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Abstract
Quantifying spatiotemporally explicit interactions within animal populations facili-
tates the understanding of social structure and its relationship with ecological pro-
cesses. Data from animal tracking technologies (Global Positioning Systems [“GPS”]) 
can circumvent longstanding challenges in the estimation of spatiotemporally explicit 
interactions, but the discrete nature and coarse temporal resolution of data mean 
that ephemeral interactions that occur between consecutive GPS locations go un-
detected. Here, we developed a method to quantify individual and spatial patterns 
of interaction using continuous-time movement models (CTMMs) fit to GPS tracking 
data. We first applied CTMMs to infer the full movement trajectories at an arbitrarily 
fine temporal scale before estimating interactions, thus allowing inference of interac-
tions occurring between observed GPS locations. Our framework then infers indirect 
interactions—individuals occurring at the same location, but at different times—while 
allowing the identification of indirect interactions to vary with ecological context 
based on CTMM outputs. We assessed the performance of our new method using 
simulations and illustrated its implementation by deriving disease-relevant interaction 
networks for two behaviorally differentiated species, wild pigs (Sus scrofa) that can 
host African Swine Fever and mule deer (Odocoileus hemionus) that can host chronic 
wasting disease. Simulations showed that interactions derived from observed GPS 
data can be substantially underestimated when temporal resolution of movement 
data exceeds 30-min intervals. Empirical application suggested that underestimation 
occurred in both interaction rates and their spatial distributions. CTMM-Interaction 
method, which can introduce uncertainties, recovered majority of true interactions. 
Our method leverages advances in movement ecology to quantify fine-scale spati-
otemporal interactions between individuals from lower temporal resolution GPS data. 
It can be leveraged to infer dynamic social networks, transmission potential in dis-
ease systems, consumer–resource interactions, information sharing, and beyond. The 
method also sets the stage for future predictive models linking observed spatiotem-
poral interaction patterns to environmental drivers.
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1  |  INTRODUC TION

Quantifying spatiotemporal animal interactions is fundamental for 
understanding drivers of social organization, infectious disease 
transmission, and predator–prey relationships (Albery et al.,  2021; 
Raybeck,  2014; Webber & Vander Wal,  2019). Both direct (same 
place, same time) and indirect (same place, different time) inter-
actions (Robitaille et al., 2018) are important in these contexts. In 
predator–prey systems, understanding direct physical contact as 
well as indirect interactions (how predators follow the trajectory 
of preys) has important implications for determining optimal for-
aging behavior, predicting predator–prey dynamics (Krivan,  1997), 
and estimating the influence of the “landscape of fear” on prey 
behavior (Coleman & Hill, 2014). In social species with hierarchical 
organizations, direct and indirect interactions among individuals 
can capture the fundamental components of social organization, 
the structure of the leadership hierarchy, and the underpinnings of 
collective behavior (Herbert-Read et al., 2013). In infectious disease 
systems, spatiotemporal patterns of direct or indirect interaction 
drive pathogen transmission dynamics, prevalence, and ultimate ep-
idemic size (Albery et al., 2021). However, gathering empirical data 
on spatiotemporally explicit animal interactions is often challenging 
in the field. Several technologies, such as camera traps, ultra-high-
frequency proximity loggers, and Global Positioning System (“GPS”) 
telemetry, can be used to estimate direct and indirect interactions. 
GPS telemetry provides rich spatiotemporally explicit information 
on animal movement and is widely used to inform animal conser-
vation and management (Kays et al., 2015), particularly for identify-
ing individual–environment interactions (Fieberg et al.,  2010). The 
ubiquity of GPS data, especially among widely studied, large-bodied 
terrestrial wildlife, also provides the opportunity to capture unprec-
edented information on the spatiotemporal context surrounding an-
imal interactions.

Despite the emerging tracking technology, such as solar-
powered GPS tags and Advanced Tracking and Localization of 
Animals in real-life Systems (ATLAS) that allow the collection of 
high-resolution movement data, many studies still use GPS collars 
with relatively low resolution (e.g., every 30 min or 1 h). Positional 
fix rate limitations often lead to the underestimation of interac-
tion rates, as shown in disease transmission estimation from GPS 
collar data (Yang, Boughton, et al., 2021). Explicitly understanding 
ecological processes like epidemiologically relevant interactions 
or short-lived predator–prey interactions requires interaction es-
timates at a fine temporal scale. Advancing our ability to estimate 
temporally continuous and spatially explicit interaction patterns at 

a landscape scale remains a key objective for improving ecological 
inferences about interaction-based processes and developing meth-
ods to extract such information from GPS telemetry data. To address 
this limitation, several methods have been used to estimate interac-
tion for disease systems from GPS data. For example, one approach 
uses home range overlap as a proxy for interaction rates (Kenward 
et al.,  1998), but this strategy can miss fine-scale spatiotemporal 
interaction patterns and is strongly dependent on methodology 
(Robert et al., 2012). Another approach uses co-location of animals 
within predefined spatial and temporal buffers (Long et al.,  2022; 
Robitaille et al., 2018), but this strategy can introduce errors when 
measuring interactions only at fixed time points or mis-specified 
thresholds (Yang, Boughton, et al., 2021).

