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Abstract
Quantifying spatiotemporally explicit interactions within animal populations facili-
tates the understanding of social structure and its relationship with ecological pro-
cesses.	Data	from	animal	tracking	technologies	(Global	Positioning	Systems	[“GPS”])	
can circumvent longstanding challenges in the estimation of spatiotemporally explicit 
interactions,	 but	 the	 discrete	 nature	 and	 coarse	 temporal	 resolution	 of	 data	mean	
that	 ephemeral	 interactions	 that	occur	between	 consecutive	GPS	 locations	 go	un-
detected.	Here,	we	developed	a	method	to	quantify	 individual	and	spatial	patterns	
of	interaction	using	continuous-	time	movement	models	(CTMMs)	fit	to	GPS	tracking	
data.	We	first	applied	CTMMs	to	infer	the	full	movement	trajectories	at	an	arbitrarily	
fine	temporal	scale	before	estimating	interactions,	thus	allowing	inference	of	interac-
tions	occurring	between	observed	GPS	locations.	Our	framework	then	infers	indirect	
interactions—	individuals	occurring	at	the	same	location,	but	at	different	times—	while	
allowing the identification of indirect interactions to vary with ecological context 
based	on	CTMM	outputs.	We	assessed	the	performance	of	our	new	method	using	
simulations	and	illustrated	its	implementation	by	deriving	disease-	relevant	interaction	
networks	for	two	behaviorally	differentiated	species,	wild	pigs	 (Sus scrofa)	 that	can	
host	African	Swine	Fever	and	mule	deer	(Odocoileus hemionus)	that	can	host	chronic	
wasting	disease.	 Simulations	 showed	 that	 interactions	derived	 from	observed	GPS	
data	 can	 be	 substantially	 underestimated	when	 temporal	 resolution	 of	movement	
data	exceeds	30-	min	intervals.	Empirical	application	suggested	that	underestimation	
occurred	in	both	interaction	rates	and	their	spatial	distributions.	CTMM-	Interaction	
method,	which	can	introduce	uncertainties,	recovered	majority	of	true	interactions.	
Our	method	 leverages	advances	 in	movement	ecology	 to	quantify	 fine-	scale	spati-
otemporal	interactions	between	individuals	from	lower	temporal	resolution	GPS	data.	
It	can	be	 leveraged	 to	 infer	dynamic	social	networks,	 transmission	potential	 in	dis-
ease	systems,	consumer–	resource	interactions,	information	sharing,	and	beyond.	The	
method	also	sets	the	stage	for	future	predictive	models	linking	observed	spatiotem-
poral interaction patterns to environmental drivers.
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1  |  INTRODUC TION

Quantifying spatiotemporal animal interactions is fundamental for 
understanding drivers of social organization, infectious disease 
transmission,	 and	predator–	prey	 relationships	 (Albery	et	 al.,	2021; 
Raybeck,	 2014;	Webber	 &	 Vander	Wal,	 2019).	 Both	 direct	 (same	
place,	 same	 time)	 and	 indirect	 (same	 place,	 different	 time)	 inter-
actions	 (Robitaille	et	al.,	2018)	 are	 important	 in	 these	contexts.	 In	
predator– prey systems, understanding direct physical contact as 
well	 as	 indirect	 interactions	 (how	 predators	 follow	 the	 trajectory	
of	 preys)	 has	 important	 implications	 for	 determining	 optimal	 for-
aging	 behavior,	 predicting	 predator–	prey	 dynamics	 (Krivan,	1997),	
and	 estimating	 the	 influence	 of	 the	 “landscape	 of	 fear”	 on	 prey	
behavior	(Coleman	&	Hill,	2014).	 In	social	species	with	hierarchical	
organizations, direct and indirect interactions among individuals 
can capture the fundamental components of social organization, 
the structure of the leadership hierarchy, and the underpinnings of 
collective	behavior	(Herbert-	Read	et	al.,	2013).	In	infectious	disease	
systems, spatiotemporal patterns of direct or indirect interaction 
drive pathogen transmission dynamics, prevalence, and ultimate ep-
idemic	size	(Albery	et	al.,	2021).	However,	gathering	empirical	data	
on spatiotemporally explicit animal interactions is often challenging 
in	the	field.	Several	technologies,	such	as	camera	traps,	ultra-	high-	
frequency	proximity	loggers,	and	Global	Positioning	System	(“GPS”)	
telemetry,	can	be	used	to	estimate	direct	and	indirect	interactions.	
GPS	 telemetry	 provides	 rich	 spatiotemporally	 explicit	 information	
on animal movement and is widely used to inform animal conser-
vation and management (Kays et al., 2015),	particularly	for	identify-
ing	 individual–	environment	 interactions	 (Fieberg	et	 al.,	2010).	 The	
ubiquity	of	GPS	data,	especially	among	widely	studied,	large-	bodied	
terrestrial wildlife, also provides the opportunity to capture unprec-
edented information on the spatiotemporal context surrounding an-
imal interactions.

Despite	 the	 emerging	 tracking	 technology,	 such	 as	 solar-	
powered	 GPS	 tags	 and	 Advanced	 Tracking	 and	 Localization	 of	
Animals	 in	 real-	life	 Systems	 (ATLAS)	 that	 allow	 the	 collection	 of	
high-	resolution	movement	data,	many	studies	still	use	GPS	collars	
with	relatively	 low	resolution	 (e.g.,	every	30 min	or	1	h).	Positional	
fix rate limitations often lead to the underestimation of interac-
tion	 rates,	 as	 shown	 in	 disease	 transmission	 estimation	 from	GPS	
collar	data	 (Yang,	Boughton,	et	al.,	2021).	Explicitly	understanding	
ecological processes like epidemiologically relevant interactions 
or	 short-	lived	 predator–	prey	 interactions	 requires	 interaction	 es-
timates	at	a	 fine	temporal	scale.	Advancing	our	ability	 to	estimate	
temporally continuous and spatially explicit interaction patterns at 

a	 landscape	scale	remains	a	key	objective	for	 improving	ecological	
inferences	about	interaction-	based	processes	and	developing	meth-
ods	to	extract	such	information	from	GPS	telemetry	data.	To	address	
this	limitation,	several	methods	have	been	used	to	estimate	interac-
tion	for	disease	systems	from	GPS	data.	For	example,	one	approach	
uses home range overlap as a proxy for interaction rates (Kenward 
et al., 1998),	 but	 this	 strategy	 can	miss	 fine-	scale	 spatiotemporal	
interaction patterns and is strongly dependent on methodology 
(Robert	et	al.,	2012).	Another	approach	uses	co-	location	of	animals	
within	predefined	 spatial	 and	 temporal	 buffers	 (Long	 et	 al.,	2022; 
Robitaille	et	al.,	2018),	but	this	strategy	can	introduce	errors	when	
measuring	 interactions	 only	 at	 fixed	 time	 points	 or	 mis-	specified	
thresholds	(Yang,	Boughton,	et	al.,	2021).

Continuous-	time	 movement	 models	 (CTMM;	 Calabrese	
et al., 2016; Johnson et al., 2008)	 offer	 a	bridge	 to	overcome	 the	
limitations	 in	estimating	animal	 interactions	 introduced	by	the	dis-
crete	nature	of	GPS	data	(Manlove	et	al.,	2022).	CTMMs	use	telem-
etry	observations	to	describe	a	continuous-	time	movement	process	
which in turn allows the models to naturally accommodate different 
temporal	 scales,	 predict	 potential	 unobserved	 movements	 during	
the	 tracking	 period,	 and	 provide	 a	 basis	 for	 simulating	movement	
trajectories.	 Thus,	 these	 models	 provide	 a	 unique	 opportunity	 to	
improve	the	estimation	of	absolute	animal	interaction	rates	in	con-
tinuous space and time (Dougherty et al., 2018).	Recent	advances	
have mathematically formalized ecological encounters in continuous 
time	(Gurarie	&	Ovaskainen,	2013),	inferred	interaction	location	dis-
tributions	 from	CTMMs	 (Noonan	et	 al.,	2021),	 and	 inferred	direct	
and indirect interactions from continuous movement data in disease 
systems	 (Richardson	 &	 Gorochowski,	 2015;	 Wilber	 et	 al.,	 2022).	
However,	extending	these	approaches	to	(1)	formally	and	flexibly	ac-
count for direct and indirect interactions across ecological contexts 
and	(2)	apply	directly	to	commonly	collected	movement	data	remains	
important	knowledge	gaps.	Further,	CTMM-	based	approaches	and	
traditional methods, for example, empirical summary of interactions 
using	only	observed	fixes,	have	yet	to	be	compared	directly.

