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Abstract 
Obese women are subfertile and have reduced assisted reproduction success, which 
may be due to reduced oocyte competence. We hypothesize that consumption of 
a high-fat/high-sugar diet induces ovarian inflammation, which is a primary con-
tributor to decreased oocyte quality and pre-implantation embryo development. 
To test this hypothesis, C57BL/6 (B6) mice with a normal inflammatory response 
and C3H/HeJ (C3H) mice with a dampened inflammatory response due to dysfunc-
tional Toll-like receptor 4 were fed either normal chow or high-fat/high-sugar diet. 
In both B6 and C3H females, high-fat/high-sugar diet induced excessive adiposity 
and hyperglycemia compared to normal chow-fed counterparts. Conversely, ovarian 
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CD68 levels and oocyte expression of oxidative stress markers were increased when 
collected from B6 high-fat/ high-sugar but not C3H high-fat/high-sugar mice. Fol-
lowing in vitro fertilization of in vivo matured oocytes, blastocyst development was 
decreased in B6-high-fat/high-sugar but not C3H high-fat/high-sugar mice. Ex-
pression of cumulus cell markers of oocyte quality were altered in both B6 high-fat/
high-sugar and C3H high-fat/high-sugar. However, there were no diet-dependent 
differences in spindle abnormalities in either B6 or C3H mice, suggesting poten-
tial defects in cytoplasmic maturation. Indeed, there were significant increases in 
the abundance of maternal effect gene mRNAs in oocytes from only B6 high-fat/
high-sugar mice. These differentially expressed genes encode proteins of the sub-
cortical maternal complex and associated with mRNA metabolism and epigenetic 
modifications. These genes regulate maternal mRNA degradation at oocyte matu-
ration, mRNA clearance at the zygotic genome activation, and methylation of im-
printed genes suggesting a mechanism by which inflammation induced oxidative 
stress impairs embryo development. 

Keywords: subcortical maternal cortex, RNA binding proteins, oocyte maturation, 
maternal effect genes, epigenetic regulators, obesity, inflammation

Summary: Ovarian inflammation, due to consumption of a high-fat/high-sugar diet, 
but not metabolic dysfunction alone, increased mRNA abundance of maternal ef-
fect genes in mature oocytes and decreased blastocyst development.  
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Introduction 

Maternal obesity and infertility are intimately linked, with nearly 40% 
of reproductive aged women classified as obese in the United States 
[1] and a predicted prevalence of infertility in the general popula-
tion as high as 18% [2]. Women who are overweight (body mass in-
dex 25.0–29.9) or obese (>30) account for roughly 40% of all in vi-
tro fertilization (IVF) procedures [3]. Furthermore, overweight and 
obese women have lower implantation and clinical pregnancy rates, 
increased miscarriage rates, and increased risk for premature birth 
compared to normal weight women [4– 6]. Previous studies have dem-
onstrated that maternal obesity due to consumption of a high fat/high 
sugar diet leads to a myriad of abnormalities in oocyte growth and 
maturation, which contribute to both infertility and IVF failure [7–12]. 

One consequence of maternal obesity is a state of chronic inflam-
mation [13–15]. This phenotype is due in part to increased visceral 
adipose tissue which produces proinflammatory adipokines and cy-
tokines that contribute to the development of insulin resistance and 
hyperglycemia [16, 17]. The end result is a state of chronic systemic 
inflammation and metabolic dysfunction. There are also obesity-in-
duced changes in the gut microbiota that lead to increased gut per-
meability and subsequent leak of lipopolysaccharide (LPS) into sys-
temic circulation [18]. LPS binds to Toll-like receptor 4 (TLR4), which 
is recognized as one of the key inducers of the obesity inflammatory 
response [19]. At the level of tissues and cells, systemic inflammation 
stimulates proinflammatory cytokine production and induces oxida-
tive stress [13]. It has been well documented that both proinflamma-
tory cytokines and oxidative stress impair oocyte quality [9, 20–23]. 
Furthermore, recent studies have demonstrated altered meiotic pro-
gression and mRNA levels in bovine oocytes following cumulus-oo-
cyte complex (COC) exposure to LPS [24–26]. 

We previously demonstrated that the abundance of candidate 
mRNAs were increased in presumptive MII oocytes from mice fed a 
high fat diet compared to a normal rodent chow diet [27, 28]. These 
data were consistent with microarray analysis of oocytes from polycys-
tic ovary syndrome (PCOS) patients compared with metabolically nor-
mal women, showing that 80% of the differentially expressed genes 
in PCOS oocytes had increased abundance [29]. The abundance of a 
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specific mRNA is determined by the sum of its synthesis (transcrip-
tion) and degradation which occurs in the absence or presence of 
translation [30]. In the oocyte, transcriptional activity is high during 
the growth phase [31] followed by transcriptional quiescence as the 
oocyte approaches ovulation [32]. Furthermore, the abundance of 
mRNAs and their rate of translation are primarily regulated by post-
transcriptional mechanisms. For example, during oocyte growth, many 
of the mRNAs are bound by Y-box binding protein 2 (MSY2) resulting 
in highly stable mRNA and low translation rates [33]. Upon luteinizing 
hormone-induced meiotic resumption mRNA is released from MSY2 
and there are transcript-specific changes in each transcripts associa-
tion with stabilizing or destabilizing RNA-binding proteins (RBPs), the 
translational machinery, and/or RNA degradation machinery [34]. A 
subset of the mRNAs, i.e., maternal effect genes, remain stable after 
ovulation and are translated after fertilization [35]. Maternal effect 
genes are essential for early embryonic development due to their in-
volvement in transcriptional and cell cycle regulation, epigenetic re-
programming, and other critical processes during the maternal to zy-
gotic transition (MZT) [36]. The importance of maternal effect gene 
expression and appropriately timed protein translation is evident by 
the fact that knockout of a single maternal effect gene has no effect 
on oocyte growth and maturation but causes early embryonic lethal-
ity [37–42]. 

The objective of the current study was to discriminate between the 
effects of metabolic dysfunction and inflammation on oocyte qual-
ity. To achieve this objective, we used two strains of mice, C57BL/6 
and C3H/HeJ fed normal rodent chow (ND) or a high-fat/high-sugar 
(HFHS) diet. Importantly, the C3H/HeJ mice have a spontaneous mis-
sense mutation in the Tlr4 gene, which results in TLR4 protein that is 
unable to signal upon binding to endotoxins, including LPS and result-
ing in a dampened inflammatory response [43]. By contrast, the com-
monly used C57BL/6J mice have a functional TLR4 and diet-induced 
obesity elicits an innate immune response [44]. By implementing an 
experimental design utilizing these two mouse models, we identified 
TLR4 inflammation-dependent decreases in embryo development and 
increased abundance of maternal effect gene transcripts in response 
to HFHS-induced obesity. 
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Materials and methods 

Experimental animals and diets 

Inbred C57BL6/6 J (B6) and C3H/HeJ (C3H) female mice (The Jackson 
Laboratory, Bar Harbor, ME) were used for this study. Animals were 
maintained on a 12:12 light: dark cycle at 25°C with ad libitum access 
to food and water for the duration of the study. All animal experi-
ments were approved by the University of Nebraska-Lincoln Institu-
tional Animal Care and Use Committee. 

