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HIGHLIGHTS 
 Accounting for variability and uncertainty empowers stakeholders to make better-informed decisions. 
 Considering spatial and temporal sources of variability contributes to more robust modeling systems. 
 Stochastic methods that factor in uncertainty contribute to a better understanding of the FEW nexus systems. 
 A robust modeling system will contribute to the design of resilient FEW nexus systems. 

ABSTRACT. A nexus approach contributes to the strategic allocation of resources to secure food, energy, and water for the 
world population. Integrated models considering the complex interactions across food, energy, and water (FEW) enhance 
decision-making and strategic planning towards resilience. However, a significant number of the existing integrated models 
leave unaddressed the inherent variability and uncertainty present in the FEW sectors. Here, we review the importance of 
characterizing variability over spatial and temporal scales and the importance of decreasing the uncertainty present within 
a FEW nexus systems. The review also discusses existing modeling tools that address variability and uncertainty on single 
and paired elements of the FEW nexus systems, as well as integrated tools that address the sources of variability and un-
certainty across the nexus. Finally, the review highlights the opportunity to address the limitations of existing models 
through multidisciplinary approaches and the potential to integrate publicly available models, as has already been the case 
for single and coupled elements of the FEW nexus. Addressing variability and uncertainty would improve the robustness of 
a FEW systems modeling and would provide stakeholders with the capacity to make better-informed decisions. 

Keywords. Climate variability, Food-water-energy nexus, Modeling, Spatial variability, Temporal variability, Uncertainty. 

ood, energy, and water security are fundamental to 
sustainable development, for which balancing the 
social, environmental, and economic dimensions is 
of great importance to meet the world's increasing 

demand. A nexus approach studies the complex interactions 
within Food-Energy-Water (FEW) systems, exploring po-
tential trade-offs and synergies toward the strategic alloca-
tion of resources. 

While the nexus concept has evolved since it was pre-
sented at the 2011 Bonn Conference (Hoff, 2011), and some 
analytical frameworks have developed accordingly, there is 
a need to (1) account for relevant inherent variability over 
spatial and temporal scales, and (2) reduce uncertainty 
within the nexus to provide more reliable information to de-
cision-makers and policy planning. So far, few studies have 
focused on dealing with variability and uncertainty within a 
FEW nexus framework to support decision-making and pol-
icy development. 

This literature review presents existing approaches to 
manage variability and uncertainty within the FEW nexus. 

First, the review discusses the importance of characterizing 
variability over time and space and the importance of de-
creasing uncertainty in key elements of the FEW nexus. Sec-
ond, the review analyzes existing modeling tools that ac-
count for variability and uncertainty on single or paired ele-
ments of a FEW nexus. Third, the review discusses the fea-
sibility of integrating existent models to understand the in-
teractions, trade-offs, and potential synergies among FEW 
integrated systems. 

FOOD-ENERGY-WATER NEXUS 

DEFINITION 
The U.S. Geological Survey (USGS) defines the food-en-

ergy-water nexus as "the association of interactions that link 
water, energy, and food resources in a common system" 
(Friedel et al., 2021). Kurian (2017) expands the concept be-
yond the mere interaction of resources, defining the FEW 
nexus approach as "an expression of trade-offs, synergies, 
and resource optimization potential that is a function of the 
relationship between environmental resources and public 
service delivery, and institutional and environmental risks." 
Examining trade-offs and synergies under a nexus approach 
promotes integrated management and governance across 
sectors and scales while avoiding critical unintended 
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consequences of policies developed in "silos" or that only 
consider one-way exchanges among coupled elements 
(Eftelioglu et al., 2017; Yillia, 2016). The concept of nexus 
increases the understanding of the inextricable links across 
food, energy, and water systems and provides a framework 
to develop multidisciplinary collaborations toward water, 
energy, and food security. In addition, the FEW nexus also 
embraces the economic aspects of decision-making and effi-
cient resource allocation to harmonize economic growth 
with environmental and social responsibilities. 

Although research, academic, and government institu-
tions have worked to understand and simulate the interac-
tions within the FEW nexus, more can be done to develop 
strategies with synergistic effects to enhance the resilience 
of food, energy, and water (D'Odorico et al. 2018). Given the 
natural variability inherent within biological systems, there 
is a need to account for spatial and temporal sources of var-
iability (McGrane et al., 2019). Addressing potential vulner-
abilities posed by the inherent variability and uncertainty af-
fecting the FEW nexus is tied to the understanding of the 
systems resilience, availability, and access to all the re-
sources linked to the FEW nexus (Hoff, 2011; Hussien et al., 
2018; Bauer et al., 2014). 

Concerns over water availability and water quality have 
become more prominent given the trends in climate change, 
growing population, demographic changes, the introduction 
of new technologies, and policy development (Eftelioglu et 
al., 2017; New et al., 2022; Samir and Wolfgang, 2017; 
Bauer et al., 2014). Existent climate models suggest that 
some highly productive lands may increasingly face extreme 
weather conditions such as drought and floods (Kling et al., 
2017; New et al., 2022). 

