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Abstract. To combat global warming, Canada has commit-
ted to reducing greenhouse gases to be (GHGs) 40 %–45 %
below 2005 emission levels by 2025. Monitoring emissions
and deriving accurate inventories are essential to reaching
these goals. Airborne methods can provide regional and area
source measurements with small error if ideal conditions for
sampling are met. In this study, two airborne mass-balance
box-flight algorithms were compared to assess the extent of
their agreement and their performance under various con-
ditions. The Scientific Aviation’s (SciAv) Gaussian algo-
rithm and the Environment and Climate Change Canada’s
top-down emission rate retrieval algorithm (TERRA) were
applied to data from five samples. Estimates were com-
pared using standard procedures, by systematically testing
other method fits, and by investigating the effects on the
estimates when method assumptions were not met. Results
indicate that in standard scenarios the SciAv and TERRA
mass-balance box-flight methods produce similar estimates
that agree (3 %–25 %) within algorithm uncertainties (4 %–
34 %). Implementing a sample-specific surface extrapola-
tion procedure for the SciAv algorithm may improve emis-
sion estimation. Algorithms disagreed when non-ideal con-
ditions occurred (i.e., under non-stationary atmospheric con-
ditions). Overall, the results provide confidence in the box-
flight methods and indicate that emissions estimates are
not overly sensitive to the choice of algorithm but demon-

strate that fundamental algorithm assumptions should be as-
sessed for each flight. Using a different method, the Airborne
Visible InfraRed Imaging Spectrometer – Next Generation
(AVIRIS-NG) independently mapped individual plumes with
emissions 5 times larger than the source SciAv sampled three
days later. The range in estimates highlights the utility of in-
creased sampling to get a more complete understanding of
the temporal variability of emissions and to identify emis-
sion sources within facilities. In addition, hourly on-site ac-
tivity data would provide insight to the observed temporal
variability in emissions and make a comparison to reported
emissions more straightforward.

1 Introduction

Global warming is on the pathway to a minimal projected
global temperature increase of 3.3–5.7 ◦C by 2100 un-
less meaningful change is enacted to reduce anthropogenic
greenhouse gas (GHG) emissions (Le Quéré et al., 2018;
Friedlingstein et al., 2020; IPCC, 2021). Anthropogenic car-
bon dioxide (CO2) and methane (CH4) emissions are the first
and second largest contributors to climate change, respec-
tively (Friedlingstein et al., 2020). Accurate quantification
of GHG emissions is an essential foundation for emissions
reductions.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Regional, national, and global CH4 and CO2 emissions
are estimated using a combination of bottom-up and top-
down methods. In general, bottom-up methods aggregate
and extrapolate source-specific data to estimate emissions
at a larger scale, whereas top-down methods measure at-
mospheric GHG concentrations at a larger scale and infer
point and area source emissions (National Academies of
Sciences, Engineering, and Medicine, 2018). Anthropogenic
CO2 and CH4 emissions are estimated using (a) ground-
based methods, (b) airborne methods, or (c) satellite methods
(e.g., Frankenberg et al., 2016; Conley et al., 2017; National
Academies of Sciences, Engineering, and Medicine, 2018;
Lauvaux et al., 2022; Irakulis-Loitxate et al., 2022). Large
differences between bottom-up aggregated inventory esti-
mates and top-down atmospheric budget estimates need to
be reconciled to reduce the uncertainty in estimating global
and regional GHG emissions (Nisbet and Weiss, 2010; Dlu-
gokencky et al., 2011; Allen, 2014; Kort et al., 2014; John-
son et al., 2017; Alvarez et al., 2018; Liggio et al., 2019;
Saunois et al., 2020; Friedlingstein et al., 2020; MacKay
et al., 2021). Improved emissions estimates facilitate the
best climate change policy (Le Quéré et al., 2018), allowing
us to adopt pathways for lower global warming increases.
This paper focuses on airborne approaches, as they are in-
termediate in spatial scale between proximal and satellite
sampling methods and therefore improve estimation by pro-
viding essential validation between top-down and bottom-
up methods (National Academies of Sciences, Engineering,
and Medicine, 2018; Friedlingstein et al., 2020; Cusworth et
al., 2020; Nisbet et al., 2020).

While some airborne methods utilize eddy covariance
measurements (Yuan et al., 2015; Wolfe et al., 2018), meth-
ods for sampling anthropogenic GHG emissions using air-
craft tend to fall into two major categories: (i) mass-balance
methods (O’Shea et al., 2014; Gordon et al., 2015; Conley et
al., 2017; France et al., 2021; Foulds et al., 2022) and ii) spec-
tral imaging methods (Duren et al., 2019; Tyner and John-
son, 2021; Krautwurst et al., 2021; Cusworth et al., 2022).
These methods capture atmospheric fluxes using varying ap-
proaches that are affected by different biases and are com-
plementary when creating emission budgets. Mass-balance
methods quantify the mass flux, or change, in the mixing ra-
tio of a species due to emissions from a known source area.
Sampling schemes for mass-balance flights range from flying
a single transect downwind of a source, to multiple stacked
transects creating a vertical “screen” to catch the plume at
various altitudes, or flying a “box-flight” around a facility –
or specific intra-facility source area – to constrain a plume
(Gordon et al., 2015; Conley et al., 2017; Baray et al., 2018;
Liggio et al., 2019; France et al., 2021). Remote spectral
imaging methods fly above potential sources and use ab-
sorption spectroscopy of reflected solar radiance or thermal
emissions to capture regional or facility emissions (Franken-
berg et al., 2016; Bartholomew et al., 2017). Currently, mass-
balance box-flight methods can attain a lower uncertainty

from a single sample of emission estimates (∼ 2 %) (Gor-
don et al., 2015; Conley et al., 2017) than the spectral meth-
ods (< 30 %) (Duren et al., 2019; Thorpe et al., 2020) due
to smaller background and wind measurement uncertainties.
However, they require an understanding of plume sources to
know where to fly, and they can take longer; therefore they
can be more costly.

Mass-balance box-flights involve sampling in stacked, of-
ten cylindrical, flight laps, typically surrounding a known
source or set of sources, at altitudes varying from the min-
imum safe-flight altitude to the atmospheric boundary layer
capping an emission plume (Gordon et al., 2015; Conley et
al., 2017). Due to minimum flight height restrictions a gap
between the surface and the flight box is inevitable. Concur-
rent surface sampling is ideal but often unavailable, so opera-
tors aim to fly at a distance from the source where the plume
has risen enough but has not dispersed to the degree that it
cannot be detected to capture the plume inside the box (Con-
ley et al., 2017). For mass-balance box-flights, extrapolation
to the ground is often the largest error source, nearing ∼ 30 %
when the bottom of the plume is not captured (Gordon et
al., 2015; Conley et al., 2017). Airborne mass-balance box-
flight methods depend on the assumption of a stable bound-
ary layer and that the emission plume is captured at the top
of the box and does not change during sampling (i.e., that
conditions are stationary) (Fathi et al., 2021).

Methods applying mass-balance equations to aircraft mea-
surements have been developed and refined over the last two
decades (Kalthoff et al., 2002; Alfieri et al., 2010; Karion
et al., 2013; Gordon et al., 2015; Conley et al., 2017; Gor-
don et al., 2018; Krings et al., 2018; France et al., 2021). In
this work, two box-flight mass-balance sampling methods, a
top-down emission rate retrieval algorithm (TERRA) devel-
oped by Environment and Climate Change Canada (ECCC)
(Gordon et al., 2015) and a Gaussian theorem algorithm de-
veloped by Scientific Aviation (SciAv) (Conley et al., 2017),
provide two approaches to evaluate mass fluxes from aircraft
measurements. To our knowledge, a detailed comparison of
the two methods has not yet been conducted. If algorithm
comparisons indicate agreement, then emissions estimates
from multiple campaigns using mass-balance methods can
be aggregated, which will improve the certainty in GHG bud-
gets.

A complementary method to airborne mass-balance are
airborne spectral methods, which can be considered top-
down methods that produce results similar to satellite data
but with higher accuracy (Kort et al., 2014; Frankenberg et
al., 2016). Single flights are used to sample and estimate
emissions from sources, and repeated sampling can deter-
mine source persistence to infer regional emission budgets
(Duren et al., 2019). Stationarity of an emission plume oc-
curs when the source of emission is consistent and mete-
orological conditions such as the boundary layer and wind
are stable throughout the time of sampling. Remote spec-
tral sampling provides quick “snapshots” of features and
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therefore avoids the stationarity requirement inherent to air-
borne mass-balance methods, which have lengthy sampling
times ranging from less than one hour to multiple hours, de-
pending on the region measured. Remote spectral imaging
methods are being advanced by the NASA Jet-Propulsion
Laboratory, which has had success in mapping, inferring
wind vectors, and estimating emissions over large areas us-
ing their Airborne Visible InfraRed Imaging Spectrometer
– Next Generation (AVIRIS-NG) (Frankenberg et al., 2016;
Duren et al., 2019; Jongaramrungruang et al., 2019; Thorpe
et al., 2020; Cusworth et al., 2021). Coincident sampling us-
ing the SciAv and AVIRIS-NG methods at facilities has indi-
cated that the methods tend to agree, within errors (Duren et
al., 2019; Thorpe et al., 2020).

Reducing GHG emissions in Canada has become a na-
tional and provincial priority (Johnson and Tyner, 2020; Gov-
ernment of Canada, 2021). Airborne and ground-based cam-
paigns suggest that the inventories used to facilitate national
and provincial policy are under-reporting GHG emissions
(Brandt et al., 2014; Gordon et al., 2015; Johnson et al., 2017;
Baray et al., 2018; Liggio et al., 2019; Chan et al., 2020;
MacKay et al., 2021; Baray et al., 2021; Tyner and John-
son, 2021). For example, a recent study aggregated thou-
sands of mobile, ground-based emission rate estimates taken
without notice to operators from upstream Canadian oil and
gas and found that inventories underestimated methane emis-
sions (Atherton et al., 2017; MacKay et al., 2021). Using
tower data, methane emissions estimates over 8 years from
oil and gas operations in Western Canada were estimated to
be nearly twice those reported in Canada’s National Pollu-
tion Release Inventory (Chan et al., 2020). Airborne cam-
paigns by ECCC measuring carbon dioxide and methane
have also estimated emissions to be 13 %–123 % (Liggio et
al., 2019) and 40 %–56 % higher (Baray et al., 2018), respec-
tively, than national inventories. In a comparable campaign
by Scientific Aviation, industrial upstream oil and gas CH4
emissions estimated in two regions in Alberta were 5 and 17
times higher than values reported to the Alberta Energy Reg-
ulator (Johnson et al., 2017). Greater certainty in top-down
emissions estimates helps flag under-reporting in bottom-up
inventories and better informs GHG policy makers of emis-
sions, allowing them to enact meaningful GHG reductions.
As part of the Oil Sands Monitoring (OSM) program man-
date to advance the understanding of Alberta’s emissions, a
collaborative study was initiated in 2017 by Alberta Envi-
ronment and Parks (AEP) and the U.S. National Oceanic and
Atmospheric Administration (NOAA), contracted to Scien-
tific Aviation. The goal was to use airborne measurements to
quantify facility- and activity-specific GHG emissions from
mineable and in situ oil sands developments in northern
and east-central Alberta. Between August 2017 and Octo-
ber 2018, sampling was conducted for various facilities and
repeated over several days to assess both temporal and inter-
facility variability in GHG emissions rates.

