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Many cliques in bounded-degree hypergraphs

Rachel Kirsch∗ Jamie Radcliffe†

July 5, 2022

Abstract

Recently Chase determined the maximum possible number of cliques of size t in a graph on
n vertices with given maximum degree. Soon afterward, Chakraborti and Chen answered the
version of this question in which we ask that the graph have m edges and fixed maximum degree
(without imposing any constraint on the number of vertices). In this paper we address these
problems on hypergraphs. For s-graphs with s ≥ 3 a number of issues arise that do not appear
in the graph case. For instance, for general s-graphs we can assign degrees to any i-subset of
the vertex set with 1 ≤ i ≤ s− 1.

We establish bounds on the number of t-cliques in an s-graph H with i-degree bounded by ∆
in three contexts: H has n vertices; H has m (hyper)edges; and (generalizing the previous case)
H has a fixed number p of u-cliques for some u with s ≤ u ≤ t. When ∆ is of a special form
we characterize the extremal s-graphs and prove that the bounds are tight. These extremal
examples are the shadows of either Steiner systems or packings. On the way to proving our
uniqueness results, we extend results of Füredi and Griggs on uniqueness in Kruskal-Katona
from the shadow case to the clique case.

1 Introduction

There has been recent interest in generalized Turán problems: determining the maximum (or
minimum) number of copies of a fixed graph T that a graph G can contain, subject to a variety
of constraints. The roots of this problem go back to Turán’s Theorem [22] and its extension
by Zykov [24] which determine, respectively, the maximum number of copies of K2 and Kt in a
graph on n vertices containing no Kr+1. The paper of Alon and Shikhelman [1] proved many
foundational results and introduced the general problem to a wider audience.

1.1 Many cliques in bounded-degree graphs

We will focus on hypergraph versions of two generalized Turán problems: determining the
maximum number of cliques in graphs of bounded degree, using either vertices or edges as a
“resource.” We discuss the graph problems below; for a more complete history see [2, 4, 5, 6, 11,
16, 17]. The first phase of progress in these problems consisted of “signpost” results: estimates
that are best possible infinitely often, but not for all values of the parameters.

∗Department of Mathematical Sciences, George Mason University. Partially supported by NSF DMS-1839918.
†Department of Mathematics, University of Nebraska-Lincoln. Partially supported by Simons grant 429383.
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We write k(G) for the total number of cliques in G and kt(G) for the number of cliques of
size t (and always insist that t ≥ 1). Similarly k≥t(G) is the number of cliques of size at least t
in G. The next two theorems are due to Wood.

Theorem 1 (Wood [23]). If G is a graph on n vertices with ∆(G) ≤ r − 1 then

kt(G) ≤
n

r

(

r

t

)

and k≥1(G) ≤
n

r

(

2r − 1
)

with equality when G = aKr.

Theorem 2 (Wood [23]). If G is a graph on n vertices having m edges with ∆(G) ≤ r− 1 then

kt(G) ≤
m
(

r
2

)

(

r

t

)

and k≥2(G) ≤
m
(

r
2

)

(

2r − r − 1
)

,

with equality when G = aKr.

Quite recently results in this direction were proved that are best possible for all values of
the parameters. The vertex problem was solved by Chase [4]. Building on Chase’s theorem,
Chakraborti and Chen [2] solved the edge problem.

Theorem 3 (Chase [4]). Let G be a graph with ∆(G) ≤ r− 1 on n vertices. Let a and b satisfy
n = ar + b with 0 ≤ b < r. Then

kt(G) ≤ a

(

r

t

)

+

(

b

t

)

,

with equality for the graph G = aKr ∪Kb, the disjoint union of a copies of Kr and one copy of
Kb.

In 2022 Chao and Dong [3] announced a new proof of Theorem 3 that proves the result for
all t simultaneously, unlike Chase’s proof.

Theorem 4 (Chakraborti and Chen [2]). Let G be a graph with ∆(G) ≤ r− 1 having m edges.
Let a and b satisfy m = a

(

r
2

)

+ b with 0 ≤ b <
(

r
2

)

. Then

kt(G) ≤ a

(

r

t

)

+ kt(C2(b)),

with equality for the graph G = aKr ∪ C2(b). Here, C2(b) is the colex graph having b edges: the
graph on vertex set N whose edges are the first b pairs in colexicographic order.

In this paper we are concerned with hypergraph versions of these problems. To state the
questions we need to introduce our notation for hypergraphs and discuss the issue of degrees in
hypergraphs. This we do next.

In Section 2 we discuss various versions of the Kruskal-Katona Theorem, which is central in
this area. In Section 3 we introduce constructions which, in some cases, give optimal examples,
and in Section 4 we prove general results for arbitrary degree bounds and prove the existence of
some optimal and near-optimal examples. Finally, in Section 5 we mention some open problems.
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1.2 Hypergraph definitions and questions

Our notation is mostly standard.

Definition 5. An s-graph H is a pair (V, E) consisting of a set of vertices V together with
a subset E ⊆

(

V
s

)

. Frequently we’ll suppress mention of the vertex set and simply use H to
refer to the edge set. If I ⊆ V has size i then we define the neighborhood H(I) of I to be the
(s− i)-graph with edge set

E
(

H(I)
)

= {E \ I : I ⊆ E ∈ E(H)}.

The degree of I in H is the number of these edges, i.e.,

dH(I) =
∣

∣{E ∈ E(H) : I ⊆ E}
∣

∣.

We let the vertex set of H(I) be the union of all the edges in E(H(I)), i.e., we omit all vertices
not contained in an edge of H(I). The maximum i-degree of H is simply

∆i(H) = max
{

dH(I) : I ∈

(

V

i

)

}

.

We now define shadows and cliques in hypergraphs.

Definition 6. Suppose that A is an s-graph. The shadow of A on level q (where q < s) is given
by

∂q(A) =
{

B : |B| = q and ∃A ∈ A s.t.B ⊆ A
}

=
⋃

A∈A

(

A

q

)

.

The set of cliques on level t (where t > s) is

Kt(A) =
{

C : |C| = t and

(

C

s

)

⊆ A
}

.

Since we’re interested in the number of cliques, we let kt(A) =
∣

∣Kt(A)
∣

∣.

We can now state the questions we address in this paper.

Question 1. Suppose that an s-graph H has n vertices, and that for some 1 ≤ i ≤ s − 1 and
D > 0 we have ∆i(H) ≤ D. Given t ≥ s, what is the maximum possible value of kt(H)? In
other words we aim to determine

max{kt(H) : H an s-graph with n vertices and ∆i(H) ≤ D}.

Question 2. Suppose that an s-graph H has m edges, and that for some 1 ≤ i ≤ s − 1 and
D > 0 we have ∆i(H) ≤ D. Given t ≥ s, what is the maximum possible value of kt(H)? In
other words, what is

max{kt(H) : H an s-graph with m edges and ∆i(H) ≤ D}?

Question 3. Suppose that an s-graph H has ku(H) = p for some u ≥ s, and that for some
1 ≤ i ≤ s−1 and D > 0 we have ∆i(H) ≤ D. Given t ≥ u, what is the maximum possible value
of kt(H)? I.e., determine

max{kt(H) : H an s-graph with ku(H) = p and ∆i(H) ≤ D}.
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1.3 Related extremal problems

The area of extremal problems for hypergraphs is rich and deep. Among the most directly related
problems are those involving the maximum number of cliques in an s-graph that contains no
(r + 1)-clique. The earliest such result is by Zykov [24]. He proved the following result for
graphs.

