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HIGHLIGHTS 
 A broiler mortality removal robot was successfully developed. 
 The broiler shank was the target anatomical part for detection and mortality pickup. 
 Higher light intensities improved the performance of detection and pickup performance. 
 The final success rate for picking up dead birds was 90.0% at the 1000-lux light intensity. 

ABSTRACT. Manual collection of broiler mortality is time-consuming, unpleasant, and laborious. The objectives of this 
research were: (1) to design and fabricate a broiler mortality removal robot from commercially available components to 
automatically collect dead birds; (2) to compare and evaluate deep learning models and image processing algorithms for 
detecting and locating dead birds; and (3) to examine detection and mortality pickup performance of the robot under dif-
ferent light intensities. The robot consisted of a two-finger gripper, a robot arm, a camera mounted on the robot’s arm, and 
a computer controller. The robot arm was mounted on a table, and 64 Ross 708 broilers between 7 and 14 days of age were 
used for the robot development and evaluation. The broiler shank was the target anatomical part for detection and mortality 
pickup. Deep learning models and image processing algorithms were embedded into the vision system and provided location 
and orientation of the shank of interest, so that the gripper could approach and position itself for precise pickup. Light 
intensities of 10, 20, 30, 40, 50, 60, 70, and 1000 lux were evaluated. Results indicated that the deep learning model “You 
Only Look Once (YOLO)” V4 was able to detect and locate shanks more accurately and efficiently than YOLO V3. Higher 
light intensities improved the performance of the deep learning model detection, image processing orientation identification, 
and final pickup performance. The final success rate for picking up dead birds was 90.0% at the 1000-lux light intensity. In 
conclusion, the developed system is a helpful tool towards automating broiler mortality removal from commercial housing, 
and contributes to further development of an integrated autonomous set of solutions to improve production and resource 
use efficiency in commercial broiler production, as well as to improve well-being of workers. 

Keywords. Automation, Broiler, Deep learning, Image processing, Mortality, Robot arm. 

odern broiler production systems continue to 
be intensified and scaled up with approxi-
mately 27000 to 29000 birds in a typical house 
(Gates et al., 2008). In these commercial 

production systems, broiler mortality can be attributed to se-
vere disease and metabolic problems and inappropriate en-
vironmental conditions and management practices (Tottori 
et al., 1997; Schwean-Lardner et al., 2013), with a mortality 
rate of about 5% in a typical 7-week production cycle 
(National Chicken Council, 2020). As routine tasks, farm 
workers spend a large amount of time daily identifying, 
gathering, and removing dead birds. Broiler genetic strains 
have been continuously selected for efficient and fast 
growth, and bird body weight increases rapidly from less 
than 500 g within the first two weeks to over 3000 g after 
week 7 (Aviagen, 2019). Manual mortality collection is rel-
atively simple for young birds and can often be completed 
within one house walk-through removal operation due to 
light weights and small sizes of dead birds. However, as 
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birds grow during a production cycle, workers may strategi-
cally pile dead birds during inspection and remove the car-
casses at the end of inspection (Holland, 2005), often 
requiring multiple, time-consuming, and arduous trips 
through each broiler house. Long-term exposure to harsh 
working environments containing concentrated ammonia, 
dust, and odors could pose health risks for farmers (Carey et 
al., 2004), and delayed mortality removal may increase in-
sect population pressure and the risk of disease spreading via 
direct contact or vector transmission (Dent et al., 2008). As 
a result, effective and autonomous solutions for broiler mor-
tality removal are needed to reduce labor, enhance farm bi-
osecurity, and improve well-being of workers. 

Robotics have provided many solutions for reducing 
manual labor needs in other industries, and have recently 
been employed to facilitate poultry production (Astill et al., 
2020; Ren et al., 2020). Contemporary robotics are inte-
grated autonomous systems containing components of per-
ception, reasoning/learning, communication, and task 
planning and execution (Ren et al., 2020). Some proactive 
robot companies have tried to robotize repetitive and labori-
ous tasks in poultry production. The French robot company, 
Octopus Biosafety (2022), designed the Octopus Poultry 
Safe robots for broiler industry. The robots are equipped 
with scarifiers to scarify litter, environmental sensors to 
monitor temperature, relative humidity, and ammonia, and 
laser pointers to simulate bird activity. Another French robot 
company, Tibot (2022), designed smaller broiler robots with 
similar functions to Octopus robots. The robots run along the 
litter floor of a broiler house with prongs running through 
the litter to keep it aerated. A poultry facility company in the 
Netherland, Big Dutchman (2022), developed the Chick-
enBoy robot mounted on rails overtop of a flock, and the ro-
bot travels slowly throughout a house to collect information 
on ambient environment conditions (e.g., humidity, temper-
ature, airspeed, and carbon dioxide) and thermographic im-
aging to assess bird welfare and health. There are more 
European robot companies devoting their efforts to develop 
robotic systems to assist precision management of broilers; 
however, owing to a relatively high initial investment, robots 
have not been widely used in the U.S. broiler industry. 