Pubertal mice (10-week-old B6 and 8-week-old C3H) were ran-
domly assigned to normal diet (ND; Teklad Global 18% Protein Rodent 
Diet, Envigo, Indianapolis, IN) or a HFHS diet comprised 42% kcal fat, 
42% kcal sucrose (TD.88137, Envigo). In addition to ad libitum access 
to water, mice in the HFHS experimental group had ad libitum access 
to 20% sucrose solution (Thermo Fisher Scientific, Waltham, MA) that 
contained vitamins (0.2% w/v; MP Biomedicals, Irvine, CA) and min-
erals (0.7% w/v; MP Biomedicals) as described [45]. After 4 weeks on 
diet (≥25% body weight gain in HFHS diet treatment group), all mice 
were stimulated with 5 IU pregnant mare serum gonadotropin (PMSG; 
ProSpec, Rehovot, Israel), followed by 5 IU human chorionic gonado-
tropin (hCG; Calbiochem EMD Millipore, Billerica, MA) 48 h later. Mice 
were fasted 12 h prior to euthanasia. 

Females were euthanized by isoflurane (MWI Animal Health, Boise, 
ID) overdose followed by cervical dislocation 16 h after hCG stimula-
tion. Final body weight, percentage body fat and fasting glucose lev-
els were recorded for all females. Fasting blood glucose levels were 
obtained via glucometer (Contour, Parsippany, NJ) reading of tail tip 
blood, and percent body fat was determined utilizing the Lunar PIX-
Imus2 Densitometer (General Electric, Boston, MA) to perform DEXA 
scans. Data were generated from two independent trials with 5–7 fe-
male mice per experimental group in each trial. 

Cumulus cell and oocyte collection 

Following superovulation, cumulus–oocyte masses were removed 
from the ampulla of the oviduct in warm MOPS-buffered collection 
medium (oMOPS). Cumulus cells were denuded from oocytes using 
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a low concentration (50 μg/ml) of hyaluronidase. All oocytes were 
quickly removed and washed with oMOPS, then cumulus cells were pi-
petted into a microcentrifuge tube containing cold PBS+0.01% polyvi-
nyl pyrrolidone (PVP). Cumulus cells collected from each female were 
pelleted individually via centrifugation at 500 RCF for 5 min at 4°C. 
Excess PBS+PVP was removed, and RNA was immediately extracted 
from the resulting pellet using TriReagent (Invitrogen) according to 
the manufacturer’s instructions. Oocytes from mice were pooled in 
groups of 20 (from 1–2 mice), washed thoroughly through drops of 
PBS+PVP, and immediately subjected to RNA extraction as described 
above. A subset of oocytes was fixed with 4% paraformaldehyde (PFA) 
in PBS for spindle staining. 

Oocyte spindle staining 

To identify abnormalities in spindle morphology, in vivo matured oo-
cytes from B6-ND (n=18), B6-HFHS (n=28), C3H-ND (n=36), and C3H-
HFHS (n=31) females were stained and analyzed as previously de-
scribed [46]. Briefly, denuded oocytes were fixed in 4% PFA for 20 min, 
washed in PBS with 0.1% Triton X-100 (TX100) and 0.1% PVP, perme-
abilized in PBS with 1.0% TX100, then blocked for 30 min in PBS with 
0.1% TX100, 0.1 M glycine, and 0.5% bovine serum albumin (BSA). Oo-
cytes were incubated overnight at 4°C in a 1:400 dilution of mono-
clonal anti-tubulin FITC-conjugated antibody (Sigma). Following an-
tibody incubation, oocytes were washed again in PBS+0.1% TX100 
and mounted on a glass slide with ProLong Gold Antifade Mountant 
with DAPI (Invitrogen, Carlsbad, CA). Slides were imaged with a Nikon 
A1R-Ti2 confocal microscope imaging system. Spindle and chromo-
somal alignment were considered normal when a barrel-shaped struc-
ture was formed by the microtubules and chromosomes were aligned 
in a compact metaphase plate [47]. Any disruption of microtubule or 
chromosome arrangement was considered abnormal. 

In vitro fertilization and embryo culture 

Spermatozoa were collected from the vas deferens and cauda epi-
didymis of a 3-month-old B6D2F1 male (The Jackson Laboratory, Bar 
Harbor, ME) and capacitated in fertilization medium (mOFM) for 1 
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h [48]. Oviducts from females (n=5 per treatment) were collected in 
oMOPS supplemented with 10% fetal calf serum (HyClone Labora-
tories, Logan, UT). In vivo matured cumulus–oocyte complexes were 
placed into 50 μL drops of mOFM containing capacitated sperm (1 
x 106 sperm/ml) under oil (Spectrum Chemical, New Brunswick, NJ). 
Gametes were co-incubated for 6 h at 37° C in 6.0% CO2 and 5.0% O2. 
Following IVF, zygotes (B6-ND n=103, B6-HFHS n=94, C3H-ND n=85, 
C3H-HFHS n=71) were washed and moved into 20 μL drops of step 
one Optimized Embryo Culture (OEC1) medium [49] supplemented 
with 8% fatty acid free BSA and cultured in the same conditions. After 
48 h in culture, embryos were transferred to 20 μL drops of step two 
OEC (OEC2) [49]. Blastocyst development was assessed at 96 h (day 
4) and blastocyst hatching at 112 h (day 5) of culture. 

Blastocyst cell number and allocation 

For quantification of inner cell mass (ICM) and trophectoderm (TE) 
cells, day 5 hatching or fully hatched blastocysts (B6-ND n=31, B6-
HFHS n=28, C3H-ND n=21, C3HHFHS n=29) were fixed in 4% PFA and 
stained as previously described [50, 51]. Briefly, blastocysts were per-
meabilized in 0.3% Triton X-100 and blocked in a solution containing 
0.1% Tween 20, 1.0% BSA, 0.1 M glycine, and 10% Normal Goat Serum. 
Antibodies against SRY (sex determining region Y)-box 2 (SOX2; Bio-
genex, Fremont, CA, rabbit monoclonal) and Caudal-type homeobox 
protein 2 (CDX2; Biogenex, mouse monoclonal) were used to identify 
ICM and TE cells, respectively. The secondary antibodies Alexa Fluor 
555 goat anti-rabbit IgG and Alexa Fluor 488 goat antimouse IgG (In-
vitrogen, Thermo Fisher Scientific) were used for SOX2 and CDX2, re-
spectively. Blastocysts were mounted using ProLong Gold Antifade 
Mountant with DAPI. Images were obtained using a Nikon A1R-Ti2 
confocal microscope at 40x magnification and cells were counted us-
ing FIJI (ImageJ). Total cell number was calculated as the number of 
SOX2 positive cells plus the number of CDX2 positive cells. 

Western blotting 

Protein extracts were collected from one whole ovary from each fe-
male, as previously described [28]. Ovaries were homogenized in 
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radioimmunoprecipitation assay buffer containing Halt Protease inhib-
itor cocktail (Thermo Fisher Scientific). Protein concentration was de-
termined using a bicinchoninic acid assay according to the manufac-
turer’s directions (Thermo Fisher Scientific). Equal amounts of protein 
(10 μg) per sample (B6-ND, n=11; B6-HFHS, n=13; C3H-ND, n=9; and 
C3H-HFHS, n=8) were loaded onto 10% SDS-PAGE gels, then trans-
ferred to polyvinylidene fluoride membranes (EMD Millipore, Burling-
ton, MA), and blocked with 5% nonfat milk in TBS-T (20 mM Tris–HCl, 
15 0 mM NaCl, 0.1% Tween 20, pH 7.3). Membranes were incubated 
overnight at 4°C in 5% BSA in TBS-T containing primary antibody 
anti-CD68 (Cluster of differentiation 68; 1:10,000; Cell Signaling Tech-
nology, Danvers, MA), followed by incubation with 5% nonfat milk in 
TBS-T containing anti-rabbit IgG horseradish peroxidase-conjugated 
secondary antibody (1:20,000; Cell Signaling Technology). To detect 
protein, blots were incubated with SuperSignal West Femto Maxi-
mum Sensitivity Substrate (Thermo Fisher Scientific) and exposed to 
X-ray film (Research Products International, Prospect, IL). Blots were 
stripped using Restore Western Blot Stripping Buffer (Thermo Fisher 
Scientific) and subjected to the same protocol, probed with antibod-
ies for loading control beta-actin (ACTB; 1:20,000). Quantification was 
performed as previously described [52]. Briefly, protein band inten-
sity was determined for each sample using FIJI, which was then nor-
malized to intensity of ACTB and fold-change between experimental 
groups was calculated. 