Theorem 7 (Zykov). If H is a graph on n vertices containing no (r + 1)-clique then kt(H) ≤
kt(Tr(n)). Here Tr(n) is the Turán graph, that is to say it is the complete r-partite graph on n
vertices whose parts are of sizes as equal as possible.

The analogous result where we constrain G to have m edges is much more recent. The
following result is due to Frohmader [8]. To describe the result we need to define the r-partite
colex Turán graph. Let r be a positive integer. The r-partite colex order is the restriction of
the colex order on

(N
2

)

to {ij : i 6≡ j (mod r)}. The r-partite colex Turán graph with m edges,
CTr(m), is the graph on vertex set N whose edge set consists of the first m edges in r-partite
colex order. (Note that if m = tr(n), then the unique non-trivial component of CTr(m) is
isomorphic to Tr(n).)

Theorem 8. If G is a Kr+1-free graph with m edges and 2 ≤ t ≤ r, then kt(G) ≤ kt
(

CTr(m)
)

.

In stark contrast, even the Turán problem for s-graphs with s > 2 is apparently intractable.
For no r > s ≥ 3 is the problem of determining

max{|H| : H is an s-graph on vertex set [n] not containing an (r + 1)-clique}

solved for all n, even asymptotically. (See Keevash’s survey [14] for extensive discussion of this
problem.) The hypergraph analogue of Theorem 8 seems no easier.

In a recent paper, Liu and Wang [19] determined the maximum number of t-cliques in an
s-graph on n vertices containing at most k disjoint edges (for n sufficiently large).

In the context of hypergraphs with bounded degree, Jung [12] considered the question of
minimizing the ratio |∂s−1(H)|/|H| for s-graphs H having bounded 1-degree. Jung’s results
have a similar spirit to ours, but are not directly comparable. In an opposite direction Füredi
and Zhao [10] considered 3-graphs H with large minimum degree and gave asymptotically best
possible lower bounds on the size of ∂2(H).

2 The Kruskal-Katona Theorem

The fundamental theorem given in Theorem 12 below was proved independently by Kruskal [18]
and Katona [13]. It shows that for a given number of edges the s-graph with the most t-cliques
and the smallest q-shadow is the colex hypergraph, whose edges form an initial segment in the
colexicographic (or colex ) order. Colex order is defined on finite subsets of N by A < B iff
max(A△B) ∈ B. The original version of the Kruskal-Katona theorem discussed only shadows,
but the cliques version is a simple modification. We give the proof of the cliques bound for
completeness. To do so it is useful to define another ordering.

Definition 9. The retrolexicographic (or retlex ) order on finite subsets of N is defined by A <R B
iff max(A△B) ∈ A. We write Rs(n,m) for the <R-initial segment of size m in

([n]
s

)

.
In addition, given a ground set [n] and an s-graph A on [n], we define

A = {[n] \ A : A ∈ A},

an (n− s)-graph on [n] with the same size as A.
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Remark 10. The definition has the following symmetries with the colex order.

a) We have A <R B if and only if A > B, i.e., retlex is the reverse of colex order.

b) If both A and B are subsets of [n] then, since A △ B = ([n] \ A) △ ([n] \ B), we have
[n] \A <R [n] \B if and only if A < B.

In particular for 0 ≤ m ≤
(

n
s

)

we have

Rs

(

n,

(

n

s

)

−m
)

=

(

[n]

s

)

∖

Cs(m) and Rs(n,m) = Cn−s(m).

Definition 11. For A ⊆
([n]
s

)

an s-graph and t > s we define the upshadow of A on level t by

U t(A) =
{

T ∈

(

[n]

t

)

: ∃A ∈ A s.t.A ⊆ T
}

.

Theorem 12 ([13, 18]). For all 0 ≤ q < s < t ≤ n, if A is an s-graph on vertex set V with
|V | = n then we have

|∂q(A)| ≥ |∂q(Cs(m))|, kt(A) ≤ kt(Cs(m)), and |U t(A)| ≥ |U t(Rs(n,m))|

where m = |A|.

Note that for cliques and shadows the optimal examples are independent of n (provided
m ≤

(

n
s

)

), whereas the retlex initial segment depends in an essential way on n. Since the
shadow bound is proven in [13, 18], we will prove only the clique and upshadow bounds.

Proof. We may assume without loss of generality that V = [n]. We’ll start by proving the
upshadow bound from the shadow bound. Given E ⊆

([n]
s

)

and writing E = {[n] \E : E ∈ E} ⊆
(

[n]
n−s

)

, we have

∂n−t(E) =
{

[n] \ T : |T | = t and ∃ ([n] \ E) ∈ E s.t. ([n] \ T ) ⊆ ([n] \ E)
}

=
{

[n] \ T : T ∈

(

[n]

t

)

and ∃E ∈ E s.t.E ⊆ T
}

= U t(E).

Thus, by the shadow bound, to minimize |U t(E)| = |U t(E)| we can take E to be a colex initial
segment, i.e, by Remark 10 a), E to be a retlex initial segment. Now, for the clique bound, note
that

Kt(A) =

(

[n]

t

)

∖

U t
(

(

[n]

s

)

∖

A
)

.

Thus to maximize |Kt(A)| we can take
(

[n]
s

)

\A to be a retlex initial segment, i.e., by Remark 10
b), take A to be a colex initial segment.

Remark 13. Using Remark 10 we can immediately read out of the proof of the previous theorem
the value of kt(Cs(m)). We have

Kt(Cs(m)) =

(

[n]

t

)

∖

U t
(

(

[n]

s

)

∖

Cs(m)
)

=

(

[n]

t

)

∖

U t
(

Rs

(

n,
(

n
s

)

−m
)

)

=

(

[n]

t

)

∖

∂n−t

(

Rs

(

n,
(

n
s

)

−m
)

)

=

(

[n]

t

)

∖

∂n−t

(

Cn−s

((

n
s

)

−m
)

)

5



i.e.,

kts(m) = kt(Cs(m)) =

(

n

t

)

− ∂n−s
n−t

((

n
s

)

−m
)

.

2.1 Cascade notation

The standard way of describing initial segments of the colex order is the cascade notation,
introduced by Kruskal in [18]. A good reference for the material in this subsection is Chapter 6
of the book [7] by Frankl and Tokushige.

Definition 14. We will say that an integer sequence (ns, ns−1, . . . , ns−ℓ+1) is a cascade if it is
strictly decreasing. We will define, for s ≥ 1 and arbitrary cascades (ns, ns−1, . . . , ns−ℓ+1) of
length ℓ ≥ 0,

[ns, ns−1, . . . , ns−ℓ+1]s =

ℓ−1
∑

k=0

(

ns−k

s− k

)

.

We say that a cascade is a strict s-cascade if ns−k ≥ s− k for all 0 ≤ k ≤ ℓ− 1, and also ℓ ≤ s.
In that case every term in (the sum defining) [ns, ns−1, . . . , ns−ℓ+1]s is positive.

Remark 15. In checking that a cascade (ns, ns−1, . . . , ns−ℓ+1) is strict it is sufficient to check
that ns−k ≥ s− k for k = ℓ− 1, because if so then for every k < ℓ− 1 we have

ns−k ≥ ns−ℓ+1 + (ℓ− 1− k) ≥ s− ℓ+ 1 + (ℓ− 1− k) = s− k.

Definition 16. If B is a family of sets, each disjoint from a fixed set A, we write A+B for the
family

A+ B = {A ∪B : B ∈ B}.

