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Abstract. Absorbing sets are combinatorial structures in the Tanner graphs

of low-density parity-check (LDPC) codes that have been shown to inhibit the

high signal-to-noise ratio performance of iterative decoders over many com-
munication channels. Absorbing sets of minimum size are the most likely to

cause errors, and thus have been the focus of much research. In this paper,
we determine the sizes of absorbing sets that can occur in general and left-

regular LDPC code graphs, with emphasis on the range of b for a given a for

which an (a, b)-absorbing set may exist. We identify certain cases of extremal
absorbing sets that are elementary, a particularly harmful class of absorbing

sets, and also introduce the notion of minimal absorbing sets which will help

in designing absorbing set removal algorithms.

1. Introduction. Codes based on low-density parity-check (LDPC) matrices have
been at the forefront of research in coding theory due to their low-complexity itera-
tive message-passing decoders and near-capacity performance at long block lengths
[3, 13, 21]. An LDPC code may be represented graphically using a bipartite Tanner
graph [22]; iterative decoders operate on this graph using message-passing algo-
rithms that transmit information along its edges. Unfortunately, at finite block
lengths, these decoders are suboptimal compared to a maximum likelihood (ML)
decoder, and can fail to converge to a codeword.

Failure of belief propagation (BP) and other iterative decoding algorithms oper-
ating on an LDPC code graph can be characterized by combinatorial substructures
in the graph representation. Among these substructures are stopping sets (in the
case of the binary erasure channel), trapping sets, absorbing sets, and pseudocode-
words [5, 20, 6, 7, 19, 10, 16, 17]. The performance of an LDPC code, as illustrated
by its bit error rate (BER) curve, is typically divided into two regions: the waterfall
region and the error floor region. The degree distribution of the vertices in the
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Tanner graph influences the decoding threshold (i.e. the channel quality at which
the iterative decoder can start to converge) and waterfall performance, which is
measured as a probability of decoding failure as a function of the channel quality
(i.e. signal-to-noise ratio). The slope of the BER curve eventually flattens, even
as channel quality continues to increase, a phenomenon known as the error floor
in iterative decoding. For many practical channels, the error floor behavior of the
LDPC code is dominated by the harmful (with respect to the decoder) trapping sets
in the graph [19]. Absorbing sets have been identified as combinatorial structures
that inhibit decoder performance at high signal-to-noise ratios regardless of the
particular choice of channel and iterative decoder [1, 6, 7, 24, 14]. Thus, absorbing
sets are universal in that they are harmful graphical structures for a wide range of
channel conditions and iterative decoders.

In this paper, we study the structure of absorbing sets and determine the sizes
of absorbing sets that can occur in Tanner graphs. Smaller absorbing sets are
considered more harmful when decoders such as the sum-product iterative decoder
are used, as they are more likely to have all variable nodes in error. Determining
the possible parameters for small absorbing sets in particular families of codes is of
importance, since it is often the case that only a few targeted types of absorbing
sets can be removed in the code design process. We first focus on general bipartite
graphs with no restrictions on their vertex degrees, and later consider the class
of left-regular LDPC codes used in many practical applications. LDPC codes are
used widely, including in (distributed) data storage and wireless communications,
and have been incorporated in 5G standards [2]. In particular, left-regular LDPC
codes are prominent in data storage due to the importance of a lower error floor.
We begin by showing that, in the class of Tanner graphs with girth at least g,
(a, b)-absorbing sets where b is maximum (in the class) for the given a belong to
a special sub-class of absorbing sets called elementary absorbing sets. These are
known for being particularly harmful in iterative decoding [1]. We use this result to
simplify the characterization of extremal absorbing sets in the Tanner graphs. We
also introduce the concept of minimal absorbing sets, subsets of variable nodes that
do not properly contain a smaller absorbing set. This characterization is useful for
absorbing set removal algorithms, since minimal absorbing sets form the building
blocks of larger absorbing sets.

The paper is organized as follows. Section 2 presents definitions and necessary
notation. Section 3 considers general LDPC Tanner graphs with lower-bounded
girth but no restrictions on the degrees of the nodes in the graph, and in Section
4, we consider classes of left-regular Tanner graphs. We also show how results from
the theory of cages may be used to bound some extremal absorbing sets. In Section
5, we introduce the notion of minimal absorbing sets and provide a characterization
of one class of minimal absorbing sets for general graphs. Section 6 concludes the
paper.

2. Preliminaries. Let C be an [n, k] binary linear code defined by an m×n sparse
parity check matrix H. The Tanner graph of C corresponding to H is the bipartite
graph G = (V,W ;E) with n vertices in V , called variable nodes, corresponding to
the columns of H, and m vertices in W , called check nodes, corresponding to the
rows of H, such that there is an edge between vi ∈ V and wj ∈ W if and only
if Hj,i = 1. In other words, H is the (simplified) adjacency matrix of the graph
G. Tanner graphs of LDPC codes have historically been drawn with vertex set V
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on the left and vertex set W on the right (i.e. in left-right representation), and so
it has become standard to refer to the variable nodes as the “left nodes” and the
check nodes as the “right nodes”. Correspondingly, an LDPC code defined by a
particular parity-check matrix is (j, `)-regular, or j-left regular and `-right regular,
if its Tanner graph has variable nodes of degree j and check nodes of degree `.

For a subset S of V , let N (S) ⊆W denote the set of check node neighbors of S.
Let GS = (S,N (S);ES) denote the subgraph induced by S ∪N (S) in G, where ES

is the set of edges between S and N (S). We can now define absorbing sets.

Definition 2.1. An (a, b)-absorbing set is a subset D ⊆ V of variable nodes in a
code’s Tanner graphG = (V,W ;E) such that |D| = a, |O(D)| = b, and each variable
node in D has strictly fewer neighbors in O(D) than in W \ O(D), where O(D) is
the subset of check nodes of odd degree in the subgraph GD. For completeness, we
define E(D) to be the subset of check nodes of even degree in GD.

Definition 2.2. An (a, b)-absorbing set is fully absorbing if it has the additional
property that each variable node not in D has strictly fewer neighbors in O(D) than
in W \ O(D), and is elementary if all check nodes in N (D) have degree 1 or 2 in
GD.