In this study, we compared emissions estimated using the
same data from five box-flights from the 2017–2018 cam-
paign using two airborne mass-balance algorithms (TERRA
and SciAv). Our intention was to assess the comparability
of emissions estimates from past campaigns flown by ECCC
and SciAv, which may provide greater certainty of GHG
emissions from the Alberta oil sands and other regions where
these methods are used. The main objective was to test if
emissions estimates from the TERRA and SciAv algorithms
agreed with uncertainty and then to assess the sensitivity of
emissions estimates to surface extrapolation using a variety
of schemes. The cause of any differences between the algo-
rithms was assessed. Since mass-balance flights are typically
flown with the knowledge of and permission from facilities
operators, these methods, while they may be accurate, may
not necessarily reflect typical operating conditions or GHG
emissions. Consequently, a secondary research objective was
to examine the potential of utilizing complementary spectral
imaging methods, such as AVIRIS-NG, to supplement mass-
balance box-flights by providing contextual information to
capture the spatial and temporal variability of oil sands GHG
emissions.

2 Methodology

Both mass-balance methods involve flying around a known
source in a box pattern to fully capture an emission plume
for estimation, but they differ in their approaches (Table 1).
TERRA evaluates the entire dynamic system with terms to
quantify the horizontal advective and turbulent flux through
the box walls and box top, deposition of flux to the ground,
chemical mass changes, and air density changes (Gordon et
al., 2015). TERRA applies a simple kriging of the raw data to
spatially interpolate between the raw lap data, then estimates
the dynamic terms to solve mass-balance equations and de-
rive an overall total emission rate (Gordon et al., 2015). In
contrast, the SciAv algorithm simplifies the system to a sin-
gle horizontal flux through the box and estimates the flux
divergence from the box by evaluating a mass-balance equa-
tion derived from Gauss’s theorem for relating flux through a
closed surface to a divergence from a volume integral (Con-
ley et al., 2017). The SciAv and TERRA theory, including
equations, are described in further detail in the Supplement –
Sect. S1.1 and S1.2, respectively.

2.1 Box-flight aircraft measurements

The AEP-NOAA-Scientific Aviation 2017–2018 Alberta oil
sands flight campaign conducted 150 flight segments at 16
different facilities across Alberta. Many of these facilities in-
cluded multiple source areas, such as a plant, a mine, and/or
tailings ponds. The aircrafts flew in laps around either the
entire perimeter of a facility or around specific source ar-
eas. The data were collected and processed by Scientific Avi-
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Table 1. Characteristics of the mass-balance SciAv and TERRA algorithm for box-flights.

SciAv TERRA

Parameterization Simplified to one horizontal flux term. Quantifies the dynamic system using several flux
of flux terms.

Conceptual First step: for each lap, solves a single mass-balance First step: applies simple kriging to interpolate flight
algorithm integral equation, derived from a Gaussian theorem, lap measurements to a spatially resolved screen.
steps using flight measurements decomposed into one single

horizontal flux vector, to estimate the flux divergence
due to an emission source within the box.

Second step: bin lap flux divergence estimates by Second step: simultaneously solves two mass-balance
altitude ranges, estimate an average flux divergence equations with multiple integrals to fully constrain
for each bin, then integrate the bins across the total the system to evaluate a total emission rate estimate.
flight height to produce total emission rate estimates. The first equation quantifies emission flux using

seven integral terms and the second has three air
flux integrals to account for air flow.

Surface Extends lowest bin average flux divergence as Spatially resolved screen of mixing ratios extended to
extrapolation a constant to the surface. the surface using one of five extrapolation options

depending on plume character.

Output Emission rate from point or area source. Emission rate from point or area source.

Fundamental Stationary plume, stable meteorological conditions, Stationary plume, stable meteorological conditions,
assumptions and full plume capture at the top of the plume. and full plume capture at the top of the plume.

Error terms Three broad terms. Seven specific terms.

ation (Boulder, CO, USA) on contract to NOAA. Flights
were performed using two fixed-wing, single-engine aircraft,
a Mooney M20R (Aircraft N617DH) and a Mooney M20M
(Aircraft N2132X), equipped with monitoring equipment.
Concentrations of CO2 and CH4 were measured using a cav-
ity ring-down spectrometer (Picarro 2401m or 2210m, Pi-
carro Inc., Sunnyvale, CA, USA) in its precision mode at ∼

0.5 Hz, as described by Crosson (2008). Other variables used
in the analysis were measured using the airplane primary
flight information system and GPS, including wind speed
components (m s−1), pressure (mb), temperature (K), head-
ing (degree), altitude (m), and latitude and longitude. Each
flight segment was screened to assess whether (i) sufficient
altitude was reached to capture the entire plume, (ii) winds
were sufficiently strong and consistent, and (iii) upwind
sources were negligible relative to emissions inside the box.
If these criteria were not met, then the algorithm results (i.e.,
emissions estimates) were considered unreliable. It was chal-
lenging to determine a quantitative threshold for adequate
wind conditions or negligible upwind sources, since the rela-
tive impact on the calculated emission rate depends on the
magnitude of emissions. Nonetheless, any flight segments
with average wind speeds below 5 m s−1 were flagged (Gor-
don et al., 2015), as were flight segments with upwind mixing
ratios above background, and were then assessed further us-
ing professional judgement. It is important to note that light

and/or variable winds will increase the uncertainty of the
SciAv algorithm by increasing the variability between laps.

Five flights from three facilities were selected for the algo-
rithm comparison and are summarized in Table 2, with sam-
ple codes (F01 to F05) assigned for comparison purposes.
The three facilities from the Athabasca oil sands region in-
cluded in the study were: Mildred Lake and Aurora North
plant sites (Syncrude), Horizon Oil Sands Processing Plant
and Mine (CNRL), and Suncor Energy Inc. oil sands (Sun-
cor). Flight paths around the facilities are shown in Fig. 1.
These five flights were chosen to capture a range of pos-
sible sample types given varying profile shapes, number of
laps, boundary layer height, season, and whether the flight
was around a facility perimeter or plant. Four of the five
flights selected were considered ideal samples during pre-
liminary flight screening. One flight, F05, was chosen as a
poor-quality sample, rejected during flight screening as hav-
ing “not fully captured” the top of the emission plume, and
used to assess how the methods compare when a fundamental
assumption of the method is not met. Boundary layer height
was estimated by Scientific Aviation by assessing profile
changes in potential temperature gradients before and after
flights. Through the flight screening process, all five flights
were judged to have consistent, stationary winds and stable
boundary layers. F02 had normal operating conditions and
no flaring events reported by CNRL Horizon. Facilities were
informed before sampling. Operating conditions at the oil
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sands facilities for F01, F03, F04, and F05 were not shared
at the time of writing.

Figure 2 shows an example of a close view of a flight path
for F04 CH4. Blue dots indicate background levels in ppm,
and enhanced mixing ratios within the plume are in a gra-
dient of cyan-yellow-red, with the largest enhancements in
red. A large plume can be seen on the north-east section of
the flight path in Fig. 2, and a few enhancements were mea-
sured elsewhere along the flight path. There is evidence that
the top of the plume is captured, as dots at the highest al-
titude show background concentrations, and the flight path
goes above the estimated boundary layer.

2.2 Box-flight emissions estimate algorithms

2.2.1 TERRA algorithm

Environment and Climate Change Canada (ECCC) provided
the TERRA algorithm, ran portions of the analysis, and de-
tailed instructions on how to produce estimates using the
algorithm with commercial plotting software (IGOR Pro 8,
Wavemetrics, Lake Oswego, OR, USA). The first step of the
TERRA algorithm creates the screen of spatially interpolated
lap data by applying simple kriging to the campaign data col-
lected by Scientific Aviation. The spatially resolved screen
of mixing ratios is a 2-dimensional unraveling of the lap data
by altitude over the length of sampling and is commonly re-
ferred to as the “box” (Gordon et al., 2015).

For the second step, TERRA has 5 options for extrapo-
lating emission concentrations from the lowest flight layer
to the surface to account for fluxes below the flight path:
(1) a background extrapolation fills all data below the flight
path with a background concentration (applied when there
is a fully captured, elevated plume and there is a reason for
choosing one single mixing ratio to be extrapolated to the
surface); (2) a constant extrapolation uses the concentration
at the bottom of the screen and assumes that this remains
constant to the surface (best used in the general case of a
fully captured, elevated plume, as it avoids the assumption of
a background value); (3) the linear method fits a line through
the lowest points on the screen up to an altitude of 300 m
above ground level (preferred in the scenarios when emis-
sions occur from the surface, such as a low plume that was
not fully captured or a mixed plume with ground sources
such as a tailings pond); (4) the interpolation between the
concentration at the lowest altitude of the screen and the
background concentration at the surface (ideally used when
there is evidence of decreasing emissions with only a trace of
the plume at the bottom of the flight path); and (5) exponen-
tial extrapolation calculates a Gaussian fit through the lowest
points on the screen (largely avoided unless there is a strong
argument that it best fits the plume behaviour).

Surface extrapolation was essential for this study, as all
flights had emission plumes that were not fully captured at
the lowest flight track. For the TERRA standard estimates, a

linear fit was used for F01, F03, and F05 for both CH4 and
CO2 due to their low position on the screen and their likeli-
hood of having an increasing emission towards the surface.
An interpolation to background fit (i.e., Option 4 described
in the paragraph above) was applied to F02 for both CH4
and CO2, and F04 for CO2, as these cases largely captured
plumes with low mixing ratios at the bottom of the flight
path. A constant extrapolation (Option 2) was fit to F04 for
CH4 to avoid an assumption about the background concen-
tration, as it was the one flight with a very large plume disper-
sion where plume behaviour was unknown (Sect. S1.3). All
extrapolation outcomes were produced to calculate the sur-
face extrapolation error, which accounts for potential differ-
ences when choosing the best surface extrapolation (Gordon
et al., 2015), and to compare it with the range of possible out-
comes from the SciAv method by running a bootstrap analy-
sis. The settings for the standard TERRA emissions estimate
were chosen by assessing the plume location, boundary layer
conditions, and plume source information to determine the
appropriate surface extrapolation (Gordon et al., 2015; Baray
et al., 2018).

The TERRA total uncertainty estimate was calculated by
adding seven error terms in quadrature (i.e., by taking the
square root of the sum of squares). Four of the seven TERRA
error terms were evaluated. The wind and measurement error
had been previously determined to each be < 1 %, and the
vertical turbulence term had been functionally removed from
TERRA analysis (Gordon et al., 2015; Baray et al., 2018).
The surface extrapolation error was calculated as the maxi-
mum percent change amongst the plausible surface extrap-
olation estimates. For example, background extrapolations
(Option 1), which assume no mixing ratio enhancement be-
low the flight path, were not considered for standard esti-
mates when a flight had increasing emissions at the bottom
of the screen. A description of the calculation of the box-top
mixing ratio, air density, and box-top height error terms is
given in Sect. S1.4.

2.2.2 SciAv algorithm

Scientific Aviation provided results from the first step of es-
timating the flux divergence for each lap. They applied their
algorithm to the flight data and provided output that could
be used to address the research objectives. Although the al-
gorithm itself is proprietary, the concepts and formulae un-
derpinning the algorithm are described in detail in Conley
et al. (2017). The algorithm output included standard emis-
sions estimates and uncertainties using the SciAv preferred
settings. It also included profiles of flux divergence and un-
certainty for each lap versus altitude and preferred bin alti-
tude ranges. These were used in the second step analysis of
binning lap estimates and integration of the flight profiles to
test cases such as extrapolation to the surface in MATLAB
2020a (The MathWorks, Inc., Natick, Massachusetts, United
States). Figure 3 provides an example profile of the average
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Table 2. Information on the five box-flight samples used in the comparative analysis.