Robotic solutions have also been researched for automat-
ing hen production. Li (2016) designed and constructed a ro-
bot platform to search for dead layers in a stair-step cage 
system. Multiple stimuli including sound, light, and vibra-
tion were implemented in front of cages to encourage live 
birds to move, and consequently, the motionless birds were 
flagged as mortalities. Vroegindeweij et al. (2018) devel-
oped a bent helical spring mounted in front of the robot, 
which can sense the location of floor eggs and collect them, 
and the robot can navigate autonomously more than 3000 m, 
while avoiding obstacles and dealing with hens presence in 
cage-free hen housing systems. Chang et al. (2020) devel-
oped an egg collecting robot consisting of a chassis frame, 
an egg-picking mechanism, an egg-sorting device, an egg 
storage tank, an egg collection channel, and a control box. 
The robot successfully collected floor eggs for free-range 
laying hens. Li et al. (2021a) combined a robot arm, a soft 
end effector, and a deep learning-based computer vision sys-
tem to collect floor eggs as well. To sum up, most poultry 

robotics research projects focused on floor eggs in egg in-
dustry. 

There was only one robotic research for broiler mortality 
removal. Liu et al. (2021) developed an integrated robot sys-
tem that can walk in a commercial broiler house with prede-
fined straight-line paths, identify dead chickens, sweep them 
onto a conveyor belt, and store them. Although the robot had 
95% precision for collecting the dead broilers, the embedded 
vision system was developed with only 110 images, leading 
to unknown generalizability and robustness of the system. 
The development dataset contained images of cocks and lay-
ing hens, with fairly different housing and environment con-
ditions from U.S. broiler industry. The conveyor system may 
work well to collect dead broilers in open areas, but may not 
reach broilers in secluded areas near corners or under feed-
ing or drinking lines, due to a lack of flexibility of movement 
(one degree of freedom). Therefore, there is still a need of 
developing a robust broiler mortality removal robot. Inspired 
by the poultry robotic team in the Netherland 
(Vroegindeweij et al., 2018) and Georgia Tech Research In-
stitute (Usher et al., 2017), our team plans to separate the 
robot development into robot path planning, robot arm, and 
ground robotic vehicle with accurate indoor navigation sys-
tems and integrates them together once all parts are devel-
oped. This study focuses on robot arm and vision systems 
for broiler mortality pickup in simulated broiler production 
environments. 

Practical points should be considered for the design and 
development of a broiler mortality removal robot. Both bent 
helical spring (Vroegindeweij et al., 2018) and collection 
channel (Chang et al., 2020) methods proved to be limited in 
their ability to reach secluded areas where dead birds could 
appear; this movement limitation may be addressed by flex-
ible robot arms. Additionally, robot arms can be integrated 
into mobile platforms including ground vehicles, ceiling-
mounted rail systems, and unmanned aerial vehicles to col-
lect dead birds from large spaces associated with typical 
broiler house construction. However, the performance of 
picking up dead birds using robot arms remains unclear. A 
robust vision system is critical for a robot to perceive dead 
birds. As deep learning-based computer vision systems have 
been increasingly utilized in broiler production (Li et al., 
2021c), they may have the potential to support the dead bird 
identification process. Efficient deep learning models bal-
ancing processing speed and detection accuracy should be 
verified to precisely detect and locate dead birds in images 
(Huang et al., 2017), and matched image processing algo-
rithms are under development to provide pinpoint orienta-
tion information for grasping necessary parts via robot arms. 
Light intensities are varied within a broiler house due to bird 
requirements, light leakage, coverage by infrastructure (e.g., 
feeder, drinker), etc. (Olanrewaju et al., 2006). A robust 
means of recognizing and picking up dead birds under vari-
ous light intensities is needed for a broiler mortality removal 
robot. 

The objectives of this study were: (1) to design and con-
struct a robot to automatically collect dead birds using com-
mercially available components; (2) to compare and evaluate 
deep learning models and image processing algorithms for 
detecting and locating dead birds; and (3) to examine dead 
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bird detection and pickup performance of the robot under 
different controlled light intensities. 