Consider the smallest value of a, and the smallest value of b given that a, for
which an (a, b)-absorbing set exists in the Tanner graph of a code. An absorbing
set with these parameters is called a smallest (a, b)-absorbing set of the code. High
error floors in BER curves of LDPC codes over the Binary Symmetric Channel
(BSC) and Additive White Gaussian Noise (AWGN) channels have been attributed
to the presence of small absorbing sets in the corresponding Tanner graph [14, 24].
Thus, small absorbing sets are regarded as the most harmful due to their increased
likelihood to cause decoding errors, and much work has focused on determining and
eliminating the smallest absorbing sets in a code’s graph.

The set of possible parameters of absorbing sets in a code’s graph depends on
characteristics of the Tanner graph, including its girth. Recall that the girth g of a
graph G is the length of a shortest cycle in G. Since iterative decoding is optimal
on cycle-free Tanner graphs, large girth is desirable [13, 23]. For code rates and
block lengths used in practical applications (namely, rates ≤ .85 and block lengths
≥ 10, 000 bits), the girth of a Tanner graph is often at least 8, and many known
algebraic constructions have girth 12.

A Tanner graph with a fixed variable node degree (i.e., left degree) j and a
girth g has the smallest absorbing set bounded as below. This result uses a tree-
based argument that is also used to bound parameters such as minimum distance,
minimum stopping set size, etc.

Theorem 2.3 ([6]). Let G be a Tanner graph with girth g ≥ 6 and variable node

degree j. Define ` =
⌊
g
4

⌋
− 1 and t =

⌈
j+1
2

⌉
. Then, for a smallest (a, b)-absorbing

set in G,

a ≥

{
1 +

∑`
i=0 t(t− 1)i if g ≡ 2 (mod 4),

1 +
∑`−1

i=0 t(t− 1)i + (t− 1)` if g ≡ 0 (mod 4).

Furthermore, b ≥ a
⌊
j−1
2

⌋
.

Notice that for an (a, b)-absorbing set in a j-left regular graph, it is always the

case that b ≤ a
⌊
j−1
2

⌋
; thus, Theorem 2.3 asserts equality for smallest absorbing
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(a) (b) (c)

Figure 1. (a) A (4, 5)-absorbing set graph. (b) The even part of
the absorbing set graph in (a). (c) The normal graph of the graph
in (a).

sets in that class. When the Tanner graph is irregular, the above bound may be
modified by replacing j with the smallest left degree in the graph.

In the remainder of the paper, we will investigate the largest b for which an
(a, b)-absorbing set may occur in Tanner graphs with certain parameters, and will
make use of the following definitions.

Definition 2.4. The absorbing set graph of an absorbing set D in a Tanner graph
G is the subgraph GD

1. We define the even part of the absorbing set graph to be
the subgraph of GD induced by D ∪ E(D), where E(D) is the set of neighbors of
D that have even degree in GD.

Definition 2.5. Let D be an elementary absorbing set. We define the normal graph
of the absorbing set graph GD to be the graph obtained from GD by (1) removing
all degree-one check nodes and their edges, and (2) replacing each degree-two check
node (and its incident edges) with a single edge.

The following example illustrates these definitions.

Example 2.6. In Figure 1(a), an absorbing set graph GD is shown for a (4, 5)-
absorbing set D. The four circular vertices represent the variable nodes in D, and
the square vertices represent check nodes (|O(D)| = 5 of which are odd-degree);
notice that each variable node has strictly more even-degree than odd-degree check
neighbors, so that D does in fact form an absorbing set. Observe that the girth of
this absorbing set is 6, and it is also elementary, since each check node neighbor
of D has degree one or two in GD. The even part of GD is shown in (b), and (c)
shows the normal graph corresponding to GD.

3. Extremal absorbing sets in general graphs. In this section, we determine
the maximal size of b for a given value a for which an (a, b)-absorbing set may exist
in a specified class of Tanner graphs. This will give insight to the structure of the
absorbing sets that may occur. Let b∗a denote the smallest possible value of b such
that there exists an (a, b)-absorbing set in some graph in a given Tanner graph
class, and let B∗a indicate the largest such b. Notice that not every graph within
a particular class will exhibit an (a, b)-absorbing set with b = b∗a or B∗a. Theorem
2.3 gives bounds on b∗a for smallest absorbing sets (i.e., minimal values of a) in the
class of left-regular codes with girth g ≥ 6. Since B∗a depends on the class of graphs
under consideration, many of our results will apply to the broad class of Tanner
graphs with girth at least g. For classes with more restrictions (such as degree

1In an abuse of terminology, the graph GD is sometimes itself called an absorbing set.
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constraints), the results may differ; some such cases are considered in Section 4. In
this section, we give results on the value of B∗a for classes based purely on girth. To
do so, we first show that this extremal case yields elementary absorbing sets.

Lemma 3.1. Consider the collection of Tanner graphs with girth at least g. Every
(a, b)-absorbing set such that b = B∗a is an elementary absorbing set.

Proof. Let D be a set of a variable nodes giving an (a, b)-absorbing set in G with
b = B∗a.

First, suppose there is an odd-degree check node, C, in GD of degree dC > 1.
We will exhibit an (a, b+dC−1)-absorbing set whose girth is at least g (and thus is
present in the considered class of Tanner graphs). Change the graph GD as follows:
break C into dC distinct check nodes, each of degree 1, so that the union of the
neighbors of those degree-1 check nodes is exactly equal to the neighborhood of
C. This alteration forms an (a, b + dC − 1)-absorbing set of girth at least g. This
contradicts the fact that b = B∗a. We conclude that every odd-degree check node in
GD has degree 1.

Now, suppose we have an even-degree check node, C, in GD of degree dC > 2.
We will exhibit an (a, b+ dC − 2)-absorbing set whose girth is at least g. The node
C is adjacent to dC variable nodes, V1, . . . , VdC

. Break C into dC − 1 check nodes,
each of degree two so that Vi is connected to Vi+1 via a degree two check node for all
i ∈ [dC − 1]. This does not decrease the girth of the subgraph, as all variable nodes
originally adjacent to C are still at least distance 2 from each other. We now add a
single degree one check node adjacent to each Vi for 2 ≤ i ≤ dC −1. In this way, we
have created an (a, b+ dC − 2)-absorbing set with girth at least g, a contradiction.
We conclude that every even-degree check node in GD must have had degree 2 to
begin with.