Continuous-time movement models (CTMM; Calabrese 
et al.,  2016; Johnson et al.,  2008) offer a bridge to overcome the 
limitations in estimating animal interactions introduced by the dis-
crete nature of GPS data (Manlove et al., 2022). CTMMs use telem-
etry observations to describe a continuous-time movement process 
which in turn allows the models to naturally accommodate different 
temporal scales, predict potential unobserved movements during 
the tracking period, and provide a basis for simulating movement 
trajectories. Thus, these models provide a unique opportunity to 
improve the estimation of absolute animal interaction rates in con-
tinuous space and time (Dougherty et al., 2018). Recent advances 
have mathematically formalized ecological encounters in continuous 
time (Gurarie & Ovaskainen, 2013), inferred interaction location dis-
tributions from CTMMs (Noonan et al.,  2021), and inferred direct 
and indirect interactions from continuous movement data in disease 
systems (Richardson & Gorochowski,  2015; Wilber et al.,  2022). 
However, extending these approaches to (1) formally and flexibly ac-
count for direct and indirect interactions across ecological contexts 
and (2) apply directly to commonly collected movement data remains 
important knowledge gaps. Further, CTMM-based approaches and 
traditional methods, for example, empirical summary of interactions 
using only observed fixes, have yet to be compared directly.

Here, we develop a method for applying CTMMs to quantify 
the weights of each interaction event across a continuum of direct 
to indirect interactions based on a spatial and temporal encounter 
function using GPS data (i.e., CTMM-Interaction; See schematics in 
Figure 1). We use simulated movement data to evaluate the CTMM-
Interaction method for quantifying spatiotemporally explicit direct 
and indirect interactions. We then assessed the performance of the 
method using the simulated movement data downsampled at differ-
ent temporal resolutions. To demonstrate how the method can be 
employed in different animal movement systems and parameterized 

K E Y W O R D S
African swine fever, chronic wasting disease, continuous-time movement models, Global 
Positioning System (GPS), interaction, social network

T A X O N O M Y  C L A S S I F I C A T I O N
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relative to different interaction periods of interest (i.e., in relation to 
different pathogen life-histories), we applied it to two contrasting 
host–pathogen systems, African swine fever (ASF) in wild pigs (Sus 
scrofa) and chronic wasting disease (CWD) in mule deer (Odocoileus 
hemionus) in the western USA. Our CTMM-interaction method al-
lowing for comparable estimates of absolute interaction rates across 
systems with different propensities for indirect transmission can 
be modified to account for biological details affecting interactions 
and identify interactions that are missed when only the observed fix 
rates are used for interaction estimation.

2  |  MATERIAL S AND METHODS

2.1  |  Constructing CTMM-Interaction networks

The first step in our approach is to choose a CTMM that is appropri-
ate for the data and movement behavior of the study species and fit 
that CTMM to the observed GPS data. The parameterized CTMM is 
then used to predict movement trajectories at a fine resolution in be-
tween GPS fixes for each collared individual. Fitting system-specific 
CTMMs has received extensive coverage in the literature (Calabrese 
et al.,  2016; Hooten &  Johnson 2017; Johnson et al.,  2008, etc.), 
and it is beyond our current scope. Instead, our emphasis is on the 

biological inference we can make about interaction processes given 
a parameterized CTMM.

Let sk(t) denote the continuous-time movement trajectory for 
the kth individual as generated by the CTMM, where s is a two-
dimensional vector of the animal's spatial coordinates, and t in-
dicates a focal position in time. Instantaneous direct and indirect 
interactions occur when two individuals are co-located within a 
certain distance at the same time (direct interaction) or at different 
times (indirect interaction) based on the continuous movement out-
puts. From these identified co-locations, our method builds direct or 
indirect spatial proximity networks.

We assume that the spatial distance between animal 1 at time 
� i and animal 2 at time � j could be calculated as the distance d1,2 
between locations s1(� i) and s2(� j). The calculation of w1→2

i,j
, defined as 

the instantaneous weight of interaction experienced by animal 2 at 
time � j from animal 1 at time � i, depends on the distance d1,2 and ∆τ, 
the elapsed time separating � j and � i. It is given by

where fd(. ) is a spatial encounter function (Gurarie & Ovaskainen, 2013) 
that determines the spatial gap defining an interaction, and f�(. ) is a 
temporal encounter function that determines the temporal gap of 
the interaction. An interaction kernel K1→2 experienced by animal 2 

w1→2

i,j
= fd

(
s2
(
� j
)
, s1

(
� i
))
f�
(
Δ� = � j − � i

)

F I G U R E  1 Schematics of CTMM-interaction method.
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from animal 1 consists of the instantaneous weight of interaction at 
all timesteps:

See the toy example of the computation of interaction kernels in 
Section 1: Appendix S1.