MATERIALS AND METHODS 
BIRDS AND SYSTEM 

The robot system development was conducted in the 
USDA-ARS Poultry Research Unit at Mississippi State 
(fig. 1). Pine shavings were obtained from a local store and 
spread on a table to simulate conditions of a broiler house 
floor. The robot arm (Gen 3, Kinova Inc., Boisbriand, QC, 
Canada) was mounted on a table and connected to a laptop 
for control. The laptop was equipped with 32 GB RAM, 9th 
Generation Intel® Core™ i9-9900K processor, and NVIDIA 
GeForce RTX 2080 8GB GPU card. The robot arm can 
move freely with 7 degrees of freedom (DoF) and has a max-
imum payload of 2000 g. The adaptive two-finger gripper 
(Robotiq 2F-85, Kinova Inc., Boisbriand, QC, Canada) was 
installed at the end of the arm to grasp dead birds, and a cam-
era (Intel® RealSense™, Intel Corporation, Santa Clara, Ca-
lif.) (table 1) mounted on the arm before the gripper was 
used to capture top-view images of dead birds. 

A total of 64 Ross 708 broilers were used for the robot 
development. The body weight of these birds ranged from 
58.0 to 587.4 g (table 2) and thus did not exceed the maxi-
mum payload of the robot. The system design was conducted 
with mortalities from an ongoing research trial conducted ac-
cording to the guidelines of the USDA-ARS Animal Care 
and Use Committee at the Mississippi State, Mississippi 

location (protocol 21-3 and date of approval 10 February 
2021), resulting in an uneven number of birds at different 
bird ages. These birds had been dead for 24 to 96 h, and in 
most cases were stiff from rigor mortis. The lying posture of 
dead broilers was determined after consultation with broiler 
farm managers to simulate commercial conditions. 

OVERALL DESIGN OF THE ROBOT 
The overall workflow of the robot operation consisted of 

initialization steps, shank detection and localization, shank 
orientation identification, and mortality pickup (fig. 2). The 
shank is the unfeathered portion between the tibiotarsal joint 
(“hock”) and the metatarsophalangeal joint. Details of shank 
determination are presented in Sections 2.4 and 3.1. The in-
itialization steps were to initialize the robot, open the cam-
era, and acquire top-view images for further analysis. 

Shank detection and localization were completed via a 
deep learning model. The models were comparatively eval-
uated (Section 2.5), and the optimal one was used to extract 
shank information such as shank indices, coordinates (x, y), 
and dimensions (width and height). The detected shank with 
minimum index was cropped and analyzed via image 

 

Figure 1. Illustration of the system setup for the design and development of the robot. 

Table 1. Information about the hand-mounted camera. 
Parameter Values  Parameter Values 

Model Intel RealSense D435  Ideal range (m) 0.3-3 
Maximum focal length (mm) 1080  Field of view () Depth 87×58 

Depth accuracy (%) <2 at 2 m  RGB 69×42 
Maximum output resolution (pixels) Depth 1920×1080  Frame rate (fps) Depth 90 

RGB 1080×720  RGB 30 

Table 2. Information about broilers used for robot development.[a] 

Days  
of Bird  

Age  

Number  
of Birds  

Used 

Average  
BW  

(mean±SD, g)  

Maximum  
BW  
(g) 

Minimum  
BW  
(g) 

7 1 58.0 – – 
9 13 155.4±29.7 197.6 100.0 
14 50 462.5±52.1 587.4 352.4 

[a] BW is body weight and SD is standard deviation. 
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processing algorithms to extract shank orientation relative to 
the robot’s position. Image processing included cropping, 
saturation channel extraction, edge detection, and line detec-
tion. Details of these processing algorithms are presented in 
Section 2.6. 

The extracted shank coordinates were converted from the 
image system to the robot arm system and fed to the robot 
for positioning the gripper above the shank of interest. Then 
the gripper rotated to match the shank orientation based on 
the detected angle θ between camera or gripper orientation 
and shank in a horizontal plane. The shank of the dead bird 
was gripped, the bird was picked up, the robot moved, and 
the bird was dropped at the storage place. 

COORDINATE TRANSFORMATION BETWEEN THE END 

EFFECTOR AND VISION SYSTEM 
The robot has seven DoF, corresponding to seven Carte-

sian coordinate systems, and only the coordinate system at the 
end of the arm was validated to build a connection between 
the end effector and hand-mounted camera for broiler mortal-
ity pickup. Only the RGB images from the Intel RealSense 
were used for robot control as they were favorable for most 
deep learning object detection algorithms. In the desired posi-
tion, the gripper and camera were perpendicular to the litter 
floor, so that the camera can capture clear top-view images of 
dead broilers. The imaging distance between the camera and 
little floor was approximately 20 cm, and the pixel-to-distance 
conversion factor for the coordinate transformation was 38.4 
pixels/cm based on manual measurement. 