Lemma 17. For all m ≥ 0 and all s ≥ 1 there exists a unique strict s-cascade such that m =
[ns, ns−1, . . . , ns−ℓ+1]s. Indeed (ns, ns−1, . . . , ns−ℓ+1) is the unique strictly decreasing sequence
of length ℓ ≥ 0 satisfying

(

ns

s

)

< m <

(

ns + 1

s

)

(

ns

s

)

+

(

ns−1

s− 1

)

< m <

(

ns

s

)

+

(

ns−1 + 1

s− 1

)

...
(

ns

s

)

+

(

ns−1

s− 1

)

+ · · · +

(

ns−ℓ+2

s− ℓ+ 2

)

< m <

(

ns

s

)

+

(

ns−1

s− 1

)

+ · · ·+

(

ns−ℓ+2 + 1

s− ℓ+ 2

)

(

ns

s

)

+

(

ns−1

s− 1

)

+ · · · +

(

ns−ℓ+1

s− ℓ+ 1

)

= m.

If (ns, ns−1, . . . , ns−ℓ+1) has length 1 then the first of these inequalities is satisfied with equal-
ity on the left. If m = 0 then we get the unique sequence of length 0 for all s ≥ 1. Moreover,
for all m ≥ 0 and s ≥ 1 the colex initial segment of

(

N
s

)

of length m is

Cs(m) =

ℓ−1
⋃

k=0

(

{ns−j + 1 : 0 ≤ j < k}+

(

[ns−k]

s− k

)

)

where (ns, ns−1, . . . , ns−ℓ+1) is the unique s-cascade such that m = [ns, ns−1, . . . , ns−ℓ+1]s.
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Definition 18. For all m ≥ 0 and all s ≥ 1, we denote by is(m) the unique s-cascade such that
m = [ns, ns−1, . . . , ns−ℓ+1]s, guaranteed by Lemma 17.

Using cascade notation, we can exhibit lovely expressions for the number of cliques and the
size of the shadow of a colex initial segment.

Lemma 19. If (ns, ns−1, . . . , ns−ℓ+1) is a strict s-cascade and m = [ns, ns−1, . . . , ns−ℓ+1]s then

kt(Cs(m)) = m′′ = [ns, ns−1, . . . , ns−ℓ+1]t, and

|∂q(Cs(m))| = m′ = [ns, ns−1, . . . , ns−ℓ+1]q.

Proof. Straightforward. See [7] for a proof of the shadow case when q = s − 1. The general
shadow result follows by induction, and the proof for cliques is similar. Note that neither the
t-cascade nor the q-cascade need be strict.

Definition 20. We denote the function that maps m to m′′ by kts(m) and that sending m to
m′ by ∂s

q(m):

kts(m) = kt(Cs(m)) and ∂s
q(m) = |∂q(Cs(m))|.

Corollary 21. If H is an s-graph of size m and q < s < t then

kt(H) ≤ kts(m) and |∂q(H)| ≥ ∂s
q(m).

Proof. Immediate from Theorem 12.

2.2 Uniqueness in Kruskal-Katona

It will be useful for us later to know when it is the case that Cs(m) is the unique extremal
example for Corollary 21. We introduce two definitions from [9] by Füredi and Griggs.

Definition 22. Given 1 ≤ q < s ≤ n we say that m is a jumping number (or (s, q)-jumping
number if we want to be more explicit) if ∂s

q(m+ 1) > ∂s
q(m). We say that m is a colex-unique

number if all s-graphs with m edges satisfying |∂q(H)| = ∂s
q(m) are isomorphic to Cs(m).

The following two theorems are proved in [9].

Theorem 23 (Füredi and Griggs [9]). Suppose that 1 ≤ q < s ≤ n and that 0 ≤ m ≤
(

n
s

)

is represented by the strict s-cascade m = [ns, ns−1, . . . , ns−ℓ+1]s. Then m is an (s, q)-jumping
number if and only if ℓ ≤ q.

Theorem 24 (Füredi and Griggs [9]). Suppose that 1 ≤ q < s ≤ n and that 0 ≤ m ≤
(

n
s

)

is represented by the strict s-cascade m = [ns, ns−1, . . . , ns−ℓ+1]s. Then m is a colex-unique
number for all m ≤ s + 1. If m > s + 1 then m is a colex-unique number if and only if one of
the following is true:

a) m is a jumping number, i.e. ℓ ≤ q, or

b) there exists n′ ≤ n such that m =
(

n′

s

)

− 1.

For m > s+ 1 conditions a) and b) are mutually exclusive.

The next lemma and the subsequent corollary will help us in the process of tracing the
criterion for uniqueness through the steps of the proof of Theorem 12.

7



Lemma 25. Suppose that u, v ≥ 1 and the cascade representations

N = [nu, nu−1, . . . , nu−k+1]u and M = [mv,mv−1, . . . ,mv−ℓ+1]v

satisfy nu−k+1 = mv−ℓ+1. Let b = nu−k+1 = mv−ℓ+1. Suppose moreover that

{b, nu−k+2, . . . , nu−1, nu} ∪ {b,mv−ℓ+2, . . . ,mv−1,mv} = {b, b+ 1, . . . , u+ v − 1},

and

{b, nu−k+2, . . . , nu−1, nu} ∩ {b,mv−ℓ+2, . . . ,mv−1,mv} = {b}.

Then N +M =
(

u+v
u

)

=
(

u+v
v

)

.

Proof. Consider first the case that min(u, v) = 1. Without loss of generality we suppose that
u = 1. Then u+ v − 1 = v so for some 1 ≤ b ≤ v we have

N +M = [b]1 + [v, v − 1, v − 2, . . . , b+ 1, b]v

= b+
v
∑

i=b

(

i

i

)

= b+ (v − b+ 1) = v + 1 =

(

u+ v

u

)

.

Now suppose that u, v > 1. By symmetry we may suppose that nu = u + v − 1. If k > 1
then we let

N ′ = [nu−1, nu−2, . . . , b].

Note that the representations of N ′ and M satisfy the hypotheses of the lemma, with u′ = u−1
and k′ = k − 1. By induction we get

N +M =

(

u+ v − 1

u

)

+N ′ +M =

(

u+ v − 1

u

)

+

(

u+ v − 1

u− 1

)

=

(

u+ v

u

)

.

On the other hand if k = 1 then we’re forced to have N = [u+ v− 1]u and M = [u+ v− 1]v , so

N +M =

(

u+ v − 1

u

)

+

(

u+ v − 1

v

)

=

(

u+ v − 1

u

)

+

(

u+ v − 1

u− 1

)

=

(

u+ v

u

)

.

Corollary 26. Suppose that 1 ≤ s < t ≤ n and that 0 < m <
(

n
s

)

. Let

m = [ns, ns−1, . . . , ns−ℓ+1]s

be the s-cascade representation of m. Then the (n− s)-cascade representation of m′ =
(

n
s

)

−m
is

m′ = [n′
n−s, n

′
n−s−1, . . . , n

′
n−s−k+1]n−s,

where ns−ℓ+1 = n′
n−s−k+1 and, writing b for this value,

{b, ns−ℓ+2, . . . , ns−1, ns} ∪ {b, n′
n−s−k+2, . . . , n

′
n−s−1, n

′
n−s} = {b, b+ 1, . . . , n− 1}

{b, ns−ℓ+2, . . . , ns−1, ns} ∩ {b, n′
n−s−k+2, . . . , n

′
n−s−1, n

′
n−s} = {b}.

(†)

In particular k + ℓ− 1 = n− b, so k = n− ℓ− b+ 1.
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Proof. With n′
n−s, n

′
n−s−1, . . . , b defined to satisfy Eq. (†) it is easy to check that n′

n−s−k+1 =
b ≥ n − s − k + 1 and k ≤ n − s. Using Remark 15 we deduce that (n′

n−s, n
′
n−s−1, · · · , b) is a

strict (n− s)-cascade. Then, by Lemma 25,

[ns, ns−1, . . . , ns−ℓ+1]s + [n′
n−s, n

′
n−s−1, . . . , n

′
n−s−k+1]n−s =

(

s+ (n− s)

s

)

=

(

n

s

)

.