2.2  |  Accounting for different ecological 
interactions

The key advance of our approach is the recognition that framing 
interactions in terms of an interaction kernel K1→2 composed of a 
spatial and temporal encounter function allows us to simultane-
ously account for direct and indirect interactions and generalizes 
previous theory on ecological encounters (Noonan et al.,  2021; 
Robitaille et al.,  2018). For example, let f�(��) be a Dirac delta 
function �(��) (essentially, an indicator function, here taking on 
the value 1 at Δ� = 0 to represent direct interaction and 0 at all 
other temporal lags) for a generic consumer–resource interac-
tion and fd

(
s2
(
� j
)
, s1

(
� i
))

= ��
(
s2
(
� j
)
, s1

(
� i
))

 where � is the en-
counter rate with units area per time and �

(
s2
(
� j
)
, s1

(
� i
))

 is an 
encounter kernel with units per area. A reasonable choice for 
�
(
s2
(
� j
)
, s1

(
� i
))
 might be a uniform circular distribution in space 

(e.g., Gurarie & Ovaskainen,  2013) that accounts for locational 
errors of the GPS device or the area of awareness for the two in-
teracting animals (e.g., the distance at which a consumer can 
detect a resource). Then, w1→2

i,j
= ��

(
s2
(
� j
)
, s1

(
� i
))
�(��) and 

hji
(
� j
)
= ∫ ��

(
s2
(
� j
)
, s1(u)

)
�
(
� j − u

)
du = ��

(
s2
(
� j
)
, s1

(
� j
))

 yields 
a direct rate of interaction between consumer i and resource j at 
time � j. This approach generalizes the formalization of encounter 
rates as described in Gurarie and Ovaskainen (2013) by illustrating 
that direct interaction rate is a special case where the temporal en-
counter function is a Dirac delta function. Alternatively, if we were 
interested in the rate of interaction of individual j with scent mark-
ings left by individual i, we could let the spatial encounter function 
fd
(
s2
(
� j
)
, s1

(
� i
))

= ��
(
s2
(
� j
)
, s1

(
� i
))

 where � is an acquisition rate 
with units area per time and f�

(
� j − � i

)
= �

(
� i
)
S
(
� j − � i

)
 where �

(
� i
)
 

is a scent deposition rate at time i and S
(
� j − � i

)
 is a scent survival 

function (i.e., a monotonically decreasing function between 1 and 0). 
Then, hji

(
� j
)
= ∫ ��

(
s2
(
� j
)
, s1(u)

)
�(u)S

(
� j − u

)
du is the total interac-

tion rate of individual j with individual i's past and current scent mark-
ings, accounting for a continuum of direct and indirect interaction. 
This formalizes and generalizes approaches like those developed 
by Richardson and Gorochowski  (2015) and Wilber et al.  (2022). 
Section 2: Appendix  S1 illustrates examples of weighted interac-
tions in other systems. Parameterization of the interaction kernel 
depends on the combination of the spatial definition of interactions 
in the study system (i.e., direct or proximate interaction) and error 

in locational measurements. Code for manipulating the analyses is 
available at https://github.com/Anni-Yang/ctmm-inter​action.

2.3  |  Assessment of CTMM-Interaction method 
using simulations

We assessed whether our CTMM-Interaction method could recover 
true interactions using simulations. We employed a functional move-
ment model (Hooten & Johnson, 2017) to simulate 1-min movement 
trajectories for 10 animals for a week (i.e., 10,080 locations per ani-
mal). The trajectories were simulated using a Gaussian kernel with 
shape parameter φ  =  0.001, approximating Brownian motion (see 
Hooten & Johnson, 2017). Simulated trajectories were treated as the 
true, observed locations without locational errors (Figure  2a). We 
then downsampled the simulated 1-min observations to temporal 
resolutions of 5, 10, 30 min, 1, 2, and 4 h. We estimated the direct 
and indirect interactions using both the true, observed trajectories 
and the downsampled trajectories. We defined direct interactions as 
two animals in the same location at the same time within a 2-m buffer 
(i.e., the approximate average body length of an individual) and 1-min 
time frame to account for different body positions. Indirect interac-
tions were defined as two animals visiting the same location within a 
2-m buffer and a 5-day interval (representing the epidemiologically 
relevant interaction in the case of ASF). To test the sensitivity of 
spatial buffers on the estimation of interaction rates, we varied the 
buffer from 2–5 and 10 m using the simulated data (Figure S1).

Next, we fitted the CTCRW models to all six of the downsampled 
trajectories for each simulated individual and predicted their move-
ments every minute. Note that while the CTCRW model is a special 
case of functional movement models (Hooten & Johnson, 2017), the 
functional movement model we used to simulate the data was not a 
CTCRW. We did this to account for the very realistic possibility that 
empirical data we collect will not exactly follow a CTCRW, which 
should allow a more realistic evaluation of CTCRW model perfor-
mance. We evaluated the performance of CTCRW models in each 
downsampled scenario by comparing the differences in distances 
between the predicted locations and true, observed locations. 
Higher errors indicated that our fitted CTCRW was doing a worse 
job predicting the true movement trajectory, with implications for 
correctly inferring interactions. Finally, we followed the same proce-
dure to extract direct and indirect interactions using the predicted 
1-min trajectories and quantified the discrepancies between inter-
action kernels extracted from 1-min true observations and CTCRW 
predicted 1-min trajectories to assess the performance of our 
CTMM-Interaction method.