Quantitative polymerase chain reaction 

RNA from in vivo matured oocytes (20 oocytes per sample; B6-ND 
n=13, B6-HFHS n=11, C3H-ND n=12, C3HHFHS n=11) and cumulus 
cells (B6-ND n=10, B6-HFHS n=10, C3H-ND n=11, C3H-HFHS n=11) 
were reverse transcribed using the iScript Advanced cDNA Synthesis 
Kit which contains both poly(A) and random primers (Bio-Rad, Her-
cules, CA) following the manufacturer’s instructions. For oocytes, for-
ward and reverse primers for selected maternal effect genes and RBPs 
(Supplementary Table S1) were designed using NCBI Primer-Blast and 
synthesized by Integrative DNA Technologies (IDT, Coralville, IA). cDNA 
was diluted 1:5, and each 10 μL polymerase chain reaction (PCR) re-
action included 1 μL cDNA or standard, 300 nM primer mix (forward 
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and reverse) and 5 μL SsoAdvanced Universal SYBR Green Supermix 
(Bio-Rad), run in triplicate for each sample. A standard curve for each 
PCR primer set was generated using gBlock synthetic DNAs which 
were designed based on amplicon sequence for each gene and syn-
thesized by IDT (Supplementary Table S2). Counts for each sample 
were interpolated and normalized to H2A.Z variant histone 1 (H2az1) 
[53, 54]. For cumulus cells, primers were designed for markers of oo-
cyte quality (Supplementary Table S1) and quantitative PCR (qPCR) 
was performed and analyzed in the same manner as oocytes, with 1:5 
dilutions of cDNA and transcript counts normalized to Actb. In both 
cell types, the effect of diet (fold-change) was calculated within each 
mouse line as previously described [55]. 

Statistics 

Statistical analyses were carried out using GraphPad Prism 9 (Graph-
Pad Software, La Jolla, CA). Continuous data (oocytes/female, qPCR, 
Western blot) with normality of residuals were analyzed using un-
paired t-test, whereas data without normality of residuals was analyzed 
using Mann–Whitney nonparametric test. Continuous data were pre-
sented as mean±SEM. Noncontinuous data (embryo stage, degener-
ate vs. normal oocytes, normal vs. abnormal spindle) were presented 
as % normal/abnormal. Differences between experimental groups 
were calculated using Fisher’s exact tests. For all statistical analyses, 
differences were considered significant at P<0.05. 

Results 

HFHS diet induced similar metabolic phenotypes in B6 and C3H 
females 

To determine whether B6 and C3H mice develop similar metabolic 
phenotypes after consumption of a HFHS diet, pubertal females from 
each strain were placed on ND or HFHS diet for 4 weeks at which time, 
all mice fed HFHS had at least a 25% increase in body weight (Sup-
plementary Figure S1). At the end of the trial period, B6 females re-
ceiving HFHS diet were significantly (P<0.0001) heavier than those on 
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ND (24.6±0.8 g, 19.2±0.2 g, respectively), with B6-HFHS females hav-
ing a greater body fat percentage than B6-ND females (28.0±1.8%, 
16.9±0.6%, respectively) (Figure 1). Similarly, C3H females on HFHS 
diet had a higher final body weight than those on ND (27.4±0.8 g, 
19.0±0.3 g, respectively) and greater percent body fat (29.1±1.2%, 
15.1±0.7%, respectively). Fasting serum blood glucose levels were 
higher (P<0.01) in B6- HFHS females compared to B6-ND (125.4±6.6 
mg/dL, 93.9±5.6 mg/dL, respectively), as well as C3H-HFHS compared 
to C3H-ND (127.9±6.1 mg/dL, 97.9±6.9, respectively) (Figure 1) indi-
cating that females from both strains acquired similar metabolic phe-
notypes after consumption of an HFHS diet. 

Figure 1. Metabolic phenotypes of C57BL/6 (B6) and C3H/HeJ (C3H) mice. B6 and 
C3H mice were fed control (ND; white bars) and high fat/high sugar (HFHS; black 
bars) diet (B6-ND n=9, B6-HFHS n=9, C3H-ND n=8, C3H-HFHS n=8). Final body 
weight, percent body fat, and fasting glucose levels after 4 weeks on diet were mea-
sured. All data are mean±SEM. **P <0.01, ****P <0.0001.
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Markers of activated macrophages and oxidative stress were in-
creased in B6-HFHS but not C3H-HFHS ovaries and oocytes 

The changes in metabolic phenotypes detected in the HFHS fed mice 
typically lead to low-level systemic inflammation. Thus, we assessed 
evidence of the ovarian inflammation by measuring abundance of 
CD68, a marker of activated macrophages [56]. CD68 was increased 
1.6-fold (P<0.02) in ovaries from B6-HFHS compared to B6-ND  
(Figure 2A). Conversely, consumption of HFHS diet by C3H mice did 
not increase CD68 abundance compared to their ND counterparts. 
Activated macrophages synthesize and secrete proinflammatory cy-
tokines which increase intracellular reactive oxygen species produc-
tion resulting in oxidative stress [57, 58]. The consequence of oxida-
tive stress is increased expression of antioxidant enzymes including 
superoxide dismutase 1 (Sod1) and glutathione peroxidase (Gpx1) [59, 
60]. Therefore, we performed real-time qPCR to measure the abun-
dance of Sod1 and Gpx1 in oocytes collected from each experimen-
tal group. Both Sod1 and Gpx1 were increased 2– to 3-fold in oocytes 
from B6-HFHS compared to B6-ND mice (Figure 2B). However, there 
was no difference in either transcript in oocytes from C3H-HFHS com-
pared to C3H-ND mice. We also measured the abundance of sirtuin 
1 (Sirt1), which is a histone deacetylase that contributes to metabolic 
homeostasis [61]. There was no diet-dependent difference in Sirt1 
mRNA abundance in oocytes from either mouse line. These data dem-
onstrated that B6 females had an expected inflammatory response in-
cluding oocyte oxidative stress due to HFHS diet consumption. Fur-
thermore, the lack of increased ovarian CD68 and oocyte expression of 
Sod1 and Gpx in C3H-HFHS versus C3H-ND mice confirmed that the 
TLR4 mutation resulted in a blunted ovarian inflammatory response. 

HFHS diet reduced B6 but not C3H blastocyst development 

Based on the phenotypes of B6 and C3H mice, we utilized the two 
mouse strains to parse out inflammatory versus metabolic effects 
on oocyte quality and subsequent embryo development. Follow-
ing IVF there was no difference in the percentage of cleaved em-
bryos derived from oocytes collected from B6-ND (65%) and B6-HFHS 
(76%) or C3HND (72%) and C3H-HFHS (77%) females (Figure 3A). 
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Development from cleaved embryo to day 4 (96 h) blastocysts was 
decreased (P=0.035) in the B6-HFHS group (54%) compared to B6-
ND (72%) group. Likewise, development to day 5 (112 h) hatching 
blastocyst tended to be decreased (P=0.060) in the B6-HFHS (38%) 