Here,	 we	 develop	 a	 method	 for	 applying	 CTMMs	 to	 quantify	
the weights of each interaction event across a continuum of direct 
to	 indirect	 interactions	based	on	a	spatial	and	temporal	encounter	
function	using	GPS	data	(i.e.,	CTMM-	Interaction;	See	schematics	in	
Figure 1).	We	use	simulated	movement	data	to	evaluate	the	CTMM-	
Interaction	method	for	quantifying	spatiotemporally	explicit	direct	
and	indirect	interactions.	We	then	assessed	the	performance	of	the	
method using the simulated movement data downsampled at differ-
ent	temporal	resolutions.	To	demonstrate	how	the	method	can	be	
employed in different animal movement systems and parameterized 

K E Y W O R D S
African	swine	fever,	chronic	wasting	disease,	continuous-	time	movement	models,	Global	
Positioning	System	(GPS),	interaction,	social	network

T A X O N O M Y  C L A S S I F I C A T I O N
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relative to different interaction periods of interest (i.e., in relation to 
different	pathogen	 life-	histories),	we	applied	 it	 to	 two	contrasting	
host–	pathogen	systems,	African	swine	fever	(ASF)	in	wild	pigs	(Sus 
scrofa)	and	chronic	wasting	disease	(CWD)	in	mule	deer	(Odocoileus 
hemionus)	 in	 the	western	USA.	Our	CTMM-	interaction	method	al-
lowing	for	comparable	estimates	of	absolute	interaction	rates	across	
systems with different propensities for indirect transmission can 
be	modified	to	account	 for	biological	details	affecting	 interactions	
and	identify	interactions	that	are	missed	when	only	the	observed	fix	
rates are used for interaction estimation.

2  |  MATERIAL S AND METHODS

2.1  |  Constructing CTMM- Interaction networks

The	first	step	in	our	approach	is	to	choose	a	CTMM	that	is	appropri-
ate	for	the	data	and	movement	behavior	of	the	study	species	and	fit	
that	CTMM	to	the	observed	GPS	data.	The	parameterized	CTMM	is	
then	used	to	predict	movement	trajectories	at	a	fine	resolution	in	be-
tween	GPS	fixes	for	each	collared	individual.	Fitting	system-	specific	
CTMMs	has	received	extensive	coverage	in	the	literature	(Calabrese	
et al., 2016;	 Hooten	&	 Johnson	2017; Johnson et al., 2008,	 etc.),	
and	it	is	beyond	our	current	scope.	Instead,	our	emphasis	is	on	the	

biological	inference	we	can	make	about	interaction	processes	given	
a	parameterized	CTMM.

Let sk(t)	 denote	 the	 continuous-	time	 movement	 trajectory	 for	
the kth	 individual	 as	 generated	 by	 the	 CTMM,	 where	 s	 is	 a	 two-	
dimensional vector of the animal's spatial coordinates, and t in-
dicates a focal position in time. Instantaneous direct and indirect 
interactions	 occur	 when	 two	 individuals	 are	 co-	located	 within	 a	
certain	distance	at	the	same	time	(direct	interaction)	or	at	different	
times	(indirect	interaction)	based	on	the	continuous	movement	out-
puts.	From	these	identified	co-	locations,	our	method	builds	direct	or	
indirect spatial proximity networks.

We	assume	that	the	spatial	distance	between	animal	1 at time 
� i and animal 2 at time � j	 could	 be	 calculated	 as	 the	 distance	d1,2 
between	locations	s1(� i)	and	s2(� j).	The	calculation	of	w1→2

i,j
, defined as 

the	instantaneous	weight	of	interaction	experienced	by	animal	2 at 
time � j from animal 1 at time � i, depends on the distance d1,2 and ∆τ, 
the elapsed time separating � j and � i.	It	is	given	by

where fd(. )	is	a	spatial	encounter	function	(Gurarie	&	Ovaskainen,	2013)	
that determines the spatial gap defining an interaction, and f�(. ) is a 
temporal encounter function that determines the temporal gap of 
the	 interaction.	An	 interaction	kernel	K1→2	 experienced	by	animal	2	

w1→2

i,j
= fd

(
s2
(
� j
)
, s1

(
� i
))
f�
(
Δ� = � j − � i

)

F I G U R E  1 Schematics	of	CTMM-	interaction	method.
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from animal 1 consists of the instantaneous weight of interaction at 
all timesteps:

See	 the	 toy	 example	 of	 the	 computation	 of	 interaction	 kernels	 in	
Section	1:	Appendix	S1.

2.2  |  Accounting for different ecological 
interactions

The key advance of our approach is the recognition that framing 
interactions in terms of an interaction kernel K1→2 composed of a 
spatial and temporal encounter function allows us to simultane-
ously account for direct and indirect interactions and generalizes 
previous theory on ecological encounters (Noonan et al., 2021; 
Robitaille	 et	 al.,	 2018).	 For	 example,	 let	 f�(��)	 be	 a	 Dirac	 delta	
function �(��) (essentially, an indicator function, here taking on 
the value 1 at Δ� = 0 to represent direct interaction and 0 at all 
other	 temporal	 lags)	 for	 a	 generic	 consumer–	resource	 interac-
tion and fd

(
s2
(
� j
)
, s1

(
� i
))

= ��
(
s2
(
� j
)
, s1

(
� i
))

 where � is the en-
counter rate with units area per time and �

(
s2
(
� j
)
, s1

(
� i
))

 is an 
encounter	 kernel	 with	 units	 per	 area.	 A	 reasonable	 choice	 for	
�
(
s2
(
� j
)
, s1

(
� i
))
	 might	 be	 a	 uniform	 circular	 distribution	 in	 space	

(e.g.,	 Gurarie	 &	 Ovaskainen,	 2013)	 that	 accounts	 for	 locational	
errors	of	 the	GPS	device	or	 the	area	of	awareness	for	 the	two	 in-
teracting animals (e.g., the distance at which a consumer can 
detect	 a	 resource).	 Then,	 w1→2

i,j
= ��

(
s2
(
� j
)
, s1

(
� i
))
�(��) and 

hji
(
� j
)
= ∫ ��

(
s2
(
� j
)
, s1(u)

)
�
(
� j − u

)
du = ��

(
s2
(
� j
)
, s1

(
� j
))

 yields 
a	 direct	 rate	 of	 interaction	 between	 consumer	 i and resource j at 
time � j. This approach generalizes the formalization of encounter 
rates	as	described	in	Gurarie	and	Ovaskainen	(2013)	by	illustrating	
that direct interaction rate is a special case where the temporal en-
counter	function	is	a	Dirac	delta	function.	Alternatively,	if	we	were	
interested in the rate of interaction of individual j with scent mark-
ings	left	by	individual	i, we could let the spatial encounter function 
fd
(
s2
(
� j
)
, s1

(
� i
))

= ��
(
s2
(
� j
)
, s1

(
� i
))

 where �	 is	 an	 acquisition	 rate	
with units area per time and f�

(
� j − � i

)
= �

(
� i
)
S
(
� j − � i

)
 where �

(
� i
)
 

is a scent deposition rate at time i and S
(
� j − � i

)
 is a scent survival 

function	(i.e.,	a	monotonically	decreasing	function	between	1	and	0).	
Then, hji

(
� j
)
= ∫ ��

(
s2
(
� j
)
, s1(u)

)
�(u)S

(
� j − u

)
du is the total interac-

tion rate of individual j with individual i's past and current scent mark-
ings, accounting for a continuum of direct and indirect interaction. 
This formalizes and generalizes approaches like those developed 
by	 Richardson	 and	 Gorochowski	 (2015)	 and	Wilber	 et	 al.	 (2022).	
Section	 2:	 Appendix	 S1 illustrates examples of weighted interac-
tions	 in	 other	 systems.	 Parameterization	 of	 the	 interaction	 kernel	
depends	on	the	combination	of	the	spatial	definition	of	interactions	
in	the	study	system	(i.e.,	direct	or	proximate	interaction)	and	error	

in locational measurements. Code for manipulating the analyses is 
available	at	https://github.com/Anni-	Yang/ctmm-	inter	action.

2.3  |  Assessment of CTMM- Interaction method 
using simulations

We	assessed	whether	our	CTMM-	Interaction	method	could	recover	
true	interactions	using	simulations.	We	employed	a	functional	move-
ment	model	(Hooten	&	Johnson,	2017)	to	simulate	1-	min	movement	
trajectories	for	10	animals	for	a	week	(i.e.,	10,080	locations	per	ani-
mal).	The	trajectories	were	simulated	using	a	Gaussian	kernel	with	
shape parameter φ = 0.001, approximating Brownian motion (see 
Hooten	&	Johnson,	2017).	Simulated	trajectories	were	treated	as	the	
true,	 observed	 locations	without	 locational	 errors	 (Figure 2a).	We	
then	 downsampled	 the	 simulated	 1-	min	 observations	 to	 temporal	
resolutions	of	5,	10,	30 min,	1,	2,	and	4	h.	We	estimated	the	direct	
and	indirect	interactions	using	both	the	true,	observed	trajectories	
and	the	downsampled	trajectories.	We	defined	direct	interactions	as	
two	animals	in	the	same	location	at	the	same	time	within	a	2-	m	buffer	
(i.e.,	the	approximate	average	body	length	of	an	individual)	and	1-	min	
time	frame	to	account	for	different	body	positions.	Indirect	interac-
tions were defined as two animals visiting the same location within a 
2-	m	buffer	and	a	5-	day	interval	(representing	the	epidemiologically	
relevant	 interaction	 in	 the	 case	 of	ASF).	 To	 test	 the	 sensitivity	 of	
spatial	buffers	on	the	estimation	of	interaction	rates,	we	varied	the	
buffer	from	2–	5	and	10	m	using	the	simulated	data	(Figure S1).