Thus [n′
n−s, n

′
n−s−1, . . . , n

′
n−s−k+1]n−s is the (n− s)-cascade representation of

(

n
s

)

−m.

Theorem 27. Suppose that 1 ≤ s < t ≤ n and that 0 < m <
(

n
s

)

. Let

m+ 1 = [ns, ns−1, . . . , ns−ℓ+1]s

be the s-cascade representation of m + 1, having length ℓ. Then m has kts(m + 1) > kts(m) if
and only if t ≤ ℓ+ ns−ℓ+1 − 1. In this case we say that m is an (s, t)-clique-jumping number.

Proof. From Remark 13 we have

kt(Cs(m)) =

(

n

t

)

− ∂n−s
n−t

((

n
s

)

−m
)

.

Thus kt(m+ 1) > kt(m) exactly if we have

∂n−s
n−t (

(

n
s

)

−m) > ∂n−s
n−t (

(

n
s

)

−m− 1)

i.e.,
(

n
s

)

−m− 1 is an (n− s, n− t)-jumping number. By Corollary 26, the length of the (n− s)-
cascade representation of

(

n
s

)

− m − 1 is k = n − ℓ − ns−ℓ+1 + 1, so by Theorem 23 we need
n− ℓ− ns−ℓ+1 + 1 ≤ n− t, i.e, t ≤ ℓ+ ns−ℓ+1 − 1.

Theorem 28. Suppose that 1 ≤ s < t ≤ n and that 0 < m <
(

n
s

)

. Let

m = [ns, ns−1, . . . , ns−ℓ+1]s

be the s-cascade representation of m, having length ℓ. Then the colex s-graph H = Cs(m) is
unique up to isomorphism satisfying |H| = m and kt(H) = kts(m) if either m ≥

(

n
s

)

− n+ s− 1
holds, or m <

(

n
s

)

−n+s−1 and one of the following two (mutually exclusive) conditions holds:

a) t ≤ ℓ+ ns−ℓ+1 − 1 (equivalently m− 1 is an (s, t)-clique-jumping number), or

b) for some n− s+ 2 ≤ n′ ≤ n we have m =

(

n

s

)

−

(

n′

n− s

)

+ 1.

Proof. By Remark 13, the colex s-graph H = Cs(m) is unique up to isomorphism satisfying
|H| = m and kt(H) = kts(m) if and only if all (n − s)-graphs with

(

n
s

)

− m edges satisfying
|∂n−t(H)| = ∂n−s

n−t (
(

n
s

)

−m) are isomorphic to Cn−s(
(

n
s

)

−m). Applying Theorem 24, and using
Corollary 26 and Theorem 27 for condition a), yields the result. In condition b), note that

n′ ≤ n− s+ 1 and m =
(

n
s

)

−
(

n′

n−s

)

+ 1 imply m ≥
(

n
s

)

− n+ s− 1.

Corollary 29. If m =
(

n′

s

)

with n′ ≥ t then Cs(m) is the unique s-graph H, up to isomorphism,
with m edges achieving kt(H) = kts(m).

Proof. By Theorem 28, it suffices to show that either
(

n′

s

)

≥
(

n
s

)

− n+ s− 1, or condition a) is
satisfied. For that condition note that m = [ns, ns−1, . . . , ns−ℓ+1]s = [n′]s has length ℓ = 1 and
final entry ns−ℓ+1 = n′, and we have t ≤ 1 + n′ − 1 by hypothesis.
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2.3 Lovász Kruskal-Katona

Cascades have the merit of giving the precise values of ∂s
q(m) and kts(m), but are somewhat

unwieldy to work with. There is a simpler form of the Kruskal-Katona theorem, due to Lovász
[20], that is often strong enough. We work with the natural polynomial generalization of the
binomial coefficient

(

n
k

)

to real values of n.

Definition 30. For a real number x and natural number k, the generalized binomial coefficient
is defined as

(

x
k

)

= (x)(x− 1) · · · (x− k + 1)/k!.

Lemma 31 (Lovász [20]). Let H be an r-graph. Write |H| in the form
(

u
r

)

, where u ≥ r − 1 is
real. Then |∂k(H)| ≥

(

u
k

)

for all k ∈ [r].

The clique version of this result is a straightforward consequence.

Theorem 32. Let s, t ∈ N with t ≥ s. Let H be an s-graph. Write |H| in the form
(

x
s

)

, where
x ≥ s− 1 is real. Then kt(H) ≤

(

x
t

)

.

Proof. Let T = Kt(H). Then T is a t-graph. Write |T | in the form
(

u
t

)

, where u ≥ t − 1 is
real. By Lemma 31, the number of s-sets (edges of H) contained in edges of T (t-cliques of H)
is at least

(

u
s

)

. The number of edges of H contained in t-cliques of H is at most the number of
edges of H, so we have

(

x
s

)

= |H| ≥
(

u
s

)

. It is easy to check that
(

x
s

)

is strictly increasing in x
for x ≥ s− 1, and hence we must have x ≥ u. Similarly we have kt(H) = |T | =

(

u
t

)

≤
(

x
t

)

.

3 Steiner Shadows and Packing Shadows

In this section we define and discuss some important hypergraphs that turn out to be optimal
examples in some cases of our problem.

Definition 33. A Steiner system with parameters i, r, n (abbreviated as an S(i, r, n)) is a
collection of r-sets of some n-set V that covers each i-set of V exactly once. That is to say, it
is an r-graph A on vertex set V such that for all I ∈

(

V
i

)

there exists a unique A ∈ A such that
I ⊆ A.

It had been known for a long time (by straightforward counting arguments) that in order for a
Steiner system with parameters i, r, n exist it must be the case that certain divisibility conditions
are satisfied. In groundbreaking work Peter Keevash [15] showed (among other things) that for
sufficiently large n these conditions are also sufficient.

Theorem 34 (Keevash 2014). For fixed i and r and for n sufficiently large, an S(i, r, n) exists
if and only if for all 0 ≤ j < i we have that (r − j)(i−j) divides (n− j)(i−j).

Corollary 35. For fixed i and r, the set of n for which an S(i, r, n) exists has positive lower
density.

Proof. The divisibility conditions are certainly satisfied if n − i + 1 is divisible by r(i), so the
lower density of {n : an S(i, r, n) exists} is at least 1/r(i).

We can weaken the definition of a Steiner system to require only that each i-set is covered
at most once (rather than exactly once), giving the following definition.
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Definition 36. An i-packing of r-sets (abbreviated as a P (i, r)), also called a partial Steiner
system, is a collection of r-sets of some set V that covers each i-set of V at most once. That
is to say, it is an r-graph A on vertex set V such that for all I ∈

(

V
i

)

there exists at most one
A ∈ A such that I ⊆ A. Equivalently, any distinct r-sets A,B ∈ A have |A ∩B| < i.

Existence of P (i, r)’s is guaranteed for all values of the parameters. For instance, a disjoint
collection of r-sets is a P (i, r) for all i ≥ 1.

The hypergraphs that will be useful to us are not only Steiner systems and packings them-
selves, but their shadows on layers intermediate between i and r.

Definition 37. A Steiner shadow with parameters i, r, n, s, abbreviated ∂sS(i, r, n), is the s-
shadow of an S(i, r, n). A packing shadow with parameters i, r, s, abbreviated ∂sP (i, r), is the
s-shadow of an i-packing of r-sets.

