pathways may be associated with specific functional roles in response to drought stress.
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3.5. DEGs in Drought DB (Data Base)

It was found that 155 and 154 DEGs from tolerant and sensitive genotype compar-
isons, respectively, had best hits to Arabidopsis genes in the drought database. These lists
of genes, their names, and descriptions, identified from phytozome, along with the cor-
responding log2FC, are included in an Excel file (Supplementary Table S4). Among the
DEGs, Phvul.002G107100 and Phvul.001G166500 were the two genes with higher expres-
sion (Log2FC > 7) in the tolerant and sensitive genotypes comparisons (Figure 6). The
Phvul.002G107100 gene is homologous to AHK1 in Arabidopsis. The AHK1 (Histidine
kinase 1) gene was reported to regulate drought and salt responses through ABA (abscisic
acid) independent and dependent signaling pathways [37]. Similarly, the sensitive geno-
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types contain the homologous gene Phvul.001G166500 to Arabidopsis ABCG40. The atabcg40
mutants exhibited reduced drought tolerance due to impaired lateral root formation and
loss of stomatal function [38]. Upregulated DEGs might play an important role in drought
responses associated with ABA in both genotypes’ comparisons.
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3.6. Transcription Factors (TFs)

Out of 25,419 genes, 1418 TFs were identified in the tolerant genotype compar-
isons. Similarly, out of 25,466 genes in the sensitive genotypes, 1416 TFs were identified
(Supplementary Table S5). The C2H2 family protein of TFs was associated with the up-
regulated DEGs Phvul.002G075900 and Phvul.002G075900 with Log2FC > 10 in tolerant
and sensitive genotypes, respectively. Transcription factors zinc finger protein 7 and LOB
domain-containing protein 27 were identified specifically in the tolerant genotypes’ com-
parisons. In the sensitive genotypes, myb domain protein 82, myb domain protein 21, WOX
family protein, homeodomain GLABROUS 12 AGAMOUS-like 58, myb domain protein
101, myb domain protein 64 and zinc finger protein 3 were identified specifically.

3.7. Validation of Differentially Expressed Genes

To confirm the results of RNA-Seq, we analyzed the expression patterns of randomly
selected up and downregulated differentially expressed transcripts using qRT-PCR. QRT-PCR
results for selected DEGs were similar to those obtained by RNA-Seq. Comparisons of the
expression patterns revealed a strong correlation (r2 = 0.8693) (Supplementary Figure S2)
between both techniques.

4. Discussion

The incidence of terminal drought stress in common bean is most common in bean
growing areas. Drought stress adversely impacts the quality and yield of common bean,
particularly during the pod development and seed filling stages [4,39]. Therefore, improv-
ing the plant’s ability to withstand this stress is considered a key objective of breeding
programs [4,40]. The complete genome sequence of the common bean is now available. This
makes it possible to discover transcription regulation patterns and enrich gene databases
by exploring transcriptome maps and related pathways among tolerant and sensitive
genotypes. In addition to improving drought tolerance, this may also help identify the
molecular mechanisms of abiotic stress [2]. Several studies have examined the transcrip-
tional response of common bean to drought stress under controlled conditions [2,15,41–44].
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However, studies that developed and utilized transcriptome data associated with terminal
drought stress imposed on field grown common bean genotypes are limited. The primary
objective of this study is to identify transcriptional changes and molecular mechanisms
underlying the terminal drought stress induced on sensitive and tolerant genotypes of
field-grown common beans.

4.1. Potential DEGs in Tolerant and Sensitive Genotypes

In total, 486 DEGs that were upregulated in tolerant genotypes were found to be down-
regulated in sensitive genotypes. It is likely that these DEGs contribute to drought tolerance.
Among these genes, Phvul.010G050500, an ethylene-responsive element binding factor 13,
has been reported as a drought candidate gene in solanaceous plants and is involved in gene
regulation of metabolic pathways [45]. Phvul.010G088500 (S-locus lectin protein kinase fam-
ily protein) is also known to be expressed highly in rice (Oryza sativa) and Arabidopsis as a
response to stress conditions such as drought, salt, and other biotic stresses [46]. The log2FC
of these genes was >5 in tolerant genotypes. Also, the C2H2 and C2HC zinc fingers super-
family protein (Phvul.002G256900) and the ethylene response factor 1 (Phvul.001G160200)
both display log2FC > 4 and are upregulated specifically in tolerant genotypes. These
transcription factors regulate gene expression in abiotic stresses such as drought and salt
genes in Arabidopsis [47,48]. Similarly, 392 DEGs upregulated in sensitive genotypes were
downregulated in tolerant genotypes. Among the DEGs, Phvul.011G163300, annotated
as Ankyrin repeat family protein, had a log2FC > 2. Ankyrin repeat protein (DRA1) is
reported to negatively regulate drought tolerance in Arabidopsis [49]. The volcano plot anal-
ysis indicated that more genes were up and downregulated in the tolerant genotypes than
in the sensitive genotypes. In the tolerant genotypes, Phvul.011G182500 had a log2FC > 13
and padj < 0.05. This gene is associated with an MLP-like protein 43 that is highly expressed
in roots and cotyledons. It is a positive regulator of drought stress response and regulates
ABA-responsive gene expression [50]. Additionally, Phvul.003G285900 is upregulated
(Log2Fc > 7) with best hits in drought DB in drought-tolerant genotypes, while its homolo-
gous (PCK1) has been reported to influence drought tolerance in Arabidopsis by reducing
stomatal conductance [51]. Similarly, in sensitive genotypes, Phvul.001G166500 showed
upregulation with log2FC > 9, and its homologous PDR12 (pleiotropic drug resistance 12)
was reported to improve drought tolerance mediated through efficient ABA transport in
Arabidopsis [38]. DEGs such as Phvul.008G147800 and Phvul.L002632 were upregulated
in both tolerant and sensitive genotypes with log2FC > 13. They belong to the RmlC-like
cupins superfamily protein, which is known to function in the biological process of small
molecules (metabolites) involved in oxidoreductase and disomerase activities. It has been
reported that these metabolites, such as amines and sulfur amino acids, contribute to main-
taining osmotic potential and preventing water loss in plants during stress conditions [52].
In addition, a similar gene was identified (Phvul.002G107100) that has the highest hits in
drought DB as well as a higher expression level, i.e., log2FC > 7, in both the tolerant and
sensitive genotypes. The homologous version of this gene (HK1) has enhanced drought
tolerance and indicates ABA-dependent drought response in Arabidopsis [37,53].