F01 F02 F03 F04 F05

Facility code Syncrude CNRL Suncor Syncrude Suncor
Area sampled Perimeter Plant Plant Plant Perimeter
Date 24 April 2018 19 July 2018 19 April 2018 14 August 2017 6 September 2018
Season Spring Summer Spring Summer Fall
Min. altitude (m) 168 173 139 150 157
Max. altitude (m) 1057 1246 775 1043 563
Boundary layer height (m) 1100 ± 150 900 ± 200 600 ± 100 900 ± 50 500 ± 100
# Laps 8 14 19 25 7
Start time (GMT) 20:17:06 20:48:38 17:14:36 19:11:37 17:36:56
End time (GMT) 22:47:42 21:43:31 18:12:12 20:09:09 19:55:00

Figure 1. The flight paths (one second intervals) are shown for each facility sample used in the study. Perimeter flights are the large polygons,
and plant flights the smaller ovals. Map layer data © Google Satellite Hybrid 2017.

flux divergence per lap estimate calculated in the first step of
the SciAv algorithm. A flight is classified as “fully captur-
ing” the emission plume when the mean flux divergence of
the highest flight laps approaches zero. The standard SciAv
emissions estimates assume that the flux divergence profile
is constant below the lower flight altitude.

For this study, the use of different surface extrapolations
for SciAv were developed and tested. To obtain a greater
range of possible outputs from the algorithm, SciAv was fit
using differing surface extrapolation methods: (1) constant
(SciAv’s standard of extending the lowest bin to the surface);
(2) background (estimating flux divergence as zero by apply-
ing no extrapolation below the lowest profile point); (3) lin-

ear (estimating the linear trend of the profile points at a spe-
cific height that was chosen given the profile shape, location
of the plume enhancement, and sparsity of points, and ex-
trapolating the trend to the surface); (4) linear weighted (es-
timating the linear trend of the profile points, but weighted
by the calculated flux divergence uncertainty for each lap es-
timate); (5) linear interpolation to background (fitting a line
between the lowest profile bin), and (6) the average of the
surface points calculated in methods (1)–(5) (Sect. S1.5).

The data used for both the TERRA and SciAv methods
were identical, but due to different approaches to assessing
conditions and analysis of the data, different error estimates
were produced. Conley et al. (2017) found that binning by lap
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Figure 2. The flight path for F04 depicts the mixing ratio of CH4 (ppm) measured at 1 Hz intervals for each of the 25 laps around the Syncrude
plant. A Google Earth historical image from September 2016 was used, as it shows an emission plume with wind conditions similar to the
2017 F04 flight. A KML file containing mixing ratios provided by Scientific Aviation was overlaid on the image. Each measurement of
a mixing ratio is depicted as a dot, and the layout traces the 25-lap flight path for sampling during F04. Satellite imagery © 2020 Maxar
Technologies, Google Earth.

Figure 3. An example of a SciAv profile used in the second step of
the method. The blue points are the estimated flux divergence for
each lap, which are connected to show profile shape with the asso-
ciated uncertainty (a dashed blue line). Red points are bin averages,
and the vertical red bar is the bin height range. The boundary layer
height is drawn in light blue with error bars (light blue dashed lines).
The standard SciAv surface extrapolation method of extending the
lowest red bin to the surface is shown in green.

and using a constant extrapolation produces a stable estimate
when 20–25 laps are flown around an emission source (Con-
ley et al., 2017). However, with larger area samples, such as
perimeter flights, fewer than 10 laps are often flown. These
types of samples may be better suited to a different type of in-
tegration as well as surface extrapolation. A potential method
of improving estimation in the SciAv methods was investi-
gated by using trapezoidal integration rather than binning to
estimate a total emission estimate from the lap flux diver-
gence points. Figure 4 depicts the two methods of integrat-
ing the SciAv flux divergence profiles as well as the different
types of SciAv surface extrapolations, using the profile for
F01 CH4 as an example. The same surface extrapolation es-
timation procedure was used for both the binning and trape-
zoidal methods (Sect. S1.7). Surface extrapolation methods
were fit to the lowest flux divergence lap point for the trape-
zoidal method to remain consistent with the SciAv method.

2.3 AVIRIS-NG aircraft emissions estimates

Three days prior to the F04 flight, a NASA Jet Propulsion
Laboratory (JPL) AVIRIS-NG flight covered the Syncrude
plant. This measurement was part of a larger Arctic-Boreal
Vulnerability Experiment (ABoVE), which included flight
lines flown over the Alberta oil sands region. AVIRIS-NG
measures ground-reflected solar radiation (380–2500 nm)
with a 34◦ field of view and a spectral resolution of 5 nm
to map CH4 plumes by utilizing absorption features in the
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Figure 4. The two different integration methods applied to the SciAv F01 CH4 profile are depicted as the red area. Figure (a) shows the
standard binning method of estimating an average flux divergence for each bin and integrating by altitude over the area as rectangular boxes.
Figure (b) shows the trapezoidal (Trapz) method of estimating an average area under the curve by connecting the flux divergence lap points.
The boundary layer height is drawn in light blue with error bars (light blue dashed lines). Both figures do not include the extra emissions that
would be included using surface extrapolation.

shortwave infrared (Thorpe et al., 2017, 2020). As described
in Duren et al. (2019), emissions estimates are calculated
by combining the integrated mass enhancement (IME) and
wind speed, as demonstrated in a number of recent studies
throughout the United States (Cusworth et al., 2021, 2022) as
well as a controlled release experiment (Thorpe et al., 2021).
Previous studies have shown that the AVIRIS-based esti-
mates of methane emissions agree well with box-flight emis-
sions (Frankenberg et al., 2016; Duren et al., 2019; Thorpe
et al., 2020). Figure 5 shows the AVIRIS-NG plume imagery
that was captured over the Syncrude plant site with the Sci-
entific Aviation KML lap data (shown in Fig. 2) overlaid. By
measuring emissions at the same facility within a few days,
this independent sample using a different method provides a
contrast to the box-flight, mass-balance data.

AVIRIS-NG data were collected at 5.3 km (17.5 kft),
and the Syncrude facility was not informed prior to sam-
pling. NASA-JPL provided CH4 emissions calculated us-
ing AVIRIS-NG data and three sources for hourly estima-
tion of the wind: ECCC meteorological towers 3062696 and
3062697, and MERRA2 (Modern-Era Retrospective anal-
ysis for Research and Applications, version 2) reanalysis.
MERRA2 is an atmospheric reanalysis method produced by
NASA that utilizes numerous satellite observations to pro-
duce a global time series of atmospheric data (Gelaro et
al., 2017). To estimate variability in wind speed, an aver-
age over a 3 h window was used for the met tower data,
and nine kernels centred on the plume latitude and longi-
tude were used for the MERRA2 analysis. The magnitude of
the AVIRIS-NG estimates was then compared to the SciAv
estimate as an independent way of evaluating the temporal
consistency of emissions.

3 Results

3.1 Box-flight emissions estimate comparisons

Standard Scientific Aviation (SciAv) emission results were
compared to the estimates produced by applying TERRA to
the same flight data. A constant extrapolation to the surface
was used for all SciAv samples, whereas the extrapolation
for TERRA varied by the flight profile and source. The stan-
dard estimate results from both algorithms are shown in Ta-
ble 3 and Fig. 6. RStudio (RStudio Team, PBC, Boston, Mas-
sachusetts, United States) was used for comparison analysis,
and comparison figures were created using the ggplot2 pack-
age (Wickham, 2016). Standard emissions estimates for four
of the five flights agree within their uncertainties. Confidence
intervals for the estimates were not produced, as there is only
one estimate for each flight, and therefore the error bars are
simply the range for each estimate. In Fig. 6, the error bars
for each estimate overlap with each other, aside from F04,
which has a large gap between estimates. The uncertainty for
the TERRA estimates are consistently smaller than for SciAv
(averaging ∼ 8 % smaller).

Algorithm agreement is implied when the range for each
estimate overlaps. For all flights except F04, the differences
between the algorithms are in the range of the estimate uncer-
tainties. For F04 the emissions estimates disagreed, as there
is a large gap between the estimates with no overlap of the
ranges. To compare the estimates using the uncertainty range,
the relative mean percentage difference and propagated per-
centage uncertainty of the two estimates were calculated. The
whole set of results from five flights was formally tested for
differences between the SciAv and TERRA estimates using
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Figure 5. AVIRIS-NG-captured CH4 column enhancements are shown from 11 August 2017 inside the F04 raw CH4 lap data around the
Syncrude plant from SciAv for 14 August 2017 using the Google Earth historical image from September 2016. AVIRIS-NG data and imagery
provided by the NASA-JPL and satellite imagery © 2020 Maxar Technologies, Google Earth. Large CH4 enhancements are depicted in red.
The wind direction is shown by the white arrow, as measured by SciAv.

Table 3. Results of the CH4 (in kilograms per hour) and CO2 (in tonnes per hour) standard fit estimates from each algorithm, with their
uncertainty as a percentage ± % and the range derived from the percentage uncertainty of each standard estimate.

Estimate type F01 F02 F03 F04 F05

SciAv CH4 (kg h−1) 3840 ± 18 % 362 ± 21 % 497 ± 17 % 349 ± 11 % 3470 ± 29 %
Range (kg h−1) (3150–4540) (287–437) (415–579) (310–387) (2480–4470)
TERRA CH4 (kg h−1) 4810 ± 11 % 395 ± 6 % 476 ± 5 % 125 ± 18 % 3910 ± 15 %
Range (kg h−1) (4310–5300) (373–418) (452–501) (102–148) (3330–4490)
SciAv CO2 (t h−1) 1040 ± 22 % 563 ± 18 % 526 ± 11 % 1170 ± 11 % 850 ± 34 %
Range (t h−1) (807–1270) (464–662) (469–583) (1040–1300) (561–1140)
TERRA CO2 (t h−1) 1340 ± 10 % 515 ± 6 % 467 ± 4 % 569 ± 7 % 877 ± 26 %
Range (t h−1) (1200–1470) (486–545) (451–483) (561–60) (650–1110)

a weighted t test and Wilcoxon signed rank test. As a collec-
tive, the differences between the algorithms were found to be
insignificant for both CH4 and CO2 (Sect. S1.6).

Large, anomalous differences between the SciAv and
TERRA estimates occurred for F04. During screening of the
flights, no issues with F04 were flagged (Sect. S1.8). This
flight can be used as an example for improving SciAv flight
screening and for assessing the implications when assump-
tions of a stationary plume and stable meteorological condi-
tions are violated. No other flights had non-stationary con-
ditions. The flight that was intentionally included as a poor-
quality sample (F05), due to the large emission plume oc-
curring at the highest altitude transects flown, has very good
agreement between the two algorithms.