Remark 1. If a Tanner graph has girth 4, then for any value of a ≥ 2, B∗a is
unbounded, as an absorbing set graph can be created by adding an arbitrary number
of degree 2 check nodes adjacent to variable nodes. We therefore do not consider
the girth 4 case in this section.

If a = 1, no absorbing sets of any size exist. If a = 2, any adjacent even degree
check node is adjacent to both vertices in the absorbing set. Hence any absorbing
set either has one even-degree check node and no odd-degree check nodes, or has a
4-cycle. The former case would necessitate degree-one variable nodes. We therefore
assume a ≥ 3 in Theorem 3.2 and Corollary 2.

Remark 2. Suppose D is an (a,B∗a)-absorbing set in a graph G of girth at least
g. By Lemma 3.1, this absorbing set is elementary. Hence, the even graph of GD is
right 2-regular, and so it has a (unique) normal graph on a nodes, and this normal
graph has girth g/2. Further, each odd-degree check node in GD has degree 1, so
we may conclude that B∗a = 2m− a where m is the number of edges in the normal
graph of GD.

We next use Lemma 3.1 to establish the value of B∗a in Tanner graphs of girth 6.

Theorem 3.2. Consider the class of Tanner graphs with girth g = 6, and let a ≥ 3.
For any (a, b)-absorbing set appearing in a graph in this class, b ≤ B∗a = a(a− 2).

Proof. Let D be an (a,B∗a)-absorbing set. By Lemma 3.1, D is elementary. As
noted in Remark 2, if D is an (a,B∗a)-absorbing set of girth g = 6, then its normal
graph has girth g/2 = 3 and B∗a = 2m − a, where m is the number of edges in its
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normal graph. The graph on a vertices with girth 3 and maximum number of edges
is Ka, which has a(a− 1)/2 edges. Hence, B∗a = a(a− 1)− a = a(a− 2).

In [15], Hoory relates the average left and right degrees of a bipartite graph to
the graph’s girth, the size of each part, and the number of edges. Of particular
relevance to our work is the following result:

Theorem 3.3 ([15]). Consider a bipartite graph of girth g = 2r with nL vertices on
the left side, nR vertices on the right side, and m edges. Let dL = m

nL
be the average

degree of the left vertices, and dR = m
nR

the average degree of the right vertices.
Then,

nL ≥
r−1∑
i=0

(dR − 1)
di/2e

(dL − 1)
bi/2c

.

Theorem 3.3 allows us to relate a and B∗a for a given girth, as shown in the
following corollary.

Corollary 1. Consider the class of graphs of girth at least g. For an (a,B∗a)-
absorbing set in this class,

a ≥

g
2−1∑
i=0

(
B∗a
a

)bi/2c
.

Proof. Let D be an (a,B∗a)-absorbing set in a graph G of girth at least g. By Lemma
3.1, this absorbing set is elementary. Thus, the even part of GD is right 2-regular,
and contains a variable nodes. Furthermore, each odd-degree check node in GD has
degree 1, and so we may conclude that B∗a = m−a, where m is the number of edges
in the even part of GD. Thus, by Theorem 3.3 applied to the even part of GD,

a ≥

g
2−1∑
i=0

(2− 1)
di/2e

(m
a
− 1
)bi/2c

=

g
2−1∑
i=0

(m
a
− 1
)bi/2c

=

g
2−1∑
i=0

(
B∗a
a

)bi/2c
.

Remark 3. Corollary 1, along with the fact that graphs with girth exactly g are a
subclass of graphs with girth at least g, gives the following bounds on B∗a. Equality
is shown for the first two cases by Theorem 3.2 and Corollary 2, respectively. See
Table 1 for a concise statement of these results.

· For g = 6, B∗a ≤ a(a− 2).

· For g = 8, B∗a ≤
⌊
a(a−2)

2

⌋
.

· For g = 10, B∗a ≤
⌊
a(
√
a− 1− 1)

⌋
.

· For g = 12, B∗a ≤
⌊
a
2

(√
2a− 3− 1

)⌋
.

As stated in the remark, equality with the upper bound is achieved when the
girth is 8. To show this, we begin by recalling a fundamental theorem on triangle-
free graphs introduced by Mantel in 1907 [18], and then use the result in Corollary
2 to show equality holds for (a,B∗a)-absorbing sets of girth 8.
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Theorem 3.4 ([18]). The maximum number of edges in an n-vertex triangle-free

graph is
⌊
n2

4

⌋
.

Corollary 2. Consider the class of Tanner graphs with girth g = 8 and let a ≥ 3.

For any (a, b)-absorbing set appearing in a graph in this class, b ≤ B∗a =
⌊
a(a−2)

2

⌋
.

Proof. Let D be an (a,B∗a)-absorbing set in G. Let m be the number of edges

in its normal graph. Then by Theorem 3.4 and Remark 2, m =
B∗a+a

2 =
⌊
a2

4

⌋
.

Rearranging, we see that

B∗a =

⌊
a2

2

⌋
− a =

⌊
a(a− 2)

2

⌋
.

B∗
a Girth \ a 2 3 4 5 6 7 8 9 10 11 12

= a(a− 2) 6 0 3 8 15 24 35 48 63 80 99 120

=
⌊

a(a−2)
2

⌋
8 0 1 4 7 12 17 24 31 40 49 60

≤
⌊
a(
√
a− 1− 1)

⌋
10 0 1 2 5 6 9 12 15 20 21 24

≤
⌊
a
2
(
√
2a− 3− 1)

⌋
12 0 1 2 3 6 7 10 11 14 15 18

Table 1. Exact values for B∗a for relevant values of a and practical
girths are given. Our formulas and bounds for B∗a are provided in
the first column for comparison. Shaded entries indicate values
that are smaller than the bound given in the first column.