4.2. GO Enrichment

GO enrichment was carried out for the selected DEGs to identify the preferred GO
terms based on padj < 0.05. The analysis revealed enrichment in DEGs in response to
various stresses or inducers, such as photosystem, oxidative stress, signaling, hormone,
biotic stimulus, metabolite transport, defense response, and enzymes. In common bean,
these GO terms are primarily enriched during drought stress [2], indicating that DEG
enrichment is drought-specific and responsive to terminal drought stress. Among GO
terms for biological processes, the DEGs upregulated in the tolerant genotypes specifically
are related to sulfate transport and drug transmembrane transport compared to sensitive
genotypes. Similarly, Pereira et al., 2020 [2] reported DEG enrichment associated with the
formation of sulfur-containing compounds in drought-tolerant genotypes of common bean.
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Sulfate transport is an important component of abiotic stress responses, such as drought.
When plant roots are exposed to abiotic stresses, such as drought, sulfate transport plays
a critical role in producing sufficient ABA and glutathione compounds [54]. As part of
the ABA biosynthesis process, cysteine is utilized as a sulfur donor via sulfate transport.
Additionally, sulfate accumulation in the root system increases cysteine and glutathione
compounds, which contribute to root growth during drought stress [55]. Therefore, it is
possible that upregulation of sulfate transport in tolerant genotypes is critical for drought
tolerance through an increase in ABA synthesis, glutathione, and root growth during
terminal drought stress. In addition, DEGs’ enrichment for drug transmembrane transport
is elevated in drug-tolerant genotypes. The upregulation of DEGs for drug transmembrane
transport has been reported in other plant species such as Phormium tenax (New Zealand
Flax), Pinus massoniana (Masson Pine), and Boea hygrometrica [56–58] under drought stress
as well. In contrast, both genotypes exhibited higher enrichment of gene ratios related to
the GO term “response to oxidative stress”.

In the GO term for cellular components, DEG enrichment for apoplast was upregu-
lated in the tolerant genotypes, but downregulated in the sensitive genotypes. In drought-
stressed plants, the alkaline nature of apoplast aids in the accumulation of anionic form
of ABA to initiate stomata closure [59]. During drought stress, apoplasts are also reported
to participate in nutrient transfer from roots and ROS (reactive oxygen species)-mediated
cell signaling [60,61]. Moreover, apoplastic ROS can enhance root elongation via loosening
cell walls and protect the root from ROS-induced damage during water stress [62]. Thus,
apoplasts play a role in endogenous signaling as well as in the initiation of root growth in
tolerant genotypes during terminal drought stress. For the molecular function category,
DEGs’ enrichment was found to be upregulated for more GO terms such as xenobiotic
transmembrane transporter activity, antiporter activity, secondary active sulfate transmem-
brane transporter activity, sulfate transmembrane transporter activity, electron transfer
activity, and xyloglucan:xyloglucosyl transferase activity in tolerant genotypes than in
sensitive genotypes. Their role in enhancing drought tolerance has been reported [63–65].

4.3. KEGG

KEGG pathway enrichment was conducted for significant DEGs in the tolerant and
sensitive genotype comparisons. In both genotypes, the number of DEGs associated
with plant hormone signal transduction pathways is high, followed by phenylpropanoid
biosynthesis. Plant hormones play a key role in regulating plant growth, development, and
response to biotic and abiotic stresses. Several plant hormones, including ABA, jasmonic
acids (JA), ethylene (ET), and salicylic acids (SA), may act as mediators in the prevention
or response to drought stress [66]. The hormones work through a coordinated network
of signal transduction and cross-talk between hormones to facilitate the switchover of
pathways to cope with drought stress [67]. Similarly, Wang et al. (2020) [68] report that the
shared DEGs in response to drought stress indicate overlap and crosstalk between hormone
signal transduction pathways in Tobacco (Nicotiana tabacum).