We will show later that Steiner shadows and packing shadows provide examples showing
that the signpost results we prove are best possible (at least for some values of the parameters).

Lemma 38. If 1 ≤ i < s < r and A is a P (i, r), then, if we write H for the s-graph ∂s(A), the
following hold.

a) For all i ≤ j ≤ r we have |∂j(A)| =
(

r
j

)

|A|. In particular, H has
(

r
s

)

|A| edges, and for all

s ≤ t ≤ r we have kt(H) = |∂t(A)| =
(

r
t

)

|A|.

b) If I ∈ ∂i(H) then H(I) ∼= K
(r−i)
s−i , which implies that dH(I) =

(

r−i
s−i

)

and kt−i(H(I)) =
(

r−i
t−i

)

.

In particular ∆i(H) =
(

r−i
s−i

)

.

In particular if H is a Steiner shadow ∂sS(i, r, n) then parts a) and b) hold with |A| =
(

n
i

)

/
(

r
i

)

,

and ∂i(H) =
([n]

i

)

.

Proof. Straightforward.

We show in the next two results that two conditions analogous to Item b) of Lemma 38 force
a hypergraph to be a packing shadow or a Steiner shadow respectively.

Lemma 39. Let 3 ≤ i+ 2 ≤ s ≤ t ≤ r and suppose that H is an s-graph with ∆i(H) ≤
(

r−i
s−i

)

.

If we have kt−i(H(I)) =
(

r−i
t−i

)

for every i-set I contained in an edge of H, then H is a packing
shadow ∂sP (i, r).

Proof. We first note that Corollary 29 implies that for all I ∈ ∂i(H) we have H(I) ∼= K
(s−i)
r−i .

For all such I we write AI for the vertex set of H(I). Then RI = AI ∪ I has the property that
for all s-sets S ⊇ I we have S ∈ H if and only if S ⊆ RI . We let R = {RI : I ∈ ∂i(H)}. We’ll
show that R is a P (i, r) and that H = ∂s(R).

First let’s show that if I ∈ ∂i(H) and J ∈
(

RI

i

)

then also J ∈ ∂i(H) and RJ = RI . We’ll first
prove the special case where |J ∩ I| = i − 1. If RI 6= RJ then we can choose an s-set S in RI

containing I ∪ J and an element of RI \ RJ , since s ≥ i + 2. We have I ⊆ S ⊆ RI , so S ∈ H.
Since J ⊆ S we have J ∈ ∂i(H). Finally we have J ⊆ S 6⊆ RJ , so S /∈ H. This contradiction
implies that RI = RJ . For any J ∈

(

RI

i

)

there exists a sequence I = J0, J1, . . . , Jk = J of i-sets
of RI such that |Jℓ ∩ Jℓ+1| = i− 1, and by the argument above we get that RJℓ = RI for all ℓ.

From this we can show that if I ∈ ∂i(H) then
(

RI

s

)

⊆ H. To see this, consider S ∈
(

RI

s

)

and

pick J ∈
(

S
i

)

. Since J ⊆ S ⊆ RI = RJ we have S ∈ H.
Finally, set R = {RI : I ∈ ∂i(H)} as above. To show that R is a P (i, r), suppose RI and

RI′ are both in R, and J ⊆ RI ∩ RI′ is an i-set. Then by the result in the second paragraph
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RI = RJ = RI′ . The last thing we need to show is that H = ∂s(R). If S ∈ H then for any
i-set of S we have I ⊆ S ⊆ RI , so S ∈ ∂s(R). On the other hand if S ∈ ∂s(R) then there exists
I ∈ ∂i(H) with S ⊆ RI and hence S ∈ H by the result in the third paragraph.

The corresponding result for Steiner shadows is a corollary.

Corollary 40. Let 3 ≤ i+ 2 ≤ s ≤ t ≤ r. Let H be an s-graph with ∆i(H) ≤
(

r−i
s−i

)

. If we have

kt−i(H(I)) =
(

r−i
t−i

)

for every i-set I of vertices of H, then H is a Steiner shadow ∂sS(i, r, n).

Proof. Let V be the vertex set of H. Given I ∈
(

V
i

)

we have kt−i(H(I)) =
(

r−i
t−i

)

and t ≤ r,

so kt−i(H(I)) ≥ 1. Thus ∂i(H) =
(

V
i

)

. By Lemma 39, H is a packing shadow P (i, r) with

∂i(H) =
(

V
i

)

, i.e a Steiner shadow ∂sS(i, r, n), where n = |V |.

4 Signpost Results for Hypergraphs

In this section we prove “signpost” versions of Theorems 3 and 4 for hypergraphs. We solve
three related problems, fixing the numbers of vertices, edges, and cliques. For each problem we
first prove an upper bound on the number of t-cliques, then, for degree bounds of a special form,
characterize the extremal hypergraphs and prove the upper bound is asymptotically tight.

4.1 Hypergraphs with a fixed number of vertices

4.1.1 An upper bound on the number of t-cliques

We start with a bound on the number of t-cliques in an s-graph on n vertices with maximum
degree at most ∆. The argument bounds the number of cliques that can contain a fixed i-set I,
and deduces a bound on the total number of t-cliques.

Theorem 41. Let 1 ≤ i < s and suppose that H is an s-graph on n vertices such that ∆i(H) ≤
∆. Then

kt(H) ≤

(

n

i

)

kt−i
s−i(∆)
(

t
i

) .

If equality holds then for each I ∈
([n]

i

)

the neighborhood H(I) contains kt−i
s−i(∆) (t− i)-cliques.

Proof. We count pairs (I,K) where I ∈
(

[n]
i

)

, K ∈ Kt(H), and I ⊆ K. Counting by t-cliques in

H we have a total of
(

t
i

)

kt(H). On the other hand consider I ∈
([n]

i

)

. For cliques K that contain
I all s-sets E such that I ⊆ E ⊆ K must be in H. Thus |{K : I ⊆ K ∈ Kt(H)}| ≤ kt−i

(

H(I)
)

.
Since by hypothesis |H(I)| = dH(I) ≤ ∆ we have

|{K : I ⊆ K ∈ Kt(H)}| ≤ kt−i
(

H(I)
)

≤ kt−i
s−i(∆)

by Theorem 12. Thus, summarizing, we have
(

t

i

)

kt(H) ≤

(

n

i

)

kt−i
s−i(∆)

kt(H) ≤

(

n

i

)

kt−i
s−i(∆)
(

t
i

) .

If we have equality then kt−i
(

H(I)
)

= kt−i
s−i(∆) for every I ∈

(

[n]
i

)

.
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From this result the following corollary is immediate from our known bounds on kt−i
s−i.

Corollary 42. Let 1 ≤ i < s and suppose that H is an s-graph on n vertices such that ∆i(H) ≤
∆.

a) If the cascade representation of ∆ is given by [ns−i, ns−i−1, . . . , ns−i−ℓ+1]s−i then

kt(H) ≤

(

n

i

)

[ns−i, ns−i−1, . . . , ns−i−ℓ+1]t−i
(

t
i

) .

b) If ∆ =
(

x−i
s−i

)

for some (not necessarily integral) x ≥ s then

kt(H) ≤

(

n

i

)

(

x−i
t−i

)

(

t
i

) =

(

n

i

)

(

x
t

)

(

x
i

) .

Proof. The two parts follow from Theorem 41 together with Lemma 19 and Theorem 32 respec-
tively.

4.1.2 Extremal hypergraphs and asymptotic tightness

For degree bounds of the form
(

r−i
s−i

)

, with r an integer, we show that Steiner shadows achieve
the bound from Theorem 41, and that they are the only s-graphs that do when i ≤ s − 2. We
do not know whether other s-graphs achieve the bound when i = s− 1.