B∗a Girth \ a 2 3 4 5 6 7 8 9 10 11 12

≤
⌊
a(
√
a− 1− 1)

⌋
10 0 1 2 5 7 10 13 16 20 23 27

error - - - - 1 1 1 1 - 2 3

≤
⌊
a
2 (
√

2a− 3− 1)
⌋

12 0 1 2 4 6 8 10 12 15 18 21
error - - - 1 - 1 - 1 1 3 3

Table 2. Values of our bounds for B∗a are provided for the girth
10 and 12 cases and relevant values of a. The first row for each
girth indicates the predicted value from the bound, and the second
row indicates the deviation of the bound from the actual value.

Remark 4. Theorem 4.5 in the survey paper [12] may be applied to obtain exact
values of B∗a for certain large values of a and g. The smallest case is g = 12 and
a = 14 and yields a value equal to our upper bound on B∗a, showing that our bound
is tight in this case. Since larger values given by the theorem are not relevant to
our work, we refer the interested reader to the survey paper.

In the following example, we illustrate our strategy for finding the values of B∗a
that do not meet the bounds given in Table 1 by studying the specific example
where the girth of the graph is 10 and our absorbing set has size a = 7.
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Example 3.5. A graph of girth 5 on 7 variable nodes is shown in Figure 2(a). By
replacing each edge in this graph by a degree-2 check node and adding as many
degree-1 check nodes as possible to each variable node (while maintaining an ab-
sorbing set), we obtain the (7, 9)-absorbing set graph shown in Figure 2(b). The
bound given in Table 1 indicates that B∗7 ≤ 10. We will show that no absorbing set
on 7 variable nodes with girth 10 can have 10 degree-1 check nodes, and hence that
B∗7 = 9.

· First, suppose the normal graph corresponding to our absorbing set has a
vertex of degree 6. This normal graph then has 7 vertices, 6 of degree 1 and
1 of degree 6, and corresponds to a (7, 5)-absorbing set.
· Suppose the normal graph corresponding to our absorbing set has a vertex of

degree 5. This accounts for six vertices. We need one more vertex, which must
be added to one of the degree 1 vertices attached to the degree 5 vertex. Notice
this seventh vertex cannot be adjacent to any other vertices while maintaining
a girth of at least 5. Thus, the result is a normal graph that corresponds to a
(7, 5)-absorbing set.
· Suppose the normal graph corresponding to our absorbing set has a vertex

of degree 4. Then five vertices are already represented: one of degree 4, and
its four neighbors. If we add the remaining two variable nodes so that the
normal graph is a tree, it again corresponds to a (7, 5)-absorbing set. If we
add the variable nodes so that there exists a cycle, we must add both between
two of the nodes adjacent to the degree 4 node, otherwise, we would create a
4-cycle, contradicting the girth being at least 5. Such a normal graph would
correspond to a (7, 7)-absorbing set.
· Suppose the normal graph corresponding to our absorbing set has vertices of

degree at most 3. Let x be the number of degree 1 nodes, y be the number
of degree 2 nodes, and z be the number of degree 3 nodes. Assume by way
of contradiction that there exists a (7, 10)-absorbing set of girth 10 (whose
normal graph then has girth 5). Then (x, y, z) must be a nonnegative integer
solution to the system {

x+ y + z = 7

y + 2z = 10

where the equation x+ y + z = 7 is the constraint on the number of variable
nodes and y + 2z = 10 is the constraint on the number of degree 1 check
nodes we can add to variable nodes of degree 2 or 3 in the normal graph. The
nonnegative integer solutions of this system are (0, 4, 3), (1, 2, 4), and (2, 0, 5).
Each of these solutions has an odd number of odd-degree vertices, so no graphs
with these degree distributions can exist. We conclude that no normal graphs
corresponding to a (7, 10)-absorbing set exist.

Hence there do not exist any normal graphs that correspond to a (7, 10)-absorbing
set with girth 10. So in this case, B∗7 = 9.

We end this section with bounds on B∗a in terms of corresponding values for
smaller absorbing set sizes. Although these bounds are generally loose, we will use
them in Section 5 when we consider minimal absorbing sets.

Lemma 3.6. Consider the class of Tanner graphs of girth at least g. Then for
a, c ≥ 2,

1. B∗a + 1 ≤ B∗a+1, and
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(a) (b)

Figure 2. (a) A graph of girth 5 on 7 vertices. (b) A (7, 9)-
absorbing set of girth 10 whose normal graph is the graph in (a).

2. B∗a +B∗c + 2 ≤ B∗a+c.

Proof. Let a ≥ 2 and D be an (a,B∗a)-absorbing set of girth at least g. Further, let
c ≥ 2 and S be a (c,B∗c )-absorbing set of girth at least g. Recall that by Lemma
3.1, both absorbing sets are elementary.

1. Consider the absorbing set graph GD. Replace a degree 2 check node in GD

with two degree 2 check nodes with a single adjacent variable node between
them. Append a single degree one check node to this new variable node. This
is an (a+ 1, B∗a + 1)-absorbing set graph with girth at least the girth of GD.
Hence B∗a + 1 ≤ B∗a+1.

2. Consider absorbing set graphs GD and GS . We may assume GD and GS are
disjoint, so that GD ∪GS = GD∪S is an (a+ c,B∗a +B∗c )-absorbing set graph.
To this graph, add a single degree 2 check node with variable node neighbors
v ∈ GD and v′ ∈ GS . To each of v and v′, add a single degree one check
node neighbor. This resulting graph has the same girth as (the lowest of the
girths of) GD and GS , but has two additional odd degree check nodes, and is
an absorbing set graph. Hence we have constructed an (a+ c,B∗a + B∗c + 2)-
absorbing set. So B∗a +B∗c + 2 ≤ B∗a+c.

We can tighten these bounds in classes where we have an exact expression for
B∗a, as shown for Tanner graphs of girths 6 and 8 in the following lemma.

Lemma 3.7. Let a, c ≥ 3. For the class of Tanner graphs of girth 6, B∗a+1 =
B∗a + (2a− 1), and B∗a+c = B∗a +B∗c + 2ac. For girth 8,

B∗a+1 =

{
B∗a + a if a is odd,

B∗a + a− 1 if a is even,

B∗a+c =

{
B∗a +B∗c + ac+ 1 if both a and c are odd,

B∗a +B∗c + ac else.