Figure 2. Markers of inflammation and oxidative stress in ovaries and oocytes from 
C57BL/6 (B6) and C3H/HeJ (C3H) mice. (A) Representative Western blot image and 
fold change of activated macrophage marker CD68 (cluster of differentiation 68) 
in ovaries from B6 and C3H females fed normal (ND; white bars) and high fat/high 
sugar (HFHS; black bars) diet (B6-ND n=11, B6-HFHS n=13, C3H-ND n=9, C3H-HFHS 
n=8). ACTB, beta-actin. Data are mean±SEM. *P <0.05. (B) Quantitative, real-time 
PCR was performed using oocyte mRNA from B6 and C3H females fed normal (ND; 
white bars) and high fat/high sugar (HFHS; black bars) diet (B6-ND n=11, B6-HFHS 
n=9, C3H-ND n=11, C3H-HFHS n=9) and primers against Sirt1 (sirtuin 1), Sod1 (su-
peroxide dismutase), or Gpx1 (glutathione peroxidase 1). Data are mean±SEM. **P 
<0.01, ***P <0.001.
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compared to B6-ND (55%) group (Figure 3A). Conversely, there was 
no difference in blastocyst or hatching blastocyst development after 
fertilization of oocytes from C3H-ND (82%, 80%) and C3HHFHS (73%, 

Figure 3. Embryo development rates and blastocyst cell allocation. (A) In vivo ma-
tured oocytes from each experimental group were in vitro fertilized and embryos in 
vitro cultured. The average percent of zygotes that cleaved and developed to blas-
tocyst on day 4 (per cleaved embryo) and hatching blastocyst on day 5 (per cleaved 
embryo) B6 (B6-ND, B6-HFHS n=94) and C3H (C3H-ND n=85, C3H-HFHS n=71) was 
calculated. Significant differences (P <0.05) were determined using Fisher exact test. 
(B) Representative image of a day 5 hatching blastocyst (from C3H-ND) differen-
tially stained for inner cell mass (ICM) cells containing SRY (sex determining region 
Y)-box 2 (SOX2; red) and trophectoderm (TE) cells containing caudal-type homeo-
box protein 2 (CDX2; green). Average number of ICM and TE cells and percentage 
of ICM cells in individual hatching and fully hatched blastocysts (B6-ND n=31, B6-
HFHS n=28, C3H-ND n=21, C3H-HFHS n=29) were calculated. Data are mean±SEM.
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73%) mice (Figure 3A). To identify any differences in blastocyst mor-
phology between the experimental groups, immunofluorescence of 
day 5 embryos (hatching or hatched blastocysts) was performed using 
SOX2 and CDX2 antibodies which stain the ICM and TE, respectively. 
There was no difference in the number of ICM or TE cells or the ratio 
of ICM to TE cells per hatched embryo between B6- ND and B6-HFHS 
or between C3H-ND and C3H-HFHS mice (Figure 3B). Thus, embryos 
that reached the blastocyst stage, regardless of experimental group, 
were morphologically normal. However, this does not rule out abnor-
malities at the cellular level. 

Cumulus cell markers of oocyte quality are altered by inflam-
mation and hyperglycemia 

To determine if the diet-induced decreases in B6 but not C3H embryo 
development were due to reduced oocyte quality, we first measured 
the expression of cumulus cell genes (Has2, Ptgs2, Ptx3, and Tnfaip6) 
that are commonly used markers of oocyte quality (Figure 4) [62]. The 
expression of Ptx3 and Tnfaip6 were both decreased in cumulus cells 
from B6-HFHS compared to B6-ND mice. However, there was no dif-
ference in Has2 or Ptsg2. Consumption of HFHS diet by C3H females 
resulted in decreased expression of not only Ptx3 and Tnfaip6 but also 
Ptgs2 and Has2 mRNAs compared to their ND counterparts. Thus, in 
contrast to the embryo development results, these data suggest re-
duced quality of the oocytes from both HFHS-fed B6 and C3H mice. 

Oocyte meiotic maturation is not altered by HFHS diet 

Based on the cumulus gene expression data, we hypothesized that 
there would be abnormalities in nuclear and/or cytoplasmic matu-
ration in oocytes from mice fed HFHS diet. We first measured com-
mon oocyte morphology parameters. After superovulation, there 
was no diet-dependent difference in the number of in vivo matured 
oocytes collected per mouse (Figure 5A) from B6 (ND=17.4±1.9, 
HFHS=22.4±3.0) or C3H (ND=22.4±2.4, HFHS=17.8±2.5) females. The 
number of degenerated oocytes in each experimental group, which 
was defined as oocytes with pale or fragmented cytoplasm [27], was 
counted. There was a higher percentage of degenerated oocytes from 



Ermisch  et  al .  in  B iology  of  Reproduct ion  108  (2023 )
     15

B6-HFHS compared to B6-ND mice but no difference between C3H-
ND and C3H-HFHS mice (Figure 5A). Oocytes were subsequently 
stained with α-tubulin and DAPI to identify any meiotic maturation 
defects. There were no diet-dependent differences in spindle struc-
ture abnormalities or chromosome alignment defects in oocytes from 
either B6 or C3H mice (Figure 5B).    

Maternal effect gene mRNAs were increased in oocytes from B6-
HFHS but not C3H-HFHS mice 

We previously identified increased abundance of mRNAs, including 
maternal effect genes, in oocytes from B6 mice fed a 45% high fat 

Figure 4. Cumulus cell gene expression. Expression of genes indicative of oocyte 
quality within cumulus cells from B6 and C3H mice fed control (ND; white bars) and 
high fat/high sugar (HFHS; black bars) diet (B6-ND n=10, B6-HFHS n=10, C3H-ND 
n=11, C3H-HFHS n=11). Has2, hyaluronan synthase 2; Ptgs2, prostaglandin-endo-
peroxide synthase 2; Ptx3, pentraxin 3; Tnfaip6, TNF alpha induced protein 6. All 
data are mean±SEM. *P <0.05, ***P <0.001, ****P <0.0001.  
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diet [27, 28]. Importantly, these increases were correlated with in-
creased ovarian inflammation and reduced embryonic development. 
Thus, given the absence of meiotic defects, we next assayed the abun-
dance of maternal effect gene and mRNA metabolism transcripts [36] 
in oocytes from B6 and C3H mice fed ND or HFHS diet using real-
time qPCR. There was increased abundances of transcripts that encode 
subcortical maternal complex (SCMC) proteins (Ooep, Tle6, Nlrp5, and 
Padi6), a deubiquitinating enzyme (Uchl1), RBPs (Zfp36l2 and Elavl1), 
epigenetic modifiers/chromatin remodelers (Dnmt1, Smarca4 (aka, 
Brg1), Zfp57 and Dppa3), and transcription factors (Bnc1, Pou5f1, Se-
box, Nobox, and Figla) in oocytes from B6-HFHS compared to B6-
ND (Figure 6 & Figure 7). However, there were no differences in 
the abundance of any of these same transcripts between C3H-ND 
and C3H-HFHS indicating that the diet-dependent increases in oo-
cyte mRNAs in B6 mice was a consequence of ovarian inflammation 
and/or oocyte oxidative stress. 