Absolute values of coordinates in different coordinate 
systems were of no interest, and only the speeds of linear and 
angular movements of the robot arm from the gripper posi-
tion to the desired position of a body part (e.g., shank) were 
used for the robot control and calibrated using equations  
1-7. 
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where 
LSx, LSy, and LSz = linear speeds of the robot arm in the x, y,  
  and z axes of the robot Cartesian coordinate  
  system, respectively, 
ASx, ASy, and LAz = angular speeds of the robot arm in the x,  
  y, and z axes of the robot Cartesian coordinate  
  system, respectively, 
(Xe, Ye)  = centroid coordinates in the imagery coordinate  
  system, 
 

 

Figure 2. Overall workflow for the broiler mortality removal robot. 
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WI, HI  =  width and height of an image, 1,280 and  
  720 pixels in this case, respectively, 
CNV  =  pixel-to-distance conversion factor,  
  33.8 pixels/cm in this case, 
h1  =  gripper height, 16.3 cm in this case, 
T  = robot manipulation period, 2 s in this case, 
∅  =  orientation of a desired body part in the imagery  
  coordinate system, 
long- or short-axis-based rotation = the gripper rotates to fit  
  the long or short axis of a targeting body part. 

LIGHTING ENVIRONMENTS AND IMAGE ACQUISITION FOR 

ROBOT DEVELOPMENT 
The light intensities of 10 to 70 lux with 10-lux intervals 

were set to mimic the lighting variance conditions due to bird 
age, blockage by infrastructure, and lighting leakage. A light 
meter (LT300, Extech Instruments, Waltham, Mass.) placed 
at bird level and directly underneath the camera and the volt-
age transformer adjustment were used to set light intensities 
of interest. The 1000 lux intensity was reached by the sup-
plemental lamp (fig. 1) to see whether the supplemental 
lighting helped to improve shank recognition performance. 
For each intensity, images were captured by the camera at 5-
s intervals while the camera rotated together with the grip-
per. Such an operation created variations of situations in the 
dataset. One to four (1-4) birds with different postures were 
partially or completely recorded. Duplicated or similar im-
ages were removed. Number of images used was 1653 for 
10 lux, 1825 for 20 lux, 1732 for 30 lux, 1707 for 40 lux, 
1826 for 50 lux, 1852 for 60 lux, 1725 for 70 lux, and 1941 
for 1000 lux. The uniform distribution of number of images 
across the intensities may assist in inferring shanks without 
light intensity bias. 

TESTING OF THE DEAD BIRD PICKUP PERFORMANCE VIA 

MANUAL ROBOT CONTROL 
Although a shank was assumed to be the suitable part for 

pickup, this needed to be verified. The robot was manually 
controlled to pick up seven parts (i.e., head, neck, wing, 
hock, shank, toe, and whole body, fig. 3a). Advantages and 
disadvantages of picking up different parts were compared. 

Furthermore, the geometric relationships (perpendicular vs. 
non-perpendicular) between the optimal selected part for 
pickup and the gripper long axis were determined to gain 
knowledge of robot control (fig. 3b). Each relationship was 
measured 30 times.  

COMPARATIVE EVALUATION OF DEEP LEARNING 

MODELS FOR SHANK RECOGNITION AND LOCALIZATION 
The You Look Only Once (YOLO) is a set of well-recog-

nized deep learning models for real-time processing pur-
poses. Among the YOLO model family, YOLO V3 and V4 
are two recently-released models that improve processing 
speed and detection accuracy from the original model 
(Redmon and Farhadi, 2018; Bochkovskiy et al., 2020). But 
the optimal model for recognizing and locating shanks re-
mains to be determined. Although there are more recently 
published YOLO models, they were not considered in this 
case because of incompatibility with current robot working 
environments. Perhaps future versions of the robot arm 
would have more compatibility for deep learning object de-
tection models and help to address the issue of computing 
environment incompatibility. 