Next,	we	fitted	the	CTCRW	models	to	all	six	of	the	downsampled	
trajectories	for	each	simulated	individual	and	predicted	their	move-
ments	every	minute.	Note	that	while	the	CTCRW	model	is	a	special	
case	of	functional	movement	models	(Hooten	&	Johnson,	2017),	the	
functional movement model we used to simulate the data was not a 
CTCRW.	We	did	this	to	account	for	the	very	realistic	possibility	that	
empirical	 data	we	 collect	will	 not	 exactly	 follow	 a	CTCRW,	which	
should	 allow	a	more	 realistic	 evaluation	of	CTCRW	model	 perfor-
mance.	We	evaluated	the	performance	of	CTCRW	models	 in	each	
downsampled	 scenario	 by	 comparing	 the	 differences	 in	 distances	
between	 the	 predicted	 locations	 and	 true,	 observed	 locations.	
Higher	errors	 indicated	that	our	fitted	CTCRW	was	doing	a	worse	
job	predicting	 the	 true	movement	 trajectory,	with	 implications	 for	
correctly inferring interactions. Finally, we followed the same proce-
dure to extract direct and indirect interactions using the predicted 
1-	min	trajectories	and	quantified	the	discrepancies	between	 inter-
action	kernels	extracted	from	1-	min	true	observations	and	CTCRW	
predicted	 1-	min	 trajectories	 to	 assess	 the	 performance	 of	 our	
CTMM-	Interaction	method.

2.4  |  Application of CTMM- Interaction method to 
empirical systems

To illustrate the parameterization and application of our method in 
empirical	 systems,	 we	 applied	 the	 CTMM-	Interaction	 method	 to	
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two empirical systems, which involve species (i.e., wild pigs and mule 
deer)	with	different	movement	ecologies	and	the	potential	to	carry	
different pathogens with different environmental persistence times. 
Wild	pigs	can	be	involved	in	ASF,	where	the	pathogen	African	swine	
fever	virus	(ASFv)	can	remain	viable	 in	swine	carcasses	for	several	
months in cold weather and in the environment for days to weeks 
depending on strain type and temperature (Davies et al., 2017).	Mule	
deer	can	be	involved	in	the	transmission	of	CWD	caused	by	a	prion	
that can persist in the environment for years (Rivera et al., 2019).	It	

is	noteworthy	that	ASFv	was	not	present	in	the	study	area,	and	we	
did	not	have	disease	surveillance	data	from	CWD	in	our	study	area.

2.4.1  |  GPS	data

We	captured	and	deployed	GPS	collars	on	20	adult	wild	pigs	(15	fe-
males;	5	males;	University	of	Florida	 IACUC	protocol	201808495)	
on a 42.3 km2	cattle	ranch	in	south	Florida	in	April–	September	2017.	

F I G U R E  2 (a)	Simulated,	1-	min	interval	trajectories	for	10	animals.	(b)	Absolute	differences	in	distances	(spatial	error)	between	true	
(simulated)	trajectories	and	the	predicted	trajectories	using	the	downsampled	data	with	different	temporal	resolutions.	(c	and	d)	Mean	and	
confident	interval	for	direct	(indirect)	interaction	rates	using	downsampled	and	CTMM	interpolated	data.	(e	and	f)	Number	of	missing	pairs	
using	resampled	and	CTMM	interpolated	data.
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Between	December	 2010	 and	 December	 2013,	 we	 captured	 and	
subsequently	recaptured	47	adult	female	mule	deer	(Colorado	Parks	
and	Wildlife	IACUC	protocol	17-	2008	and	01-	2012)	using	helicopter	
net	gunning	at	the	Piceance	Basin	in	northwest	Colorado.	The	GPS	
collars	were	programmed	to	record	fixes	every	30 min	for	wild	pigs	
in	Florida	and	every	30 min	for	mule	deer	(location	errors	were	es-
timated	on	average	of	6–	10	m	in	the	study	sites).	Details	about	the	
study areas and systems are reported in Northrup et al. (2021);	Yang,	
Boughton, et al. (2021);	and	Yang,	Schlichting,	et	al.	(2021).

2.4.2  |  Extracting	CTMM-	interaction	networks

For	both	systems,	we	used	CTCRW	model	to	 interpolate	from	ob-
served	 discrete-	time	 GPS	 data	 with	 all	 locations	 with	 Position	
Dilution	of	Precision	values	<10	(Sands	et	al.,	2006; data summary in 
Table S1)	to	continuous-	time	movement	with	fixes	predicted	every	
minute. For parameterization in wild pigs, we calculated interaction 
weights (w1→2

i,j
)	for	each	pair	of	wild	pigs	as	follows.	For	both	direct	

and indirect interaction, we defined the spatial encounter function, 
fd(.),	as	a	piecewise	function	with	a	distance	threshold	of	10	m	(the	
buffer	 distance	 of	 5	 and	 15 m	were	 also	 tested;	 see	 the	 sensitiv-
ity analysis in Figure S1).	 This	 threshold	 reflects	 the	direct	 spatial	
co-	occurrence	required	for	transmission	of	ASF	(transmitted	by	in-
gestion	of	contaminated	materials	from	infected	pigs)	by	simply	ac-
commodating	GPS	error	(~6–	9	m)	associated	with	the	GPS	locations.	
For	direct	 interaction	where	∆τ = 0, we defined the temporal en-
counter function, f�(.),	as	a	constant	of	1;	for	indirect	interaction,	we	
define f�(.),	as	an	exponential	decay	function	within	a	5-	day	interval,	
given	the	high	virulent	strain	ASFv	like	Georgia	2007/1	isolate	can	
only persist in the environment for ~5 days	in	warm	climates	(Davies	
et al., 2017).

fd
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��
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In	the	CWD-	mule	deer	system,	for	each	pair	of	deer,	we	calcu-
lated interaction weights (w1→2

i,j
)	based	on	the	same	spatial	encounter	

function (fd(. )	also	with	a	distance	threshold	of	10	m)	given	a	simi-
lar transmission pathway and temporal encounter function f�(. ) as a 
constant	of	1	(no	decay)	given	the	long	period	of	CWD	prion	survival	
in the environment in most conditions (Rivera et al., 2019).	Our	ob-
jective	was	to	simply	describe	interactions	(and	not	transmission)	in	
both	systems,	so	we	did	not	include	explicit	pathogen	acquisition	or	
shedding rates.

fd
�
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�
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�
, s1

�
𝜏 i
��

=
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1; d1,2≤10m

0; d1,2>10m
, f�(Δ�) = 1

To define interactions using movement data at different tempo-
ral	 resolutions,	we	defined	a	direct	 interaction	 as	 a	 co-	location	 at	
the same time (Δ�=0)	 and	an	 indirect	 interaction	as	 a	 co-	location	
with	at	 least	a	1-	min	 lag.	We	then	generated	 interaction	networks	

for	 both	 empirical	 datasets	 with	 nodes	 as	 individual	 animals	 and	
weighted	edges	 as	 the	daily	 average	of	 instantaneous	 “weight”	 of	
interactions.	We	developed	a	new	approach	 to	 calculate	 the	daily	
average	of	instantaneous	“weight”	of	interactions	because	some	tra-
ditional	association	indices	or	weights	(Cairns	&	Schwager,	1987)	do	
not perform well when indirect interactions occur when animals are 
not	tracked	simultaneously	(Section	4:	Appendix	S1).	The	approach	
treats	the	daily	frequency	of	indirect	interactions	as	the	accumula-
tion	of	 lagged	co-	location	 interactions,	whereby	 interactions	were	
calculated	on	temporally	 lagged	movement	trajectories	of	the	two	
animals involved, with the accumulation including as many lags as 
there	 are	 nonzero-	valued	 days	 in	 the	 temporal	 encounter	 func-
tion	(Section	3:	Appendix	S1).	We	call	networks	built	from	inferred	
continuous-	time	movement	trajectories	with	interactions	extracted	
at	each	minute	“1-	min	CTMM”-	interaction	networks.

2.4.3  |  Comparing	CTMM	and	observed	
interaction network

As	mentioned	above,	the	traditional	way	of	estimating	interactions	
is	to	extract	them	from	the	observed	GPS	data	based	on	predefined	
spatial	and	temporal	encounter	functions	(Robitaille	et	al.,	2018).	To	
show	the	differences	in	the	estimations	of	interactions	that	might	be	
expected	using	 two	methods	 in	 real-	world	 systems,	we	compared	
the	differences	in	interaction	rates	in	both	systems.	It	is	noteworthy	
that this comparison is not the assessment of our method.

For	both	systems,	we	defined	direct	interactions	as	co-	locations	
of	GPS	 fixes	within	 a	 10-	m	 buffer	 and	 1-	min	 gap.	However,	 fixes	
were	not	always	recorded	precisely	at	30-	min	because	it	takes	GPS	
receivers varying amounts of time to receive the satellite signals de-
pending	 on	 the	microhabitat	 the	 collared	 animal	 is	 in,	 resulting	 in	
“collar	drifting.”	To	address	the	collar	drifting	 issue,	we	also	tested	
the sensitivity of our networks to other temporal encounter func-
tions	 and	 found	mild	 changes	 in	 the	 estimation	of	 interactions	by	
varying temporal encounter functions (Figure S1).	We	defined	ep-
idemiologically	 relevant	 indirect	 interactions	 for	both	 systems	 fol-
lowing	the	same	parameterization	as	the	CTMM-	interaction	method	
but	using	observed	GPS	data.	 Similarly,	we	considered	 the	poten-
tial	pathogen	decay	as	we	did	for	the	1-	min	CTMM-	interaction	es-
timates	 above	 and	 construct	 the	 interaction	 network	 with	 edges	
weighted	by	the	average	daily	interaction	“weights”	extracted	from	
observed	fixes.	We	refer	to	the	empirical	summary	of	 interactions	
using	only	the	observed	fixes	as	the	“observed”	interaction	network.