Figure 5. Oocyte morphology. (A) Number of oocytes (mean±SEM) and percent of 
degenerate oocytes ovulated per B6 and C3H female fed a normal (ND; white bars) 
or high fat/high sugar (HFHS; black bars) diet (B6-ND n=14, B6-HFHS n=14, C3H-
ND n=13, C3H-HFHS n=13). P <0.01 (Fisher’s exact test) (B) Representative images 
stained with α-tubulin (green) and DAPI (blue) and percent of spindle abnormalities 
in oocytes from B6-ND (n=18), B6-HFHS (n=28), C3H-ND (n=36), and C3H-HFHS 
(n=31) females. Scale bar=10 μm.
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Figure 6. Oocyte gene expression of SCMC and RNA binding proteins. Quantitative, real-time 
PCR analysis was performed using mRNA from oocytes from B6 and C3H mice fed control (ND; 
white bars) and high fat/high sugar (HFHS; black bars) diet (20 oocytes per sample; B6-ND 
n=11, B6-HFHS n=9, C3H-ND n=11, C3H-HFHS n=9) and primers against (A) subcortical ma-
ternal complex (SCMC) mRNAs and (B) RNA metabolism factors. Ooep, oocyte expressed pro-
tein; Tle6, TLE family member 6; Padi6, peptidyl arginine deiminase 6; Nlrp5, NLR family pyrin 
domain containing 5; Khdc3, KH domain containing 3; Uchl1, ubiquitin C-terminal hydrolase L1; 
Elavl1, embryonic lethal abnormal vision like 1; Zar1, zygote arrest 1; Zfp36l2, ZFP36 ring finger 
protein like 2. All data are mean±SEM. *P <0.05, **P <0.01, ***P <0.001.  
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Figure 7. Oocyte gene expression of epigenetic regulators and transcription factors. Quantita-
tive, real-time PCR analysis was performed using mRNA from oocytes from B6 and C3H mice fed 
control (ND; white bars) and high fat/high sugar (HFHS; black bars) diet (20 oocytes per sample; 
B6-ND n=11, B6-HFHS n=9, C3H-ND n=11, C3H-HFHS n=9) and primers against (A) epigenetic 
factors and chromatin remodeling mRNAs and (B) transcription factor mRNAs. Dppa3, devel-
opmental pluripotency associated 3; Dnmt1, DNA methyltransferase 1; Smarca4, SWI/SNF re-
lated, matrix associated, actin dependent regulator of chromatin subfamily A member 4; Zfp57, 
zinc finger protein 57; Bnc1, basonuclin 1; Pou5f1, POU class 5 homeobox 1; Sebox, skin- em-
bryo- brain- and oocyte-specific homeobox protein; Nobox, newborn ovary homeobox pro-
tein; Figla, factor in germline alpha. All data are mean±SEM. *P <0.05, **P <0.01, ***P <0.001.
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Discussion 

Metabolic dysfunction and inflammation associated with obesity are 
tightly linked [13], making it difficult to delineate between the effects 
of hyperglycemia, excess adipose tissue, and/or inflammation on oo-
cyte quality. In this study, we used the C57BL/6J mouse strain, which 
is a well-characterized model of diet-induced obesity. We also uti-
lized C3H/HeJ mice, a sub-strain of C3H that lack a functional TLR4 
and therefore are endotoxin resistant with a poor innate immune re-
sponse. We confirmed that consumption of an HFHS diet induced 
hyperglycemia, increased percent body fat, and increased ovarian in-
flammation in B6 female mice. Conversely, HFHS diet consumption 
only induced hyperglycemia and increased percent body fat in C3H/
HeJ females. Thus, inducing obesity in each mouse line using a HFHS 
diet allowed us to delineate the specific effects of inflammation, as 
opposed to hyperglycemia and/or excess adipose deposition, on oo-
cyte quality. Indeed, others have compared C57BL/6 J and C3H/HeJ 
mice to identify inflammation-dependent differences in tumor devel-
opment [63], atherosclerosis [64, 65], platelet aggregation response 
[66], and macrophage function due to endotoxin resistance [67]. We 
recognized that using two different inbred lines of mice could lead 
to the identification of genetic, rather than inflammation-dependent 
differences in oocyte quality; therefore, we did not make direct sta-
tistical comparisons between the two mouse lines in our study. How-
ever, Pfeiffer et al. [68] compared the transcriptome and proteome of 
oocytes from C57BL/6J, DBA/2J, 129/Sv, and C3H/HeN (a substrain of 
C3H with a functional TLR4) mice to detect genetic differences in oo-
cyte mRNAs and proteins. While there was high variability in the ex-
pression of some genes and proteins between the mouse lines, ma-
ternal effect gene mRNA and protein levels were similar across the 
four groups.  

One striking observation in our study was the significant decrease 
in embryo development to blastocyst after IVF of oocytes from B6-
HFHS, but not C3H-HFHS mice. There was also decreased expression 
of genes (i.e., Has2, Ptx3, and Tnfaip6) in cumulus cells from both B6-
HFHS and C3HHFHS mice compared to their ND counterparts. These 
genes encode components of the cumulus cell matrix and/or pro-
mote expansion of cumulus cells upon stimulation by the LH surge 
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[69]. Therefore, sufficient expression of these genes is a predictor of 
oocyte competence for fertilization [70]. Based on the embryo devel-
opment data, the HFHS-dependent decreases in cumulus cell gene 
expression in both B6 and C3H mice were unexpected. Previous stud-
ies demonstrate that the expanded cumulus layer titrates the amount 
of glucose and fatty acids that reach the oocyte, ensuring protec-
tion against metabolic toxicity [71, 72]. Furthermore, an intact cumu-
lus layer is an important protectant from oxidative stress associated 
with inflammation [73]. Thus, it may be that the hyperglycemia and 
increased adiposity of C3H mice affected cumulus cell gene expres-
sion, but the oocyte was protected in the absence of inflammation. 
Conversely, the combination of metabolic dysfunction and inflamma-
tion in B6 mice may have overcome the protective effects of cumulus 
cells leading to impaired oocyte quality.  

Indicators of reduced oocyte developmental competence include 
the failure to resume meiosis and abnormal chromosomal segrega-
tion [8, 74–76]. However, there were no differences in spindle con-
formation or chromatin alignment in oocytes from B6-ND versus B6-
HFHS or C3H-ND versus C3H-HFHS mice. This phenotypic difference 
between studies is likely due to differences in experimental models 
of obesity. To induce obesity in the current study, a diet with excess 
lipid and sugar was fed for only 4 weeks. Conversely, previously pub-
lished studies used mice fed higher fat content for 12 to 24 weeks [8, 
28, 76, 77], have induced uncontrolled hyperglycemia using strepto-
zotocin [74–76], or have utilized mice with a genetic mutation that re-
sulted in long-term progressive obesity [7, 27]. While meiotic matura-
tion was not affected, the majority of maternal effect gene transcripts 
that were measured in each experimental group had increased abun-
dance in oocytes from B6-HFHS compared to B6-ND mice. This out-
come was consistent with previous studies using oocytes from diet-
induced or genetic mouse models of obesity and oocytes from obese 
women with or without PCOS [13, 27–29]. Furthermore, there were no 
differences in the abundances of any of the candidate mRNAs in oo-
cytes from C3H-HFHS and C3H-ND mice. Thus, these data suggest 
that inflammation and/or oxidative stress alters key components of 
mRNA metabolism resulting in either increased transcription or de-
creased degradation of mRNAs. The consequence of altered mRNA 
metabolism is an increased relative dosage of specific gene transcripts 
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during fertilization and prior to embryonic genome activation which 
may result in increased translation of proteins that interfere with es-
sential processes during embryo development. On the other hand, 
the process of translation is coupled to mRNA degradation [78]; thus, 
the increased abundance of mRNAs may reflect reduced translational 
activity and therefore reduced protein levels similar to maternal ef-
fect gene knockdown models. Additional studies are required to dis-
tinguish between these two possibilities. Regardless, it is reasonable 
to expect that the increases in maternal effect gene mRNAs made a 
significant contribution to the reduced percentage of blastocysts and 
hatched blastocysts produced when oocytes from B6-HFHS mice were 
in vitro fertilized and cultured.  