In mid-February 2021, the Central United States experi-
enced extreme winter weather events that disrupted the sup-
ply and demand of food, energy, and water. The record cold 
temperatures and heavy snow damaged the energy infra-
structure and caused a spike in energy demand. As a result, 
Texas reported more than 4 million customers without 
power. The power outages also affected the water supply, 
water quality, and food supply chain (U.S. Department of 
Energy, 2021). 

Food insecurity was already rising before COVID-19, 
with the population affected by moderate or severe food in-
security going from 22.4% in 2014 to 25.9% in 2019 (United 
Nations, 2020). According to the World Bank, the 
COVID-19 pandemic triggered an economic recession that 
will add almost 90 million people to the extreme poverty 
group, the first increase since 1998 (International Monetary 
Fund, 2020; United Nations, 2020), and threatens the conti-
nuity of progress made on food, energy, and water security. 

Both the pandemic and the record cold temperatures in 
Texas during 2021 exemplify the interconnections between 
food, energy, and water, and how constraints on any of these 
elements lead to vulnerabilities linked to other elements of 
the nexus system, including economic and social welfare. 
Stakeholders could prepare better to respond to these kinds 
of unanticipated events with a better understanding of the 
FEW nexus (Eftelioglu et al., 2017). Integrated modeling  
 

frameworks characterizing variability and reducing uncer-
tainty would provide better information to decision-makers 
and policy planning. 

VARIABILITY AND UNCERTAINTY  
IN THE FEW NEXUS 

Careful consideration of variability and uncertainty is rel-
evant to supporting informed decision-making, increasing 
confidence in the estimates, facilitating more robust anal-
yses, and providing critical information to the risk-assess-
ment process. Some authors treat variability as a component 
of uncertainty, concluding that one contributes to the other. 
However, the National Research Council recommends treat-
ing them as separate concepts (Institute of Medicine, 2013; 
National Research Council, 2009). 

Variability refers to the natural heterogeneity across ob-
servations. Since variability is an inherent property of a pop-
ulation, it cannot be reduced but can be better characterized. 
Variance and standard deviation are two common measures 
of variability (U.S. EPA, 2011). We can observe variability 
in biological processes within the FEW nexus systems over 
spatial and temporal scales. 

Uncertainty arises from a lack of knowledge or data gaps; 
thus, it can be reduced with more or better data and a better 
understanding of the process (U.S. EPA, 2011). Quantitative 
modeling and futures thinking are two common approaches 
to addressing uncertainty. Quantitative modeling uses a 
probability distribution built upon the likelihood of a single 
outcome's value. Futures thinking embraces uncertainty by 
developing actions that respond to future trends or risks 
identified in the multiple scenarios considered (Yung et al., 
2019). The futures thinking approach considers multiple 
possibilities that integrate quantitative and qualitative meth-
ods such as the Delphi method (expert panels), visioning 
(imagining the ideal future), and scenario planning (Begg et 
al., 2014; Maier et al., 2016; Yung et al., 2019). 

Fuzzy cognitive maps (FCM) is a popular method based 
on scenario planning that incorporates fuzzy logic to quan-
tify the nature of the interactions within the study case (Amer 
et al., 2013). For example, Ziv et al. (2018) applied FCM to 
analyze the consequences of Brexit for the food, energy, and 
water demand of the United Kingdom (U.K.). As a result, 
Ziv et al. (2018) highlighted the critical interactions involved 
in the FEW nexus and identified gross domestic product, 
regulation, U.K. population size, and net migration to the 
U.K. as four critical elements significantly impacted by the 
withdrawal of the U.K. from the European Union. In addi-
tion, the researchers concluded that energy demand would 
be the most affected by a change in gross domestic product, 
while the size of the U.K. population would affect water and 
food demand. 

Modeling a FEW nexus with an inadequate characteriza-
tion of variability and high uncertainty will reduce the con-
fidence in the estimates and will fail to identify potential vul-
nerabilities of the FEW nexus. This section outlines the types 
of variabilities and uncertainties found in a FEW nexus. 
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SPATIAL VARIABILITY 
Land and water characteristics exhibit sizeable spatial 

variability, explained by the soil characteristics, which de-
termine the regional capacity to capture water, retain nutri-
ents, produce food, and generate energy. Spatial variability 
is also tied to landscape position and to climate conditions 
(D'Odorico et al., 2018; Eftelioglu et al., 2017; Maestrini and 
Basso, 2018). Energy demand shows regional variability 
based on energy requirements for the water system, quality 
of water sources, and pumping needs (Bauer et al., 2014). 
Indicators such as water footprint and energy footprint also 
show spatial variation. Mekonnen et al. (2018) determined 
the value of measuring sustainability with these environmen-
tal indicators on a higher spatial resolution level. In addition, 
they demonstrated how the indicators at a state level provide 
more information than the same indicators at a national level. 

Spatial variability in crop production has been managed 
through precision-agriculture technologies such as Global 
Positioning System (GPS), Geographic Information System 
(GIS), Reacting Technology (R.T.), Global Navigation Sat-
ellite System (GNSS), and nanobiosensors (Abobatta, 2020). 
The information available at a higher spatial resolution con-
tributes to developing effective zone-specific management 
practices based on more specific nitrogen needs, water hold-
ing capacity, and water use patterns (Hatfield, 2012). How-
ever, the high costs of these technologies make the invest-
ment primarily feasible for more extensive agricultural op-
erations, and access is still a challenge for small farmers 
(Castle et al., 2016).    