Interaction	 weights	 calculated	 for	 the	 observed	 interaction	
network	were	based	only	on	location	recordings	gathered	at	30-	
min or hourly intervals. Our indirect interaction networks are 
based	on	 the	 sum	of	all	 time	steps	within	an	appropriate	 lag,	 so	
the	1-	min	CTMM-	interaction	network	could	potentially	be	larger	
because	 it	 contained	 30	 (or	 60)	 terms	 for	 each	 term	 in	 the	 ob-
served	 network.	 To	 make	 the	 interaction	 weights	 comparable,	
we	“downsampled”	the	1-	min	CTMM-	interaction	events	to	match	
the	 time	 interval	of	 the	observed	GPS	data.	We	aggregated	any	
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interaction	detected	at	the	1-	min	scale	within	the	first	half	of	the	
interval	(within	the	first	15 min	of	a	30 min	interval,	e.g.,	13:12)	to	
the	previous	time	step	(e.g.,	13:00)	and	the	events	that	occurred	
within	the	second	half	of	the	interval	(e.g.,	13:25)	to	the	next	time	
step	 (e.g.,	13:30).	Within	each	half-	hour	 interval,	 “downsampled”	
interactions were assigned a value of 0 if no interactions were de-
tected	at	the	1-	min	scale	in	the	corresponding	half-	hour,	and	a	1	
if any interactions were detected. To avoid confounding due to 
differences in sampling intensities, we limited our comparison to 
the	downsampled	CTMM	and	the	observed	network	 (we	did	not	
compare	 the	 1-	min	 CTMM	 and	 observed	 network	 directly).	We	
refer	to	the	downsampled	version	of	the	1-	min	CTMM-	interaction	
method where interactions were calculated using the same fix in-
terval	as	the	observed	approach	but	on	the	inferred	continuous-	
time	 movement	 trajectories—	30 min—	as	 “downsampled	 CTMM”	
interactions.	See	definition	of	 interactions	based	on	three	meth-
ods in Table 1.	We	also	calculated	several	network	metrics	relating	
to disease transmission to show the differences in network struc-
tures	using	different	methods	to	estimate	interaction	(see	Section	
4	and	5:	Appendix	S1)

3  |  RESULTS

3.1  |  Performance of CTMM- interaction method in 
simulations

We	found	substantial	underestimations	of	direct	and	indirect	in-
teractions when the temporal resolution of the movement data 
becomes	coarse	compared	with	the	true,	observed	data	(Figure 2).	
When	the	temporal	resolution	was	reduced	to	5 minutes	per	fix,	
which in empirical cases is still in high resolution, the indirect 
interaction rates were underestimated ~5 times (Figure 3).	 No	
interactions were detected when the temporal resolution was 
every	4 h.

We	also	 found	 that	 the	performance	of	CTCRW	varied	by	 the	
resolution of the input movement data. The predictions were rel-
atively accurate when movement data were recorded every 5 or 
10 min.	Considerable	prediction	errors	 in	the	movement	trajectory	
(Figure 2)	 appeared	when	 the	 fix	 rate	 resolution	was	greater	 than	
30 minutes.	Furthermore,	those	prediction	errors	also	impacted	the	

estimation of interaction rates. Errors in interaction estimates can 
be	underestimates	if	the	two	interacting	animals	were	predicted	to	
be	 further	apart	 (false	negative),	or	overestimates	 if	 the	 two	non-
interacting	animals	were	predicted	to	be	close	to	each	other	(false	
positive; Figure 3).

3.2  |  Transmission matrix and spatial distributions

In empirical systems, higher interaction rates and more interact-
ing	pairs	were	 identified	 in	 the	downsampled	CTMM	than	 in	 the	
observed	interaction	network	in	both	systems	(Table 2; Figure 4).	
This	was	consistent	with	our	simulation	analysis.	Differences	be-
tween	the	downsampled	CTMM	and	observed	graphs	were	great-
est	 for	 indirect	 interactions	 (i.e.,	 785	 unique	 indirect	 interaction	
pairs	 in	 the	 downsampled	CTMM	vs.	 626	 in	 the	 observed	 graph	
for	mule	deer;	87	unique	indirect	pairs	in	the	downsampled	vs.	54	
in	the	observed	graph	for	wild	pigs).	However,	we	also	found	the	
downsampled	 CTMM-	interaction	 network	 underestimated	 some	
weighted	direct	 interaction	 rates	 between	pairs	within	 the	 same	
social	groups	in	wild	pigs	relative	to	the	observed	method	(Table 2; 
Figure 4).

The	 spatial	 distribution	 of	 1-	min	 and	 downsampled	 CTMM-	
interactions	covered	three	times	the	area	of	those	from	the	observed	
method	in	both	wild	pig	systems,	although	some	underestimates	of	
spatial interaction rates were found within social groups (Figure 5).	
In	the	CWD-	mule	deer	system,	the	1-	min	and	downsampled	CTMM-	
Interaction methods identified 9% more interaction area compared 
with	 the	observed	method.	 The	 additional	 area	where	 interaction	
occurred was primarily located along migration routes. Network 
metrics were calculated in Table 3,	and	more	details	about	network	
structure	can	be	found	in	Supporting	Information.

4  |  DISCUSSION

Intra and interspecific interactions are keystone elements impact-
ing	 various	 ecological	 processes,	 but	 how	 to	 quantify	 absolute	
interaction rates in space and time remains a challenge (Noonan 
et al., 2021).	This	study	developed	a	novel	method	for	deriving	in-
teraction	networks	from	GPS	telemetry	data.	Through	simulation	

TA B L E  1 Concepts	of	different	types	of	interactions	based	on	three	methods.

Methods Direct interaction Indirect interaction

1-	min	CTMM Co-	location	of	hosts	within	10 m	buffer	at	the	same	time	
extracted	from	CTMM	interpolated	trajectories

Co-	location	of	hosts	within	10 m	buffer	at	different	times	
extracted	from	CTMM	interpolated	trajectories	and	
weighted	by	possible	pathogen	decay

Observed Co-	location	of	hosts	within	10 m	buffer	at	the	same	time	
extracted	from	observed	GPS	fixes

Co-	location	of	hosts	within	10 m	buffer	at	different	times	
extracted	from	observed	GPS	fixes	and	weighted	by	
possible	pathogen	decay

Downsampled 
CTMM

Downsampled	CTMM	direct	interaction	to	match	temporal	
resolution	of	observed	fixes

Downsampled	CTMM	indirect	interaction	to	match	temporal	
resolution	of	observed	fixes
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analysis,	we	found	that	our	CTMM-	Interaction	method	could	re-
cover	 underlying	 interactions	 that	 were	 not	 directly	 observed.	
Moreover,	 in	 both	 simulation	 and	 empirical	 cases,	 the	 observed	
method	underestimated	interaction	rates	and	spatial	distributions	
and	revealed	different	network	topologies	relative	to	the	CTMM-	
interaction	 method.	 The	 1-	min	 CTMM-	interaction	 network	 also	
revealed	 substantially	more	 interaction	 events,	 particularly	 low-	
weight indirect interactions, leading to more integrated interac-
tion	networks	with	higher	weighted	interaction	rates,	distributed	
across larger spatial domains than interactions detected under the 
two coarser models.

4.1  |  Why leverage telemetry movement data?

In	 animal	 systems,	 interactions	 are	 usually	 quantified	 by	 animal	
monitoring	technologies,	such	as	camera	traps,	ultra-	high-	frequency	
proximity	 loggers,	 and	 GPS	 collars.	 Camera	 trap	 arrays	 monitor	
the	 interactions	and	behaviors	of	 animals	 along	with	 their	 visits	 to	
resources in the field of view (Kukielka et al., 2013),	 but	 generally	
provide	 data	 only	 within	 an	 observed	 area.	 Animal-	borne	 proxim-
ity	 loggers	 provide	 information	 on	 both	 the	 rates	 and	 duration	 of	
interaction	events	but	lack	spatial	information	(Boehm	et	al.,	2009).	
Alternatively,	passive	 integrated	 transponder	 tags	placed	at	known	

F I G U R E  3 Direct	and	indirect	interaction	rates	extracted	from	true,	observed	trajectories,	the	downsampled	trajectories	without	
CTCRW	interpolation,	and	CTCRW	predicted	movements	based	on	the	downsampled	trajectories	in	simulation	cases.
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resources of interest can estimate direct and indirect interaction rates 
surrounding	that	point	resource	but	leave	unresolved	uncertainty	in	
interaction rates at other locations. For small mammals, individuals 
sequentially	trapped	in	the	same	location	are	assumed	to	have	more	
interactions.	 However,	 sparse	 trapping	 data	 often	 preclude	 robust	
interaction estimation as interaction information is strictly limited to 
trapping	sites	and	not	across	an	animal's	movement	trajectory.	GPS	
telemetry technology allows the monitoring and tracking of animal 
movement	 and	 spatially	 explicit	 interaction	 between	 collared	 indi-
viduals	for	 long	periods	of	time,	but	descriptive	estimates	from	the	
raw	data	are	limited	temporally	by	the	collars'	fix	rates.	The	observed	
method	which	only	summarizes	the	interactions	using	the	GPS	fixes	
inevitably	results	in	missed	interaction	events	occurring	in	the	gaps	
between	GPS	fixes.	Additionally,	it	is	common	that	multiyear	or	mul-
tisite	animal	tracking	studies	 incorporate	GPS	data	collected	at	dif-
ferent	spatiotemporal	resolutions	(e.g.,	Yang	et	al.,	2019),	which	can	
result in different definitions, precision, and accuracies of interaction 
estimates	(Gilbertson	et	al.,	2021).	CTMMs	allow	prediction	of	animal	
movements	between	fixes,	which	helps	to	standardize	the	temporal	
resolution of the data across study periods and sites.