2.4  |  Application of CTMM-Interaction method to 
empirical systems

To illustrate the parameterization and application of our method in 
empirical systems, we applied the CTMM-Interaction method to 

K
1→2

=

⎡
⎢⎢⎢⎢⎣

w1→2

1,2
⋯ w1→2

1,n

⋮ ⋱ ⋮

0 ⋯ w1→2
n,n

⎤
⎥⎥⎥⎥⎦

https://github.com/Anni-Yang/ctmm-interaction
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two empirical systems, which involve species (i.e., wild pigs and mule 
deer) with different movement ecologies and the potential to carry 
different pathogens with different environmental persistence times. 
Wild pigs can be involved in ASF, where the pathogen African swine 
fever virus (ASFv) can remain viable in swine carcasses for several 
months in cold weather and in the environment for days to weeks 
depending on strain type and temperature (Davies et al., 2017). Mule 
deer can be involved in the transmission of CWD caused by a prion 
that can persist in the environment for years (Rivera et al., 2019). It 

is noteworthy that ASFv was not present in the study area, and we 
did not have disease surveillance data from CWD in our study area.

2.4.1  |  GPS data

We captured and deployed GPS collars on 20 adult wild pigs (15 fe-
males; 5 males; University of Florida IACUC protocol 201808495) 
on a 42.3 km2 cattle ranch in south Florida in April–September 2017. 

F I G U R E  2 (a) Simulated, 1-min interval trajectories for 10 animals. (b) Absolute differences in distances (spatial error) between true 
(simulated) trajectories and the predicted trajectories using the downsampled data with different temporal resolutions. (c and d) Mean and 
confident interval for direct (indirect) interaction rates using downsampled and CTMM interpolated data. (e and f) Number of missing pairs 
using resampled and CTMM interpolated data.
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Between December 2010 and December 2013, we captured and 
subsequently recaptured 47 adult female mule deer (Colorado Parks 
and Wildlife IACUC protocol 17-2008 and 01-2012) using helicopter 
net gunning at the Piceance Basin in northwest Colorado. The GPS 
collars were programmed to record fixes every 30 min for wild pigs 
in Florida and every 30 min for mule deer (location errors were es-
timated on average of 6–10 m in the study sites). Details about the 
study areas and systems are reported in Northrup et al. (2021); Yang, 
Boughton, et al. (2021); and Yang, Schlichting, et al. (2021).

2.4.2  |  Extracting CTMM-interaction networks

For both systems, we used CTCRW model to interpolate from ob-
served discrete-time GPS data with all locations with Position 
Dilution of Precision values <10 (Sands et al., 2006; data summary in 
Table S1) to continuous-time movement with fixes predicted every 
minute. For parameterization in wild pigs, we calculated interaction 
weights (w1→2

i,j
) for each pair of wild pigs as follows. For both direct 

and indirect interaction, we defined the spatial encounter function, 
fd(.), as a piecewise function with a distance threshold of 10 m (the 
buffer distance of 5 and 15 m were also tested; see the sensitiv-
ity analysis in Figure S1). This threshold reflects the direct spatial 
co-occurrence required for transmission of ASF (transmitted by in-
gestion of contaminated materials from infected pigs) by simply ac-
commodating GPS error (~6–9 m) associated with the GPS locations. 
For direct interaction where ∆τ = 0, we defined the temporal en-
counter function, f�(.), as a constant of 1; for indirect interaction, we 
define f�(.), as an exponential decay function within a 5-day interval, 
given the high virulent strain ASFv like Georgia 2007/1 isolate can 
only persist in the environment for ~5 days in warm climates (Davies 
et al., 2017).

fd
�
s2
�
𝜏 j
�
, s1

�
𝜏 i
��

=

⎧⎪⎨⎪⎩

1; d1,2≤10m

0; d1,2>10m

, f𝛿(Δ𝜏) =

⎧⎪⎪⎨⎪⎪⎩

1;Δ𝜏 =0

e−Δ𝜏 ; 0<Δ𝜏 ≤5days

0;Δ𝜏 >5days.

In the CWD-mule deer system, for each pair of deer, we calcu-
lated interaction weights (w1→2

i,j
) based on the same spatial encounter 

function (fd(. ) also with a distance threshold of 10 m) given a simi-
lar transmission pathway and temporal encounter function f�(. ) as a 
constant of 1 (no decay) given the long period of CWD prion survival 
in the environment in most conditions (Rivera et al., 2019). Our ob-
jective was to simply describe interactions (and not transmission) in 
both systems, so we did not include explicit pathogen acquisition or 
shedding rates.

fd
�
s2
�
𝜏 j
�
, s1

�
𝜏 i
��

=

⎧⎪⎨⎪⎩

1; d1,2≤10m

0; d1,2>10m
, f�(Δ�) = 1

To define interactions using movement data at different tempo-
ral resolutions, we defined a direct interaction as a co-location at 
the same time (Δ�=0) and an indirect interaction as a co-location 
with at least a 1-min lag. We then generated interaction networks 

for both empirical datasets with nodes as individual animals and 
weighted edges as the daily average of instantaneous “weight” of 
interactions. We developed a new approach to calculate the daily 
average of instantaneous “weight” of interactions because some tra-
ditional association indices or weights (Cairns & Schwager, 1987) do 
not perform well when indirect interactions occur when animals are 
not tracked simultaneously (Section 4: Appendix S1). The approach 
treats the daily frequency of indirect interactions as the accumula-
tion of lagged co-location interactions, whereby interactions were 
calculated on temporally lagged movement trajectories of the two 
animals involved, with the accumulation including as many lags as 
there are nonzero-valued days in the temporal encounter func-
tion (Section 3: Appendix S1). We call networks built from inferred 
continuous-time movement trajectories with interactions extracted 
at each minute “1-min CTMM”-interaction networks.