Proof. Begin by recalling that Tanner graphs with girth at least 6 and variable node
degree at least two cannot contain absorbing sets of size 1 or 2; hence, we restrict
our focus to a, c ≥ 3.
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By Theorem 3.2, B∗a = a(a− 2) for the class of graphs of girth 6. Then,

B∗a+1 = (a+ 1)(a− 1) = a(a− 2) + (2a− 1) = B∗a + (2a− 1), and

B∗a+c = (a+ c)(a+ c− 2) = a(a− 2) + c(c− 2) + 2ac = B∗a +B∗c + 2ac.

For the class of graphs of girth 8, Corollary 2 gives us B∗a =
⌊
a(a−2)

2

⌋
, and so

B∗a+1 =

⌊
(a+ 1)(a− 1)

2

⌋
=

⌊
a(a− 2)

2
− 1

2

⌋
+ a

=

{
B∗a + a if a is odd,

B∗a + a− 1 if a is even,

and,

B∗a+c =

⌊
(a+ c)(a+ c− 2)

2

⌋
=

⌊
a(a− 2)

2
+
c(c− 2)

2

⌋
+ ac

=

{
B∗a +B∗c + ac+ 1 if both a and c are odd,

B∗a +B∗c + ac else.

4. Extremal absorbing sets in left-regular graphs. Recall that [6] gives an
exact value of b for a given a in smallest (a, b)-absorbing sets of left-regular Tanner
graphs with fixed girth. That is, for smallest absorbing sets in such a class, b∗a = B∗a.
However, for non-minimal a values, it is not necessarily the case that b∗a = B∗a. We
extend to larger values of a by presenting results on B∗a for classes of left-regular
graphs. We also note a connection between smallest (a, b)-absorbing sets and graph
structures known as cages.

We begin by presenting a general upper bound on B∗a.

Theorem 4.1. Consider the class of j-left regular Tanner graphs for j ≥ 2. For
any (a, b)-absorbing set in a graph in this class, b ≤ B∗a ≤ a

⌊
j−1
2

⌋
. Moreover, if

both a and
⌈
j+1
2

⌉
are odd, B∗a ≤ a

⌊
j−1
2

⌋
− 1.

Proof. LetD be a set of a variable nodes giving an (a, b)-absorbing set inG. Because
G is j-left regular and D gives an absorbing set, each variable node has strictly more
neighbors in E(D) than O(D). The largest possible number of odd degree check

nodes neighboring a single variable node is
⌊
j−1
2

⌋
, which occurs when the variable

node has
⌈
j+1
2

⌉
even degree check node neighbors. Hence, B∗a ≤ a

⌊
j−1
2

⌋
.

If both
⌈
j+1
2

⌉
and a are odd, we can improve the upper bound. Note that if a is

odd and all variable nodes have
⌈
j+1
2

⌉
even degree check node neighbors, then the

even part of GD has an odd number of vertices of odd degree, which is not possible.
So at least one of the a variable nodes must have at least

⌈
j+1
2

⌉
+ 1 even degree

check node neighbors. Such a vertex would have at most
⌊
j−1
2

⌋
− 1 odd degree

check node neighbors. Hence, in this case, B∗a ≤ a
⌊
j−1
2

⌋
− 1.
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There are values of j for which these bounds are tight, as shown in the following
two corollaries to Theorem 4.1.

Corollary 3. Consider the class of 2-left regular Tanner graphs with girth g. An
absorbing set of size a exists in some graph in this class if and only if a ≥ g

2 . For
a ≥ g

2 , B∗a = 0.

Proof. Let a ≥ g
2 , and observe that there exists a graph G in the considered class

that contains a cycle of length 2a ≥ g. The variable nodes in such a cycle form an
absorbing set, showing that an (a, b)-absorbing set can occur. Furthermore, each of
the variable nodes in such a graph have two even degree neighbors in GD, resulting
in b = 0. By Theorem 4.1, B∗a = 0.

Now assume a < g
2 and let D be a set of a variable nodes giving an (a, b)-

absorbing set. By the definition of an absorbing set, every vertex in the even part
of GD has degree at least 2. So, the even part of GD contains a cycle, a contradiction
to the fact that a < g

2 .

Corollary 4. Consider the class of 3-left regular Tanner graphs with girth g. An
absorbing set of size a exists in some graph in this class if and only if a ≥ g

2 . For
a ≥ g

2 , B∗a = a.

Proof. Let a ≥ g
2 . Consider the cycle graph on 2a vertices, where every other node

is regarded as a variable or check node. Append a single degree one check node to
each variable node in the cycle. We have formed a 3-left regular (a, a)-absorbing
set graph of girth 2a ≥ g. By Theorem 4.1, B∗a = a.

Assume now that a < g
2 and that D is an absorbing set of size a. Every vertex in

the even part of GD has degree at least 2, so GD contains a cycle. Because a < g
2 ,

no (a, b)-absorbing set can exist, because any cycle would have length less than g,
a contradiction.

If we restrict our attention to j-left regular graphs of girth 4, we see that the
general upper bounds given in Theorem 4.1 are again met with equality.

Theorem 4.2. Consider the class of j-left regular Tanner graphs of girth g = 4,
where j ≥ 2. Then for a ≥ 2, the Tanner graphs in this class can contain absorbing
sets of size a. Furthermore, for any a ≥ 2,

1. if at least one of
⌈
j+1
2

⌉
and a is even, then B∗a = a

⌊
j−1
2

⌋
, and

2. if both
⌈
j+1
2

⌉
and a are odd, then B∗a = a

⌊
j−1
2

⌋
− 1.

Proof. Let j ≥ 2. First, we note that no absorbing set of size a = 1 can exist. Let
D be a set of a ≥ 2 variable nodes giving an absorbing set in a j-left regular graph
of girth 4.

If a = 2, it is easy to see that B∗a =
⌊
j−1
2

⌋
. We can construct an absorbing

set graph by connecting two variable nodes with
⌈
j+1
2

⌉
degree two check nodes and

adding
⌊
j−1
2

⌋
degree one check nodes to each of the variable nodes. Such a structure

has girth 4 and is j-left regular. For the remainder of the proof, we assume that
a ≥ 3.
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Suppose, first, that at least one of
⌈
j+1
2

⌉
and a is even.