GPS-	derived	 interaction	 networks	 have	 been	 widely	 used	 in	
animal disease systems to estimate interaction rates across the 
landscape	and	infer	disease	transmission	dynamics.	However,	over-
coming the limitations of sampling on interaction estimates and de-
termining	transmission-	relevant	interactions	remain	challenges	that	
our approach provides an important step toward alleviating. Fully 
leveraging animal movement data to identify direct and indirect in-
teractions	could	help	pinpoint	potential	low-	use,	but	high-	influence	
areas	(e.g.,	low	interaction	rate	areas	on	habitat	corridors)	on	a	land-
scape that drives pathogen spread (Kauffman et al., 2022).	 Such	
areas	can	be	important	in	disease	systems	where	hosts	get	infected	
even with a small dose of pathogen (e.g., anthrax, Turner et al., 2014 ;	
Yang,	Proffitt,	et	al.,	2021).

Our	CTMM-	Interaction	framework	can	also	be	used	to	address	
questions	in	other	ecological	systems.	For	instance,	understanding	
the	dynamics	of	absolute	 interaction	rates	and	durations	between	
consumer and resources on the landscape might provide insights 
about	 functional	 responses	 to	 improve	 resource	 management	
(Lafferty et al., 2015).	Estimating	fine-	scale	spatiotemporal	interac-
tions	 in	 group-	living	 species	 can	 also	help	 identify	 the	hierarchies	
in	social	organizations	and	underpinnings	of	collective	behaviors	or	
movements	 (Herbert-	Read	 et	 al.,	 2013).	 Additionally,	 our	 method	
helps	 to	 capture	 some	 instantaneous	 interactions,	 like	 predation-		
and	transmission-	related	interaction.

4.2  |  Why implementing CTMMs before the 
estimation of interactions?

Substantial	 underestimations	 of	 direct	 and	 indirect	 interactions	
were found in simulation cases when the temporal resolution of the 
movement	data	was	coarse	compared	with	the	true,	observed	data.	
Our	findings	suggested	that	the	performance	of	CTMMs	depended	
on	the	resolution	of	observed	GPS	data	with	considerable	prediction	
of locational errors found when the fixes were recorded greater than 
30-	minute	intervals.	Despite	potential	 locational	errors	 introduced	
when	fitting	the	“wrong”	movement	model	to	observed	movement	
data,	the	predicted	continuous	trajectories	can	still	recover	true	in-
teractions,	particularly	if	the	resolution	of	the	observed	data	is	not	
too	coarse	(30 min	fixes	or	less	in	this	case).	Importantly,	fitting	the	
CTCRW	to	30-	minute	observed	data	and	inferring	1-	minute	trajec-
tories	led	to	better	approximations	of	the	true	interactions	than	try-
ing	 to	 infer	 interactions	 from	the	30-	minute	data	on	 its	own.	This	
has	broad	implications	for	our	approach,	indicating	that	even	when	
we	do	not	correctly	specify	the	“true”	movement	model	(which	we	
will	never	do	in	practice)	we	can	still	recover	true	interaction	rates.

TA B L E  2 Comparisons	between	downsampled	CTMM	and	observed	method	in	the	number	of	unique	animal	pairs	in	two	systems.

Systems

Direct contacta Indirect contactb

Observed method 
missed

Downscaled CTMM method 
missed

Observed method  
missed

Downscaled CTMM 
method missed

FL pig 14 2 66 0

CO Deer 91 43 398 78

Weightsdownscaled 
> Weightsobserved

c
Weightsobserved 
> Weightsdownscaled

d
Weightsdownscaled 
> Weightsobserved

Weightsobserved 
> Weightsdownscaled

FL pig 21 19 141 33

CO Deer 192 60 1385 262

aFor	unique	animal	pair	with	direct	interaction,	Host	A	interacts	Host	B	is	the	same	as	Host	B	interacts	Host	A.	Thus,	PairA→B =	PairB→A.
bFor	unique	animal	pair	with	indirect	interaction,	Host	A	feels	the	interaction	with	Host	B	is	a	different	scenario	from	Host	B	feels	the	interaction	
with	Host	A.	Thus,	PairA→B	≠	PairB→A.
cThe	number	of	unique	interaction	pairs	where	the	daily	average	of	interaction	rates	weighted	by	pathogen	decay	extracted	from	downsampled	
CTMM	are	larger	than	observed	method.
dThe	number	of	unique	interaction	pairs	where	the	daily	average	of	interaction	rates	weighted	by	pathogen	decay	extracted	from	the	observed	
method	are	larger	than	downsampled	CTMM.
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Our simulated results highlighted the importance of incorpo-
rating	 high-	frequency	 movement	 data	 in	 interaction	 estimation.	
Although	there	could	be	some	misidentification	or	underestimation	
in	 interactions	 due	 to	 the	 performance	 of	 CTMMs,	 our	 CTMM-	
Interaction	approach	still	captured	the	majority	of	interactions	even	
with	4-	hour	interval	data	in	the	simulations.	Additionally,	our	results	
suggested that the interaction rates were sensitive to the selection 
of	buffers,	 indicating	 the	 importance	of	 selecting	 appropriate	 and	
biologically	meaningful	parameters	(Figure S1).	Also,	it	is	noteworthy	
that	the	selection	of	a	spatial	buffer	may	also	need	to	consider	the	
locational	errors	of	GPS	fixes	as	we	did	for	the	empirical	cases.

4.3  |  Potential errors and uncertainties

Several	 sources	 of	 error	 contribute	 uncertainty	 to	 interaction	 es-
timates	 from	GPS	data.	First,	error	 related	 to	 the	model	 structure	
(e.g.,	 independent	 identically	distributed	processes,	Brownian	mo-
tion,	 and	 Ornstein–	Uhlenbeck	 process)	 and	 variability	 in	 CTMM	
prediction.	We	used	a	CTCRW	model,	which	is	a	stochastic	random	
walk model and therefore has error associated with each interpo-
lated movement (Johnson et al., 2008).	However,	there	are	several	
approaches	for	fitting	CTMMs,	ranging	from	mean-	field	continuous-	
time	 stochastic	 processes	 (Calabrese	 et	 al.,	 2016)	 to	 mechanistic	

F I G U R E  4 Pairwise	weighted	interaction	matrix	in	two	empirical	systems.	“Observed”	and	“1-	min	CTMM”	columns	rely	on	transmission	
kernels	estimated	from	interactions	extracted	from	the	observed	GPS	data	with	30-	min	interval	and	the	interpolated	continuous	trajectory	
with	1-	min	interval	from	CTCRW	model,	respectively.	The	“downsampled	CTMM”	column	relies	on	a	transmission	kernel	calculated	
using	interactions	that	are	downsampled	from	a	1-	min	event	to	a	30-	min	event	to	compare	with	the	temporal	resolution	of	interactions	
extracted	from	the	“Observed.”	The	“Difference”	column	is	the	differences	between	transmission	kernels	of	the	“downsampled	CTMM”	and	
“Observed”	columns.	A	positive	number	in	the	“Difference”	column	indicates	that	the	downsampled	CTMM-	interaction	weight	is	higher	
than	the	observed	interaction	weight,	while	a	negative	value	indicates	that	the	downsampled	CTMM-	interaction	weight	is	lower	than	the	
observed	interaction	weight.	The	individuals	tagged	in	the	same	colors	indicate	that	they	come	from	the	same	social	groups.
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processes	 that	depend	on	energetics	 (e.g.,	Hooten	et	 al.,	2019)	 or	
other underlying factors. These approaches have different sources 
of	 prediction	 uncertainties	 and	 performance.	 Selecting	 a	 CTMM	
appropriate	 to	 the	 system's	biology	 (species,	movement	 type,	 and	
environment)	 is	 important	 for	 generating	 reliable	 interactions	
(Martinez-	Garcia	et	al.,	2020).	Additionally,	the	interaction	between	
movement	ecology	 (e.g.,	average	movement	speed),	 temporal	data	
resolution, and length of tracking period will influence the definition 
and	estimation	of	interactions.	The	optimal	interplay	between	these	
factors	will	be	system	specific,	but	at	some	point	CTMM	prediction	
error related to coarse, underlying data will dominate the uncer-
tainty associated with inferred interactions. Our simulated scenarios 
also	 confirmed	 this	with	both	 false-	positive	 and	 false-	negative	 in-
teractions detected (Figure S1).	Additionally,	we	estimated	 the	ef-
fects	 of	 CTMM	 prediction	 errors	 on	 our	 interaction	 inference	 by	
comparing	 interactions	 extracted	 from	 each	 fit	 from	 CTMM	 runs	
(i.e.,	either	individual	fits	from	different	CTMMs	or	multiple	predic-
tions	or	parameterizations	from	one	CTMM;	see	sensitivity	analysis	
in	Section	6:	Appendix	S1	as	an	example).	We	found	that	our	results	
were	robust	to	model	structure	and	variability	in	CTMM	prediction.