Phenylpropanoids, such as flavonoids, isoflavonoids, plant hormones, anthocyanins,
and lignins, play an important role in biotic and abiotic stress [69]. DEGs associated with
the phenylpropanoid pathway were enriched in tolerant genotypes in this study. A similar
enrichment of DEGs for the phenylpropanoids pathway has been reported in foxtail millet
(Setaria italica (L.) P. Beauv.) under drought stress [70].

However, DEGs’ enrichment for the MAPK signaling pathway was upregulated in
tolerant genotypes. Mitogen-activated protein kinases (MAPKs) are signal transduction
modules that transmit extracellular signals into cells. They regulate gene expression by
phosphorylating many transcription factors. A number of MAPK components, including
MAPK kinase and MAPK kinase kinase, contribute to the development of cells, hormonal
activities, and biotic and abiotic stresses [71,72]. A drought-induced MAPK pathway
enrichment with upregulated DEGs has been reported for pearl millet (Pennisetum glaucum
(L.) [73]. There is also a possibility that in this study, the interaction of enriched pathways,
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such as the plant hormone signaling pathway and MAPK pathways, can positively impact
drought tolerance in tolerant genotypes, as they share common byproducts [74].

DEGs enrichment for monoterpenoid biosynthesis was upregulated in sensitive geno-
types. Plant terpenes are synthesized in the cytosol as well as plastid through the meval-
onate (MVA) and 2C-methyl-D-erythritol-4-phosphate pathway (MEP) [75]. Terpenoid
metabolites have been reported to protect plants against biotic and abiotic stresses [76].
Field drought stress conditions were found to modulate monoterpenoid biosynthesis. Long-
term and severe field drought stress resulted in the downregulation of DEGs that encode
structural enzymes for monoterpenoid biosynthesis [77]. This may explain the downregula-
tion of DEGs for monoterpenoid biosynthesis in tolerant genotypes in this study. Similarly,
Wan et al. (2022) [78] reported that DEGs downregulated for monoterpenoid biosynthesis
in alfalfa (Medicago sativa L.) under drought stress.

5. Conclusions

We analyzed comparative transcriptomes of roots and leaves of tolerant as well as
sensitive genotypes of field-grown common beans under terminal drought stress. DEG
regulation was significantly different between tolerant and sensitive genotypes, with
downregulated DEGs significantly higher in sensitive genotypes than upregulated DEGs.
DEGs overlapping between genotypes were also found in the drought database. Several
transcription factors, heat shock proteins, and chaperones were identified in both genotype
comparisons. ABA-regulated drought stress responses were associated with DEGs with
higher expression in both genotypes. It was found that DEGs in the tolerant genotype
were involved in signal transduction, oxidative stress damage, and transportation. The
enrichment of DEGs for biological and cellular components’ GO terms in tolerant genotypes
may further explain the temporal pattern of root growth and the ABA-dependent drought
tolerance. KEGG pathway analysis indicates that drought-tolerant genotypes exhibit
crosstalk between pathways. It is likely that transcription factors associated with pathways,
including ERF, BHLH, EIL, and bZIP, contribute to drought tolerance in response to terminal
drought stress. The pairwise transcriptomic approaches revealed molecular signatures
such as upregulated DEGs enriched with cellular components and biological processes
for apoplasts, sulfate, and drug membrane transport in tolerant genotypes, compared
to sensitive genotypes. KEGG analysis revealed MAPK and plant hormone signaling
pathways interaction in tolerant genotypes. These molecular signatures may contribute to
the development of genotypes’ tolerance against terminal drought stress. In the future, this
study may also serve as a reference for understanding the drought stress transcriptomes of
other legume species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants12010210/s1, Supplementary Figure S1: Principle component analysis indicates differ-
ences between the replicates of leaves and roots, as well as root samples differing from leaf samples
from each genotype; Supplementary Figure S2: (a) Comparison of qRT-PCR and RNA-Seq results
for the selected DEGs. Data shown are the mean value of triplicates ±SD (b) Correlation between
qRT-PCR and RNA-Seq techniques; Supplementary Table S1 and Table S2: The table shows the up
or downregulated DEGs in tolerant and sensitive genotypes compared between roots and leaves
with FDR < 0.05; Supplementary Table S3: Comparison of the tolerant and sensitive genotypes
in root vs. leaf shows the enrichment of DEGs on biological processes, cellular components, and
molecular functions; Supplementary Table S4: A summary of DEG enrichment in the droughtDB
is presented in the table along with the identification of the best hit Arabidopsis ID. Most DEGs
of tolerant and sensitive genotypes in the drought database overlap; Supplementary Table S5: An
analysis of transcription factors and their family of tolerant and sensitive genotypes is presented in the
table. DEGs with higher log2FC are similar between the two genotypes; Supplementary Table S6: List of
up and downregulated genes and their primer sequences for the validation of RNA-Seq by qRT-PCR.
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