· If
⌈
j+1
2

⌉
is even, construct a multigraph by connecting a vertices in a cycle,

where each pair of adjacent vertices in the cycle is connected by
⌈
j+1
2

⌉
/2

edges.
· If a is even and

⌈
j+1
2

⌉
is odd, construct a multigraph by connecting a vertices

in a cycle, where adjacent pairs of vertices in the cycle are connected by⌈
j+3
2

⌉
/2 or

⌈
j−1
2

⌉
/2 in an alternating pattern.

In both of the preceding multigraphs, each vertex has degree
⌈
j+1
2

⌉
. Create

a bipartite graph from each multigraph by considering each of the a vertices as
variable nodes and adding a degree 2 check node along each edge. These are

⌈
j+1
2

⌉
-

left regular, 2-right regular bipartite graphs of girth 4. By adding
⌊
j−1
2

⌋
degree 1

check nodes to each of the a left nodes in each case, we obtain
(
a, a

⌊
j−1
2

⌋)
-absorbing

sets. By Theorem 4.1, we conclude that B∗a = a
⌊
j−1
2

⌋
.

Now assume that both
⌈
j+1
2

⌉
and a are odd. Construct a multigraph by connect-

ing a vertices in a cycle, where adjacent pairs of vertices in the cycle are connected
by
⌈
j+3
2

⌉
/2 or

⌈
j−1
2

⌉
/2 edges in an alternating pattern, starting with

⌈
j+3
2

⌉
/2,

so that the first vertex in the cycle is incident to
⌈
j+3
2

⌉
=
⌈
j+1
2

⌉
+ 1 edges. This

multigraph has a− 1 vertices of degree
⌈
j+1
2

⌉
and one vertex of degree

⌈
j+1
2

⌉
+ 1.

Create a bipartite graph from this multigraph by considering each of the a vertices
as variable nodes and adding a degree 2 check node along each edge. This bipar-
tite graph has girth 4, is 2-right regular, and has the previously stated left degree
distribution. We add enough degree 1 check nodes to each of the a variable nodes
so that each of the variable nodes has degree j. In other words, we add

⌊
j−1
2

⌋
degree 1 check nodes to a − 1 variable nodes, and

⌊
j−1
2

⌋
− 1 degree 1 check nodes

to one variable node. In this way, we obtain an
(
a, a

⌊
j−1
2

⌋
− 1
)
-absorbing set. By

Theorem 4.1, B∗a = a
⌊
j−1
2

⌋
− 1.

4.1. Relation to cages. Next, we examine the relationship between absorbing sets
and a class of regular graphs called cages [9, 11]. The connection between these
structures leads to results on the existence of absorbing sets of certain parameters in
j-left regular Tanner graphs of fixed girth. Indeed, recall that Theorem 2.3 presents
a lower bound on absorbing set size in such a graph; the construction of absorbing
sets from cages we present in the proof of Proposition 1 below explicitly shows that
the lower bound is, in fact, tight for certain girths and values of j. We begin by
defining cages.

Definition 4.3. A (k, g̃)-cage is a k-regular graph G of girth g̃ of minimum order
(i.e. minimum number of vertices). This minimum order is denoted n(k, g̃).

Table 3 gives known sizes of cages. Note that a cage need not be bipartite;
however, we may view a (k, g̃)-cage as the normal graph of an (a = n(k, g̃), 0)
elementary absorbing set in a Tanner graph of girth g = 2g̃. Adding between 0 and
k − 1 odd degree check nodes to each variable node maintains the absorbing set
property. Note that adding only degree one check nodes ensures that the absorbing
set retains girth 2g̃ and remains elementary. If we fix the number of odd degree
check nodes added to each variable node to be t, then the absorbing set belongs
to a (k + t)-left regular Tanner graph. That is, there is a connection between a
(k, g̃)-cage of size a = n(k, g̃) (k ≥ 2, g̃ ≥ 3) and smallest (a, b)-absorbing sets
of girth g = 2g̃, where 0 ≤ b ≤ a(k − 1). As we will show in Proposition 1, by
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adding t = k − 1 degree one check nodes to each variable node in the absorbing
set, one obtains an extremal absorbing set in a (2k − 1) left-regular graph, with
B∗a = a(k − 1). A similar connection between cages and the more general trapping
sets was explored in [4].

g̃ n(2, g̃) n(3, g̃) n(4, g̃) n(5, g̃) n(6, g̃) n(7, g̃)
3 3 4 5 6 7 8
4 4 6 8 10 12 14
5 5 10 19 30 40 50
6 6 14 26 42 62 90
7 7 24 67 108∗ 189∗ 304∗

Table 3. Known results on the sizes of cages of relatively small
girth and degree [9]. Entries marked with ∗ denote cases for which
n(k, g̃) is not known; these values correspond instead to lower
bounds from [8].

Proposition 1. Consider the class of j-left regular Tanner graphs of girth g ≥ 6.
If a = n

(
d j+1

2 e,
g
2

)
, an absorbing set of size a exists in some graph in this class,

and B∗a = b j−12 ca.

Proof. First, let a = n
(⌈

j+1
2

⌉
, g2
)
. Let Ga be a

(⌈
j+1
2

⌉
, g2
)
-cage. Replace each edge

in Ga with a check node of degree 2 and consider each vertex in Ga as a variable
node. Then we have a

(⌈
j+1
2

⌉
, 2
)
-regular bipartite graph of girth g. We can add⌊

j−1
2

⌋
degree 1 check nodes to each variable node to create an

(
a,
⌊
j−1
2

⌋
a
)
-absorbing

set that is j-left regular. By Theorem 4.1, we conclude that B∗a =
⌊
j−1
2

⌋
a.

For certain cases, the absorbing sets constructed as in the proposition proof meet
the bounds given by Theorem 2.3 [6]. These cases are unshaded in Table 4.