RBPs are important post-transcriptional regulators of mRNA trans-
lation and degradation. In the current study, zinc finger protein 36 
like 2 (Zfp36l2) and embryonic lethal abnormal vision-like 1 (Elavl1) 
mRNAs, which encode RBPs, were increased in B6-HFHS compared to 
B6-ND oocytes. These proteins competitively bind to AU-rich regions 
within the 3’UTR of mRNAs [79, 80]. In the oocyte, ZFP36L2 binds to 
CNOT6L within the CCR4-NOT complex, which promotes deadenyl-
ation and represses mRNA translation [81, 82]. Mice with a truncated 
Zfp36l2 transcript have decreased female fertility due, in part, to de-
fects in resumption of meiosis and termination of development at 
the two-cell stage [83, 84]. In Cnot6l knockout mice, the degradation 
and clearance of maternal mRNAs during maturation and at zygotic 
genome activation is impaired [81]. Conversely, ELAVL1 (aka human 
antigen R, HuR) inhibits both RNA degradation and translation upon 
binding to the AU-rich 3’UTR [85]. While the effect of altered Elavl1 
expression during oocyte growth and maturation has not been de-
termined, knockdown and overexpression of Elavl1 during spermato-
genesis results in male sterility due to impaired meiosis and disrupted 
translation of proteins at the spermatid stage, respectively [86]. To-
gether, these data suggest that altered translation of ZFP36L2 and/or 
ELAVL1 and the relative abundance of ZFP36L2 to ELAVL1 may rep-
resent a mechanism of increased maternal transcripts in the oocytes 
from B6-HFHS mice. 

One group of maternal effect gene mRNAs that were quanti-
fied encode SCMC proteins. The SCMC is a structural complex com-
posed of NLRP5 (NLR family pyrin domain containing 5; aka MATER), 
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KHDC3 (KH domain containing protein 3, aka FILIA), OOEP (oocyte 
expressed protein, aka FLOPED), TLE6 (TLE family member 6), PADI6 
(peptidyl arginine deiminase 6), ZBED3 (zinc finger BED-type con-
taining 3), and NLRP2 (NLR family pyrin domain containing 2) pro-
teins [87]. Loss of PADI6, MATER, ZBED3, or NLRP4F protein prevents 
normal spindle structure and chromosome alignment and the redis-
tribution of mitochondria and endoplasmic reticulum during oocyte 
maturation [41,88–92]. During embryonic development, SCMC pro-
teins persist and regulate mitotic spindle organization and symmet-
ric division of blastomeres [93,94]. In the current study Nlrp5 (Mater) 
and Padi6 mRNAs were increased in the B6-HFHS but not C3H-HFHS 
oocyte. Based on these collective data, there may be a link between 
altered mRNA metabolism and other key events during oocyte mat-
uration and embryo development including mitochondrial redistribu-
tion and cell cleavage. 

The expression of transcripts that encode epigenetic modulators 
(Dnmt1, Smarca4, and Zfp57) were also increased in B6-HFHS but not 
C3H-HFHS oocytes (Figure 7A). The Smarca4 gene encodes Brahma 
related gene 1 (BRG1), which is an ATP-dependent chromatin remod-
eling factor associated with the SWI/SNF complex [95]. Conditional 
knockout of Smarca4 during murine oogenesis (Brg1Zp3-Cre) in-
creased termination of development at the two-cell stage and global 
reduction in gene transcription during zygotic genome activation 
[96]. In bovine oocytes, BRG-1 co-localizes with condensing chro-
matin during in vitro oocyte maturation [97]. Zincfinger protein 57 
(ZFP57) regulates DNA methylation and its loss results in abnormal 
methylation of maternally imprinted genes [98,99]. DNA methyltrans-
ferase 1 (DNMT1) regulates maintenance of DNA methylation marks. 
In the oocyte, it specifically regulates methylation of paternally im-
printed genes. As noted in the results, approximately 50% of the em-
bryos derived from B6-HFHS oocytes were morphologically normal at 
the blastocyst stage. These data suggest that there may be epigene-
tic changes in the TE or ICM cells that could at the cellular level that 
could contribute to embryo loss post-implantation. 

Taken together, we propose that short-term exposure to inflam-
mation alone or the combination of inflammation and metabolic dys-
function reduces oocyte developmental competence due to abnor-
malities in cytoplasmic maturation. The increases in maternal effect 
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gene expression in this and previous studies suggest that there are 
abnormalities in mRNA metabolism with the end result of increased 
or decreased proteins that regulate key milestones in embryo devel-
opment. Likewise, we hypothesize that there may be a delay in the 
clearance of maternal mRNAs post-fertilization which interferes with 
activation of the embryonic genome and the expression of embryo 
specific genes important for continued development.  
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Supplementary Table 1. Primers used for qPCR of oocytes and cumulus cells

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Accession No. Forward Primer (5’3’) Reverse Primer (5’3’) Location 
Oocytes      
Bnc1 NM_007562.2 TGCAGGATGGCTGAGGCTATCG ACTGTTCACACTGACGGTGGTT 91-181 
Dnmt1 NM_001199431.1 ACATGCAGCTTTCCTACATCCA ATGGAGGGAGGCACAGACC 2557-2643 
Dppa3 NM_139218.1 GTTCGGATTGAGCAGAGACAAA TGAACGGGACAGTGAGCCA 415-477 
Elavl1 NM_010485 ACACAGCTTGGGCTACGGTT TGGGCGAGCATATGACACCTTA 405-525 
Figla NM_012013.2 GCGTGAACGGATAAAAAATCTCA CTGAAGGCTCTGGTGCCG 258-315 
Gdf9 NM_008110.2 GCCGGGCAAGTACAGCC TTTGTAAGCGATGGAGCCG 1249-1312 
Gpx NM_008160 CGAGATGAACGATCTGCAGAAG ATTCTCCTGGTGTCCGAACTGA 398-485 
Khdc3 NM_025890.3 CCCTGAAAGGCGAGCTGAGA AGCCTCCAGAGCCTCTATTTCC 349-475 
Nlrp5 NM_011860.3 CCTGCGAAGCGCTGAAA ACTCTGAGGTTGGATTCCTGTGA 2322-2382 
Nobox NM_130869.3 TGGGGCACTAGTATCGCCT GGGTAAATGTGGAGCCTGGGA 986-1105 
Ooep NM_026480.3 AAAACGAACTCCAAAGAGCTGTGA AAAGCCAGCCAGTTTTAGCCC 401-513 
Padi6 NM_153106.2 CCGTCATCGCTGGCAAAGAG AGTAGGAGACCAGCACCTTGT 227-349 
Pou5f1 NM_013633.3 GAGGAGTCCCAGGACATGAAAG GTTTGCCAAGCTGCTGAAGC 440-503 
Sebox NM_008759.3 CTTTCAGTGTCGGGCAGTTGG GATTCTGGAACCACACCTGGAT 119-253 
Sirt1 NM_019812 GCCGCGGATAGGTCCATATA TCGAGGATCGGTGCCAAT 575-635 
Sod1 NM_011434 GTGCAGGGAACCATCCACTT GTCCTGACAACACAACTGGTTCA 159-219 
Smarca4 NM_001174078.1 TCAGCTCAGCGAGGTGTTCA GGTTTCGGATGCGTTCCTTGA 4607-4719 
Tle6 NM_053254.2 GATCCCTGGGGCCTCCCTAAC CGACTGGATAAGGTGGAAGGCAAAA 73-204 
Uchl1 NM_011670.2 AGGGCCAGTGTCGGGTAGAT CACTGGAAAGGGCATTCGCC 615-718 
Zar1 NM_174877.3 ACTAGATGTGCCTGCCCAGT TGAGCTTTCTCCCCTCTTCA 982-1182 
Zfp57 NM_001001806.2 TGTGGCTAGAAGCAGTCTGGAA TGGATGGCTGGGAAGACTGTT 310-406 
H2az1 NM_016750.3 GTATAAAGGGCGCGAGGAAGG TACCGCCAGCCATCTCGG 71-220 
Cumulus Cells    
Has2 NM_008216 ACAGGCGGAGGACGAGTCTA TGATTCCGAGGAGGAGAGACA 515-632 
Ptgs2 NM_011198 TGGGCCATGGAGTGGACTT GGGATACACCTCTCCACCAATG 729-847 
Ptx3 NM_008987 GGACAACGAAATAGACAATGGACTT CGAGTTCTCCAGCATGATGAAC 265-373 
Tnfaip6 NM_009398 GATGGGATGCCTATTGCTACAAC TCGCTTCGGATCTGTGAAGA 428-295 
Actb NM_007393 AGATGACCCAGATCATGTTTGAGA CACAGCCTGGATGGCTACGT 432-496 
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Supplementary Table 2. gBlocks used for qPCR of oocytes and cumulus cells