The YOLO V3 and V4 were executed with the Darknet 
environment. The free cloud server (Google Colab) with a 
GPU of Tesla P100-PCIE-16GB was used for model train-
ing. Most of the training configurations were similar be-
tween the two models, including the batch size of 64, resized 
images of 416×426 pixels, subdivisions of 16, momentum of 
0.95, decay of 0.0005, learning rate of 0.001, max batches of 
48000, etc. Images described in Section 2.3 were labeled by 
trained technicians and used for model training and evalua-
tion, of which 80% was for training and 20% was for testing. 
Bounding boxes were drawn for the part of interest and ex-
ported in YOLO format for model development. During 
training, training loss across epochs was drawn to visualize 
model performance in real time. Once the loss reached a 
plateau without large variations, the training process was 
stopped and corresponding weights for the models were 
saved for further evaluation and implementation. 

                         
 (a)  (b)  

Figure 3. Illustration of mortality pickup performance testing via manual robot control: (a) body parts and (b) gripper-shank relationship.   is 
the angle between the shank and gripper in a horizontal plane. The camera lens is parallel with the long axis of the gripper. 
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DEVELOPMENT AND OPTIMIZATION FOR IMAGE 

PROCESSING ALGORITHMS 
Appropriate design determines the efficiency of image 

processing algorithms. Both HSV (hue, saturation, and 
value) and RGB (red, green, and blue) define color channels 
of images, but the HSV is designed to fit human perception 
of lights (Gonzalez and Woods, 2002). The skin of chicken 
shanks was more visually saturated than litter, namely that 
the color of shank skin was darker than that of litter (dark 
yellow vs light yellow). The saturation channel (fig. 2) may 
maintain major features of concern (i.e., chicken shank) 
while excluding some unnecessary features (i.e., litter), 
therefore, it was selected to produce grayscale images. The 
Canny algorithm is a popular edge detection method used to 
generate binary images from saturation-channel images 
(Rong et al., 2014). It reduced noises (i.e., small particles out 
of areas of interest), found intensity gradient of images (i.e., 
outer edges of shanks), and removed unnecessary pixels (i.e., 
litter pixels and skin pixels) on the neighborhood of gradient 
directions. The Hough transform is a popular tool for line 
detection due to its robustness to noise and missing data and 
was selected to detect shank edge orientation (Fernandes and 
Oliveira, 2008). The shank edge orientation represented the 
shank orientation with respect to the gripper or camera posi-
tion. 

The parameters (e.g., kernel sizes) of the algorithms were 
fine-tuned to obtain optimal performance. Sixty (60) images 
containing 2-6 shanks per image were processed for each 
light intensity using the developed algorithm, and the orien-
tation of shank edges among these images was measured 
manually for algorithm evaluation. A technician sat in front 
of the monitor displaying shank images and used a digital 
protractor to obtain the manual measurements. 

TESTING FOR FINAL PERFORMANCE 
The robot was finally embedded with the optimal deep 

learning model, fine-tuned image processing algorithms, and 
developed robot control algorithms to recognize the location 
and orientation of the optimal anatomical part picked up. 
Then, different numbers of dead birds were placed onto the 
litter, and the robot was operated automatically 60 times to 
pick up the dead birds under each of the eight light intensi-
ties. The final performance of the robot for collecting broiler 
mortality was determined. 

EVALUATION METRICS 
Three sets of evaluation metrics were developed to assess 

deep learning model performance, image processing algo-
rithm success, and robot pickup performance. The metrics 
were organized by light intensity, and all evaluations were 
conducted on the local computer. 

The metrics for deep learning included precision, recall, 
F1 score, and root mean square error (RMSE) (eqs. 8-11). 
Higher values for the former three indicate better model per-
formance, while smaller values for the RMSE indicate 
smaller prediction errors and better performance. The pro-
cessing speed (frame per second, fps) was calculated by di-
viding number of images processed with total processing 
time, and larger values suggest faster processing speed. 
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where x̂i, ŷi are the ith predicted coordinates in a horizontal 
plane, xi, yi are the ith ground truth coordinates, and N is total 
number of measured samples. 

The metrics for image processing algorithm evaluation 
were mainly errors between predicted orientation (Ôj) and 
ground truth orientation (Oj) (eq. 12). Histograms of the 
errors ranging from -135° to 135° with 45° intervals were 
also organized. Mean absolute error (MAE) was used to 
average the absolute errors and provide overall performance 
of the algorithms (eq. 13). 

  j j jError Ô O   (12) 

 1

m
jj

Error
MAE

m



 (13) 

where   is the absolute operator, Errorj is the error between 

the jth prediction orientation (Ôj) and ground truth orienta-
tion (Oj), and m is the total number of evaluated errors. 

The metrics for robot pickup performance evaluation 
were operation time and success rate. Operation time was 
recorded and reported by Python during each round of oper-
ation. Success rate was obtained by dividing the number of 
successful cases of mortality pickup with the total number of 
robot operations. 