Remark 5. If g ≥ 6 and j ≥ 2, then it is possible that absorbing sets of size
a > n

(⌈
j+1
2

⌉
, g2
)

exist in the class described in Proposition 1. If such an absorbing

set exists, then by Theorem 4.1, B∗a ≤
⌊
j−1
2

⌋
a.

g \
⌈
j+1
2

⌉
2 3 4 5 6 7

6 3 4 5 6 7 8
8 4 6 8 10 12 14
10 5 10 17 26 37 50
12 6 14 26 42 62 86
14 7 22 53 106 189 302

Table 4. The lower bounds on a from Theorem 2.3 given girth
g and variable node degree j. Unshaded values are those for
which absorbing sets constructed in Proposition 1 achieve the lower
bounds in Theorem 2.3, thereby demonstrating tightness.
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4.2. Extensions to regular graphs and fully absorbing sets. We conclude
this section by showing that the results that hold in the j-left regular case coincide
with those for the (j, k)-regular case and the fully absorbing set case.

Proposition 2. Consider the class of (j, k)-regular Tanner graphs of girth at least
g, where j ≥ 2 and k ≥ 2. Then for a given a, B∗a in this class is the same as in
a general j-left regular graph. In other words, all the previous bounds on B∗a given
for j-left regular Tanner graphs still hold.

Proof. Let G be a (j, k)-regular Tanner graph of girth g with j ≥ 2 and k ≥ 2,
and fix a value a. Let β be the maximum value of b for this a in the class of j-left
regular Tanner graphs of girth at least g, and let B∗a denote the maximum value of
b for this a in the class of (j, k)-regular Tanner graphs of girth at least g. Note that
because the class of (j, k)-regular Tanner graphs of girth at least g is contained in
the class of j-left regular Tanner graphs of girth at least g, we have that B∗a ≤ β.
We will show that B∗a = β by exhibiting an (a, β)-absorbing set absorbing set in a
(j, k)-regular Tanner graph.

Let D be an (a, β)-absorbing set in a j-left regular Tanner graph. Because β is
maximal, D is an elementary absorbing set. Hence all nodes in E(D) have degree
2 and all nodes in O(D) have degree 1. Consider only the absorbing set graph GD,
which is necessarily itself j-left regular with girth at least g.

We will show that GD embeds in a (j, k)-regular Tanner graph G′. To do so, we
will start with GD and enumerate a tree-like structure as follows. The elements of
D are in Layer 0, and the elements of E(D) ∪O(D) are in Layer 1. Since Layers 0
and 1 replicate GD, the girth among nodes in those layers is at least g. Viewing each
check node in Layer 1 as a root of a tree, we can enumerate each tree for g/2 more
layers by creating new nodes of appropriate degrees as needed. Specifically, for each
check node c in E(D) (resp., O(D)), add k− 2 (resp., k− 1) variable node children
in Layer 2. For each variable node in Layer 2, add j − 1 new check node children
in Layer 3. Each of these now receive k − 1 variable node children in Layer 4, etc.
Continue in this way so that the nodes in Layers 0 to g/2 are distinct. In Layer
g/2 + 1, when the girth of g may occur, some nodes from branches stemming from
different neighbors of D may coincide. Regardless, this structure may be completed
into a (j, k)-regular Tanner graph containing GD.

We now consider the case of fully absorbing sets.

Proposition 3. Consider the class of j-left regular Tanner graphs of girth at least
g, where j ≥ 3. For a given a, let B∗a be the maximum b value for a graph in this
class. Then there exists an (a,B∗a) fully absorbing set. In other words, the previous
bounds on B∗a for j-left regular Tanner graphs also hold for fully absorbing sets.

Proof. Let G be a j-left regular Tanner graph of girth g with j ≥ 3. Let B∗a be the
maximum value of b for a in the class of j-left regular Tanner graphs of girth at
least g such that an (a, b)-absorbing set exists in some graph in the class. We will
exhibit an (a,B∗a) fully absorbing set in the class of j-left regular Tanner graphs of
girth at least g with j ≥ 3.

Let D be an (a,B∗a)-absorbing set in a j-left regular Tanner graph. Because B∗a is
maximal, D is an elementary absorbing set. Consider only the absorbing set graph
GD. If we view GD as its own Tanner graph, then vacuously, D is a fully absorbing
set in GD. Because GD is a j-left regular graph of girth at least g, we have shown
that there exists an (a,B∗a) fully absorbing set in this class.
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5. Minimal absorbing sets. In this section, we introduce the notion of minimal
absorbing sets, which are absorbing sets that do not properly contain smaller ab-
sorbing sets. Thus, any absorbing set will contain at least one minimal absorbing
set. By understanding minimal absorbing sets, search algorithms and absorbing
set removal algorithms may be designed to target these fundamental structures.
Namely, if minimal absorbing sets are removed, then any absorbing set containing
that minimal absorbing set is also removed.

Definition 5.1. An (a, b)-absorbing set D is minimal if no proper subset of D
forms an absorbing set.

Our first result in this section identifies a class of absorbing sets that is always
minimal.

Theorem 5.2. Every (a,B∗a)-absorbing set in the class of graphs of girth at least
g is minimal.

Proof. Let D be an (a,B∗a)-absorbing set of girth at least g. Let D′ be a strict
subset of D. Notice that D is an elementary absorbing set by Lemma 3.1.

Suppose D′ also forms an absorbing set. We claim it must then be the case that
GD = GD′ ⊕ GD\D′ , where ⊕ denotes a disjoint union of graphs. In other words,
GD′ and GD\D′ have no variable nor check nodes in common. To prove this claim,
assume not: then, there is a degree 2 check node in GD with one neighbor in D′

(denote this variable node by v) and the other in D\D′. The number of even-degree
neighbors of v cannot increase from GD to GD′ by virtue of D being an elementary
absorbing set; thus, the number of odd-degree neighbors of v increases by at least
one from GD to GD′ . Since D′ is an absorbing set, it must be the case that v can
tolerate an additional degree 1 check node neighbor in GD while maintaining D as
an absorbing set. This contradicts the fact that D is an (a,B∗a)-absorbing set, and
we conclude that GD = GD′ ⊕GD\D′ .

Since D and D′ are absorbing sets, D \ D′ must also form an absorbing set.
However, by Lemma 3.6, B∗c+d > B∗c + B∗d . Thus, D could not have formed an
(a,B∗a)-absorbing set to begin with, since the number of odd degree check nodes in
GD is at most the sum of the numbers of odd degree check nodes in G′D and GD\D′ ,
which is bounded above by B∗|D′| +B∗|D|−|D′|.