gBlock Sequence 

Elavl1            
Khdc3    
Nobox     
Ooep 

TTTGAACTGGCAGCGAAAGAACATGCAGCTTACAGCTGGATCTAAGCTGAGAGAAATGGAGTCAAACTGGGTGTC
GCTGGTGAGTACCATTTCTGCTGCCACAAGGTGAAGATGTGGAAAAGATTTTGGATGAATGGAAGGAATATAAAA
TGGGAGTCCCGACTTACGGTGCAATTATTCTCGATGAGACACTGGAGAATGTACTGCTGGTTCAGGGGTACCTGCA
GGACACAGCTTGGGCTACGGTTTTGTGAACTATGTGACTGCAAAAGATGCAGAGAGAGCAATCAGCACACTGAAC
GGCTTGAGACTCCAGTCCAAAACCATTAAGGTGTCATATGCTCGCCCAAGCTCACCGGCAGCGGCCGAACAATGA
AGCTCTTGAAGCCAACCTGGGTCAACCACAATGGGAAGCCAATTTTTTCAGTTGATATTCACCCTGATGGGACCAA
GTTTGCAACTGGAGGACAAGGGCAGGATTCTGGGAAGGTTGTGGGGCCCTGAAAGGCGAGCTGAGATTTGGATAT
TCGGACCGCCGCCTTTCCGAAGGGACGTTGACCGGATGCTCACTGATCTGGCTCACTATTGCCGCATGAAACTGAT
GGAAATAGAGGCTCTGGAGGCTGGAGTTCCTCACACACTATAAACGGCCCCATACCTTGAACAGCACCAGCATGT
CTAAGGCGTATCAGAGCACCTTCACAGGCGAGACCAACACCCCGTACAGCAAGCAGTTGTCCTGGGGCACTAGTA
TCGCCTCACCACCCACCTACTCAAATTTGGAAGACCTGGGGTCTCAGGACTACCAAGCAAGCAGCCAGTTGGGTTC
ATTCCAGCTCTCCCAGGCTCCACATTTACCCCTTTTCAAAGAAAACGAACTCCAAAGAGCTGTGAAGGTGAAAGA
AGTTGAAGAGTTCTTGAAAATTCGTGCCTCCTCAATCCTAAGCAAGTTAAGTAAGAAAGGGCTAAAACTGGCTGG
CTTTCCGCT 
 

Bnc1    
Zar1 

GCGGCTGCAGGATGGCTGAGGCTATCGGCTGTACTCTGAACTGCAGTTGCCAATGTTTCAAACCTGGGAAGATAA
ACCACCGTCAGTGTGAACAGTGCAGGCGGACCTGACACCAGTCCCAAGGCATCAGACTTGGGGTCAGTAACTGAC
TCTGATGTTGACTGTACCGATAACACACAAACCCAAAGGAAGAAGAAAAGGAAAGGGAAAGCAAGAGTGCTTAG
CAAAGAATCTGTTCGTAAAGACAGAGAAAGAGGAAATGCAGGCGGGTAAGCACCAAGAATATGAACAGAAGCTC
CTCCAAGAATTATATAAATTAAATCCCAATTTTCTTCAGCTATCTACGGGTTCAGTTGATAAGAATAAGAACAAAG
TGACACCATTACAAAGCCCCATTGACAAACCTTCAGATACACCATCATGTCCGCAGAGGAGGTAGCCAATGGGAA
AAAATCTCACTGGGCAGAGTTAGAGATCTCGGGTAGAGTGCGGAGCTTAAGTACACTATGCCAGCAGCAACCGTA
GATCATAGCCAAAGAATTTGTGAAGTTTGGGCTTGTAACCTGGATGAAGAGATGAAGAAAATCCGTCAAGTTATC
CGAAAATATAATTATGTTGCTATGGACACCGAGTTTCCAGGCGATGAGAGGAATCAGATGGGCGGCTCAAATATC
TCCAGTCCTGGGCTACAGCCAAGCACTCAGCTCTCTAATCTGGGAAGCACCGAGACTCTAGAAGAGACACCCTCT
GGGTCACAGGATAAGTCTGCTCCGTCTGGTCATAAACAAAGAACTAGATGTGCCTGCCCAGTCAGACTTCGCCAC
GTGGACCCTAAACGCCCCCATCGGCAAGACTTGTGTGGGAGATGCAAGGACAAACGCCTGTCCTGCGACAGCACC
TTCAGCTTCAAATACATCATTTAGTGAGAGTCGAAAACGTTTCTGCTAGATGGGGCTAATGGAATGGACAAGTGA
GCTTTCTCCCCTCTTCACCTCT 
 

Dmnt1 
Dppa3 
Figla 
Nlrp5 
Pou5f1 

CGAAAACATGCAGCTTTCCTACATCCACAGCAAGGTCAAGGTCATCTACAAAGCCCCTTCTGAAAACTGGGCCAT
GGAGGGAGGCACAGACCCTGAGGACTTGTTCGGATTGAGCAGAGACAAAAAAGGCTCGAAGGAAATGAGTTTGA
ACGGGACAGTGAGCCATTCAGCACCGAGGCCTCCATGATGATGTCCCTCACGAAGCTGGCTGACAAGGAACTGGT
GCACATGATTGGCTGGGCCAAGAAAGAGCGTGAACGGATAAAAAATCTCAACCGTGGCTTTGCCAAGCTGAAGGC
TCTGGTGCCGTTTCTGGTCCAGTTCAGCTCCATTTGATCAAGATCAGCTTTACACCTGGGCTGCGGTTAGTCAACCC
ACACATTCGATGGATTACAGCGAAGGGCAGTTTCGCAGGCGAGAGAGGCCCTGGAAACATGGGCGACTGGGGCTT
CCTGGAGAAGTTGCTAGACCAGGTCCAGGAACACTCGACCGTGGTGGGCAAGATCCCCCTCCCCACTTTCCCATAA
TTCATGACATCAAAACATCGGCTTTTCCCTTGAGACTCAGGAGGGCCAAAGCACCAGCCTTTGGCTTTTTTCTCTTT
TTTTTCCCTCTCCCCTAGCATGGGTTGAAGGAAGGGATCCATCCTTATTGTTCCGAGGCATCACCTCCCTCCCTAGT
CAGGCTGAGAAGGAACCAGCCAGCTCATACCTCCAGTGCAAGCGGTGGCAGAAAAACCAGTGGTTGAAGACTAG
CAATGGTCTGATTCAGAAGGGCTCAGCACCAGTGGTTAGCCTGCGAAGCGCTGAAACATCCAAAGTGCTCCGTGG
AGACTCTGAGGTTGGATTCCTGTGAGTTAACTCCCGAGGAGTCCCAGGACATGAAAGCCCTGCAGAAGGAGCTAG
AACAGTTTGCCAAGCTGCTGAAGCAGAAG 
 