2.4.3  |  Comparing CTMM and observed 
interaction network

As mentioned above, the traditional way of estimating interactions 
is to extract them from the observed GPS data based on predefined 
spatial and temporal encounter functions (Robitaille et al., 2018). To 
show the differences in the estimations of interactions that might be 
expected using two methods in real-world systems, we compared 
the differences in interaction rates in both systems. It is noteworthy 
that this comparison is not the assessment of our method.

For both systems, we defined direct interactions as co-locations 
of GPS fixes within a 10-m buffer and 1-min gap. However, fixes 
were not always recorded precisely at 30-min because it takes GPS 
receivers varying amounts of time to receive the satellite signals de-
pending on the microhabitat the collared animal is in, resulting in 
“collar drifting.” To address the collar drifting issue, we also tested 
the sensitivity of our networks to other temporal encounter func-
tions and found mild changes in the estimation of interactions by 
varying temporal encounter functions (Figure S1). We defined ep-
idemiologically relevant indirect interactions for both systems fol-
lowing the same parameterization as the CTMM-interaction method 
but using observed GPS data. Similarly, we considered the poten-
tial pathogen decay as we did for the 1-min CTMM-interaction es-
timates above and construct the interaction network with edges 
weighted by the average daily interaction “weights” extracted from 
observed fixes. We refer to the empirical summary of interactions 
using only the observed fixes as the “observed” interaction network.

Interaction weights calculated for the observed interaction 
network were based only on location recordings gathered at 30-
min or hourly intervals. Our indirect interaction networks are 
based on the sum of all time steps within an appropriate lag, so 
the 1-min CTMM-interaction network could potentially be larger 
because it contained 30 (or 60) terms for each term in the ob-
served network. To make the interaction weights comparable, 
we “downsampled” the 1-min CTMM-interaction events to match 
the time interval of the observed GPS data. We aggregated any 
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interaction detected at the 1-min scale within the first half of the 
interval (within the first 15 min of a 30 min interval, e.g., 13:12) to 
the previous time step (e.g., 13:00) and the events that occurred 
within the second half of the interval (e.g., 13:25) to the next time 
step (e.g., 13:30). Within each half-hour interval, “downsampled” 
interactions were assigned a value of 0 if no interactions were de-
tected at the 1-min scale in the corresponding half-hour, and a 1 
if any interactions were detected. To avoid confounding due to 
differences in sampling intensities, we limited our comparison to 
the downsampled CTMM and the observed network (we did not 
compare the 1-min CTMM and observed network directly). We 
refer to the downsampled version of the 1-min CTMM-interaction 
method where interactions were calculated using the same fix in-
terval as the observed approach but on the inferred continuous-
time movement trajectories—30 min—as “downsampled CTMM” 
interactions. See definition of interactions based on three meth-
ods in Table 1. We also calculated several network metrics relating 
to disease transmission to show the differences in network struc-
tures using different methods to estimate interaction (see Section 
4 and 5: Appendix S1)

3  |  RESULTS

3.1  |  Performance of CTMM-interaction method in 
simulations

We found substantial underestimations of direct and indirect in-
teractions when the temporal resolution of the movement data 
becomes coarse compared with the true, observed data (Figure 2). 
When the temporal resolution was reduced to 5 minutes per fix, 
which in empirical cases is still in high resolution, the indirect 
interaction rates were underestimated ~5 times (Figure  3). No 
interactions were detected when the temporal resolution was 
every 4 h.

We also found that the performance of CTCRW varied by the 
resolution of the input movement data. The predictions were rel-
atively accurate when movement data were recorded every 5 or 
10 min. Considerable prediction errors in the movement trajectory 
(Figure 2) appeared when the fix rate resolution was greater than 
30 minutes. Furthermore, those prediction errors also impacted the 

estimation of interaction rates. Errors in interaction estimates can 
be underestimates if the two interacting animals were predicted to 
be further apart (false negative), or overestimates if the two non-
interacting animals were predicted to be close to each other (false 
positive; Figure 3).

3.2  |  Transmission matrix and spatial distributions

In empirical systems, higher interaction rates and more interact-
ing pairs were identified in the downsampled CTMM than in the 
observed interaction network in both systems (Table 2; Figure 4). 
This was consistent with our simulation analysis. Differences be-
tween the downsampled CTMM and observed graphs were great-
est for indirect interactions (i.e., 785 unique indirect interaction 
pairs in the downsampled CTMM vs. 626 in the observed graph 
for mule deer; 87 unique indirect pairs in the downsampled vs. 54 
in the observed graph for wild pigs). However, we also found the 
downsampled CTMM-interaction network underestimated some 
weighted direct interaction rates between pairs within the same 
social groups in wild pigs relative to the observed method (Table 2; 
Figure 4).