Theorem 43. Let 1 ≤ i < s ≤ t ≤ r, where r is an integer, and suppose that H is an s-graph
on n vertices.

a) If H is a Steiner shadow ∂sS(i, r, n), then ∆i(H) =
(

r−i
s−i

)

and kt(H) =
(n
i
)

(r
i
)

(

r
t

)

. I.e., H

achieves the upper bound in Theorem 41.

b) If we further assume that s 6= i+1, then H satisfies both ∆i(H) ≤
(

r−i
s−i

)

and kt(H) =
(n
i
)

(r
i
)

(

r
t

)

if and only if H is a Steiner shadow ∂sS(i, r, n).

Note that by Theorem 34 the set of n for which Steiner shadows ∂sS(i, r, n) exist has positive
lower density.

Proof. For both parts, note that kt−i
s−i(

(

r−i
s−i

)

) =
(

r−i
t−i

)

and
(

r−i
t−i

)(

r
i

)

=
(

r
t

)(

t
i

)

(as in Corollary 42),

so
(n
i
)

(r
i
)

(

r
t

)

=
(

n
i

)kt−i

s−i
(∆)

(t
i
)

.

First, suppose H = ∂s(A), where A is an S(i, r, n). By Lemma 38, H has ∆i(H) =
(

r−i
s−i

)

and kt(H) =
(n
i
)

(r
i
)

(

r
t

)

.

Now, suppose s 6= i + 1 (so 3 ≤ i + 2 ≤ s) and H is an s-graph on n vertices such that

∆i(H) ≤
(

r−i
s−i

)

and kt(H) =
(n
i
)

(r
i
)

(

r
t

)

. By the condition for equality in Theorem 41, for each

I ∈
(

[n]
i

)

the neighborhood H(I) contains
(

r−i
t−i

)

(t − i)-cliques, and so by Corollary 40, H is a
Steiner shadow ∂sS(i, r, n).

Now we show that the upper bounds given by Theorem 41 and Corollary 42 are asymptoti-
cally tight.
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Theorem 44 (Rödl [21]). Let m(n, r, i) be the maximum number of edges in an i-packing of

r-sets in V . Then m(n, r, i) = (1− on(1))
(n
i
)

(r
i
)
.

Theorem 45. For 1 ≤ i < s ≤ t ≤ r ≤ n, let N be the maximum value of kt(H) over all
s-graphs H on n vertices with ∆i(H) ≤

(

r−i
s−i

)

. Then

N = (1 − on(1))

(

n
i

)

(

r
i

)

(

r

t

)

.

Proof. By Theorem 44, let A be an i-packing of r-sets in V such that |A| = (1 − on(1))
(n
i
)

(r
i
)
.

Then H = ∂s(A) has kt(H) = |A|
(

r
t

)

= (1 − on(1))
(n
i
)

(r
i
)

(

r
t

)

by Lemma 38. For every I ∈
(

V
i

)

, we

have

dH(I) =

{

(

r−i
s−i

)

if I ∈ ∂i(A)

0 otherwise,

so ∆i(H) ≤
(

r−i
s−i

)

. Together with Theorem 41 this implies N = (1− on(1))
(n
i
)

(r
i
)

(

r
t

)

.

In the proof of Theorem 45, A covers (1 − on(1))
(

n
i

)

of the i-sets in V , i.e. almost all of
them, so there exists H that is almost a Steiner shadow and almost attains the upper bound.

Remark 46. Theorem 34 gives an alternative proof of Theorem 45.

4.2 Hypergraphs with a fixed number of edges

We switch now to considering hypergraphs with a fixed number of edges.

4.2.1 An upper bound on the number of t-cliques

We write Kt
H(E) for the set of t-cliques in H containing the edge E and ktH(E) for |Kt

H(E)|.

Lemma 47. For any s-graph H and t ≥ s,

kt(H)

(

t

s

)

=
∑

E∈H

ktH(E).

Proof. Count the pairs (E,K), where E ⊆ K ∈ Kt(H), in two ways.

Lemma 48. Let H be an s-graph containing an edge E ∈ H, and let I ( E with |I| = i. Let K
be a t-clique of H containing E. Then K\I is a (t−i)-clique in H(I), and ktH(E) ≤ kt−i

H(I)(E\I).

Proof. We’ll show that K 7→ K \ I is an injection from Kt
H(E) to Kt−i

H(I)(E \ I). It is immediate

that if we can show that K\I ∈ Kt−i
H(I)(E\I) then the map is an injection. We have |K\I| = t−i

since I ( E ⊆ K. Consider then an (s− i)-subset F ⊆ K \ I. We have F ∪ I ∈
(

K
s

)

⊆ H, hence

F = (F ∪ I) \ I ∈ H(I). Therefore K \ I ∈ Kt−i(H(I)) and K \ I ∈ Kt−i
H(I)(E \ I).
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Lemma 49. Let 1 ≤ i < s ≤ t and suppose that H is an s-graph such that ∆i(H) ≤
(

x−i
s−i

)

for
some (not necessarily integral) x ≥ t− 1. If I ( E ∈ H and J = H(I), then

kt−i(J )

|J |
≤

(x− s)(t−s)

(t− i)(t−s)
,

where kt−i(J ) is the number of (t− i)-cliques in the (s− i)-graph J . If equality is achieved then
|J | =

(

x−i
s−i

)

and kt−i(J ) =
(

x−i
t−i

)

.

Proof. The number of edges in the neighborhood is |J | = dH(I) ≤ ∆i(H) ≤
(

x−i
s−i

)

, so |J | =
(

y
s−i

)

for some s− i−1 ≤ y ≤ x− i. If y ≤ t− i−1, then kt−i(J ) = 0, so the lemma holds. Otherwise,
y ≥ t− i. By Theorem 32, kt−i(J ) ≤

(

y
t−i

)

, so

kt−i(J )

|J |
≤

(

y
t−i

)

(

y
s−i

) (1)

=
y(y − 1) · · · (y − s+ i+ 1)(y − s+ i) · · · (y − t+ i+ 1)

y(y − 1) · · · (y − s+ i+ 1)

(s− i)!

(t− i)!

=
(y − s+ i)(t−s)

(t− i)(t−s)
using s ≤ t

≤
(x− s)(t−s)

(t− i)(t−s)
, (2)

since (x− s)(t−s) is a strictly increasing function of x for x ≥ t− 1, and we have y + i > t− 1.

If kt−i(J )
|J | =

(x−s)(t−s)

(t−i)(t−s)
, then equality holds in (2), so y + i = x, and |J | =

(

x−i
s−i

)

. Then equality

in (1) implies that kt−i(J ) =
(

x−i
t−i

)

.

Remark 50. The expression kt−i
s−i(m)/m is not an increasing function of m, whereas

(x−s)(t−s)

(t−i)(t−s)

is an increasing function of x. For values of m where

kt−i
s−i(m)

m
= max

m′≤m

kt−i
s−i(m

′)

m′
(3)

we can improve Lemma 49 to say that if ∆i(H) ≤ m then

kt−i(J )

|J |
≤

kt−i
s−i(m)

m
.

For m =
(

x−i
s−i

)

where x is an integer, it is easy to check that (3) holds. It is an interesting
question to determine which values of m satisfy (3).

Theorem 51. Let 1 ≤ i < s and suppose that H is an s-graph having m edges such that
∆i(H) ≤

(

x−i
s−i

)

for some (not necessarily integral) x ≥ s. Then, for all t ≥ s,

kt(H) ≤ m

(

x
t

)

(

x
s

) .