Incorporating spatial information contributes to develop-
ing robust models (Monhollon, 2020) for crops, livestock, 
bio-industry, and agricultural activities in general. For in-
stance, models accounting for spatial autocorrelation have 
been developed to improve decision-making related to logis-
tics and the location of bio-industrial facilities (Sharma et al., 
2017; Stewart and Lambert, 2011). 

Nowadays, more geographic information is available and 
more advances in spatial data-driven solutions complement 
the strategies based only on social or physical science per-
spectives (Eftelioglu et al., 2017). 

Regional economies develop based on available re-
sources and other competitive advantages, incentivizing in-
vestment. Regions with a vast groundwater supply have a 
comparative advantage that favors local agriculture, live-
stock operations, and biofuel production, and regions with 
reduced access to water need to overcome more challenges 
to build a local economy around the FEW nexus. For exam-
ple, optimal locations for bioethanol plants consider access 
to feedstocks, water availability, transportation infrastruc-
ture, and access to demand (Sharma et al., 2017; Stewart and 
Lambert, 2011). Stewart and Lambert (2011) concluded that 
access to feedstock, local incentives, and the absence of op-
erating ethanol plants were critical factors in determining 
new ethanol plant locations during the expansion of the eth-
anol industry from 2000 to 2007. 

It is not simply by chance that the six states with the high-
est ethanol production volumes are among the top 10 corn 
producers in the United States: Iowa, Nebraska, Illinois, 
Minnesota, Indiana, and South Dakota. These states are also 
part of the Corn Belt region, which is primarily rainfed but 

also has irrigation water sources such as the Ogallala Aqui-
fer, the Platte River, and the Arkansas River (Green et al., 
2018). Let us note that the corn belt also supplies corn and 
distillers' grains to the livestock industry, and the livestock 
industry offers manure as a fertilizer for crops. Besides, at 
the end of 2021, beef cattle production in these six states 
added up to 5.48 million heads, or 17% of the total beef cattle 
produced at the national level (USDA, 2022). 

TEMPORAL VARIABILITY 
Temporal variability can be analyzed over different time 

scales based on the temporal resolution of the information 
available, the nature of the parameters being measured, and 
the purpose of the analysis. For example, crop models may 
require daily weather parameters, while land-use change 
models usually require annual parameters (Jones et al., 2003; 
Verstegen et al., 2012).   

Much of the variability observed over time in the FEW 
nexus is influenced by climate patterns because climate af-
fects water and sun radiation availability, among other re-
sources needed for energy, agriculture, and livestock pro-
duction. The increasing trend in ranges of climate variability 
and the number and intensity of extreme events prompts con-
cerns about the resilience of agricultural and food systems 
and, therefore, water and energy systems. 

Although natural and human systems have been dealing 
with climate variability for ages, it was until about 20 years 
ago that the IPCC projected that anthropogenic climate 
change would affect daily, seasonal, inter-annual, and deca-
dal variability (IPCC, 2001). According to Holleman et al. 
(2020), climate variability and extreme events over agricul-
tural areas have doubled since the 1990s. 

Climate variations do not seem to follow a random distri-
bution over space and time; rather, they frequently follow 
relatively consistent patterns over regions, while their ampli-
tude, phase, and geographic position change over time (Na-
tional Research Council, 1998). 

Two key climate parameters are temperature and precip-
itation. The largest source of year-to-year variability in 
global temperatures typically comes from El Niño Southern 
Oscillation (ENSO). Rosenzweig and Hillel (2008) refer to 
El Niño Oscillation as the strongest, most predictable, and 
most well-known pattern recognized by climate scholars. 
Meteorological services and other agencies have used recur-
rent oscillation phenomena like ENSO to predict seasonal 
and year-to-year climate anomalies (IPCC, 2013). However, 
the uphill pattern shows that temperatures are increasing and 
becoming more variable even in the absence of large-scale 
global climate events such as ENSO (Holleman et al., 2020; 
NOAA, 2021). 

In addition to the year-to-year variation, temperatures 
also show seasonal variation. For example, rising tempera-
tures in the Northern Great Plains have resulted in shorter 
snow seasons and longer growing seasons that will likely 
benefit livestock production. In contrast, the warming and 
drying effects in the Southern Great Plains, Southwest, and 
northern Mexico anticipate a reduction in soil water availa-
bility and net primary productivity (Conant et al., 2018; Pol-
ley et al., 2013). 
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Despite the benefits of a longer growing season, the 
higher temperatures and wetter conditions projected for the 
Northern Great Plains can potentially lead to declining yield 
for crops and forages, an increasing presence of weeds and 
invasive species, and a decrease in forage quality to feed 
livestock (Polley et al., 2013). 

Precipitation also exhibits high variability within and be-
tween years; however, the most recent 15-year period (2005-
2020) shows most of the values above the historical mean, 
except for 2012 and 2020. The year 1915 reported the high-
est precipitation level on record (35.50 inches), and the year 
2012 was the driest year on record (13.36 inches). During 
the summer of 2012, the drought combined with extreme 
heat had significant negative impacts on non-irrigated crop 
yield and pasture conditions (Franskon et al., 2017).   