The spatial distribution of 1-min and downsampled CTMM-
interactions covered three times the area of those from the observed 
method in both wild pig systems, although some underestimates of 
spatial interaction rates were found within social groups (Figure 5). 
In the CWD-mule deer system, the 1-min and downsampled CTMM-
Interaction methods identified 9% more interaction area compared 
with the observed method. The additional area where interaction 
occurred was primarily located along migration routes. Network 
metrics were calculated in Table 3, and more details about network 
structure can be found in Supporting Information.

4  |  DISCUSSION

Intra and interspecific interactions are keystone elements impact-
ing various ecological processes, but how to quantify absolute 
interaction rates in space and time remains a challenge (Noonan 
et al., 2021). This study developed a novel method for deriving in-
teraction networks from GPS telemetry data. Through simulation 

TA B L E  1 Concepts of different types of interactions based on three methods.

Methods Direct interaction Indirect interaction

1-min CTMM Co-location of hosts within 10 m buffer at the same time 
extracted from CTMM interpolated trajectories

Co-location of hosts within 10 m buffer at different times 
extracted from CTMM interpolated trajectories and 
weighted by possible pathogen decay

Observed Co-location of hosts within 10 m buffer at the same time 
extracted from observed GPS fixes

Co-location of hosts within 10 m buffer at different times 
extracted from observed GPS fixes and weighted by 
possible pathogen decay

Downsampled 
CTMM

Downsampled CTMM direct interaction to match temporal 
resolution of observed fixes

Downsampled CTMM indirect interaction to match temporal 
resolution of observed fixes



8 of 14  |     YANG et al.

analysis, we found that our CTMM-Interaction method could re-
cover underlying interactions that were not directly observed. 
Moreover, in both simulation and empirical cases, the observed 
method underestimated interaction rates and spatial distributions 
and revealed different network topologies relative to the CTMM-
interaction method. The 1-min CTMM-interaction network also 
revealed substantially more interaction events, particularly low-
weight indirect interactions, leading to more integrated interac-
tion networks with higher weighted interaction rates, distributed 
across larger spatial domains than interactions detected under the 
two coarser models.

4.1  |  Why leverage telemetry movement data?

In animal systems, interactions are usually quantified by animal 
monitoring technologies, such as camera traps, ultra-high-frequency 
proximity loggers, and GPS collars. Camera trap arrays monitor 
the interactions and behaviors of animals along with their visits to 
resources in the field of view (Kukielka et al.,  2013), but generally 
provide data only within an observed area. Animal-borne proxim-
ity loggers provide information on both the rates and duration of 
interaction events but lack spatial information (Boehm et al., 2009). 
Alternatively, passive integrated transponder tags placed at known 

F I G U R E  3 Direct and indirect interaction rates extracted from true, observed trajectories, the downsampled trajectories without 
CTCRW interpolation, and CTCRW predicted movements based on the downsampled trajectories in simulation cases.
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resources of interest can estimate direct and indirect interaction rates 
surrounding that point resource but leave unresolved uncertainty in 
interaction rates at other locations. For small mammals, individuals 
sequentially trapped in the same location are assumed to have more 
interactions. However, sparse trapping data often preclude robust 
interaction estimation as interaction information is strictly limited to 
trapping sites and not across an animal's movement trajectory. GPS 
telemetry technology allows the monitoring and tracking of animal 
movement and spatially explicit interaction between collared indi-
viduals for long periods of time, but descriptive estimates from the 
raw data are limited temporally by the collars' fix rates. The observed 
method which only summarizes the interactions using the GPS fixes 
inevitably results in missed interaction events occurring in the gaps 
between GPS fixes. Additionally, it is common that multiyear or mul-
tisite animal tracking studies incorporate GPS data collected at dif-
ferent spatiotemporal resolutions (e.g., Yang et al., 2019), which can 
result in different definitions, precision, and accuracies of interaction 
estimates (Gilbertson et al., 2021). CTMMs allow prediction of animal 
movements between fixes, which helps to standardize the temporal 
resolution of the data across study periods and sites.

GPS-derived interaction networks have been widely used in 
animal disease systems to estimate interaction rates across the 
landscape and infer disease transmission dynamics. However, over-
coming the limitations of sampling on interaction estimates and de-
termining transmission-relevant interactions remain challenges that 
our approach provides an important step toward alleviating. Fully 
leveraging animal movement data to identify direct and indirect in-
teractions could help pinpoint potential low-use, but high-influence 
areas (e.g., low interaction rate areas on habitat corridors) on a land-
scape that drives pathogen spread (Kauffman et al.,  2022). Such 
areas can be important in disease systems where hosts get infected 
even with a small dose of pathogen (e.g., anthrax, Turner et al., 2014 ; 
Yang, Proffitt, et al., 2021).