During the study design, F04 was considered an ideal
sample, and the non-stationarity of the emission plume was
not flagged until more in-depth analysis was applied to dis-
cern the reason for the large disagreement between the two
algorithms. Over the course of F04, the concentrations of
CH4 and CO2 changed, both within the plume (downwind
of the plant) as well as in background air masses (upwind
of the plant). Based on available information, it is unknown
whether changes in facility emissions contributed to the ob-
served changes in the plume’s non-stationarity. It was noted
that during sampling, facility operators instructed researchers
that future flights could only sample the boundary of the fa-
cility. Operating conditions were not provided by the indus-
try. NO2 and SO2 emissions are often used as tracer data for
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Figure 6. Flight emission estimates for CH4 (left) and CO2 (right) derived for each algorithm are plotted as points, along with the range of
each estimate, as error bars. TERRA standard estimates are shown in green and SciAv in purple. Samples of F01, F02, F03, and F05 produce
estimates that coincide within each method’s error bars.

upscaling CH4 emissions (Baray et al., 2018; Li et al., 2017;
Liggio et al., 2019). Continuous emissions monitoring sys-
tem (CEMS) facility stack emissions during F04 were consis-
tent with typical operations and showed that NO2 emissions
spiked at the beginning of the day, before the aircraft mea-
surements, and then continuously decreased. Furthermore,
flaring data, including the volume of gas flared and SO2
emissions, did not suggest unusual operations at the plant on
the day of the flight. The disagreement between the two algo-
rithm estimates for F04 arise from the non-stationary emis-
sion plume, which affected the box-flight mass-balance algo-
rithms.

To test the effect of assumptions associated with plume
shape below the lowest flight lap, various surface extrapo-
lations were applied to the lowest bin of the SciAv flux di-
vergence profiles for all five flights. The set of all results,
based on the differing surface extrapolations, was compiled
(Sect. S1.3 and S1.5), and estimates are plotted together in
Fig. 7. Estimates that clustered together for both methods
indicate a good agreement, with little difference between
the varying surface extrapolation estimates. F04 has large
disagreement between algorithms for both CH4 and CO2
(Fig. 7). The mean emission estimate and standard devia-

tion of each method’s various surface extrapolations were
calculated (Sect. S1.6). The larger the spread in estimates,
the more sensitive the flight was to the choice in extrapo-
lation. Systematic bias is not evident in the differences be-
tween algorithms, as emissions estimates intersect, and no
one method produces consistently larger or smaller estimates
for all flights. To remove the effect of the choice in surface
extrapolation, estimates were produced by background mix-
ing ratios below the lowest flight path. These estimates were
compared, and the SciAv and TERRA methods were still
found to agree (Sect. S1.6).

To assess the sensitivity of emissions estimates using dif-
ferent surface extrapolations, the differences between each
algorithm were calculated for the same four surface extrap-
olations (Sect. S1.6). For most flights, the choice in surface
extrapolation had only a small effect on the difference be-
tween the estimates (≤ 3 %). The choice in surface extrapola-
tion is a source of large variation between the algorithms for
F01, the one flight with large emissions at the lowest flight
path. The average of the estimates using the same four sur-
face extrapolations was also computed. There is no evidence
that agreement changes when removing the effect of surface
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Figure 7. CH4 and CO2 estimates, based on various surface extrapolation fits, are plotted in purple for the SciAv estimate and green for
TERRA. Error bars are drawn onto each algorithm’s standard estimate.

extrapolation, and there is consistent agreement between the
algorithm estimates (Sect. S1.6).

For each flight, algorithm estimates for the whole set
of varying surface extrapolations were resampled using the
bootstrap method (described below) to estimate the range in
the difference between estimates based on the various surface
extrapolations for each flight. The difference between the two
algorithms, based on the various surface extrapolation esti-
mates, was computed and contrasted with the standard error
of each estimate. In Fig. 8, the distribution of the randomly
sampled mean difference was calculated using the bootstrap
method and plotted along with the propagated uncertainty
range for each flight and gas (CH4 and CO2). A value of
zero implies that there is no difference between the methods.
Aside from F04, the distributions all either include zero, or
the uncertainty of the standard estimates include zero, indi-
cating that there is good agreement between the algorithms
in most cases.

3.2 AVIRIS-NG aircraft emissions estimates

CH4 enhancements were imaged at the Syncrude plant site
within the perimeter of the Scientific Aviation box-flight path
of F04 at 21:17:24 UTC on 11 August 2017 (Fig. 9), 3 d prior
to the SciAv flight. There appeared to be two separate source
plumes on that day, both of which were well inside the mass
balance transects flown by Scientific Aviation during F04.
The F04 flight also appeared to capture these two plumes
(see Fig. S9). NASA-JPL provided data, analysis, and plume
imagery using the methods described in Duren et al. (2019)
over the F04 site to help provide additional context for the
aircraft measurements (Table 4). The average instantaneous
CH4 emission rate of estimates derived using three different
wind speed and direction datasets was 1665 (kg h−1), with
an average uncertainty of 707 (kg h−1). This average emis-
sion rate likely reflects day-to-day emissions variability, as it
was approximately 5 times larger than emissions measured
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Figure 8. Distributions of the mean difference between all fits of CH4 and CO2 for the SciAv and TERRA algorithms are shown as a light
blue histogram. The mean difference between the standard estimates is plotted as a teal dashed lined, and the range in the difference between
standard estimates is shown as a light teal box. A grey dot dashed line is drawn at zero as a reference point for the location of exact agreement
between the algorithms.

using the SciAv method 3 d later (349 kg h−1). However, the
AVIRIS-NG-derived emission rate was significantly less than
the SciAv Syncrude perimeter estimate (F01, 3840 kg h−1

and F05, 3470 kg h−1).

4 Discussion

4.1 Box-flight emissions estimate comparisons

In general, when fundamental assumptions were met, the
SciAv and TERRA algorithms produced similar results. For
the average flight scenario, the algorithm estimates derived
using various surface extrapolations tended to agree regard-
less of how the surface extrapolation was fit. This consistency
between estimates provides larger certainty in the estimates
and in the top-down regional budgets that are inferred from
them and also implies that emissions estimates between stud-
ies using different algorithms can be compared.

The SciAv and TERRA estimates were also compared
when no surface extrapolation was applied (the background
surface extrapolation scenario). These estimates also agreed,
which suggests that the first steps in the core mass-balance al-
gorithm produce similar outputs. Results from applying mul-
tiple surface extrapolations indicate that a potential differ-
ence between the methods may occur in the second algorithm
step, due to the different methods of extrapolating to the sur-
face, when an emission plume increases towards the surface.

Plots of the SciAv lap flux divergence estimates tend to
follow three profile types. Examples of the three profile types
for measured CH4 lap enhancements (with uncertainties), as
shown in Fig. 10, are (1) an emission plume with constant
enhancements persisting at the lowest flight track (type I);
(2) an elevated emission plume where enhancements ap-
proach zero at lower altitudes (type II); and (3) a plume that
has enhancements increasing towards the surface (type III).
All the profiles shown in Fig. 10 fully capture the top of each
emission plume. Of the five sample flights compared, three
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Table 4. AVIRIS-NG data captured on 14 August 2017, 3 d prior to the F04 flight, is estimated using three sources of wind data.

Estimate wind Average wind Wind speed CH4 CH4 estimate
source speed uncertainty estimate uncertainty

(m s−1) (m s−1) (kg h−1) (kg h−1)

Met 3062696 3.52 0.42 1767 744 (42 %)
Met 3062697 3.80 0.64 1907 834 (44 %)
MERRA2 reanalysis 2.62 0.235 1320 543 (41 %)
Average 1665 707 (41 %)

Figure 9. AVIRIS-NG observed CH4 enhancements were imaged
at the Syncrude plant site on 21:17:24 UTC. There appear to be two
distinct sources located in close proximity. Satellite imagery © 2020
Maxar Technologies, Google Earth.

had clear profile shapes. The SciAv method of extrapolating
as a constant is the most appropriate choice unless a type III
pattern of increasing emissions at the lowest flight path is
evident.

F01 was the only flight with a definitive SciAv profile
type III and highlights the difference in the approaches to
surface extrapolation when emissions increase at the lowest
flight track. An “increasing-to-surface” fit for profile type
III shapes would likely improve estimate accuracy for the
SciAv algorithm. SciAv fits a constant surface extrapola-
tion regardless of the behaviour of emissions at the lowest
flight path, whereas TERRA chooses the surface extrapola-
tion from various fits by assessing the plume. When a flight
has large emissions at the bottom of the plume, the SciAv and
TERRA methods agree more when some form of increasing-
to-surface extrapolation is applied to SciAv compared to the
use of the standard, constant extrapolation. This indicates
that the second step of each algorithm, the choice of an ap-

propriate surface extrapolation, is likely a significant fac-
tor contributing to any differences between the methods for
type III profiles (see Fig. 10).

For the five flights compared, the uncertainty from
TERRA is lower than that from the SciAv by an average of
8 %. The smaller uncertainty for the TERRA estimates may
be due to how each algorithm quantifies error. TERRA cal-
culates seven specific error terms to address the error of these
assumptions. Increases in the error of one assumption do not
directly increase the error of others (see Sect. S1.4). On the
other hand, SciAv uses two main broad terms: a temporal er-
ror term to capture the extent of stationarity and a flux diver-
gence error term to estimate capture of the plume. The flux
divergence error of SciAv can become very large when only
a few flight laps are flown. The uncertainty in the surface ex-
trapolation from the SciAv algorithm may be reduced if it is
decoupled from the current flux divergence error term and
calculated following TERRA methods (i.e., using the maxi-
mum percentage change between probable fits).

The mean of the estimates derived using the six different
surface extrapolations were calculated for each integration
method’s set of results, and differences were tested using a
pairwise t test and Wilcoxon signed rank test. There was no
evidence of a difference in mean estimates for each flight
between the two integration methods evaluated (binning vs.
trapezoidal; Sect. S1.7). This indicates that, for this adaption
of the SciAv algorithm, choosing a different surface extrapo-
lation is more important than the type of integration method.
To further assess the effects of applying different surface ex-
trapolation options, surface measurements at the time of sam-
pling and more information about the behaviour of a plume
are the most likely path towards further reducing the uncer-
tainty for both algorithms.

4.2 Box-flight algorithm assumptions investigated

During the initial screening of F04 by members of Scientific
Aviation and AEP, the non-stationary plume was not identi-
fied, as focus was placed on assessing meteorological con-
ditions and plume capture. Meteorological conditions are of-
ten the most likely source of non-stationarity; as such both
SciAv and TERRA methods apply a set of criteria to screen
samples. TERRA also assesses conditions using explicit er-
ror terms (Sect. S1.4). Prior to the ad hoc analysis of splitting
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Figure 10. Sample data representing the three common types of flux divergence profiles for the SciAv method. Blue dots represent the flux
divergence of each lap, with the associated uncertainty drawn as blue dashes.

the flight apart, the only measurement that might have indi-
cated atmospheric instability was an air density error term
calculated in TERRA. This produced an uncertainty esti-
mate (4 %–6 %) that was noticeably larger than the other four
flights (1 %–0.01 %) but was not an unusually high value for
the method in general (Sect. S1.4).

The change in the emission plume during sampling was
apparent in each method when the data were separated
into the ascending and descending flight periods. In SciAv,
emission enhancements for the flight laps going up in al-
titude differ noticeably from those flying laps going down
(Fig. 11). In TERRA, ECCC split the flight data into the up-
ward and downward portions, which were noticeably differ-
ent (Sect. S1.8). For samples with many laps (≥ 20), separat-
ing the SciAv flux divergence profile into upward and down-
ward flight components during the screening process would
help identify the non-stationarity of an emission plume.