Second,	 interaction	 estimates	 can	 be	 sensitive	 to	 the	 parame-
terization of the interaction kernel and definitions of interactions 
(as	 discussed	 in	 the	 methods).	 We	 see	 this	 as	 a	 strength	 of	 our	
approach—	the	interaction	kernel	can	be	easily	modified	to	capture	
known processes that affect ecologically and epidemiologically rele-
vant interactions, for example, pathogen deposition rate decreasing 

with increasing host velocity. In our simulation assessments, overes-
timation	 increased	 in	conjunction	with	enlarging	the	spatial	buffer	
defining interactions (Figure S1).	Therefore,	we	parameterized	 the	
spatial and temporal thresholds to extract direct and indirect inter-
actions	on	both	 the	biological	process	and	 the	GPS	 location	error	
within	each	empirical	system	showcased	here.	We	conducted	a	sen-
sitivity analysis on the spatial encounter function, fd(. ), piecewise 
with distance thresholds of 5, 10, and 15 meters and found differ-
ences in the estimation of interaction kernels when using different 
thresholds,	but	our	general	conclusions	were	unchanged	(Figure S1).	
When	 implementing	 our	 approach	 in	 other	 systems,	 researchers	
should explore how different definitions of interactions affect their 
inference on interaction structure and emergent ecological dynam-
ics to ensure parameterization is appropriate.

Third,	the	locational	error	of	GPS	data	can	also	shape	uncertainty	
in	 the	 interaction	estimates.	When	 this	 is	known	 to	be	a	concern,	
new	 error-	informed	CTMMs	 can	 account	 for	GPS	 errors	 (Fleming	
et al., 2020).	Additionally,	GPS	data	combined	with	motion	sensor-	
derived	 information	 on	 heading	 and	 speed	 can	 be	 used	 to	 recon-
struct	fine-	scale	movement	paths	(Gunner	et	al.,	2021).	Finally,	the	
timescale	of	the	CTMM	interpolation	can	also	impact	the	estimation	
of	interactions.	While	the	“optimal”	timescale	(e.g.,	1-	min	vs.	5-	min	
interpolation)	will	be	a	balance	between	the	biology	of	the	system	
and	computational	capacity,	system-	specific	knowledge	can	reason-
ably	inform	a	biologically	reasonable	interpolation	interval.	Missing	
an	interaction	that	is	less	than	1 minute	in	length	might	be	irrelevant	

F I G U R E  5 Spatial	distribution	of	intensity	of	weighted	direct	and	indirect	interactions	in	two	empirical	systems.	Labels	along	the	top	
are	as	described	in	Figure 4.	A	positive	number	in	the	“Difference”	map	indicates	that	the	intensity	of	the	downsampled	CTMM-	interaction	
weight	at	the	location	is	higher	than	the	observed	interaction	weight,	while	a	negative	value	indicates	that	the	intensity	of	downsampled	
CTMM-	interaction	weight	at	the	location	is	lower	than	the	observed	interaction	weight.	In	the	Difference	column,	we	highlighted	some	
areas	with	variations	in	differences	between	the	downsampled	CTMM-	interaction	weights	and	observed	interaction	weights	in	magnified	
sections.
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for some types of interactions (e.g., a consumer– resource interac-
tion)	such	that	a	1-	min	interpolation	is	sufficient.

4.4  |  Limitations and future directions

As	 with	 all	 methods	 that	 estimate	 interaction	 rates,	 some	 of	 the	
interactions	 might	 not	 be	 relevant	 to	 the	 ecological	 processes	 of	
interest	 depending	on	 animal	 behaviors.	 Particular	 host	 behaviors	
or environmental conditions at the time of interaction could have 
asymmetric	effects	on	those	processes	(Manlove	et	al.,	2022).	A	key	
advantage	of	our	method	is	that	by	framing	our	estimation	of	inter-
action in terms of spatial and temporal encounter functions, it can 
be	readily	extended	to	integrate	how	animal	behaviors,	movement	
speed, and landscape covariates affect direct or indirect interaction 
rates. For example, in predator– prey systems surrounding land cover 
might greatly reduce the extent of the spatial encounter function 
(hunting in a forest might yield a smaller spatial encounter function 
than	hunting	 in	a	grassland)	and	behavior	of	prey	can	 impact	pre-
dation success (e.g., crypsis might make prey temporarily unavail-
able	despite	being	with	the	spatial	encounter	radius	of	a	predator).	
In	 disease	 systems,	 foraging/ruminating	 behaviors	might	 relate	 to	
pathogen	 acquisition	 and	 can	be	 estimated	by	 incorporating	 cam-
era data or path segmentation approaches, offering a next step for 
future	 studies	 (Wilber	 et	 al.,	2022).	 If	 directional	 data	were	 avail-
able	in	tandem	with	animal	movement	data,	we	could	incorporate	an	

additional term in our interaction kernel that weighted the instanta-
neous	weight	of	an	interaction	based	on	the	direction	two	animals	
were facing.

The	current	CTMM-	Interaction	method	is	a	data-	driven	method	
for	estimating	interaction	heterogeneities	in	nature.	We	applied	the	
method	to	wildlife	disease	systems;	however,	our	approach	can	be	
adapted to other contexts where interactions among individuals play 
a key role. Because of its mechanistic underpinnings in movement 
and	interaction	ecology,	CTMM-	Interaction	can	be	expanded	to	in-
corporate	a	mechanistic	linkage	between	interaction	structure	and	
environmental conditions and host demography. These mechanistic 
underpinnings allow the method to make predictions of interaction 
heterogeneities	in	other	ecological	settings	using	data	from	a	subset	
of	conditions—	a	much-	needed	advancement	in	multiple	fields	in	an-
imal ecology.

AUTHOR CONTRIBUTIONS
Anni Yang:	Conceptualization	 (equal);	data	curation	 (equal);	 formal	
analysis	(equal);	methodology	(equal);	validation	(equal);	visualization	
(equal);	writing	–		original	draft	(equal);	writing	–		review	and	editing	
(equal).	Mark Quentin Wilber:	Conceptualization	(equal);	data	cura-
tion	 (equal);	 methodology	 (equal);	 validation	 (equal);	 writing	 –		 re-
view	and	editing	(equal).	Kezia Manlove:	Conceptualization	(equal);	
investigation	 (equal);	 visualization	 (equal);	 writing	 –		 review	 and	
editing	 (equal).	Ryan S. Miller:	Conceptualization	 (equal);	writing	–		
review	and	editing	 (equal).	Raoul Boughton:	Data	curation	 (equal);	

TA B L E  3 Network	metrics	summarized	in	two	empirical	systems	with	direct	and	indirect	interaction	weights	combined.

FL wild pig observed downsampled CTMM 1 min CTMM

Modularity 0.22 0.20 0.21

transitivity 0.69 0.74 0.74

Edge density 0.28 0.46 0.46

Outdegree NB	(5.94,5.40),	x =	[0,10] NB (x, mean = 11.58, var =	24.95),	x =	[0,14] NB (x, mean = 11.58, var =	24.95),	
x =	[0,14]

Indegree NB	(4.23,5.40),	x =	[0,10] NB (x, mean = 7.26, var =	13.90),	x =	[0,14] NB (x, mean = 7.26, var =	13.90),	
x =	[0,14]

Outstrength Exp (x, λ =	0.006),	x =	[0,528.69] Exp (x, λ =	0.012),	x =	0,	251.62] Exp (x, λ =	5.86 e−5),	x =	[0,	
58735.53]

Instrength Exp (x, λ =	0.006),	x =	[0,543.01] Exp (x, λ =	0.012),	x =	0,	243.63] Exp (x, λ =	5.86 e−5),	x =	[0,	
59839.9]

CO Mule Deer

Modularity −0.004 −0.02 0.02

transitivity 0.78 0.88 0.88

Edge density 0.59 0.73 0.73

Outdegree NB (x, mean = 26.91 var =	42.31),	
x =	[10,38]

NB (x, mean = 33.38, var =	56.84),	x =	[15,43] NB (x, mean = 33.38, var =	56.84),	
x =	[15,43]

Indegree NB (x, mean = 26.91 var =	42.31),	
x =	[2,42]

NB (x, mean = 33.38, var =	57.85),	x =	[2,46] NB (x, mean = 33.38, var =	57.85),	
x =	[2,46]

Outstrength Exp (x, λ =	0.009),	x =	[1.95,	
496.03]

Exp (x, λ =	0.001),	x =	[0.89,	2954.89] Exp (x, λ =	1.30 e−5),	x =	[71.98,	
308836.80]

Instrength Exp (x, λ =	0.009),	x =	[0.04,	
559.50]

Exp (x, λ =	0.001),	x =	[27.22,	6149.5] Exp (x, λ =	1.30 e−5),	x =	[2478.73,	
239829.48]



    |  13 of 14YANG et al.

writing	–		review	and	editing	 (equal).	James Beasley: Data curation 
(equal);	writing	–		 review	and	editing	 (equal).	 Joseph M. Northrup: 
Data	 curation	 (equal);	 writing	 –		 review	 and	 editing	 (equal).	 Kurt 
Vercauteren:	 Data	 curation	 (equal);	 writing	 –		 review	 and	 editing	
(equal).	George Wittemyer:	 Conceptualization	 (equal);	 project	 ad-
ministration	(equal);	supervision	(equal);	writing	–		review	and	editing	
(equal).	Kim Pepin:	Conceptualization	(equal);	data	curation	(equal);	
project	administration	(equal);	supervision	(equal);	writing	–		review	
and	editing	(equal).