Thus, for the class of graphs of girth at least g, absorbing sets that are extremal
in the number of odd degree check nodes in the corresponding absorbing set graph
provide one classification type of minimal absorbing sets.

In general, minimal absorbing sets are not always elementary, and elementary
absorbing sets are not always minimal. However, in the following proposition, we
note a specific case when all minimal absorbing sets are elementary.

Proposition 4. If a Tanner graph G has variable nodes of degree at most 3, then
all minimal absorbing sets in G are elementary.

Proof. Let G be a Tanner graph with all variable nodes of degree at most 3. Let
D be a minimal absorbing set in G and GD be its induced subgraph. Assume by
way of contradiction that D is not elementary. Then there exists some check node
c ∈ GD such that dGD

(c) ≥ 3.

(i) Case 1: there exist variable nodes v1, v2 ∈ NGD
(c) such that v1 and v2 are

connected in GD \ {c}. Consider the set NGD
(c) = {vi}

dGD
(c)

i=1 . Let P be the
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shortest path in GD \{c} between any two variable nodes vi and vj in NGD
(c).

We will assume without loss of generality that these are v1 and v2. Let Q be
the set of variable nodes in P . Note that GD contains all check node neighbors
of variable nodes in Q, and so may not be equal to the path P .

We claim that GQ \ {c} has no odd degree check nodes of degree more
than 1. Assume by way of contradiction there exists a check node t ∈ GQ

with dGQ
(t) ≥ 3. Let w1, w2, w3 ∈ NGQ

(t). Then w1, w2, and w3 all occur
along the shortest path between v1 and v2, and we can assume they occur
in this order, i.e., that P = v1 · · ·w1 · · ·w2 · · ·w3 · · · v2. We can remove the
portion of the path between w1 and w3 by instead visiting t to obtain the
path v1 · · ·w1 t w3 · · · v2, which is a path from v1 to v2 that is shorter than P ,
a contradiction. Note that it is possible that v1 = w1 and/or v2 = w3, but
this does not affect the contradiction. Hence all odd degree check nodes in
GQ \ {c} have degree 1.

We will show that dGQ
(c) = 2. Assume by way of contradiction that

dGQ
(c) ≥ 3. Then there is some variable node s ∈ NGQ

(c) such that P =
v1R1sR2 v2, where R1 and R2 are paths. But then, both v1R1s and sR2 v2
are shorter paths than P between two variable nodes in NGQ

(c), contradicting
our choice of P . Hence dGQ

(c) = 2.
Because all odd degree check nodes in GQ\{c} have degree 1, all check nodes

along the path P must be even degree. Hence each variable node v ∈ GQ \{c}
where v /∈ NGQ

(c) has two even degree neighbors because it is part of a path.
If v /∈ NGQ

(c) and dG(v) = 2, then both of its neighbors are even, and if
dG(v) = 3, at least two of its neighbors are even. It remains only to consider
when v ∈ NGQ

(c). In this case, v has one even degree neighbor in GD from
the path P , and c is a second even degree neighbor in GQ. The degree of
its third check node neighbor does not matter, as its neighborhood maintains
a strict majority of even degree check node neighbors regardless. Hence all
variable nodes in GQ have at strictly more even degree check node neighbors
than odd degree check node neighbors. So Q is an absorbing set. Because
dGQ

(c) = 2 < dGD
(c), Q necessarily contains fewer variable nodes than D.

Hence Q is an absorbing set strictly contained in D, so D is not minimal.
(ii) Case 2: no path exists in GD \ {c} between any two elements of NGD

(c). Let
S be the set of variable nodes in the connected component containing some
v1 ∈ NGD

(c) in GD \ {c} and T be the set of variable nodes in the connected
component containing some v2 ∈ NGD

(c) in GD \ {c}. Consider the set S ∪T .
Because GS and GT are disconnected in GD \{c}, the neighbors of all variable
nodes in both GS and GT are the same as in GD, except potentially v1 and
v2. The same holds for GS∪T . Further, dGS∪T (c) = 2, as it is connecting only
v1 and v2. Hence both v1 and v2 have at least as many even degree check
node neighbors as they had in GD, and so still have a strict majority of even
degree check node neighbors. Hence GS∪T is an absorbing set graph. Because
dGD

(c) ≥ 3, there exists some v3 ∈ NGD
(c) ⊆ D which is not in S ∪ T . Hence

S ∪ T is an absorbing set strictly contained in D, so D is not minimal.

In both cases, we reach a contradiction. Thus, D must be elementary.

The variable node degree requirements given in Proposition 4 cannot be loosened
without further restrictions. We illustrate this next.
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Example 5.3.

Figure 3. A minimal (4, 2)-absorbing set with degree 4 variable
nodes that is not elementary.

Example 5.4.

(a) (b)

Figure 4. (a) A minimal (4, 4)-absorbing set of girth 4 that is not
elementary. (b) As shown, a minimal (6, 4)-absorbing set of girth
6 that is not elementary. The dotted edges represent where paths
could be extended to generalize to an absorbing set of arbitrary
girth.

In Figure 3, a non-elementary (4, 2)-absorbing set with degree 4 variable nodes is
shown. We can see that this absorbing set is minimal by noticing that any proper
subset of its variable nodes induces a graph that is not an absorbing set graph.

Moreover, we note that minimal absorbing sets in graphs of arbitrary girth need
not be elementary via the construction in the following example.

In Figure 4, two minimal absorbing sets that are not elementary are shown. Part
(a) shows a minimal absorbing set of girth 4, and (b) a minimal absorbing set of
girth 6. In part (b), two edges are dotted. These edges could be augmented by
alternating variable and check nodes to create an absorbing set of arbitrarily large
girth that would still not be minimal.
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6. Conclusions. We derived ranges for the parameters of absorbing sets that may
exist in general classes of LDPC codes. In particular, we gave exact and upper
bounds on the largest b for a given a for which an (a, b)-absorbing set may occur.
We show that these extremal absorbing sets are elementary. Moreover, we show
that this extremal class is also minimal, a notion we introduce as a means to break
down and remove fundamental absorbing sets.

Acknowledgments. We thank the anonymous reviewers for their helpful com-
ments that improved the quality of the paper, including a nicer proof of Theo-
rem 3.2.
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