Padi6 
Sebox 
Smarca4 

TAGCTCCGTCATCGCTGGCAAAGAGGACACTGTGGTCTGGAGGTCAATGAACCATCCCACAGTGGCATTGGTGAG
GATGGTGGCGCCCAGCCCCACTGTGGATGAAGACAAGGTGCTGGTCTCCTACTTCTGTTCACACTCTCCTACCCTG
AGGATAAAACCGGGAAGAACTATGACTTTGCTCAGGTGCTGAAGCGAAGTATCTGCCTGGAGCAGAACACACAGG
CCTGGTGTGACAACTGTGAGAAGTACCAGCCCACAATTCAGACCAGAAACGTTCCGGGCCAGGTGGACTTCTATG
CGCGCTTCTCGCCGTCGCCACTCTCCATGAAGCAGTTCCTGGACTTCGGGTCAGTGAATGCTTGTGAGAAACACCG
TGTAAGTGAAGAGCTGAGTGAAGAAGACTAAAATCCAGTTTATTGGATTTCAATACTATGTCCTAAAAGACAGAT
AATTTTCCACTTGATCACCAAGATGGAGAACTCAGATTCTAACGATAAAGGAAGTGACCAGTCTGCAGCTCAGAC
CACTTTCAGTGTCGGGCAGTTGGTGGAGCTGGAGCGGGTATTTGCAGCTAGGCCCTATCCTGACATCAGCACCCGT
GAGCACCTGGCTCAGGTAACTCACCTGCCTGAAGCCAAGATCCAGGTGTGGTTCCAGAATCGGCGAGGACGTCAG
CTCAGCGAGGTGTTCATCCAGCTCCCCTCTCGCAAGGAGCTTCCTGAGTACTATGAGCTCATCCGAAAGCCTGTGG
ACTTCAAGAAGATCAAGGAACGCATCCGAAACCACAAGTCTAAGATGTTCCATCCTAACGTCTATGCAGATGGTA
GTATATGTCTGGATATACTTCAGAACCGTTGGAGTCCAACCTATGATGTGTCTTCCATTTTAACGTCCATACAGTCT
CTATTGGATGAACCTAATCCCAATAGTCCAGCAAACAGCCAGGCTG 
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Tle6 
Uchl1 
Zfp57 
H2az1 

CCAACTCTCCCGCGGTGACTGTGACTGGAGGAGTCCTGCATCCATGGAGCAAACCGAAGGCGTGAGTACAGAATG
TGCTAAGGCCTCTGGGATCCCTGGGGCCTCCCTAACCTCAGAGGTGGACTTAATCAGATTTGTGACCTCAAGAATC
TTCTAGATGACTTCCCACAGACAGAGCAGTGACACCTTTGGTGGAATTTTGCCTTCCACCTTATCCAGTCGGTATTC
CAGGAGGGCCAGTGTCGGGTAGATGACAAAGTGAATTTCCATTTTATTCTGTTCAACAACGTGGACGGCCATCTGT
ACGAGCTCGATGGGCGAATGCCCTTTCCAGTGAACCAGGCACCTCCCAACCTCCACGCTTGCAATTTCGACCATTA
CAGGACCCAGAAAAATGTCGACCACACTTCTGTCACCCTTCTACGATATCGACTTCTTGTGCAAGACGGAGAAATC
CCTGGCAACAAATTGTGGCTAGAAGCAGTCTGGAATAGAAGTCAAACGCCTAGGACCAGCCTGGCATTACCAAAC
AATGGCAGCTAGGAAACAGTCTTCCCAGCCATCCAGGACACTGCAGTATAAAGGGCGCGAGGAAGGCGGGAGAC
GGCGCAGTTTGAATCGCGGTCCGACGGAGGAGTGGGCGCTGGGATCTCGCTGAGCGTCCGCCTGGCCTCGTCTCTT
CCTCGCTCGTCGGAGCTTCAGCACGGTCCGAGATGGCTGGCGGTAAGGCT 
 

Gpx 
Sirt1 
Sod1 

CGACGGTCCGGTGCAGGGAACCATCCACTTCGAGCAGAAGGCAAGCGGTGAACCAGTTGTGTTGTCAGGACAAAT
TACAGGATTAACTGAAGTACCACGAGGCTCTGGCCAAGGGAGATGTTACAACTCAGGTCGCTCTTCAGCCTGCACT
GAAGTTCAATGGTGGGGGACATATTAATCACACCATTTTCTGGACAGGACTCCGCGGCCGCGGATAGGTCCATAT
ACTTTTGTTCAGCAACATCTCATGATTGGCACCGATCCTCGAACAATTCTTACGGGACTACACCGAGATGAACGAT
CTGCAGAAGCGTCTGGGACCTCGTGGACTGGTGGTGCTCGGTTTCCCGTGCAATCAGTTCGGACACCAGGAGAAT
GGCAAGAATG 
 

Gdf9 TGTGTGCCGGGCAAGTACAGCCCCCTGAGTGTGTTGACCATTGAACCCGACGGCTCCATCGCTTACAAAGAGTA 
 

Ptx3 
Tnfaip6 
Has2 
Ptgs2 

ATTTGGACAACGAAATAGACAATGGACTTCATCCCACCGAGGACCCCACGCCATGCGACTGCCGCCAGGAGCACT
CGGAGTGGGACAAGCTGTTCATCATGCTGGAGAACTCGCAGAGAGCGATGGGATGCCTATTGCTACAACCCACAT
GCAAAGGAGTGTGGTGGTGTCTTCACAGATCCGAAGCGAATTTAGGAATTTCCCCTGACCCAGGAAGATGCCCTG
CTGGCTGTGAGGAAATACTTCCACAGGATCACTGTGTACCTGAGAGAGAAGAAACACAGCCCCTGTGCCTGGGAG
GTGGTCAGAGCAGAAGTCTGGAGAGCCCTGTCTTCCTCTGCCAATGTGCTGGGAAGACTAAGTACAACAGCTACG
CCTGGATGGTGGTCCGAGCAGAGATCTTCAGGAACTTTCTCATCATTCGAAGACTTACCAGAAACTTCCAAAACTG
AAGACCTGTCAGTTGATGCCTCAGAATGAGTGGTGGTTGCAGGCAACCTCACAGACAGGCGGAGGACGAGTCTAT
GAGCAGGAGCTGAACAAGATGCATTGTGAGAGGTTTCTATGTGTCCTGAGAATAATTGGAACTACACTTTTTGGAG
TGTCTCTCCTCCTCGGAATCACAGCTAGGACTGGGCCATGGAGTGGACTTAAATCACATTTATGGTGAAACTCTGG
ACAGACAACATAAACTGCGCCTTTTCAAGGATGGAAAATTGAAATATCAGGTCATTGGTGGAGAGGTGTATCCCC
CCACACCTCCCGCAGACCATGTTCCATGTTTCTTTTAGATATATCTTTGGAATTCCTCCACTGATCCTTGTTCTGCTG
CCTGTCACATCATCTGAGTTTTCAGAATCTACCGACCATGGAGCGTGTGCTTGGCTTGTTGCTGTTGCTTCTGGTGC
ACGCCTCTCCCGCCCCACCAGAGCCCTGCGAGCTAGACGAGGAAAGTTGTTCCTGCAACTTCTCAGATCCGAAGCC
AGATTGGTCCAGCGCT 
 

Actb 

TGAAAAGATGACCCAGATCATGTTTGAGACCTTCAACACCCCAGCCATGTACGTAGCCATCCAGGCTGTGCTGTCG
TTTCCTCGTCCCGTAGACAAAATGGTGAAGGTCGGTGTGAACGGATTTGGCCGTATTGGGCGCCTGGTCACCAGGA
CTGCCAAGACTGAATGGCTGGATGGCAAGCATGTGGTCTTTGGGAAGGTGAAAGAAGGCATGAACATTGTGGAAG
CCATGGAGCGTTTTGGGTCCAGGAATGGCAAGACCAGCAAGAAGATCACCATTTCCGACTGTGGACAGCTCTAAT
TTCTTTTGACTTGCGGGCATTTT 
 

Supplementary Table 2. gBlocks used for qPCR of oocytes and cumulus cells 
(continued)
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