If equality holds then for each I ∈ ∂i(H) we have kt−i(H(I)) =
(

x−i
t−i

)

.
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Proof. If t > x then kt(H) = 0 because any i-set I contained in a t-clique would have dH(I) ≥
(

t−i
s−i

)

>
(

x−i
s−i

)

. Therefore we may assume t ≤ x. We will count

S = {(I,E,K) : I ( E ⊆ K ∈ Kt(H), |I| = i, |E| = s}

in two ways. Counting by K, then E, then I, we obtain

|S| = kt(H)

(

t

s

)(

s

i

)

.

Counting by I, then E, then K, and letting J = H(I), we obtain

|S| =
∑

I∈∂i(H)

∑

E⊇I

ktH(E)

≤
∑

I∈∂i(H)

∑

E⊇I

kt−i
J (E \ I) by Lemma 48

=
∑

I∈∂i(H)

kt−i(J )

(

t− i

s− i

)

by Lemma 47

≤

(

t− i

s− i

)

∑

I∈∂i(H)

(x− s)(t−s)

(t− i)(t−s)
|J | by Lemma 49

=

(

t− i

s− i

)

(x− s)(t−s)

(t− i)(t−s)

∑

I∈∂i(H)

dH(I)

=

(

t− i

t− s

)

(

x−s
t−s

)

(

t−i
t−s

)

∑

I∈∂i(H)

dH(I)

=

(

x− s

t− s

)(

s

i

)

m.

Therefore, kt(H)
(

t
s

)(

s
i

)

= |S| ≤
(

x−s
t−s

)(

s
i

)

m, and

kt(H) ≤

(

x−s
t−s

)

(

t
s

) m =

(

x
t

)

(

x
s

)m.

The last equation follows from the fact that
(

x
t

)(

t
s

)

= (x)(x−1)···(x−t+1)
s!(t−s)! =

(

x
s

)(

x−s
t−s

)

.

If kt(H) = m
(x
t
)

(x
s
)
then we have equality in the above application of Lemma 49 for every

I ∈ ∂i(H). By Lemma 49, kt−i(H(I)) =
(

x−i
t−i

)

for every I ∈ ∂i(H).

4.2.2 Extremal hypergraphs and asymptotic tightness

For degree bounds of the form
(

r−i
s−i

)

, with r an integer, we show that packing shadows achieve
the upper bound in Theorem 51, and that for i ≤ s− 2, they are the only s-graphs that achieve
this bound. Again, we do not know whether only packing shadows achieve the bound when
i = s− 1.

Theorem 52. Let 1 ≤ i < s ≤ t ≤ r, where r is an integer, and suppose that H is an s-graph
having m edges.
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a) If H is a packing shadow ∂sP (i, r), then ∆i(H) =
(

r−i
s−i

)

and kt(H) = m
(r
t
)

(r
s
)
. I.e., H

achieves the upper bound in Theorem 51. In particular, if
(

r
s

) ∣

∣ m, then H = m

(r
s
)
K

(s)
r

achieves equality.

b) If we further assume that s 6= i+1, then H satisfies both ∆i(H) ≤
(

r−i
s−i

)

and kt(H) = m
(r
t
)

(r
s
)

if and only if H is a packing shadow ∂sP (i, r).

Proof. First, suppose H = ∂s(A), where A is a P (i, r). By Lemma 38, ∆i(H) =
(

r−i
s−i

)

, and we

have m = |A|
(

r
s

)

and kt(H) = |A|
(

r
t

)

, so kt(H) = m
(r
t
)

(r
s
)
.

If
(

r
s

)
∣

∣ m, then m

(r
s
)
K

(r)
r is a P (i, r), and its s-shadow is m

(r
s
)
K

(s)
r . Note that

kt
( m
(

r
s

)K(s)
r

)

=
m
(

r
s

)kt
(

K(s)
r

)

=
m
(

r
s

)

(

r

t

)

and ∆i

(

m

(r
s
)
K

(s)
r

)

=
(

r−i
s−i

)

.

Now, suppose s 6= i + 1 (so 3 ≤ i + 2 ≤ s) and H is an s-graph having m edges with

∆i(H) ≤
(

r−i
s−i

)

and kt(H) = m
(r
t
)

(r
s
)
. We have equality in the statement of Theorem 51. The last

sentence of Theorem 51 states that kt−i(H(I)) =
(

r−i
t−i

)

for every I ∈ ∂i(H). By Lemma 39, H
is a packing shadow ∂sP (i, r).

The bound given by Theorem 51 is asymptotically tight.

Theorem 53. For 1 ≤ i < s ≤ t ≤ r and m ≥ 1, let M be the maximum value of kt(H) over
all s-graphs H having m edges with ∆i(H) ≤

(

r−i
s−i

)

. Then

M = (1− om(1))m

(

r
t

)

(

r
s

) .

Proof. Given i, s, t, r,m, let m = a
(

r
s

)

+ b, for 0 ≤ b <
(

r
s

)

. Then M ≥ kt(aK
(s)
t ) = a

(

r
t

)

=

(1− b
m
)m

(r
t
)

(r
s
)
. Since 0 ≤ b <

(

r
s

)

, limm→∞
b
m

= 0, so M ≥ (1− om(1))m
(r
t
)

(r
s
)
. Theorem 51 implies

M ≤ m
(r
t
)

(r
s
)
, completing the proof.

4.3 Hypergraphs with a fixed number of cliques

In this section we consider s-graphs that have a fixed number of u-cliques, for some u > s. The
numbers of vertices and edges are not specified. We will use the following lemma to connect
this problem to our previous results.

Lemma 54. Let 1 ≤ i < s ≤ u and suppose that H is an s-graph such that ∆i(H) ≤
(

x−i
s−i

)

for

some (not necessarily integral) x ≥ s. Then the u-graph U := Ku(H) satisfies ∆i(U) ≤
(

x−i
u−i

)

.

Proof. For any i-set I of vertices of H, let K = U(I) and let F = H(I). We are given that
|F | = dH(I) ≤

(

x−i
s−i

)

, so we have |F | =
(

y
s−i

)

for some y ≤ x− i. If |F | = 0 then dU (I) = 0, so we

may assume that y ≥ s− i. By Theorem 32, ku−i(F ) ≤
(

y
u−i

)

≤
(

x−i
u−i

)

. Let EI be an arbitrary
(u− i)-edge of K. By definition it satisfies EI ∪ I ∈ Ku(H), so every s-set in EI ∪ I is an edge of
H, and every (s− i)-set in EI is an edge of H(I). Therefore EI is a (u− i)-clique in H(I) = F .
We have shown K ⊆ Ku−i(F ), so for every i-set I we have dU (I) = |K| ≤ ku−i(F ) ≤

(

x−i
u−i

)

.
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4.3.1 An upper bound on the number of t-cliques

We generalize Theorem 51 as follows. The s = u case is exactly Theorem 51.

Theorem 55. Let 1 ≤ i < s ≤ u and suppose that H is an s-graph such that ku(H) = p and
∆i(H) ≤

(

x−i
s−i

)

for some (not necessarily integral) x ≥ s. Then, for all t ≥ s,

kt(H) ≤ p

(

x
t

)

(

x
u

) .

If equality holds then for each I ∈ ∂i(U) we have kt−i(U) =
(

x−i
t−i

)

, where U = Ku(H).