Despite seasonal variability, the spring and summer 
months are usually the wettest times of the year, with winter 
precipitation contributing to only 7% of the annual total 
(Franskon et al., 2017; Shulski and Williams, 2018). How-
ever, projections based on a high emissions scenario esti-
mate an increase in winter precipitation of 15% across the 
state of Nebraska. Heavier winter precipitation may result in 
potential delays in planting summer crops, changes in crop 
yields, changes in crop types, increased runoff, flooding, re-
duction of water quality, and soil erosion (Franskon et al., 
2017). 

Forecasts based on ENSO seasonality are highly reliable 
and widely used to study the impacts of climate variability 
on crop yields. Current research estimates that precipitation 
variability associated with El Niño will intensify, and fewer 
frost days will occur in the Northern Hemisphere (Bathke et 
al., 2014).  

The risk of seasonal supply variation hinders the availa-
bility of food and energy crops. Food crops and dedicated 
energy crops present significant seasonal supply variations 
that manifest in logistical challenges, regional supply imbal-
ances, price variations, and shortages (Solomon et al., 2019). 

An agricultural commodities shortage increases the like-
lihood of supply disruptions and has negative economic con-
sequences for all stakeholders. On the contrary, excessive 
supply increases storage costs, handling costs, and losses due 
to degradation during storage (Kim and Kim, 2022). There-
fore, the analysis of yield variability in space and time is es-
sential to identify the potential risk of supply imbalances 
based on the probability of having high or low yield within 
years or within geographical regions (Golecha and Gan, 
2016). 

Table 1 presents examples of spatial variability and tem-
poral variability for corn, water, ethanol, and beef sectors. 

UNCERTAINTIES 
Strategies to reduce uncertainty are necessary for sound 

decision-making. Sources of uncertainty are tied to a lack of 
information and the inability to predict the future precisely 
within the FEW nexus. Stakeholders face high levels of un-
certainty when considering the complex and many interac-
tions within the multiple components and multiple stake-
holders associated with the nexus. 

Examples of sources of uncertainty are public policies, 
dynamics of demand-supply balances, market fluctuations, 
emerging technology, multiple potential scenarios, the un-
conscious bias of decision-makers, input data, and model pa-
rameters (Mekonnen et al., 2018; Yu et al., 2020).    

Incentives and Public Policies 
Given the difficulty of predicting the impact of policies 

and decisions, public policies focusing on one sector may 
have unintended consequences for other sectors (Monhollon, 
2020). Efforts to reduce uncertainty should consider the po-
tential effects of policies that usually focus on single or cou-
pled sectors of the nexus (Iizumi et al., 2013; Lazaro et al., 
2021). Policymakers under a nexus approach may contribute 
to more robust policy choices that will perform as intended 
over multiple possible scenarios (Yung et al., 2019). 

Environmental policies may encourage intensive mono-
culture, potentially creating water quality problems. For in-
stance, policies promoting corn-based biofuels to reduce 
GHG emissions have been called to pay close attention to 
water sustainability. By 2019, Nebraska corn-based ethanol 
reported a 53% reduction in GHG emissions compared to 
gasoline, but it also reported a larger water footprint than 
conventional gasoline. On this matter, Mekonnnen et al. 
(2019) reported that about 66 liters of water are needed to 
travel 1 km with corn-based ethanol versus 0.4 liters of water 
per kilometer traveled with conventional fuel. Findings are 
conflicting, and environmental benefits cannot be guaran-
teed because they vary based on feedstock type, technology, 
land, and climate. The economic pressures on farmers to in-
crease their productivity and size lead to excessive nitrogen 
applications, causing coastal and surface water eutrophica-
tion, groundwater contamination, and nitrous oxide emis-
sions (Basso et al., 2021). A nexus approach would ideally 
strive for environmental benefits measured in water quality, 
land use, biodiversity, food prices, and co-product allocation 
across the system. 

Some other policies created to reduce uncertainty for po-
tential investors accelerate the creation of markets, facilitate 
access to financial resources, influence supply and prices, 
and create incentives to encourage consumption (National 
Research Council, 2011). However, in some cases, not all 

Table 1. Sources of variability and uncertainties for a corn-water-ethanol-beef nexus. 
Elements of the  
CWEB nexus Spatial variability Temporal variability 

Corn Crop yield variation within regions. 
Desertification and land degradation. 

Crop yield variations within years (seasonal variation). 
Crop yield variation from year to year. 

Water Regional water demand. 
Regional water availability. 

Seasonal variability of water needs and water availability. 
Climate effects resulting in floods and droughts  
that affect water quality and water availability. 

Ethanol Biomass yield variation within regions. Seasonal biomass availability. 
Beef Nutrition quality of feed resources. 