4.3 AVIRIS-NG aircraft emissions estimates

Methods based on imaging spectroscopy (e.g., AVIRIS-NG,
GHGSat) provide a unique opportunity for emissions estima-
tion, validation of ground-based measurements, and to help
develop satellite monitoring techniques, while also provid-
ing leak detection (Cusworth et al., 2019; Frankenberg et
al., 2016; Tyner and Johnson, 2021). CH4 emissions from
the oil and gas industry are sporadic, with higher emis-
sions only captured 20 %–35 % of the time when sampling
(Duren et al., 2019). While the SciAv and TERRA meth-
ods have lower uncertainties than the AVIRIS-NG method,
they require prior knowledge of presumed sources. There-
fore, the mass-balance methods are unlikely to identify un-
known sources located outside sampling boundaries. The
persistence of large, sporadic emissions, along with their re-
lation to sampling with or without operator notice, should be
studied further. While AVIRIS-NG estimates are dependent
on estimates of the wind speed and direction as well as re-

peated sampling to assess source trends, they avoid the mass-
balance requirements of a stationary source and the need to
extrapolate emissions to the surface (Duren et al., 2019).
This is because AVIRIS-NG effectively samples the entire
atmospheric column between the ground and the sensor as a
“snapshot”.

In our study, the SciAv and TERRA algorithms yielded
similar results when proper sampling conditions were met.
While non-stationarity occurred for F04, the change in esti-
mates between the upwards and downwards segments does
not account for the large difference between the SciAv and
AVIRIS-NG measurements of the Syncrude plant. Discrep-
ancies between estimates due to missing, potentially large
emissions below the lowest SciAv flight path are highly un-
likely, as the F04 plume was “fully captured” with emissions
decreasing towards the surface (Sect. S1.5). The substantially
larger AVIRIS-NG estimate may be due to industrial oper-
ations, such a flaring or venting events. It is possible that
only one of the two plumes observed by AVIRIS-NG were
present when SciAv sampled, or that large day-to-day vari-
ability exists in CH4 emissions. However, unlike the SciAv
flight, operators were not informed before sampling, and op-
erating conditions were not shared by the facility, so the un-
derlying reason for this difference could not be evaluated.
Due to the sporadic tendency of CH4 emissions and the dif-
ferent sampling date, the AVIRIS-NG result is not directly
comparable to the mass-balance algorithm’s results for F04,
but it can provide an idea of the range of potential emissions
and specific source locations within the Syncrude plant. The
SciAv and AVIRIS-NG methods have been independently
compared and have been shown to provide consistently simi-
lar emissions estimates when employed under similar condi-
tions (Frankenberg et al., 2016; Duren et al., 2019; Thorpe et
al., 2020). Given the results of these studies, the AVIRIS-NG
data captured on 14 August 2017 may not be anomalously
high but could instead represent independent information on
the variability of emissions from the region. Further work
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Figure 11. F04 CH4 flux divergence profiles for the flight up (a) versus down (b). The profile shapes differ, with a much more variable flux
divergence in the up profile.

comparing these methods under similar conditions, along
with greater transparency in facilities operations, could help
confirm these conclusions and support more accurate emis-
sion budgets. The large emissions estimates from the same
site outlines the importance of repeated sampling and the
benefit of using multiple methods to characterize source be-
haviour, estimate the distribution of emissions from facilities,
and estimate regional, national, and global emission budgets.

5 Conclusion

We found that emissions estimates were consistent between
two top-down, mass-balance methods, providing confidence
in these methods at a time when emissions reductions are
needed. This finding is important, because airborne methods
are used to validate top-down and bottom-up GHG emissions
and to develop emissions inventories. When fundamental as-
sumptions were met, the airborne mass-balance algorithms,
SciAv and TERRA, produced similar estimates that agreed
(3 %–25 %) within algorithm uncertainties (4 %–34 %). The
two algorithms disagreed when the fundamental assumption
of a stationary emission plume was not met (F04). Hav-
ing increased confidence in estimates from the two mass-
balance airborne methods provides a more certain foundation
for policy and regulatory decisions. Including airborne imag-
ing spectrometer emissions estimates in top-down regional
budgets can provide additional information about emissions
by capturing unknown sources or sporadic emissions. The
ideal approach for characterizing and estimating GHG bud-
gets would include repeated measurements, using a combi-
nation of airborne methods (in conjunction with new spec-
troscopic measurements from satellites for larger, continuous
regional estimates), and by using ground-based equipment
for small-scale point source quantification (Hardwick and
Graven, 2016; National Academies of Sciences, Engineering,

and Medicine, 2018; Saunois et al., 2020; Nisbet et al., 2020;
Rutherford et al., 2021; Cusworth et al., 2022). Observations
that combine and cross-validate multiple monitoring meth-
ods at varying scales of sampling will provide the most ac-
curate modelling, improve GHG estimation, and help recon-
cile the often-reported gap between top-down and bottom-up
estimates. Continued advances in developing more accurate
inventories will allow for more effective policy and regula-
tory decisions that target the contribution of CO2 and CH4 to
climate change.

Data availability. The data files for the five flights can
be accessed through the Government of Alberta Portal:
http://ckandata01.canadacentral.cloudapp.azure.com/dataset/
aep-noaa-greenhouse-gas-measurement-flights (last access:
4 December 2021; Alberta Environment and Parks et al., 2021).
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1 Mass-balance Box-flight Algorithm Theory Overview 

The two mass-balance box-flight algorithms fundamentally differ in their parameterization of the emission flux and the mass-

balance system of equations: SciAv simplifies the process to one flux and one mass-balance equation, whereas TERRA 

includes several flux terms to solve two mass-balance equations. Both algorithms require the same fundamental assumptions, 

but their approaches to quantifying the uncertainty in meeting those assumptions and estimating emissions differ. TERRA 5 

evaluates the entire dynamic system and estimates integral terms of a mass-balance equation used to derive an overall total 

flux (Gordon et al. 2015). 

1.1 Top-Down Emission Rate Retrieval Algorithm (TERRA) 

A strength of the TERRA model is its ability to capture and account for all the flux dynamics such as the emission vertical 

flux transport, chemistry, and deposition. It evaluates individual integral terms for the system of fluxes then adds them 10 

collectively. TERRA parameterizes a system of equations to derive flux and solves two mass-balance equations to estimate 

emissions (Gordon et al. 2015). Two common flux motions include advective transport following flow, and turbulent quasi-

random, swirling traverses (Vinuesa and Galmarini 2009). The first mass balance equation for TERRA constrains the emission 

mixing ratio concentrations within the sampling box (the control volume), for each integral E term: 

EC =  EC,H + EC,HT +  EC,V + EC,VT + EC,VD − EC,m − EC,X (1) 15 

Where C is the emission of interest (in this study CH4 or CO2), H the horizontal advective flux through the box walls, HT the 

horizontal turbulent flux through the box walls, V the advective flux through the box top, VT the turbulent flux through the 

box top, VD the deposition of flux to the ground, m the mass increase within the box due to air density change, and X the mass 

increase within the box due to chemical changes. Figure S 1 depicts the flux directions of each E integral term in Equation 1 

given a cylindrical flight path to create the ‘box’. The walls of the box are the boundaries of the flight laps and arrows depict 20 

the flux that is occurring given a western wind (from the left).  
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Figure S 1: The TERRA integral E terms of Equation 1 with arrows depicting their contribution to estimating emission flux through 

the ‘box’, or volume. 

The second mass balance TERRA equation accounts for air flow in the control volume:   25 

0 =  Eair,H +  Eair,V −  Eair,M (2) 

Where the three terms are: H the horizontal advective flux of air through the sides of the box, V the advective flux through the 

box top, and M the change in the airmass within the box respectively. The integrals are estimated using input variables derived 

directly from the raw data collected, or through functional equations as described in the methodology paper published by 

Gordon et al. (2015).  30 

 

There are seven error terms (δ) defined in methodology of TERRA that relate to the calculation of the integral terms in Equation 

1 which are added in quadrature to estimate the total uncertainty (δTERRA
2 ) in the emission rate estimate (Gordon et al. 2015). 

δTERRA
2 =  δM

2 +  δEx
2 +  δWind

2 + δTop
2 +  δdens

2 + δVT
2 + δBH

2 (3) 

The seven error terms in Equation 3 pertain to the uncertainty in: measurement (δM
2 ), near surface extrapolation of the mixing 35 

ratio (δEx
2 ), near surface extrapolation of the wind (δWind

2 ), the box-top mixing ratio (δTop
2 ), the change in air density (δdens

2 ), 

the vertical turbulent flux (δVT
2 ), and the boundary layer height (δBH

2 ). The largest error term of the method is the extrapolation 

of the mixing ratio from the lowest flight to the near-surface (Gordon et al. 2015). Mixing ratio surface extrapolation is chosen 

as either background, constant, background to constant, linear, or as an exponential fit depending on the location and dispersion 

of the plume and boundary layer conditions (Gordon et al. 2015). The contribution of the error of the vertical turbulent mixing 40 

term has been found to be functionally negligible and has been dropped from the overall calculation in TERRA (Baray et al. 

2018; Gordon et al. 2015). The other uncertainty terms of TERRA are calculated from measuring the wind and mixing ratios, 

estimating the range in the box-top mixing ratio, calculating the uncertainty due to the height flown to capture the plume, and 

assessing atmospheric stability from the temperature and pressure ratios (Gordon et al. 2015).  
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1.2 SciAv Gaussian Plume Inversion Algorithm 45 

The SciAv model simplifies the dynamics within the box to estimate flux due to emissions from within the box. It assumes 

that the vertical flux is zero and that there is no flux deposition to the ground, so that only the horizontal flux needs to be 

estimated. As the name would suggest the Gaussian theorem algorithm utilizes Gauss’s theorem, also known as the Divergence 

Theorem, for relating a volume integral to an integral of a surface (the laps) enclosing the volume (the box). Conley at al. 

(2017) use the measurements to directly evaluate the balance budget of Equation 4 as described in their methods: 50 

Qc =  〈
∂m

∂t
〉 + ∫ ∮ c′uh ∙ n̂dldz

zmax

0

(4) 

The definition of terms and diagram of the SciAv method given a cylindrical ‘box’, derived from the laps of the flight path, is 

shown in Figure S 2. Equation 4 is used to calculate the mean flux divergence for each lap. An enhancement of the mixing 

ratio occurs when the emission plume is captured within a lap and a positive divergence is calculated. Bins are created for 

ranges of altitudes and the lap estimates are aggregated into bins according to altitude and average flux values are estimated 55 

for each bin as described by Conley et al 2017. The bin averages are multiplied by the height of their respective bin then 

summed together. The lowest bin average is extrapolated to the ground as a constant to estimate the emission to the surface, 

multiplied by its bin height, then added to the other bin estimates to produce the total emission. The final flight emission 

estimate is the result of this discrete integration of bins of averaged lap estimates over the entire flight altitude. 

 60 

Figure S 2: The SciAv method simplifies the mass-balance equation to one instantaneous flux to calculate the overall horizontal sum 

of the source and sinks within the ‘box’, or volume. 

 

SciAv defines three error terms that are added in quadrature to estimate the uncertainty (δSciAv
2 ) in the final emission estimate:  

δSciAv
2 =  δM

2 +  δflux divergence
2 +  δtemporal

2 (5) 65 

The first term is the measurement error (δM
2 ) which contributes the smallest amount to the final estimate error (Conley et al. 

2017). The second is the flux divergence error (δflux divergence
2 ) and is calculated by summing the variance of the flux 

divergence estimates within each bin. The error of the surface extrapolation is estimated as twice the error of the lowest bin 
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and included in the flux divergence term (Conley et al. 2017). The flux divergence error accounts for the stochastic variation 

in plume capture for each lap and is often the largest component of the total error. The third error term is the temporal variance 70 

(δtemporal
2 ) and is a measurement of the stationarity of the plume. The error due to the time rate of change is extracted from a 

regression of the emission density over altitude and time (Conley et al. 2017).  