ACKNOWLEDG MENTS
The	 project	was	 supported	 by	USDA-	APHIS	National	 Feral	 Swine	
Damage	 Management	 Program.	 We	 thank	 Archbold	 Buck	 Island	
Ranch	 for	 allowing	 this	work	 to	be	performed	upon	 the	property.	
We	 thank	 C.	 Anderson,	 K.	Wilson,	 L.	Wolfe,	 and	 numerous	 field	
technicians for mule deer field assistance. Funding and support for 
mule	 deer	 project	 were	 provided	 by	 Colorado	 Parks	 and	Wildlife	
(CPW),	White	 River	 Field	Office	 of	 Bureau	 of	 Land	Management,	
ExxonMobil	 Production/XTO	 Energy,	 Federal	 Aid	 in	 Wildlife	
Restoration	 (W-	185-	R),	Safari	Club	 International	and	the	Colorado	
State	Severance	Tax.

CONFLIC T OF INTERE S T S TATEMENT
All	authors	declare	no	conflict	of	interest.

DATA AVAIL ABILIT Y S TATEMENT
Data	will	be	available	on	Dryad	Digital	Repository.	Example	codes	
are	available	at	https://github.com/Anni-	Yang/ctmm-	inter	action.

ORCID
Anni Yang  https://orcid.org/0000-0002-9535-2193 
Mark Q. Wilber  https://orcid.org/0000-0002-8274-8025 
Kezia R. Manlove  https://orcid.org/0000-0002-7200-5236 
Ryan S. Miller  https://orcid.org/0000-0003-3892-0251 
James Beasley  https://orcid.org/0000-0001-9707-3713 
George Wittemyer  https://orcid.org/0000-0003-1640-5355 
Kim Pepin  https://orcid.org/0000-0002-9931-8312 

R E FE R E N C E S
Albery,	G.	F.,	Kirkpatrick,	L.,	Firth,	J.	A.,	&	Bansal,	S.	(2021).	Unifying	spa-

tial and social network analysis in disease ecology. Journal of Animal 
Ecology, 90(1),	45–	61.

Boehm,	M.,	Hutchings,	M.	R.,	&	White,	P.	C.	(2009).	Contact	networks	in	
a	wildlife-	livestock	host	community:	Identifying	high-	risk	individu-
als	in	the	transmission	of	bovine	TB	among	badgers	and	cattle.	PLoS 
One, 4(4),	e5016.

Cairns,	S.	J.,	&	Schwager,	S.	J.	(1987).	A	comparison	of	association	indices.	
Animal Behaviour, 35(5),	1454–	1469.

Calabrese,	J.	M.,	Fleming,	C.	H.,	&	Gurarie,	E.	(2016).	ctmm:	An	R	package	
for	analyzing	animal	relocation	data	as	a	continuous-	time	stochas-
tic process. Methods in Ecology and Evolution, 7(9),	1124–	1132.

Coleman,	B.	 T.,	&	Hill,	 R.	A.	 (2014).	 Living	 in	 a	 landscape	of	 fear:	 The	
impact	of	predation,	resource	availability	and	habitat	structure	on	
primate range use. Animal Behaviour, 88, 165– 173.

Davies,	 K.,	 Goatley,	 L.	 C.,	 Guinat,	 C.,	 Netherton,	 C.	 L.,	 Gubbins,	 S.,	
Dixon,	 L.	K.,	&	Reis,	A.	 L.	 (2017).	 Survival	of	African	 swine	 fever	

virus in excretions from pigs experimentally infected with the 
Georgia 2007/1 isolate. Transboundary and Emerging Diseases, 64(2),	
425– 431.

Dougherty,	E.	R.,	Seidel,	D.	P.,	Carlson,	C.	J.,	Spiegel,	O.,	&	Getz,	W.	M.	
(2018).	Going	through	the	motions:	Incorporating	movement	analy-
ses into disease research. Ecology Letters, 21(4),	588–	604.

Fieberg,	J.,	Matthiopoulos,	J.,	Hebblewhite,	M.,	Boyce,	M.	S.,	&	Frair,	J.	
L.	 (2010).	 Correlation	 and	 studies	 of	 habitat	 selection:	 Problem,	
red herring or opportunity? Philosophical Transactions of the Royal 
Society B: Biological Sciences, 365(1550),	2233–	2244.

Fleming,	C.	H.,	Drescher-Lehman,	J.,	Noonan,	M.	J.,	Akre,	T.	S.,	Brown,	
D.	 J.,	 Cochrane,	 M.	 M.,	 Dejid,	 N.,	 DeNicola,	 V.,	 DePerno,	 C.	 S.,	
Dunlop,	 J.	 N.,	 Gould,	 N.	 P.,	 Harrison,	 A.	 -L.,	 Hollins,	 J.,	 Ishii,	 H.,	
Kaneko,	Y.,	Kays,	R.,	Killen,	S.	S.,	Koeck,	B.,	Lambertucci,	S.	A.,	….	
Calabrese,	M.	(2020).	A	comprehensive	framework	for	handling	lo-
cation error in animal tracking data. bioRxiv, 2020– 06. https://doi.
org/10.1101/2020.06.12.130195

Gilbertson,	M.	 L.,	White,	 L.	 A.,	 &	Craft,	M.	 E.	 (2021).	 Trade-	offs	with	
telemetry-	derived	contact	networks	for	infectious	disease	studies	
in wildlife. Methods in Ecology and Evolution, 12(1),	76–	87.

Gunner,	R.	M.,	Holton,	M.	D.,	Scantlebury,	M.	D.,	van	Schalkwyk,	O.	L.,	
English,	H.	M.,	Williams,	H.	 J.,	Hopkins,	 P.,	Quintana,	 F.,	 Gómez-	
Laich,	A.,	&	Börger,	L.	 (2021).	Dead-	reckoning	animal	movements	
in	R:	A	reappraisal	using	Gundog.	Tracks.	Animal Biotelemetry, 9(1),	
1– 37.

Gurarie,	E.,	&	Ovaskainen,	O.	(2013).	Towards	a	general	formalization	of	
encounter rates in ecology. Theoretical Ecology, 6(2),	189–	202.

Herbert-	Read,	J.	E.,	Krause,	S.,	Morrell,	L.,	Schaerf,	T.,	Krause,	J.,	&	Ward,	
A.	 (2013).	The	role	of	 individuality	 in	collective	group	movement.	
Proceedings of the Royal Society B: Biological Sciences, 280(1752),	
20122564.

Hooten,	M.	B.,	Scharf,	H.	R.,	&	Morales,	J.	M.	(2019).	Running	on	empty:	
Recharge dynamics from animal movement data. Ecology Letters, 
22(2),	377–	389.

Hooten,	M.	B.,	&	Johnson,	D.	S.	(2017).	Basis	function	models	for	animal	
movement. Journal of the American Statistical Association, 112(518),	
578– 589.

Johnson,	 D.	 S.,	 London,	 J.	 M.,	 Lea,	 M.-	A.,	 &	 Durban,	 J.	 W.	 (2008).	
Continuous-	time	correlated	random	walk	model	for	animal	teleme-
try data. Ecology, 89(5),	1208–	1215.

Kauffman,	 K.,	Werner,	 C.	 S.,	 Titcomb,	 G.,	 Pender,	M.,	 Rabezara,	 J.	 Y.,	
Herrera,	J.	P.,	Shapiro,	J.	T.,	Solis,	A.,	Soarimalala,	V.,	&	Tortosa,	P.	
(2022).	Comparing	 transmission	potential	 networks	based	on	 so-
cial network surveys, close contacts and environmental overlap 
in	rural	Madagascar.	Journal of the Royal Society Interface, 19(186),	
20210690.

Kays,	R.,	Crofoot,	M.	C.,	Jetz,	W.,	&	Wikelski,	M.	(2015).	Terrestrial	animal	
tracking as an eye on life and planet. Science, 348(6240),	aaa2478.

Kenward,	 R.,	 Hodder,	 K.	 H.,	 Rose,	 R.,	Walls,	 C.,	 Parish,	 T.,	 Holm,	 J.,	
Morris,	P.,	Walls,	S.,	&	Doyle,	F.	(1998).	Comparative	demography	
of	 red	 squirrels	 (Sciurus vulgaris)	 and	 grey	 squirrels	 (Sciurus car-
olinensis)	 in	deciduous	and	conifer	woodland.	Journal of Zoology, 
244(1),	7–	21.

Krivan,	 V.	 (1997).	 Dynamic	 ideal	 free	 distribution:	 Effects	 of	 optimal	
patch	choice	on	predator-	prey	dynamics.	The American Naturalist, 
149(1),	164–	178.

Kukielka,	 E.,	 Barasona,	 J.	 A.,	 Cowie,	 C.	 E.,	 Drewe,	 J.,	 Gortazar,	 C.,	
Cotarelo,	I.,	&	Vicente,	J.	(2013).	Spatial	and	temporal	interactions	
between	livestock	and	wildlife	in	south	Central	Spain	assessed	by	
camera traps. Preventive Veterinary Medicine, 112(3–	4),	213–	221.