Regional variation on water consumption. 
Temporal variability within seasons. 
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results are as expected. One example is the shortfall in cel-
lulosic ethanol production relative to the volume mandated 
in 2007 by the Energy Security Act (13.5 billion gallons per 
year by 2021). By December 2021, only three plants were 
producing ethanol from cellulosic biomass with a total pro-
duction capacity of 0.075 billion gallons per year; seven bi-
orefineries were registered as ethanol producers using 
corn/cellulosic-biomass/sorghum with a total capacity of 
0.975 billion gallons per year (Cooper et al., 2021). The lack 
of biomass feedstock demand prevents farmers from grow-
ing cellulosic feedstocks like switchgrass and miscanthus. In 
addition, the high costs of transporting biomass to potential 
plant facilities hinder the development of a cellulosic market 
(National Research Council, 2011). 

Subsidies and market interventions created to boost effi-
ciency in the agricultural sector are necessary to achieve 
food and energy security, but uncertainty in subsidy renew-
als, tax incentives, and assistance programs also affects 
stakeholders' decisions (National Research Council, 2011; 
United States Government Accountability Office, 2016). In 
addition, foreign policies and changes in trade agreements 
are also sources of uncertainty that may negatively affect ag-
ricultural markets. 

Market Fluctuations, Demand, and Supply 
Although economic theory predicts how markets will re-

act to changes in supply and demand and price movements, 
there is still considerable uncertainty about how these varia-
tions will interact with market structures within the FEW 
nexus. Policymakers would benefit from considering the al-
location of resources within a market framework. Moreover, 
economic considerations beyond a single sector enable the 
analysis of markets emerging simultaneously from the mul-
tiple byproducts within a nexus. 

For example, Shuster et al. (2017) studied the interaction 
between water and energy markets. Power stations and agri-
cultural sectors will potentially adjust their water demand if 
water availability shrinks. In this case, the energy sector may 
deploy recirculation technologies to reduce water consump-
tion or drive up water prices by competing with the agricul-
tural sector for water. In this work, Shuster et al. (2017) con-
structed supply curves for water, considering several water 
sources that minimize cost and water use by the energy 
plants. Although having multiple water sources may in-
crease the reliability of water and energy systems, the effects 
are still uncertain (Bauer et al., 2014). 

Despite the incentives provided by the federal govern-
ment and the improved conversion technologies, the com-
mercial success of non-food crops for biofuels still faces 
many challenges. Some of the factors holding back the ad-
vanced biofuel supply are the low price of fossil fuels com-
pared with advanced biofuels, high costs of converting lig-
nocellulose feedstock, time and scale-up costs for new tech-
nologies at a commercial scale, uncertainty about the market, 
government policies, and barriers set by the logistics of the 
feedstock supply chain (United States Government Account-
ability Office, 2016). 

In 2020, the decrease in ethanol demand due to the 
COVID pandemic resulted in lower ethanol production due 
to the decline in gasoline demand and, thus, a lower supply 

of distiller grains. As a result, the price of distiller grain was 
110% higher than the price of corn. The volatility of prices 
is different for all products within a FEW nexus. Feeder cat-
tle prices tend to be more volatile than live cattle prices be-
cause feeder cattle depend on more feeding resources. Live-
stock prices will also be affected by drought conditions and 
the location in the supply chain, which usually determines 
the ability of feedlots to process cattle (Dennis, 2020). 

Another potential scenario that may affect water demand 
is the argument presented by several authors concerning a 
substantially higher water demand derived from the higher 
water footprint of ethanol production. Therefore, switching 
from fossil fuels to biofuels should be further analyzed 
across a FEW nexus to further study the potential effects on 
the biofuels market and other sectors involved (Mekonnen et 
al., 2018). 

Emerging Technology 
Future expansion of agricultural land is limited; conse-

quently, a sustainable increase in food production will have 
to rely on strategies to achieve higher productivity using 
fewer resources. Technology research provides solutions by 
targeting advanced materials, cooling technologies, process 
efficiency, alternative fluids, and waste heat recovery (Bauer 
et al., 2014). 

With the highest area of irrigated cropland in the United 
States, Nebraska is an example of how advances in irrigation 
technology and management practices in corn and soybean 
fields play a vital role increasing water productivity and con-
serving groundwater. For instance, in Nebraska, replacing 
surface irrigation with center pivot sprinkler irrigation sys-
tems reduced the field-level applied irrigation by 20% in 
cornfields and 8% for soybean fields from 2004 to 2013. 
Nevertheless, in some cases, evapotranspiration is more sig-
nificant with a sprinkler system than with gravity systems, 
so despite the reduction in applied irrigation depth, the tech-
nology by itself alone cannot guarantee a reduction in actual 
consumptive water. Complementary measures such as defi-
cit irrigation and no-till farming should be encouraged to 
monitor water conservation (Mekonnen et al., 2019). The 
challenge of quantifying the effects of new technology on 
water demand and land use adds uncertainty to the FEW 
nexus. 

As the United States shifts its focus toward decarbonizing 
the energy industry, water management has become increas-
ingly important, given that many decarbonization methods 
are even more water-intensive. In addition, researchers have 
also discussed the carbon footprint of renewable fuels such 
as bioethanol, leading them to optimize energy and water 
consumption in biofuel plants (Ahmetović et al., 2010; Me-
konnen et al., 2019). 