 

Use of the TERRA Algorithm in Further Detail 

To use TERRA (top-down emission rate retrieval algorithm), the appropriate surface extrapolation needed to be chosen and 75 

the emission screens assessed, the error terms calculated, and a background value calculated to use specific fits for each flight. 

This section outlines the processes to evaluate those four requirements as instructed by Environment and Climate Change 

Canada (ECCC).  

1.3 TERRA Flight Screens 

The emission screens produced by TERRA after fitting the chosen surface extrapolation are shown in Figure S 3 - 12. The left 80 

y-axis gives the altitude above ground level in meters, the right hand the colour scale of CH4, or CO2 in ppm. The length along 

each lap, denoted as s(m), is plotted for each s location in meters along the x-axis with the direction of sampling overlaid. The 

surface is shown as grey and the gap between sampling has been filled in by the surface extrapolation. Most figures show a 

concentrated plume surrounded by a blue of background mixing ratio concentrations. The extent of the dispersion of the F04 

CH4 is noticeable in Figure S 9. The surface extrapolation sometimes estimates a decreasing emission plume towards the 85 

surface as per Figure S 4 and S 12. This leads to a larger range in the mixing ratio and a change from the typical royal blue 

background colour to a lighter shade such as cyan, or even light green to adjust for the lower scale. The background values are 

not affected by the change in colour. Aside from F04, the flight data used in the comparison analysis represent standard 

emissions screens for the TERRA method.  

 90 

To use the interpolate, or background fit options, TERRA requires estimates of background concentrations of the desired gas 

present in the atmosphere, unrelated to the emission source. As part of ECCC’s methodology for TERRA, ideally independent 

samples are gathered to estimate the background mixing ratio value of each gas for a box-flight. Background values are used 

in the surface extrapolation for the “background” and “linear interpolate to background” fits. The data gathered by Scientific 

Aviation for this analysis did not have independent samples, so the background mixing ratios were determined by inspecting 95 

the histogram of concentrations, removing the tail of enhanced emissions, then fitting a normal distribution to the values and 

estimating the background value as the mean of the distribution. Results are given in Table S 1. The background values used 

are given in Table S 2. 



5 

 

 

 100 

Table S 1: TERRA emission rate estimates using the method’s five surface extrapolation fits in kilograms per hour for CH4 and 

tons per hour for CO2. 

Flight 
Surface 

Extrapolation 

CH4 Emission 

(kg h -1) 

CO2 Emission 

(t h -1) 

F01 Constant 4320 1220 

F01 Linear 4810 1340 

F01 Interpolate 3710 1040 

F01 Background 2910 503 

F01 Exponential 4460 1200 

F02 Constant 412 535 

F02 Linear 424 544 

F02 Interpolate 395 515 

F02 Background 369 485 

F02 Exponential 414 543 

F03 Constant 457 459 

F03 Linear 476 467 

F03 Interpolate 416 401 

F03 Background 364 326 

F03 Exponential 475 468 

F04 Constant 125 589 

F04 Linear 104 572 

F04 Interpolate 123 569 

F04 Background 119 543 

F04 Exponential 122 589 

F05 Constant 3540 882 

F05 Linear 3910 877 

F05 Interpolate 3150 8410 

F05 Background 2630 790 

F05 Exponential 3680 1220 
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Figure S 3: The TERRA screen for F01 CH4 in ppm. Altitude measured in meters is shown along the left y-axis and the 

colour bar on the right depicts the mixing ratio gradient in ppm. The s location along each lap in meters, all in scientific 105 

notation, is plotted along the x-axis as s(m) with the direction of sampling overlaid. The ground is shown in grey. 

 

Figure S 4: Same as Figure S 3 for flight F01 CO2 (ppm). 
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Figure S 5: Same as Figure S 3 for flight F02 CH4 (ppm). 110 

 

Figure S 6: Same as Figure S 3 for flight F02 CO2 (ppm). 
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Figure S7: Same as Figure S 3 for flight F03 CH4 (ppm). 

 115 

Figure S 8: Same as Figure S 3 for flight F03 CO2 (ppm). 
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Figure S 9: Same as Figure S 3 for flight F04 CH4 (ppm). 

 

Figure S 10: Same as Figure S 3 for flight F04 CO2 (ppm). 120 
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Figure S 11: Same as Figure S 3 for flight F05 CH4 (ppm). 

 

Figure S 12: Same as Figure S 3 for flight F05 CO2 (ppm). 
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 125 

Table S 2: Background mixing ratio values used in the surface extrapolation of each flight. 

Flight CH4 (ppm) CO2 (ppm) 

F01 1.91613 409.1896 

F02 1.88481 382.3219 

F03 1.93007 410.2672 

F04 2.05365 405.8721 

F05 1.93103 389.4703 

1.4 TERRA Error Terms 

The calculated TERRA error terms are provided in Table S 3 and descriptions of how the terms were calculated are detailed 

in this section. 

 130 

The box-top mixing ratio error is assumed to be normally distributed and is calculated as the percent change in the 95% 

confidence interval of the mean mixing ratio at the box top. The confidence interval was computed as the mean value +/- 2σ/ 

√n, where σ is the standard deviation of measurements and n the number of independent samples (Gordon et al., 2015). The 

value of n is determined by the length of a single lap divided by the length scale which was conservatively set to 3km as a 

maximum of the distance needed for the autocorrelation of the mixing ratio series to approach zero (Gordon et al., 2015). 135 

 

To calculate the density, change error air pressure and temperature measurements were extracted from independent towers 

near the sampling area. Four towers were identified near the flight locations: two at the Fort McMurray Airport (A and CS at 

56.65 °N, 111.22° W, http://climate.weather.gc.ca) and the Wood Buffalo Environmental Association’s JP104 (57.12 °N, 

111.43° W) and JP311 (56.56°N, 111.95° W) meteorological towers (http://wbea.org). Average, maximum, and minimum 140 

changes in the ratio difference of pressure and temperature (Δpi/pi – ΔTi/Ti) among the four stations were calculated then used 

to estimate total emissions using those values (Gordon et al., 2015). The uncertainty percentage was then calculated as the 

uncertainty range between Emax/E to Emin/E. 

 

The box top height error was calculated in IGOR 8 using TERRA by estimating the percent change in the final emission 145 

estimate when the screen produced from kriging is redrawn 100 m lower. ECCC was only able to provide two flights with a 

redrawn box for analysis, therefore two examples of the average, and extreme case for plume capture were used. Redrawn 

screens were provided by ECCC for two of the flights representing the change given a ‘fully captured’ plume (F01), and a 

sample when the plume still had large enhancements at the top of the flight (F05). As part of a preliminary analysis of flights 

http://climate/
http://wbea/
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from the larger Alberta Campaign, AEP and Scientific Aviation deemed F02, F03, and F04 to have ‘fully captured’ the top of 150 

the emission plume. Therefore, the F01 error was rounded up to the nearest integer and used to estimate the box top height 

errors for F02, F03, and F04. 

 
Table S 3: TERRA emission estimate uncertainties as a percentage of the total emission estimate. Error terms are added in 

quadrature to give the total percentage uncertainty (δ). Wind and measurement error were added in quadrature as values of 1 and 155 
the vertical turbulence term was dropped from the calculation. 

Flight 

Measurement 

Error 

δM 

Mixing ratio 

Extrapolation 

δEx 

Wind 

Extrapolat

ion 

δWind 

Box-top 

mixing 

ratio 

δTop 

Density 

Change 

δdens 

Vertical 

Turbulence 

δVT 

Box-

top 

height 

δBH 

Total 

Uncertainty 

δ 

F01 -

CH4 
<1% 10.13 <1% 0.89 0.03 N/A 0.56 10.28 

F01 -

CO2 
<1% 10.04 <1% 0.89 0.02 N/A 0.35 10.18 

F02 -

CH4 
<1% 4.80 <1% 2.15 1.06 N/A 1 5.64 

F02 – 

CO2 
<1% 5.43 <1% 0.38 0.89 N/A 1 5.78 

F03 – 

CH4 
<1% 4.16 <1% 2.30 0.48 N/A 1 5.08 

F03 – 

CO2 
<1% 1.71 <1% 2.30 0.83 N/A 1 3.45 

F04 – 

CH4 
<1% 17.08 <1% 2.42 5.79 N/A 1 18.28 

F04 – 

CO2 
<1% 3.53 <1% 2.43 4.93 N/A 1 6.76 

F05 – 

CH4 
<1% 9.54 <1% 1.00 0.04 N/A 11.17 14.79 

F05 – 

CO2 
<1% 7.33 <1% 1.11 0.10 N/A 24.82 25.94 

 

Adaptation of the SciAv Method in Further Detail 

The raw data files for the five flights can be accessed through the Government of Alberta Portal: 

http://ckandata01.canadacentral.cloudapp.azure.com/dataset/aep-noaa-greenhouse-gas-measurement-flights  160 

The calculated average divergence for each lap, and associated errors provided by Scientific Aviation are provided in Table S 

4. The lap bin bounds also provided by Scientific Aviation are given in Table S 5. Together these data can be used to recreate 

the SciAv profiles and emission calculations for each flight. 

http://ckandata01.canadacentral.cloudapp.azure.com/dataset/aep-noaa-greenhouse-gas-measurement-flights
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Table S 4: The average flux divergence and uncertainty for each flight lap. 

Flight Lap 

Number 

Altitude 

(m) 

CH4 Average 

Flux 

Divergence 

CH4 

Uncertainty 

CO2 

Average Flux 

Divergence 

CO2 

Uncertainty 

F01 

1 168.3 10.1355 1.2505 3088.564 572.941 

2 319.1 3.0669 0.4684 1596.195 359.556 

3 614.8 3.2761 0.5843 722.717 185.185 

4 912.6 2.5053 0.3873 470.83 104 

5 1056.9 0.2748 0.0572 -65.667 26.51 

6 771.2 4.0707 1.0834 862.677 280.279 

7 464.3 3.1503 0.3544 706.667 97.554 

8 378.6 2.5528 0.3681 614.653 182.681 

F02 

1 173 0.2896 0.0831 392.011 81.71 

2 301.6 0.2762 0.0713 428.288 107.227 

3 454.7 0.3529 0.1409 439.68 76.177 

4 614.6 0.7203 0.1425 805.679 149.198 

5 778.3 0.1679 0.0682 379.872 81.875 

6 919.3 0.1575 0.0689 286.82 81.201 

7 1076.7 0.1021 0.0688 227.823 82.947 

8 1245.6 0.0194 0.0327 120.558 44.357 

9 1122.5 -0.0992 0.0231 -26.271 24.561 

10 863.2 -0.013 0.0299 224.649 84.076 

11 714.1 0.5437 0.0871 786.83 129.209 

12 546.2 0.7292 0.1357 1355.712 261.852 

13 407.8 0.2934 0.0943 169.528 60.786 

14 247.7 0.4213 0.1408 726.796 146.438 

F03 

1 217 0.64 0.264 0.981 0.16 

2 190 0.896 0.142 1.358 0.293 

3 146 0.713 0.151 1.065 0.17 

4 163 0.572 0.218 0.513 0.088 

5 189 0.71 0.329 0.732 0.117 

6 238 0.651 0.166 0.708 0.121 

7 273 0.635 0.132 0.687 0.141 

8 305 0.232 0.159 0.698 0.105 

9 351 0.952 0.14 0.729 0.1 

10 411 1.216 0.133 1.404 0.165 

11 479 0.534 0.126 0.789 0.085 

12 760 -0.06 0.021 -0.034 0.007 

13 743 -0.086 0.014 -0.022 0.005 

14 685 0.394 0.095 0.089 0.006 

15 630 0.363 0.054 0.233 0.027 

16 541 1.693 0.137 0.366 0.052 

17 599 0.854 0.083 0.467 0.07 

18 377 1.166 0.272 0.439 0.064 

19 270 -0.383 0.282 1.454 0.173 

F04 1 149.6 0.2452 0.0907 410.132 101.242 
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2 213.1 0.426 0.0818 542.878 100.554 