RESULTS 
PERFORMANCE OF PICKING UP DEAD BIRDS VIA 

MANUAL CONTROL 
Hands-on experience with the robot was first gained by 

manual control for picking up birds by different body parts 
(table 3). Some anatomical parts (e.g., head and whole 
body), despite being easily gripped or identified, were phys-
ically compressed and insufficiently strong to prevent tissue 
damage, causing contamination for the robot and litter. Other 
parts were visually unidentifiable when birds were young 
(e.g., neck), too soft to be picked up (e.g., wing), or too small 
to be picked up (e.g., hock and toe). Based on the consider-
ation of biosecurity safety and robust pickup and detection 
performance across different bird ages, the broiler shank was 
finally selected as the optimal part to be identified and 
picked up by the robot, but the detection performance under 
a dark environment needs improvement. 



38(6): 853-863  859 

Figure 4 presents the performance of the robot for picking 
up dead birds under two relationships between broiler shank 
and gripper long axis. The success rate was 93.3% for the 
perpendicular relationship and 86.6% for the non-perpendic-
ular one. As the success rate of the former one was 6.7% 
higher than the latter one, the image processing algorithms 
for extracting shank orientation are necessary to make the 
gripper fitted to the perpendicular relationship with the 
broiler shank of interest. 

PERFORMANCE OF DETECTING AND LOCATING DEAD 

BIRDS VIA DEEP LEARNING MODELS 
The performance of the two YOLO models is presented 

in table 4. The precision, recall, and F1 score were 76.1% to 
82.4% for YOLO V3 and 86.3% to 95.1% for YOLO V4. 
The RMSE was similar between the two models, and YOLO 
V4 processed one more image per second than YOLO V3. 
Considering higher detection performance and faster pro-
cessing speed, the YOLO V4 was selected as the deep learn-
ing model for detecting and locating chicken shanks. 

The performance of YOLO V4 across the eight light in-
tensities is further presented in table 5. The precision, recall, 
and F1 score increased 17.7-23% with intensities increasing 
from 10 lux to 30 lux, but they only grew 1.8% to 4.9% from 

30 to 1000 lux. The RMSE ranged from 4.5 to 5.3 mm 
among the eight light intensities. 

PERFORMANCE OF DETECTING SHANK ORIENTATION VIA 

IMAGE PROCESSING 
The errors between predicted orientations and ground 

truth orientations are depicted in figure 5. The percentage of 
errors within 45° (indicating small deviation) was 57.2% for 
10 lux, 83.1% for 20 lux, 81.7% for 30 lux, 89.9% for 40 lux, 
82.7% for 50 lux, 86.6% for 60 lux, 89.2% for 70 lux, and 
97.6% for 1000 lux. The MAE was the largest (38.7°) at 
10 lux and smallest (12.5°) at 1000 lux. 

FINAL PERFORMANCE OF THE BROILER MORTALITY 

REMOVAL ROBOT 
The final performance of the robot is presented in figure 

6. The success rate for automatically finding and picking up 
dead birds increased from 53.3% to 80.0% with light inten-
sities increasing from 10 to 30 lux. Further increasing the 
light intensity from 30 to 60 lux resulted in a small incre-
mental improvement of 6.7%, and success rates stabilized at 
86.7% to 90.0% among 60, 70, and 1000 lux. The overall 
operation time ranged from 70.5 to 77.8 s/round. 

DISCUSSION 
PART ORIENTATION 

The broiler mortality removal robot belongs to the class 
of so-called pick-and-place robotics, which requires accurate 
location and orientation information for control (Zeng et al., 
2018). Even with manual control and optimal perpendicular 
shank-gripper orientation, precise localization of the chicken 
shank is problematic, resulting in missed alignments, unsuc-
cessful grasping, and compromised pickup performance. In 
contrast to manual control, the robot automatically pin-
pointed shanks with an RMSE of 4.5 to 5.3 mm, indicating 

Table 3. Major advantages and disadvantages for pickup of different broiler body parts via manual robot control. 
Part 

Picked Up Major Advantage Major Disadvantage 
Head Visually identifiable Physically compressed and insufficiently strong for pickup 
Neck Readily picked up for old birds Not visually obvious for young birds 
Wing Large for pickup Feathers being torn off 
Hock Firm for pickup Excessive feather coverage 
Shank Firm for pickup and visually identifiable Color features being similar to that of litter in dark environments 
Toe Firm for picking Too small, and the color features similar to that of litter in dark environments 

Whole body Easy pickup for young birds Too large for picking up old birds, and the integrity of body  
of very young birds being compromised 

Figure 4. Pickup performance of the robot under two geometric rela-
tionships. 