Due to the significant variations in water intensity by 
electricity technology and cooling systems, the potential ex-
pansion of the electric sector adds uncertainty to water de-
mand (Davies et al., 2013). 

New technology is more likely to be adopted when evi-
dence of higher profit and productivity is compelling (Basso 
et al., 2021). Castle et al. (2016) studied five variables that 
may affect precision agriculture adoption: (1) operator age; 
(2) number of row crop acres farmed; (3) average yearly 
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gross farm income; (4) use of irrigation; and (5) access to the 
internet using a cellphone. The study concluded that the two 
variables statistically significant for soy and corn producers 
in Nebraska were the size of the farm (number of row crops 
in operation) and access to smartphones. 

Because it is difficult to predict the rate of technological 
adoption and its effects on water and energy demand, future 
water demand may be analyzed using different adoption rate 
scenarios. For example, the adoption of technologies should 
be examined from a nexus perspective, considering three dif-
ferent adoption rate scenarios: (1) no adoption of the ad-
vanced technology; (2) moderate adoption where 50% of all 
new power plants apply the new technology, and (3) a high 
adoption rate, where 100% of all new power plants adopt the 
new technology (Davies et al., 2013). 

The Unconscious Bias of Decision-maker 
The role played by human behavior and human activity 

within a FEW nexus is undeniable. The decision-making 
process is ultimately performed by humans, and the outcome 
depends heavily on the attitude toward risk, the group of dif-
ferent perspectives, different knowledge, and different expe-
riences among each of the concerned parties (Begg et al., 
2014). 

Work has been done to integrate both different views of 
decision makers into the FEW nexus (Li et al., 2019). How-
ever, it is still necessary to explore how to incorporate as-
pects of social disciplines into the systems modeling. 

We suggest that sources of uncertainties be assessed for 
each case according to the specific conditions of the FEW 
nexus system and with a multidisciplinary approach. Table 2 
is an example of how one source of uncertainty has an effect 
across the CWEB nexus. 

Table 2 provides an example of the systems thinking per-
spective when analyzing what case scenarios may come 
from a source of uncertainty. Stakeholders would study these 
conditions and decide what would be the best strategies and 
tools to reduce uncertainty. 

INTEGRATIVE MODELING TOOLS TO ANALYZE  
THE FEW NEXUS SYSTEMS 

Modeling the linkages and inter-dependencies across 
food, energy, and water comes with several challenges. Ex-
isting FEW modeling tools report limitations to designing 

appropriate and validated algorithms able to manage FEW 
data sets that come in different temporal and spatial scales. 
Additionally, the development of models and tools to ana-
lyze the FEW nexus should also consider the difficulties of 
identifying relevant links, balancing between increasing 
model details and solution efficiency, sparse data, and sig-
nificant uncertainties (Liu et al., 2017). Furthermore, models 
do not usually address the effects of extreme events or in-
crease climate variability in food, energy, and water, result-
ing in a limited understanding of the effects of climate vari-
ability within the FEW nexus (Godde et al., 2021; Khan et 
al., 2018). 

Given that models of natural systems are never complete, 
researchers decide on the level of detail and rigor needed to 
achieve the model objective, as well as the data needed to 
estimate the parameters and input data, how to use the little 
information available to define or assume default values, and 
which uncertainties to leave unaddressed (National Research 
Council, 2009). 

Stochastic methods and ranges of values defined by per-
centiles may adequately address parameters and input data 
uncertainties (Li et al., 2019; Mekonnen et al., 2018). Addi-
tionally, sensitivity analysis tests the influence of critical pa-
rameters and defines the range of values for which there is 
no change in the decision (Begg et al., 2014; Mekonnen et 
al., 2018; Wang et al., 2012). Often, a probabilistic approach 
to parameter uncertainty can provide an estimate of the like-
lihood of specific outcomes or future scenarios (Maier et al., 
2016; Yung et al., 2019). 

To account for the uncertainty of the future, it is also nec-
essary to identify all coherent future pathways based on dif-
ferent sets of assumptions. To simplify the analysis, some of 
these possible future scenarios may be defined as mutually 
exclusive and can be assigned a probability of occurrence 
based on the current state of information and trends (Begg et 
al., 2014). However, some authors prefer to address uncer-
tainty in terms of multiple plausible futures rather than prob-
ability distributions because not all future scenarios have an 
associated probability of occurrence or can even be ranked 
(Maier et al., 2016). 

The failure to consider all possible events in an uncertain 
situation negatively affects the robustness of the system. Ide-
ally, a robust system is one that performs well under a range 
of futures that are likely to happen. Maier et al. (2016) pre-
sent a method to build three types of scenarios by answering 
three questions: (1) Predictive scenarios: What will happen? 
This can be answered through "trend" or “what-if” scenarios. 
(2) Explorative or exploratory scenarios: What could hap-
pen? Similar to “what-if” scenarios but considering longer 
timeframes and multiple perspectives. (3) Normative scenar-
ios: How can a specific target be met? For example, how can 
access to electricity be achieved? 

This section presents relevant models that have recog-
nized the complexity of modeling temporal and spatial scales 
of variability and uncertainties within food, energy, and wa-
ter relationships. 