3 271.9 0.533 0.0776 1481.367 243.59 

4 334.2 0.2294 0.0768 705.472 176.109 

5 404 0.3517 0.0959 1265.809 247.591 

6 461.4 0.6256 0.0987 1888.899 358.211 

7 524.4 0.6017 0.0773 2187.546 330.685 

8 593.1 0.4238 0.0633 1784.319 299.135 

9 657.3 0.29 0.0487 1041.434 164.144 

10 725.1 0.3704 0.0755 1836.424 375.014 

11 782.3 0.4037 0.0505 1402.95 202.694 

12 847.4 0.3731 0.0652 1396.115 239.28 

13 908.1 0.4542 0.0599 1293.877 176.586 

14 985.6 -0.0459 0.0167 -102.74 37.426 

15 1042.2 -0.0654 0.013 114.457 15.781 

16 926.7 0.2604 0.0403 861.268 146.277 

17 837.5 0.1892 0.0601 708.29 207.149 

18 745.7 0.3288 0.0589 968.067 194.864 

19 653.6 0.3971 0.0467 1426.952 186.054 

20 558.2 0.3413 0.0629 1543.505 230.08 

21 468.5 0.3703 0.0649 1323.173 180.568 

22 374.6 0.387 0.0648 1197.24 255.098 

23 280.2 0.3741 0.0591 1448.465 316.375 

24 211.6 0.3401 0.0593 1123.024 248.665 

25 159 0.2561 0.0724 1143.119 212.599 

F05 

1 157.2 7.8943 4.2509 1134.799 542.43 

2 306.6 7.9906 2.7143 1929.259 686.358 

3 455.8 8.117 3.0318 2176.205 1094.005 

4 562.7 3.6854 1.5554 2296.309 1159.373 

5 508.5 3.6561 1.4827 1717.746 1048.646 

6 359.7 6.0673 2.7987 1119.228 812.077 

7 211.7 5.0426 3.222 611.016 578.053 

 165 

 

 

 

 

 170 
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Table S 5: The profile altitude bin bounds provided by Scientific Aviation. 

Flight 
Bin Lower Limit 

(m) 

Bin Middle 

(m) 

Bin Upper Limit 

(m) 

F01 

0 84.1 168.3 

168.3 316.4 464.5 

464.5 612.6 760.7 

760.7 908.8 1056.9 

F02 

0 86.5 173 

173 307 441.1 

441.1 575.2 709.3 

709.3 843.3 977.4 

977.4 1111.5 1245.6 

F03 

0 69.59 139.18 

139.18 202.76 266.34 

266.34 329.92 393.5 

393.5 457.08 520.66 

520.66 584.23 647.81 

647.81 711.39 774.97 

F04 

0 74.8 149.6 

149.6 238.9 328.1 

328.1 417.4 506.6 

506.6 595.9 685.2 

685.2 774.4 863.7 

863.7 952.9 1042.2 

F05 

0 78.6 157.2 

157.2 258.6 359.9 

359.9 461.3 562.7 

 175 
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1.5 Fitting the SciAv Surface Extrapolation 

The following section provides the Scientific Aviation (SciAv) algorithm surface extrapolation for all five different fits: 

Constant, Linear, Interpolate, Background, and Linear Weighted. The algorithm’s integration method of binning the estimates 180 

and add adding in summation the average of each bin was applied for the measured part of the profile (Conley et al., 2017). 

For each surface extrapolation the lowest bin was extrapolated to the surface using the given fit. Certain profile shapes can be 

used to determine the fitting height depending on the number of points, minimum height, and shape of the bottom of the profile. 

The chosen fitting heights were: 1100m for F01, 400m for F02, 250m for F03, 400m for F04, and 600m for F05. The final 

estimate was determined by combining the emissions calculated from binned profile added to the trapezoidal integration of 185 

area between the extrapolation fit, the surface, and a flux enhancement of zero (main text, Figure 4). The estimates produced 

by fitting the different surface extrapolations to SciAv are given in Table S 6. Figure S 13A shows that both emission profiles 

for F01 follows a type III shape with fits for linear, weighted linear, and averaged increasing towards the surface. The F01 

surface extrapolation and resulting emission estimate would be larger and more closely follow plume behaviour if the lowest 

divergence point, rather than the lowest bin estimate (the method standard), was used (Figure S 13 A). The F02 SciAv profile 190 

follows a Type II shape (Figure S 13 B) with very little variation in the extrapolation fits, which are clustered around the 

standard constant fit. The F03 SciAv profile has a lot of between-lap variation with a profile shape that largely follows a Type 

I shape (Figure S 13 C). The F03 surface extrapolation was the most unstable fit due to the larger variation between laps at the 

bottom of the profiles. F05 was the only flight with varying profile shapes for and CH4 and CO2. The shape of the emission 

profile in Figure S 13 E for CH4 shows some constraining of the plume at the highest altitude; however, the divergence is still 195 

larger than 2 kg m-1 hr -1 which is larger than the peak of divergence from plant samples. The profile for F05 in Figure S 13 E 

shows incomplete sampling for CO2 as the divergence points are still increasing at the highest altitude indicating that the plume 

was not fully captured.  

 

Table S 6: SciAv emission rate estimates using six surface extrapolation fits. 200 

Flight Surface Extrapolation CH4 Emission (kg h -1) CO2 Emission (t h -1) 

F01 Constant 3840 1040 

F01 Linear 5270 1250 

F01 Interpolate 3900 1040 

F01 Background 3050 784 

F01 Linear Weighted 4690 1300 

F01 Averaged 4200 1150 

F02 Constant 362 5630 

F02 Linear 360 556 

F02 Interpolate 331 523 
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F02 Background 306 489 

F02 Linear Weighted 359 563 

F02 Averaged 361 562 

F03 Constant 497 526 

F03 Linear 506 553 

F03 Interpolate 452 479 

F03 Background 400 401 

F03 Linear Weighted 504 571 

F03 Averaged 503 548 

F04 Constant 349 1170 

F04 Linear 332 1090 

F04 Interpolate 313 1050 

F04 Background 295 1020 

F04 Linear Weighted 332 1110 

F04 Averaged 341 1140 

F05 Constant 3470 850 

F05 Linear 3710 783 

F05 Interpolate 3030 751 

F05 Background 2410 661 

F05 Linear Weighted 3670 782 

F05 Averaged 3590 1040 
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 Figure S 13 C 

Figure S 13 A 

Figure S 13 B 
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Figure S 11 A 

Figure S 13 D. 

Figure S 13 E. 

Figure S 13: The SciAv profile is shown for F01-F05 in Figures S 13A – 13E. The blue points are the estimated flux divergence 

for each lap which are connected to show profile shape with the associated error (a dashed blue line). Red points are bin 

averages and the vertical red bar is the bin height range. The boundary layer height is drawn in light blue with error bars 

(light blue dashed lines). The five surface extrapolations are drawn from the bottom of the lowest red bin. 
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Comparison of SciAv and TERRA Methods Extended 

1.6 Significance Testing and Further Comparison 205 

The difference between estimates, relative mean percentage difference, and the propagated error in percentage for the 

average estimate of the two algorithms are shown in Table S 7. The whole set of results from five flights were formally 

tested for differences between the SciAv and TERRA estimates using a weighted t-test and Wilcoxon signed rank test. As a 

collective, the differences between the estimates were found to be insignificant for both CH4 and CO2 (Table S 8). 

 210 
Table S 7: Differences between algorithms as SciAv estimate – TERRA estimate for each flight, relative percentage differences and 

the propagated percentage error of the estimates. A mean percentage difference that is approximately equal to, or smaller than the 

propagated percentage error of the estimates indicates agreement within the uncertainty of the estimates. 

 
 215 

 

 

 

Table S 8: Results of parametric (weighted t-test) and non-parametric (Wilcoxon signed-rank test) significance testing of differences 

between the two box-flight algorithms using the set of all five flight estimates. 220 

 
Weighted t-test:  

p-value 

Weighted t-test:  

t-value 

Wilcoxon signed-rank 

test: p-value 

Wilcoxon signed-rank 

test: V 

CH4 0.306 -1.09 0.438 4 

CO2 0.366 -0.96 0.625 10 

 

To remove the effect of the surface extrapolation the two algorithms were compared when using each method’s 

“background” surface extrapolation fit. For TERRA this meant fitting the chosen background mixing ratio value below the 

lowest flight lap, and for SciAv calculating zero divergence below the lowest flight lap. Neither algorithm would choose 

background extrapolation for the standard estimate to the flights as increasing or trace emissions were present at the bottom 225 

of each the flight track. 

 

The results of calculations using the assumption of no emission plume below the lowest flight track were compared to the 

standard fit in Figure S 12. The estimate uncertainties were only calculated for each algorithm’s standard fit, therefore 

estimates using other fits have no error bars. The mean of the surface extrapolation estimates and the difference between the 230 

 F01 F02 F03 F04 F05 

CH4: Difference  

(kg h -1) 
-967 -33.5 20.5 224 -436 

CH4: Relative Percentage 

Difference 
22% 8% 4% 94% 12% 

CH4: Propagated 

Percentage Error  
21% 22% 17% 18% 29% 

CO2: Difference  

(kg h -1) 
-302000 47900 58700 602000 -27700 

CO2: Relative Percentage 

Difference  
25% 9% 12% 69% 3% 

CO2:  Propagated 

Percentage Error 
24% 19% 12% 13% 43% 
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mean estimates is given in Table S 9. Results of parametric (weighted t-test) and non-parametric (Wilcoxon signed-rank test) 

significance testing of differences between the two box-flight algorithms using the set of all five flights given each the 

standard fit, background fit, and average of the fits estimates is given in Table S 9.  

Emission estimates using a background fit are systematically lower than the standard estimates (Figure S 14), but no clear 

pattern is identifiable that would indicate systematic disagreement. There is a considerably larger TERRA estimate for F01 235 

between the standard fit compared to the background. The choice of surface extrapolation influences the extent of agreement. 

The algorithms tend to agree more when the effect of a different surface extrapolation is removed as much as possible. This 

indicates good agreement between the methods. When fundamental assumptions are met, variation between the estimates 

can largely be attributed to different surface extrapolation methods. 

 240 
Table S 9: The mean differences between the two algorithm outputs amongst the five flights and results from significance testing 

were calculated for comparison between the standard, background and average of the algorithms fit.  