Table 4. Model performance for detecting and locating  
broiler shank via two deep learning models.[a] 

Model 

Model performance 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%) 

RMSE 
(mm) 

Processing 
Speed 
(fps) 

YOLO V3 82.4 76.1 79.1 4.5 6 
YOLO V4 95.1 86.3 90.5 4.8 7 

[a] YOLO is You Only Look Once, RMSE is root mean square error, and 
fps is frame per second. 

Table 5. Model performance for detecting and  
locating broiler shank across eight light intensities.[a] 

Light  
intensity  

(lux) 

Model Performance 
Precision  

(%) 
Recall  

(%) 
F1 Score  

(%) 
RMSE  
(mm) 

10 74.5 69.4 71.8 4.5 
20 86.1 72.2 78.6 4.8 
30 97.5 87.1 92.0 4.9 
40 98.8 88.5 93.4 5.0 
50 98.9 88.6 93.5 4.9 
60 98.9 92.5 95.6 4.1 
70 99.0 93.3 96.0 5.1 

1000 99.3 92.0 95.8 5.3 
[a] RMSE is root mean square error. The model performance was evalu-

ated for the YOLO V4 only 
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<1% deviation within an image, once the shanks were de-
tected by the model, thus improving robot pickup perfor-
mance. Interestingly, the robot still had high pickup 
performance (success rate was 86.6%) even though broiler 
shanks were non-perpendicular with the gripper long axis. 
Based on our observation, the robot only failed in pickup 
when the gripper was parallel or intersecting narrowly (in-
tersecting angle was <15°) with shanks. Because bird pickup 
was not overly sensitive to other relationships between grip-
per long axis and broiler shank, the robot may successfully 

pick up dead birds despite their shank orientation not being 
exactly detected (fig. 5). 

DEEP LEARNING MODEL 
Various deep learning models have different performance 

on detection accuracy and processing speed (Huang et al., 
2017). Compared to the YOLO V3, the YOLO V4 had 
13.3% to 15.4% higher precision, recall, and F1 score and 
16.7% higher processing speed, which were consistent with 
those reported by Bochkovskiy et al. (2020). The improved 

  

  

  

  

Figure 5. Histogram of errors between prediction and ground truth and mean absolute errors for different light intensities. 
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performance of YOLO V4 may be attributed to the advanced 
connection scheme (e.g., weighted residual connections), 
universal normalization strategy (e.g., cross mini-batch nor-
malization), upgraded training hyperparameter (e.g., self-ad-
versarial training), etc. Therefore, the YOLO V4 was 
selected as the shank detector in this case. But the YOLO V4 
architecture despite being favorable for real-time processing 
was not robust enough to retain large variations, resulting in 
it missing shanks in some extreme environments (e.g.,  
10-lux light intensity) and compromised recall. Some com-
plicated models [e.g., region-based convolutional neural net-
works (Li et al., 2021b)] and corresponding computing 
devices for the robot should be researched in the future. 

IMAGE PROCESSING 
Acceptable performance (i.e., MAE was 12.5° at 

1000 lux) of the image processing algorithms resulted from 
a combination of factors including precise deep learning de-
tection results and appropriate algorithm design (e.g., satu-
ration channel extraction, Canny edge detection, and Hough 
transform) and parameter tuning. Similarly, our previous 
publication also demonstrated that extensively analyzing the 
bounding box results from deep learning detection was fa-
vorable to continuously track bird behavior when image pro-
cessing was involved (Li et al., 2021c). With the detected 
bounding box, the receptive field of the image process algo-
rithms was narrowed, and detected environments turned out 
to be simple compared to the whole image. Some factors 
causing errors cannot be ignored for image processing algo-
rithm development, such as bird occlusion and overlapping, 
various lighting conditions, complex background, random 
shadows, etc. (Okinda et al., 2020). 