The U.S. Geological Survey developed a soil-water-bal-
ance model that integrates spatially distributed soil proper-
ties, landscape properties, daily weather data, and estimated 
historical land-cover maps to calculate spatial and temporal 

Table 2. Uncertainty matrix for a corn-water-ethanol-beef nexus. 
Source of uncertainty to analyze: Unintended consequences  

of environmental policies to promote corn-based ethanol. 
Corn Uncertainty in subsidy renewals, taxes incentives,  

and assistance programs may affect farmers'  
decision on which crop to grow on their farms,  

and that may affect long term corn supply. 
Water Potential water quality issues may result from 

excessive nitrogen applications as a response of 
economic pressures to increase corn yield. 

There may be an increase in water demand due to 
corn-based ethanol's higher water footprint. 

Ethanol Prices may show dramatic changes due to a  
supply shock. For example, during the COVID 
pandemic, the decline in gasoline consumption 

reduced the demand for ethanol. 
Beef A lower supply of distillers' grains would  

spike up distillers' grains prices and would  
impact the supply chain of cattle feeders 
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variations in potential recharge (Peterson et al., 2016). This 
model serves as a tool to evaluate current and future ground-
water availability. 

The climate, land-use, energy, and water (CLEW) frame-
work integrates an energy model (LEAP), a water model 
(WEAP), and a land-use model (AEZ) to evaluate the impli-
cations of policies and strategies under several assumptions 
that control for uncertainty (Howells et al., 2013). Howells 
et al. (2013) applied the CLEW framework to explore the 
implications of promoting a local biorefinery industry in the 
Republic of Mauritius. The study showed the increase of wa-
ter withdrawals as an unintended consequence of the as-
sumed policies based on the irrigation needed to offset future 
reduced rainfall. However, the authors omitted climate vari-
ability and the change effects from agricultural practices that 
may affect local biodiversity and land use. 

The FAOS's nexus assessment methodology has a data-
base with indicators used to perform analysis specific to a 
country and one type of intervention. The FEW nexus tool 
2.0 provides a more holistic approach, allowing the user to 
create different scenarios to analyze the effects of changes in 
agricultural practices, water sources, energy sources, and 
even the share of imported food (Daher and Mohtar, 2015). 

Anderson et al. (2018) developed an integrative modeling 
framework to explore the effects of nitrogen fertilizer in a 
corn-ethanol system. The framework connected two availa-
ble models: the decision support system for agrotechnology 
transfer (DSSAT) and the greenhouse gases, regulated emis-
sions, and energy use in the transportation model (GREET). 
Although the framework considered water consumption, the 
authors noted the complexity of adjusting the irrigation fea-
tures on the DSSAT and GREET models. Additionally, the 
authors concluded that the tool's robustness could be im-
proved by considering more economic and environmental 
aspects such as profitability and potential GHG emissions. 

The Agricultural-Water-Energy-Food Sustainable Man-
agement model (AWEFSM), designed by Li et al. (2019), is 
a multi-objective nonlinear programming model that incor-
porates triangular intuitionistic fuzzy numbers to express 
the uncertainty of some parameters. AWEFSM considered 
the interactions between food, energy, and water. The 
model integrated economic and environmental aspects of 
the nexus by maximizing profit and minimizing CO2 emis-
sions while rationally allocating limited water resources, 
energy resources, and land resources to different crops in 
different regions. However, the granularity of the model is 
limited because it excluded significant components such as 
the use of agricultural waste in bioenergy production. The 
authors concluded that this framework could be improved 
to increase its applicability and reduce the error introduced 
by uncertainties. 

The Global Change Assessment Model (GCAM), devel-
oped by the Pacific Northwest National Laboratory, inte-
grates energy, agriculture, and climate change. Davies et al. 
(2013) used GCAM to analyze future global water demands 
to produce electricity for 14 geopolitical areas from 2005 to 
2095. The study included different electricity generation 
sources such as biomass, oil, hydrogen, wind, gas, coal, 
and geothermal energy. In addition, they accounted for  
 

uncertainty by considering potential changes to future water 
demands due to technological shifts. However, the study 
omits climate-energy-water links important to defining wa-
ter availability, the electric generation technology choice un-
der water scarcity, and the effect of environmental policies 
on electricity demand. 

Khan et al. (2018) designed the SPATNEX-WE (Spatial 
and Temporal Nexus – Water Energy), a hard-link partial 
equilibrium linear optimization model solved in GAMS 
(General Algebraic Modeling System). This model captures 
the spatial and temporal variations in WE production and de-
mand across their complete life-cycle. It also allows users to 
adjust spatial and temporal boundaries as needed. The model 
proved to be more robust in analyzing uncertainty in param-
eters related to demand patterns, policy constraints, and re-
source availability. One of the limitations of this model is 
that the optimization algorithm requires setting up each link 
as a linear equation even though nonlinear relationships best 
explain some connections within the WE nexus. Another 
significant limitation is that the SPATNEX-WE excludes 
WE demands from the agricultural and food sectors. 

Table 3 summarizes the revised models that address var-
iability and uncertainty for the FEW nexus and for corn, wa-
ter, ethanol, and beef systems. This review is focused on 
whether these integrated models account for variability and 
uncertainty. 