Lafferty,	K.	D.,	DeLeo,	G.,	Briggs,	C.	J.,	Dobson,	A.	P.,	Gross,	T.,	&	Kuris,	A.	
M.	(2015).	A	general	consumer-	resource	population	model.	Science, 
349(6250),	854–	857.

Long,	J.	A.,	Webb,	S.	L.,	Harju,	S.	M.,	&	Gee,	K.	L.	(2022).	Analyzing	con-
tacts	 and	 behavior	 from	 high	 frequency	 tracking	 data	 using	 the	
wildlifeDI R package. Geographical Analysis., 54, 648– 663.

https://github.com/Anni%E2%80%90Yang/ctmm%E2%80%90interaction
https://orcid.org/0000-0002-9535-2193
https://orcid.org/0000-0002-9535-2193
https://orcid.org/0000-0002-8274-8025
https://orcid.org/0000-0002-8274-8025
https://orcid.org/0000-0002-7200-5236
https://orcid.org/0000-0002-7200-5236
https://orcid.org/0000-0003-3892-0251
https://orcid.org/0000-0003-3892-0251
https://orcid.org/0000-0001-9707-3713
https://orcid.org/0000-0001-9707-3713
https://orcid.org/0000-0003-1640-5355
https://orcid.org/0000-0003-1640-5355
https://orcid.org/0000-0002-9931-8312
https://orcid.org/0000-0002-9931-8312
https://doi.org/10.1101/2020.06.12.130195
https://doi.org/10.1101/2020.06.12.130195


14 of 14  |     YANG et al.

Manlove,	 K.,	 Wilber,	 M.,	 White,	 L.,	 Bastille-	Rousseau,	 G.,	 Yang,	 A.,	
Gilbertson,	M.	L.,	Craft,	M.	E.,	Cross,	P.	C.,	Wittemyer,	G.,	&	Pepin,	
K.	M.	(2022).	Defining	an	epidemiological	landscape	that	connects	
movement	 ecology	 to	 pathogen	 transmission	 and	 pace-	of-	life.	
Ecology Letters, 25(8),	1760–	1782.

Martinez-	Garcia,	 R.,	 Fleming,	 C.	 H.,	 Seppelt,	 R.,	 Fagan,	 W.	 F.,	 &	
Calabrese,	J.	M.	(2020).	How	range	residency	and	long-	range	per-
ception change encounter rates. Journal of Theoretical Biology, 498, 
110267.

Noonan,	M.	 J.,	Martinez-	Garcia,	R.,	Davis,	G.	H.,	Crofoot,	M.	C.,	Kays,	
R.,	Hirsch,	B.	T.,	Caillaud,	D.,	Payne,	E.,	Sih,	A.,	&	Sinn,	D.	L.	(2021).	
Estimating	 encounter	 location	 distributions	 from	 animal	 tracking	
data. Methods in Ecology and Evolution, 12(7),	1158–	1173.

Northrup,	 J.	 M.,	 Anderson,	 C.	 R.,	 Jr.,	 Gerber,	 B.	 D.,	 &	Wittemyer,	 G.	
(2021).	 Behavioral	 and	 demographic	 responses	 of	 mule	 deer	 to	
energy development on winter range. Wildlife Monographs, 208(1),	
1– 37.

Raybeck,	 D.	 (2014).	 Predator—	Prey	 models	 and	 contact	 consider-
ations.	 In	 Vakoch,	 D.	 A.	 (Ed.),	 Extraterrestrial Altruism (pp. 49– 
63).	Springer.

Richardson,	T.	O.,	&	Gorochowski,	 T.	 E.	 (2015).	Beyond	 contact-	based	
transmission networks: The role of spatial coincidence. Journal of 
the Royal Society Interface, 12(111),	20150705.

Rivera,	 N.	 A.,	 Brandt,	 A.	 L.,	 Novakofski,	 J.	 E.,	 &	Mateus-	Pinilla,	 N.	 E.	
(2019).	Chronic	wasting	disease	in	cervids:	Prevalence,	impact	and	
management strategies. Veterinary Medicine: Research and Reports, 
10, 123.

Robert,	K.,	Garant,	D.,	&	Pelletier,	F.	 (2012).	Keep	 in	 touch:	Does	spa-
tial	 overlap	 correlate	with	 contact	 rate	 frequency?	The Journal of 
Wildlife Management, 76(8),	1670–	1675.

Robitaille,	A.	L.,	Webber,	Q.	M.	R.,	&	Vander	Wal,	E.	(2019).	Conducting	
social network analysis with animal telemetry data: applications 
and methods using spatsoc. Methods in Ecology and Evolution, 10, 
1203– 1211.

Sands,	O.	S.,	Connolly,	J.	W.,	Welch,	B.	W.,	Carpenter,	J.	R.,	Ely,	T.	A.,	&	
Berry,	K.	(2006).	Dilution of precision- based lunar navigation assess-
ment for dynamic position fixing. 260– 268.

Turner,	W.	C.,	Kausrud,	K.	L.,	Krishnappa,	Y.	S.,	Cromsigt,	J.	P.,	Ganz,	H.	
H.,	Mapaure,	I.,	Cloete,	C.	C.,	Havarua,	Z.,	Küsters,	M.,	&	Getz,	W.	
M.	(2014).	Fatal	attraction:	Vegetation	responses	to	nutrient	inputs	
attract	herbivores	to	infectious	anthrax	carcass	sites.	Proceedings of 
the Royal Society B: Biological Sciences, 281(1795),	20141785.

Webber,	Q.	M.,	&	Vander	Wal,	E.	(2019).	Trends	and	perspectives	on	the	
use	of	animal	social	network	analysis	in	behavioural	ecology:	A	bib-
liometric approach. Animal Behaviour, 149, 77– 87.

Wilber,	M.	Q.,	Yang,	A.,	Boughton,	R.,	Manlove,	K.	R.,	Miller,	R.	S.,	Pepin,	
K.	M.,	&	Wittemyer,	G.	(2022).	A	model	for	leveraging	animal	move-
ment	 to	 understand	 spatio-	temporal	 disease	 dynamics.	 Ecology 
Letters, 25, 1290– 1304.

Yang,	 A.,	 Boughton,	 R.	 K.,	 Miller,	 R.	 S.,	 Wight,	 B.,	 Anderson,	 W.	 M.,	
Beasley,	 J.	C.,	VerCauteren,	K.	C.,	 Pepin,	K.	M.,	&	Wittemyer,	G.	
(2021).	Spatial	variation	in	direct	and	indirect	contact	rates	at	the	
wildlife-	livestock	 interface	 for	 informing	 disease	 management.	
Preventive Veterinary Medicine, 194, 105423.

Yang,	A.,	Gomez,	 J.	P.,	Haase,	C.	G.,	Proffitt,	K.	M.,	&	Blackburn,	 J.	K.	
(2019).	Effects	of	brucellosis	serologic	status	on	physiology	and	be-
havior	of	Rocky	Mountain	elk	(Cervus	canadensis	Nelsoni)	in	south-
western	Montana,	USA.	Journal of Wildlife Diseases, 55(2),	304–	315.

Yang,	A.,	Proffitt,	K.	M.,	Asher,	V.,	Ryan,	S.	J.,	&	Blackburn,	J.	K.	(2021).	
Sex-Specific	Elk	Resource	Selection	during	the	Anthrax	Risk	Period.	
The Journal of Wildlife Management, 85(1),	145–	155.

Yang,	A.,	Schlichting,	P.,	Wight,	B.,	Anderson,	W.	M.,	Chinn,	S.	M.,	Wilber,	
M.	Q.,	Miller,	R.	S.,	Beasley,	J.	C.,	Boughton,	R.	K.,	&	VerCauteren,	
K.	C.	(2021).	Effects	of	social	structure	and	management	on	risk	of	
disease	establishment	in	wild	pigs.	Journal of Animal Ecology, 90(4),	
820– 833.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Yang,	A.,	Wilber,	M.	Q.,	Manlove,	K.	
R.,	Miller,	R.	S.,	Boughton,	R.,	Beasley,	J.,	Northrup,	J.,	
VerCauteren,	K.	C.,	Wittemyer,	G.,	&	Pepin,	K.	(2023).	
Deriving spatially explicit direct and indirect interaction 
networks from animal movement data. Ecology and Evolution, 
13, e9774. https://doi.org/10.1002/ece3.9774

https://doi.org/10.1002/ece3.9774

	Deriving spatially explicit direct and indirect interaction networks from animal movement data
	
	Authors

	Deriving spatially explicit direct and indirect interaction networks from animal movement data
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|Constructing CTMM-Interaction networks
	2.2|Accounting for different ecological interactions
	2.3|Assessment of CTMM-Interaction method using simulations
	2.4|Application of CTMM-Interaction method to empirical systems
	2.4.1|GPS data
	2.4.2|Extracting CTMM-interaction networks
	2.4.3|Comparing CTMM and observed interaction network


	3|RESULTS
	3.1|Performance of CTMM-interaction method in simulations
	3.2|Transmission matrix and spatial distributions

	4|DISCUSSION
	4.1|Why leverage telemetry movement data?
	4.2|Why implementing CTMMs before the estimation of interactions?
	4.3|Potential errors and uncertainties
	4.4|Limitations and future directions

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