Our CTMM-Interaction framework can also be used to address 
questions in other ecological systems. For instance, understanding 
the dynamics of absolute interaction rates and durations between 
consumer and resources on the landscape might provide insights 
about functional responses to improve resource management 
(Lafferty et al., 2015). Estimating fine-scale spatiotemporal interac-
tions in group-living species can also help identify the hierarchies 
in social organizations and underpinnings of collective behaviors or 
movements (Herbert-Read et al.,  2013). Additionally, our method 
helps to capture some instantaneous interactions, like predation- 
and transmission-related interaction.

4.2  |  Why implementing CTMMs before the 
estimation of interactions?

Substantial underestimations of direct and indirect interactions 
were found in simulation cases when the temporal resolution of the 
movement data was coarse compared with the true, observed data. 
Our findings suggested that the performance of CTMMs depended 
on the resolution of observed GPS data with considerable prediction 
of locational errors found when the fixes were recorded greater than 
30-minute intervals. Despite potential locational errors introduced 
when fitting the “wrong” movement model to observed movement 
data, the predicted continuous trajectories can still recover true in-
teractions, particularly if the resolution of the observed data is not 
too coarse (30 min fixes or less in this case). Importantly, fitting the 
CTCRW to 30-minute observed data and inferring 1-minute trajec-
tories led to better approximations of the true interactions than try-
ing to infer interactions from the 30-minute data on its own. This 
has broad implications for our approach, indicating that even when 
we do not correctly specify the “true” movement model (which we 
will never do in practice) we can still recover true interaction rates.

TA B L E  2 Comparisons between downsampled CTMM and observed method in the number of unique animal pairs in two systems.

Systems

Direct contacta Indirect contactb

Observed method 
missed

Downscaled CTMM method 
missed

Observed method  
missed

Downscaled CTMM 
method missed

FL pig 14 2 66 0

CO Deer 91 43 398 78

Weightsdownscaled 
> Weightsobserved

c
Weightsobserved 
> Weightsdownscaled

d
Weightsdownscaled 
> Weightsobserved

Weightsobserved 
> Weightsdownscaled

FL pig 21 19 141 33

CO Deer 192 60 1385 262

aFor unique animal pair with direct interaction, Host A interacts Host B is the same as Host B interacts Host A. Thus, PairA→B = PairB→A.
bFor unique animal pair with indirect interaction, Host A feels the interaction with Host B is a different scenario from Host B feels the interaction 
with Host A. Thus, PairA→B ≠ PairB→A.
cThe number of unique interaction pairs where the daily average of interaction rates weighted by pathogen decay extracted from downsampled 
CTMM are larger than observed method.
dThe number of unique interaction pairs where the daily average of interaction rates weighted by pathogen decay extracted from the observed 
method are larger than downsampled CTMM.
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Our simulated results highlighted the importance of incorpo-
rating high-frequency movement data in interaction estimation. 
Although there could be some misidentification or underestimation 
in interactions due to the performance of CTMMs, our CTMM-
Interaction approach still captured the majority of interactions even 
with 4-hour interval data in the simulations. Additionally, our results 
suggested that the interaction rates were sensitive to the selection 
of buffers, indicating the importance of selecting appropriate and 
biologically meaningful parameters (Figure S1). Also, it is noteworthy 
that the selection of a spatial buffer may also need to consider the 
locational errors of GPS fixes as we did for the empirical cases.

4.3  |  Potential errors and uncertainties

Several sources of error contribute uncertainty to interaction es-
timates from GPS data. First, error related to the model structure 
(e.g., independent identically distributed processes, Brownian mo-
tion, and Ornstein–Uhlenbeck process) and variability in CTMM 
prediction. We used a CTCRW model, which is a stochastic random 
walk model and therefore has error associated with each interpo-
lated movement (Johnson et al., 2008). However, there are several 
approaches for fitting CTMMs, ranging from mean-field continuous-
time stochastic processes (Calabrese et al.,  2016) to mechanistic 

F I G U R E  4 Pairwise weighted interaction matrix in two empirical systems. “Observed” and “1-min CTMM” columns rely on transmission 
kernels estimated from interactions extracted from the observed GPS data with 30-min interval and the interpolated continuous trajectory 
with 1-min interval from CTCRW model, respectively. The “downsampled CTMM” column relies on a transmission kernel calculated 
using interactions that are downsampled from a 1-min event to a 30-min event to compare with the temporal resolution of interactions 
extracted from the “Observed.” The “Difference” column is the differences between transmission kernels of the “downsampled CTMM” and 
“Observed” columns. A positive number in the “Difference” column indicates that the downsampled CTMM-interaction weight is higher 
than the observed interaction weight, while a negative value indicates that the downsampled CTMM-interaction weight is lower than the 
observed interaction weight. The individuals tagged in the same colors indicate that they come from the same social groups.
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processes that depend on energetics (e.g., Hooten et al., 2019) or 
other underlying factors. These approaches have different sources 
of prediction uncertainties and performance. Selecting a CTMM 
appropriate to the system's biology (species, movement type, and 
environment) is important for generating reliable interactions 
(Martinez-Garcia et al., 2020). Additionally, the interaction between 
movement ecology (e.g., average movement speed), temporal data 
resolution, and length of tracking period will influence the definition 
and estimation of interactions. The optimal interplay between these 
factors will be system specific, but at some point CTMM prediction 
error related to coarse, underlying data will dominate the uncer-
tainty associated with inferred interactions. Our simulated scenarios 
also confirmed this with both false-positive and false-negative in-
teractions detected (Figure S1). Additionally, we estimated the ef-
fects of CTMM prediction errors on our interaction inference by 
comparing interactions extracted from each fit from CTMM runs 
(i.e., either individual fits from different CTMMs or multiple predic-
tions or parameterizations from one CTMM; see sensitivity analysis 
in Section 6: Appendix S1 as an example). We found that our results 
were robust to model structure and variability in CTMM prediction.