CONCLUSION 
One of the goals set by the FEW nexus is to guarantee 

access to food, energy, and water while minimizing the det-
rimental consequences for any of these elements. Integrated 
planning tools under a FEW nexus approach enhance the un-
derstanding of the impacts of policies and management strat-
egies across food, energy, and water, all three fundamental 
to sustainable development and national security. 

Models have been developed to understand and predict 
trends, patterns, and the complex interactions between these 
three sectors. Two of the challenges of developing integra-
tive tools are the required multidisciplinary collaboration 
and a clear strategy to connect publicly available models 
under a framework that simultaneously considers the tech-
nical, economic, and environmental aspects of intercon-
nected sectors. 

Models accounting for variability enable more robust 
analysis because they consider the natural heterogeneity pre-
sent in biological systems. Uncertainty added by input data 
affects model parameters and, consequently, output reliabil-
ity. While existing models and tools are available to address 
sources of variability and uncertainty for single or paired el-
ements of the FEW nexus systems, this review found that no 
tools have been developed to address temporal and spatial 
scales of variability and sources of uncertainty for a com-
plete FEW nexus. Integrative tools to analyze the temporal 
and spatial scales of variability and uncertainty will enable 
the user to assess the resilience of the FEW models and will 
set a reference to identify potential vulnerabilities that will 
contribute to setting a course of action for strategic decision-
making based on a regional and time basis. 
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The interconnected nature of the FEW nexus provides an 
excellent framework to reinforce essential systems-thinking 
competencies and risk management. In addition, efforts to-
ward a better characterization of variability and reducing un-
certainty empower stakeholders to make better-informed de-
cisions related to the strategies to allocate resources, mini-
mizing potential unintended consequences that may be det-
rimental. 
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Table 3. Models that address variability and uncertainty for food, energy, and water sectors. 

 Reference 
Temporal 
Variability 

Spatial 
Variability Uncertainties 

Applied methodology,  
methods, and tools 

Description and  
Outputs 

FEW nexus      
 Spatial dependence of 

controls on groundwater 
vulnerability in  
the FEW nexus  

(Gurdak et al., 2017).  

   Logistic regression models 
of GIS-based explanatory 
variables based on Source, 
Transport, and Attenuation 

(STA) factors. 

Predict vulnerabilities to NPS NO3
- 

contamination in the Coastal 
California basin aquifer system. A 
limitation is that the vulnerabilities 
models may not be appropriate to 

forecast future vulnerability 
conditions.  

 Spatial Decision  
Support System 

(Verstegen et al., 2012) 

  Uncertainty of 
input values and 

model parameters. 

Spatial Decision Support 
System, the PCRaster model 
construction framework and 

Monte Carlo analysis. 

The spatial decision support system 
integrates simulation, uncertainty 
analysis, and visualization. The 
model accounts for uncertainty 

distribution in space and time. The 
model provides visualization tools 

for end users that have no specialist 
knowledge of statistics. 

 Climate, land-use, 
energy, and water 

strategies (CLEWS) 
(Howells et al., 2013) 

 

  Commodities 
prices. 

Accuracy of 
climate models. 

A module-based approach 
that integrates existent 

models. 

Analyze potential policy 
implications based on current 

knowledge and the uncertainty of 
future scenarios. The study case 

explored the effects of a policy to 
promote a local biofuel industry in 

the Republic of Mauritius. 
 A DSSAT-GREET 

integrated framework 
(Anderson et al., 2018) 

  Fertilizer use The DSSAT-GREET 
integrated wrapper. 

Assess the effects of several critical 
parameters on a crop-biofuel 

system under different scenarios.  
 Agricultural Water-

Energy-Food Sustainable 
Management (AWEFSM) 

(Li et al., 2019) 

  Parameter 
uncertainties 

associated with the 
fluctuations of 

natural resources 
and variation of 
socioeconomic 

activities. 

Integration of multi-
objective programming, 

nonlinear programming, and 
intuitionistic fuzzy numbers. 

Maximize system profit and 
minimize CO2 emission by 

optimally allocating water, energy, 
and land to different regions and 

crops. 

Corn      
 Spatial patterns of water 

and nitrogen response 
within corn production 
fields (Hatfield, 2012) 

   Spatial Analysis. To determine the spatial 
relationships between corn yield 
and the vegetative indices across 

different fields. 
 Integrating a crop model 

into OptiCE 
(Zhang et al., 2018) 

   Integrates a crop model into 
OptiCE, an open-source 
code for clean energies 

simulations and 
optimizations. 

The effects of drought on corn yield 
and the implications for water 

management. The integrated model 
explores climate variability over 

time and space.  
Water      

 A PCA application to 
GPCP precipitation data 
and a CAM5 simulation 

over the tropics. 
(Trammell et al., 2016) 

   Principal Component 
Analysis. 

To explore temporal and spatial 
variability of precipitation in the 

tropics. 

Ethanol      
 A framework to 

incorporate spatial 
variability into life 
 cycle analysis of 

Agricultural Systems 
(Monhollon, 2020) 

   LCA. 
 

To integrate spatial soil and weather 
data into an LCA for corn-based 

ethanol. 
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