LIGHT INTENSITY EFFECT 
Lower light intensities reduced the performance of the 

deep learning model detection, image processing orientation 
identification, and consequently final pickup performance. 
Such reduction resulted in unidentifiable features between 
broiler shanks and other objects under dark environments. 
Previous testing suggested that deep learning models were 
not subject to light intensity for egg detection (Li et al., 
2020). Features (e.g., color, texture, saturation, etc.) of 
broiler shanks were different from those of eggs, and broiler 
shanks were not visually recognizable under the 10-lux light 

intensity (fig. 3), thus leading to detection failure. Such a 
phenomenon indicates that embedding extra lamps into the 
robot for illuminating detection environments may be cost-
efficient and helpful to boost mortality detection and pickup 
performance in broiler production with dim lights 
(Olanrewaju et al., 2006). However, the benefits of supple-
mental lights tended to be saturated for over 60-lux intensi-
ties, and to save robot operation energy, needlessly 
increasing light intensities for improving detection and 
pickup performance is not suggested. The other issue with 
extremely bright lights is the effect they have on the live 
birds. There could be significant fear and stress responses to 
very bright lights in a typical broiler operation (Olanrewaju 
et al., 2006). Infrared or near-infrared imaging could be an-
other option because it captures images based on surface 
temperature of objects and is insensitive to light intensities 
(Yanagi et al., 2002). The imaging via the infrared technique 
should be completed before shanks reach the same tempera-
ture as background, which should be validated in the future. 
Meanwhile, the cost efficiency and economical adaption by 
producers should be considered. 

BIRD SIZE EFFECT 
Bird size effect on the detection and pickup performance 

was not systematically examined due to an uneven number 
of dead birds across bird ages, but it cannot be ignored for 
future robot development. Per observation, shank skin color 
was less saturated (i.e., lighter yellow) for younger birds, 
which may make shanks less distinguishable from fresh litter 
due to similar color features. Additional algorithms should 
be developed for detecting shanks of young birds. The robot 
vision system may not capture completed shanks of older 
birds due to the larger shank size and limited field of view of 
the vision system. Elevating the camera to capture more sce-
narios may be considered, and pixel-to-mm conversion fac-
tors should be optimized according to camera height. 
Typical bird body weight will be over 2000 g (the maximum 
payload of the robot) after five weeks of bird age (Aviagen, 
2019), therefore the robot capability of holding birds at dif-
ferent weights, sizes, and ages should be further investi-
gated. 

OTHER CAUSES OF MORTALITY PICKUP FAILURE 
Besides the aforementioned factors, other causes of 

pickup failure should not be ignored. The gripper of the ro-
bot was adaptively deformed from the normal shape to the 
twisted shape when it hit tough obstacles. Although the 
adaptive deformation is favorable for protecting the gripper 
from broken, the twisted gripper under the collision was un-
able to grasp broiler shanks successfully. Figure 7 represents 
challenges related to closely curled shanks (left illustration), 
overlapping birds (center illustration), and litter covering the 
shank of interest (right illustration). It should be noted that 
the cases were determined and randomized in lab after con-
sultation with broiler farm managers to simulate commercial 
conditions, and specific frequency or percentage of the cases 
was not provided. A more reliable and robust gripper that 
can overcome collision force without deformation should be 
developed. 

Figure 6. Success rates for automatically picking up dead birds under
different light intensities. 
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FUTURE WORK 
Developing a robust broiler mortality robot autono-

mously manipulated in commercial broilers involves com-
plicated procedures. This study achieved the development of 
the robot arm for broiler mortality pickup, which will be em-
bedded onto a mobile unmanned ground vehicle. The re-
search team also developed navigation algorithms for the 
ground robot roaming completely in a broiler house to search 
for broiler mortalities. Three-dimensional machine vision 
sensors (e.g., LiDAR) are planned to install on the ground 
robot to assist in sensing and navigation in a GPS-denied 
broiler house environment, and appropriately integrating all 
necessary components, including detection, navigation, 
servo, and pickup, should be researched as well. The end ef-
fector and camera were fixed together and positioned at a 
firm height (~20 cm). As the camera was placed with a close 
distance from the floor and perpendicular to the floor, the 
acquire image contained very little distortion affecting hand-
eye connections. Therefore, our simple coordinate transfor-
mation method worked. However, additional calibration 
procedures [e.g., placing a checkerboard in front of a robotic 
vision system and building homogeneous transformation 
matrices (Tabb and Ahmad Yousef, 2017)] are needed for 
the applications with severely distorted views contained in 
acquired images. 

CONCLUSION 
A broiler mortality removal robot was developed to auto-

matically collect dead birds. The broiler shank was the target 
anatomical part for detection and mortality pickup, with a 
perpendicular orientation between gripper long axis and 
broiler shank resulting in higher success rates than the non-
perpendicular orientation. For detecting and locating broiler 
shanks, the YOLO V4 outperformed the YOLO V3 with re-
gard to precision, recall, F1 score, and processing speed. 
Lower light intensities reduced the performance of the deep 
learning model detection, image processing orientation iden-
tification, and final pickup performance. The final success 
rate for picking up dead birds was 90.0% at the 1000-lux 
light intensity. 
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