Second, interaction estimates can be sensitive to the parame-
terization of the interaction kernel and definitions of interactions 
(as discussed in the methods). We see this as a strength of our 
approach—the interaction kernel can be easily modified to capture 
known processes that affect ecologically and epidemiologically rele-
vant interactions, for example, pathogen deposition rate decreasing 

with increasing host velocity. In our simulation assessments, overes-
timation increased in conjunction with enlarging the spatial buffer 
defining interactions (Figure S1). Therefore, we parameterized the 
spatial and temporal thresholds to extract direct and indirect inter-
actions on both the biological process and the GPS location error 
within each empirical system showcased here. We conducted a sen-
sitivity analysis on the spatial encounter function, fd(. ), piecewise 
with distance thresholds of 5, 10, and 15 meters and found differ-
ences in the estimation of interaction kernels when using different 
thresholds, but our general conclusions were unchanged (Figure S1). 
When implementing our approach in other systems, researchers 
should explore how different definitions of interactions affect their 
inference on interaction structure and emergent ecological dynam-
ics to ensure parameterization is appropriate.

Third, the locational error of GPS data can also shape uncertainty 
in the interaction estimates. When this is known to be a concern, 
new error-informed CTMMs can account for GPS errors (Fleming 
et al., 2020). Additionally, GPS data combined with motion sensor-
derived information on heading and speed can be used to recon-
struct fine-scale movement paths (Gunner et al., 2021). Finally, the 
timescale of the CTMM interpolation can also impact the estimation 
of interactions. While the “optimal” timescale (e.g., 1-min vs. 5-min 
interpolation) will be a balance between the biology of the system 
and computational capacity, system-specific knowledge can reason-
ably inform a biologically reasonable interpolation interval. Missing 
an interaction that is less than 1 minute in length might be irrelevant 

F I G U R E  5 Spatial distribution of intensity of weighted direct and indirect interactions in two empirical systems. Labels along the top 
are as described in Figure 4. A positive number in the “Difference” map indicates that the intensity of the downsampled CTMM-interaction 
weight at the location is higher than the observed interaction weight, while a negative value indicates that the intensity of downsampled 
CTMM-interaction weight at the location is lower than the observed interaction weight. In the Difference column, we highlighted some 
areas with variations in differences between the downsampled CTMM-interaction weights and observed interaction weights in magnified 
sections.
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for some types of interactions (e.g., a consumer–resource interac-
tion) such that a 1-min interpolation is sufficient.

4.4  |  Limitations and future directions

As with all methods that estimate interaction rates, some of the 
interactions might not be relevant to the ecological processes of 
interest depending on animal behaviors. Particular host behaviors 
or environmental conditions at the time of interaction could have 
asymmetric effects on those processes (Manlove et al., 2022). A key 
advantage of our method is that by framing our estimation of inter-
action in terms of spatial and temporal encounter functions, it can 
be readily extended to integrate how animal behaviors, movement 
speed, and landscape covariates affect direct or indirect interaction 
rates. For example, in predator–prey systems surrounding land cover 
might greatly reduce the extent of the spatial encounter function 
(hunting in a forest might yield a smaller spatial encounter function 
than hunting in a grassland) and behavior of prey can impact pre-
dation success (e.g., crypsis might make prey temporarily unavail-
able despite being with the spatial encounter radius of a predator). 
In disease systems, foraging/ruminating behaviors might relate to 
pathogen acquisition and can be estimated by incorporating cam-
era data or path segmentation approaches, offering a next step for 
future studies (Wilber et al.,  2022). If directional data were avail-
able in tandem with animal movement data, we could incorporate an 

additional term in our interaction kernel that weighted the instanta-
neous weight of an interaction based on the direction two animals 
were facing.

The current CTMM-Interaction method is a data-driven method 
for estimating interaction heterogeneities in nature. We applied the 
method to wildlife disease systems; however, our approach can be 
adapted to other contexts where interactions among individuals play 
a key role. Because of its mechanistic underpinnings in movement 
and interaction ecology, CTMM-Interaction can be expanded to in-
corporate a mechanistic linkage between interaction structure and 
environmental conditions and host demography. These mechanistic 
underpinnings allow the method to make predictions of interaction 
heterogeneities in other ecological settings using data from a subset 
of conditions—a much-needed advancement in multiple fields in an-
imal ecology.
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