Proof. By Lemma 54, we can apply Theorem 51 to the u-graph U := Ku(H). Since U is
a u-graph with p edges and ∆i(U) ≤

(

x−i
u−i

)

, Theorem 51 implies that for all t ≥ u we have

kt(U) ≤ p
(x
t
)

(x
u
)
, with equality only if for each I ∈ ∂i(U) we have kt−i(U(I)) =

(

x−i
t−i

)

. Recall

s ≤ u ≤ t. Given a t-clique T in the s-graph H, every u-set in T is a u-clique of H, so T is also

a t-clique in the u-graph U . Therefore kt(H) ≤ kt(U) ≤ p
(x
t
)

(x
u
)
.

4.3.2 Extremal hypergraphs and asymptotic tightness

When the degree bound is of the form
(

r−i
s−i

)

, with r an integer, we show that the upper bound
given by Theorem 55 is achieved by the s-graphs in which the edges that contribute to the
u-clique count form a packing shadow. By excluding the case s = u, which is addressed in
Theorem 52, we find that these are the only s-graphs that achieve this bound. The case s = i+1
is included here. In particular, when s = i+1, all degree bounds ∆ ≥ t− i are of the form

(

r−i
s−i

)

for some r ≥ t, so are covered by Theorem 56.

Theorem 56. Let 1 ≤ i < s < u ≤ t ≤ r, where r is an integer, and suppose that H is an

s-graph with ∆i(H) ≤
(

r−i
s−i

)

. Let p = ku(H). Then kt(H) = p
(r
t
)

(r
u
)
if and only if the set of edges of

H that are contained in a u-clique of H is a packing shadow ∂sP (i, r). In particular, if
(

r
u

) ∣

∣ p,

then H = p

(r
u
)
K

(s)
r achieves equality.

Proof. First, let E = {E ∈ H : E ⊂ U for some U ∈ Ku(H)}, and suppose E = ∂s(A), where
A is a P (i, r). Note ku(E) = ku(H). Any edges in H \ E are not contained in u-cliques of H
so cannot be contained in t-cliques of H. Therefore kt(E) = kt(H). By Lemma 38, we have

p = ku(H) = |A|
(

r
u

)

, and kt(H) = |A|
(

r
t

)

, so kt(H) = p
(r
t
)

(r
u
)
.

If
(

r
u

) ∣

∣ p, then p

(r
u
)
K

(r)
r is a P (i, r), and its s-shadow is p

(r
u
)
K

(s)
r . Note that

kt
( p
(

r
u

)K(s)
r

)

=
p
(

r
u

)kt
(

K(s)
r

)

=
p
(

r
u

)

(

r

t

)

and ∆i

(

p

(r
u
)
K

(s)
r

)

=
(

r−i
s−i

)

.

Now, suppose kt(H) = p
(r
t
)

(r
u
)
. By Lemma 54, the u-graph U := Ku(H) satisfies ∆i(U) ≤

(

r−i
u−i

)

.

The last sentence of Theorem 55 states that for each I ∈ ∂i(U) we have kt−i(U) =
(

r−i
t−i

)

. By
Lemma 39, U is a packing shadow ∂uP (i, r). Let A be a P (i, r) such that U = ∂u(A). Since
Ku(H) = U , every edge S of H that is contained in a u-clique U of H is in ∂s(A), because there
is some r-set R ∈ A such that S ⊆ U ⊆ R.
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Theorem 55 is asymptotically tight, by a proof very similar to that of Theorem 53.

Theorem 57. For 1 ≤ i < s ≤ u ≤ t ≤ r and p ≥ 1, let P be the maximum value of kt(H) over
all s-graphs H having ku(H) = p with ∆i(H) ≤

(

r−i
s−i

)

. Then

P = (1− op(1))p

(

r
t

)

(

r
u

) .

4.3.3 A corollary on 2-graphs

We also obtain the following corollary giving the maximum number of t-cliques among 2-graphs
with a fixed number of u-cliques and an arbitrary constant upper bound on the maximum degree.

Corollary 58. Suppose 3 ≤ u ≤ t ≤ r and G is a graph such that ku(G) = p and ∆(G) ≤ r−1.
Then

a) kt(G) ≤ p
(

r
t

)

/
(

r
u

)

.

b) The maximum value of kt(G) over all such graphs is (1− op(1))p
(

r
t

)

/
(

r
u

)

.

c) We have kt(G) = p
(

r
t

)

/
(

r
u

)

if and only if G (after removing any edge not contained in a
u-clique) is a (p/

(

r
u

)

)Kr (possibly together with some isolated vertices). In particular, we
have equality if and only if

(

r
u

)
∣

∣ p.

Proof. Apply Theorem 55, Theorem 56, and Theorem 57 with s = 2 and i = 1. Note that a
packing P (1, r) is a set of disjoint r-sets, so its 2-shadow forms a set of disjoint r-cliques.

Corollary 58 is a signpost answer to a question in the concluding remarks of [2].

5 Open Problems

Many interesting problems still remain. We list some of them here.

Problem 1. If ∆i(H) ≤
(

r−i
s−i

)

, where r is an integer, Theorem 43, Theorem 52, and Theorem 56
completely characterize the s-graphs that achieve the upper bounds given by Theorem 41 and
Theorem 51 for i ≤ s− 2, and Theorem 55 for u 6= s. In particular, these upper bounds cannot
be achieved for some values of the problem parameters.

a) For values of i, r, and n for which Steiner systems S(i, r, n) do not exist (either because
they do not satisfy the necessary divisibility conditions or because n is too small—see
Theorem 34), Theorem 43 shows that all s-graphs H on n vertices having ∆i(H) ≤

(

r−i
s−i

)

have kt(H) <
(

n
i

)(

r
t

)

/
(

r
i

)

, although by Theorem 45, max{kt(H)} = (1 − on(1))
(

n
i

)(

r
t

)

/
(

r
i

)

.
Which such s-graphs have the maximum number of t-cliques?

b) By Lemma 38, if H = ∂s(A), then |H| = ks(H) =
(

r
s

)

|A|. Therefore, by Theorem 52,

when m ∤
(

r
s

)

, all s-graphs H having m edges and ∆i(H) ≤
(

r−i
s−i

)

have kt(H) < m
(

r
t

)

/
(

r
s

)

,

although by Theorem 53, max{kt(H)} = (1− om(1))m
(

r
t

)

/
(

r
s

)

. Which such s-graphs have
the maximum number of t-cliques?

c) Similarly, by Theorem 56, when p ∤
(

r
u

)

, all s-graphs having ku(H) = p and ∆i(H) ≤
(

r−i
s−i

)

have kt(H) < p
(

r
t

)

/
(

r
u

)

, although by Theorem 57, max{kt(H)} = (1 − op(1))p
(

r
t

)

/
(

r
u

)

.
Which such s-graphs have the maximum number of t-cliques?
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Problem 2. Among s-graphs with ∆s−1(H) ≤ r−s+1 (the s = i+1 case) we have determined
the exact maximum number of t-cliques and found extremal s-graphs.

a) Are there s-graphs H on n vertices with ∆s−1(H) ≤ r − s+ 1 that have kt(H) =
( n

s−1)
( r

s−1)

(

r
t

)

but are not Steiner shadows ∂sS(s− 1, r, n)?

b) Are there s-graphs H on m edges with ∆s−1(H) ≤ r − s+ 1 that have kt(H) = m
(r
t
)

(r
s
)
but

are not packing shadows ∂sP (s− 1, r)?

Problem 3. We have characterized the extremal s-graphs and proved that our upper bounds
are asymptotically tight only when the i-degree bound is

(

r−i
s−i

)

for some integer r. Are the upper
bounds given by Corollary 42, Theorem 51, and Theorem 55 tight when the i-degree bound does
not have this form?

Problem 4. For which values of m does kts(m)
m

= maxm′≤m
kts(m

′)
m′ ? (See Remark 50.)
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