 
CH4 

Standard 

CH4 

Background 

CH4 

Average 

CO2  

Standard 

CO2 

Background 

CO2 

Average 

Mean Difference 

(kg h
−1

) 
-239 12.4 47.8 75800 141000 115000 

Pairwise t-test: p-

value 
0.857 0.989 0.969 0.724 0.321 0.525 

Pairwise t-test: t-

value 
-0.187 0.0145 0.0404 0.367 1.07 0.665 

Wilcoxon signed-

rank test: p-value 
0.438 1 0.625 0.625 0.313 0.313 

Wilcoxon signed-

rank test: V 
4 8 10 10 12 12 
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Table S 10 gives the percentage relative differences between each algorithm, and the standard deviation of the percentages 245 

for each surface extrapolation, calculated for the four surface extrapolations used for each method. In general, the choice in 

surface extrapolation varied less than the relative percentage difference between the algorithms. Fitting extrapolations with 

increasing emissions towards the surface increased agreement for F01 CO2 from a percentage relative difference of 16% for 

the standard constant fit, to 7% using the linear fit.  

 250 

 

 

  

Figure S 14: Algorithm estimates for CH4, and CO2 given the background mixing ratio fit of no emission plume extrapolation to 

the surface compared to the standard estimates. 
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Table S 10: Percentage relative difference of estimates between algorithms, calculated as SciAv – TERRA, for each of the linear, 255 
Interpolate, constant and background surface extrapolations. The standard deviation between the percentages rounded to the 

nearest integer for each flight is given in the last column. 

 

 

To obtain a sense of the range of estimates from each algorithm a distribution of randomly sampled mean differences was 260 

created. For each flight and gas, a bootstrap analysis was applied by randomly sampling an estimate given one of the 

extrapolations for each method individually and the difference computed as:  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑒𝑎𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝑐𝑖𝐴𝑣) − 𝑚𝑒𝑎𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝐸𝑅𝑅𝐴) (6) 

Analysis was run in Rstudio using the two.boot function from the simpleboot package (Peng, 2019). 5000 replications were 

used for each bootstrap to obtain the distributional shape of the results. These distributions were used as a proxy for 265 

statistical confidence intervals (main text, Figure 8). They were used to estimate testing of the null hypothesis that estimates 

agree, and if the distributions do not overlap with zero then there is evidence that the algorithms differ. 

  

 Linear Interpolate Constant Background 
Standard 

Deviation 

F01 CH4  (%) 9 5 -12 5 9 

F02 CH4 (%) -16 -18 -13 -19 3 

F03 CH4 (%) 6 8 8 9 1 

F04 CH4 (%) 105 87 94 85 9 

F05 CH4 (%) -5 -4 -2 -9 3 

F01 CO2 (%) -7 0 -16 44 26 

F02 CO2 (%) 2 1 5 1 2 

F03 CO2 (%) 17 18 14 21 3 

F04 CO2 (%) 62 59 66 61 3 

F05 CO2 (%) -11 -11 -4 -18 6 
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Scientific Aviation Trapezoidal Integration Estimations 

1.7 Comparison Results and Significance Testing 270 

The current SciAv method uses a binning method for integrating the profile points over altitude to estimate the overall emission 

estimate. This method can produce large flux divergence error terms when a small number of laps have been flown and 

divergence points differ greatly between laps, which can inaccurately estimate error if the variation is due to a trend such as 

emissions increasing to the surface. In these scenarios it may be beneficial to use trapezoidal integration rather than binning to 

estimate emissions. Rather than grouping into altitude bins the trapezoidal integration estimates the area under the curve by a 275 

trapezoidal fit between each point. Trapezoidal integration fits the area by altitude between a divergence of zero and the 

positive divergence calculated for each lap using the lines connecting the points. This method parallels the calculation of the 

SciAv divergence error term whilst avoiding the potential bias from a small number of flight laps. 

 

Table S 11 gives the SciAv trapezoidal integration method estimates. Figures S 15 A – 15 E show the SciAv profiles given the 280 

trapezoidal integration method. Surface extrapolations are fit from the lowest mean divergence lap estimate. The estimated 

end point for the surface extrapolation does not change between the two integration methods as it is determined by fitting 

curves by the position of the points and fitting height. As the surface extrapolation points were the same for both profiles which 

caused the F01 trapezoidal profiles to decrease despite their noticeable increasing to surface trend (Figure S 15 A). A less 

conservative fitting height procedure would likely produce a large range in emission estimates, and should be explored if the 285 

trapezoidal method is adapted, as it could produce an extrapolation truer to the nature of the divergence profile.  

 

Table S 11: SciAv emission rate estimates using trapezoid integration. 

Flight Surface Extrapolation CH4 Emission (kg h -1) CO2 Emission (t h -1) 

F01 Constant 4840 1350 

F01 Background 3130 831 

F01 Linear 4600 1300 

F01 Interpolate 3980 1090 

F01 Linear Weighted 4770 1350 

F01 Averaged 4730 1330 

F02 Constant 352 550 

F02 Background 302 483 

F02 Linear 355 550 

F02 Interpolate 327 517 

F02 Linear Weighted 354 557 
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F02 Averaged 354 552 

F03 Constant 530 530 

F03 Background 426 375 

F03 Linear 532 527 

F03 Interpolate 478 453 

F03 Linear Weighted 530 545 

F03 Averaged 531 534 

F04 Constant 338 1120 

F04 Background 301 1060 

F04 Linear 339 1130 

F04 Interpolate 320 1090 

F04 Linear Weighted 339 1150 

F04 Averaged 339 1130 

F05 Constant 3780 797 

F05 Background 2540 619 

F05 Linear 3830 740 

F05 Interpolate 3160 708 

F05 Linear Weighted 3800 739 

F05 Averaged 3800 759 

 

 290 
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Figure S 15 C. 

 

Figure S 15 B. 

 

Figure S 15 A. 
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295 

  

Figure S 15 D. 

 

Figure S 15 E. 

Figure S 5: A - E of the SciAv profiles for flights F01 through F05. The blue points are the estimated flux divergence for 

each lap which are connected to show profile shape with the associated error (a dashed blue line). The red area is the 

trapezoidal integrated area of the blue divergence points excluding the surface extrapolation. The boundary layer height 

is drawn in light blue with error bars (light blue dashed lines). The five surface extrapolations are drawn from the bottom 

of the lowest blue divergence point. 
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Figure S 16 show the binned estimates compared to the trapezoidal (Trapz). No systematic pattern is evident that would 

indicate that one integration method produces consistently larger or smaller emissions estimates. There is a systematic gap 

between estimates that could be attributed to the use of different extrapolation points. The binned method uses the lowest bin 

for extrapolation, whereas the trapezoidal method uses the lowest divergence point.  300 

 

Figure S 6: SciAv emission estimates of CH4 (kg h -1) and CO2 (t h -1) derived using both a binning (red) and trapezoidal (blue) 

integration method. Mean values for each method are shown as a dotted line. 

Inspecting Figure S 16 there is a larger variation between estimates due to the chosen surface extrapolation than integration 

method. There was one exception, there is a larger difference between the integration types when a constant extrapolation is 305 

chosen for F01. This flight has an increasing to surface profile point, and because the lowest divergence point differs greatly 

from the location of the lowest bin estimate, the extrapolation fits differ. Applying an appropriate surface extrapolation that 

follows the shape of the profile remedied the difference between integration methods.  
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Percentage relative standard deviations (%RSD) were calculated (Table S 12) to estimate the deviation in the surface 

extrapolation estimates given the binning and trapezoidal approaches to integrating the SciAv lap divergence data. These 310 

were compared to the %RSD of the difference between the two integration methods. Table S 13 gives the standard 

deviations of the surface extrapolation estimates for each integration method and the standard deviation for the difference 

between integration methods for all five fives. Table S 14 gives the results from significance tests on the differences between 

the estimates. The choice of surface extrapolation leads to a greater standard deviation than the choice of integration method. 

Results showed that the range in emission output was a factor of ~ 3 times larger for the range in surface extrapolation 315 

estimates than the difference between using a binned or trapezoidal integration. The choice in the surface extrapolation 

affected the range of emission outputs more than the integration type.  

 
Table S 12: Percentage relative standard deviations (RSD) calculated from the set of seven SciAv surface extrapolations given a 

binned or trapezoidal integration method and for the difference between the two. The mean of each %RSD is calculated amongst 320 
all flights.  

 
F01 

CH4 

F02 

CH4 

F03 

CH4 

F04 

CH4 

F05 

CH4 

F01 

CO2 

F02 

CO2 

F03 

CO2 

F04 

CO2 

F05 

CO2 

Mean 

 

Binned 

%RSD 
18 7 9 6 15 17 6 12 5 8 10 

Trapezoid 

% RSD 
15 7 9 5 15 17 5 14 3 8 10 

Difference 

% RSD 
12 1 1 2 2 9 1 3 3 0 3 

 

Table S 13: Standard deviation of the surface extrapolation estimates for each integration and the difference between integration 

method extrapolation estimates (calculated as: binned estimate – trapezoidal estimate). 

 SD Binned 

Extrapolation Estimates 

SD Trapezoidal 

Extrapolation Estimates 

SD Difference in Methods 

Extrapolation Estimates 

CH4 (kg hr -1) 1740 1810 581 

CO2 (t hr -1) 274 315 139 

 325 

Table S 14: Results of parametric (weighted t-test) and non-parametric (Wilcoxon signed-rank test) significance testing of differences 

between the two SciAv integration method, by calculating the mean of the estimates for each flight and tested over the whole set of 

five flights. 

 Weighted t-test: p-

value 

Weighted t-test: t-

value 

Wilcoxon signed-rank 

test: p-value 

Wilcoxon signed-rank 

test: V 

CH4 0.952 -0.062 0.188 2 

CO2 0.952 -0.062 1 8 

 

To further compare the two methods of integrated a distribution of the mean differences for each flight was computed by 330 

bootstrapping the mean difference between randomly sampled estimates. The mean difference was computed as:  

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑒𝑎𝑛(𝑆𝑐𝑖𝐴𝑣𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝐵𝑖𝑛𝑛𝑒𝑑) − 𝑚𝑒𝑎𝑛(𝑆𝑐𝑖𝐴𝑣𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝑟𝑎𝑝𝑧) (7) 
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As shown in Figure S 17, the distributions for all flight samples of each emission type cover zero indicating that the two 

integration methods produce similar estimates. The trapezoidal integration may be a useful method for profiles with a small 

number of laps, but the choice of an appropriate surface extrapolation has a larger effect on the emission estimate than the 335 

type of integration used. The SciAv divergence error term could be calculated by using the lap data and bootstrapping the 

trapezoidal integration over thousands of profile points that are randomly sampled within the uncertainty of each point to 

estimate the random sampling error between each lap by altitude. A surface extrapolation term could be derived following 

methods used in TERRA by assessing the maximum percent change between plausible extrapolations.  

   340 

 

Figure S 17: Distributions of the mean difference between all SciAv fits of CH4 and CO2, given the binning compared to the 

trapezoidal integration methods, in light blue. The mean difference between the standard estimates is plotted as a teal dashed lined 

and the range in the estimate as the light teal box behind the distribution. A grey dot dashed line is drawn at zero as a reference 

point for the location of exact agreement between the methods. 345 
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Box-flight Algorithm Assumptions Investigated 

1.8 Flight Screening and Analysis of Meteorological Conditions During Flight F04 

The potential cause of the non-stationarity of F04 was thoroughly investigated. Analysis of the raw data and emission profiles 

indicates that the emission plume itself was non-stationary as the mixing ratios enhancements noticeably differed between the 

upwards and downwards portion of the flight, but other potential causes such as changing meteorological conditions were 350 

inspected. Along with the flight screening provided by Scientific Aviation and Alberta Airshed Stewardship, conditions were 

assessed using the full data and then split into upwards (ascending) and downwards (descending) sections for comparison. The 

various analysis provided in this document supports the conclusion that meteorological conditions were not the cause of the 

FO4 non-stationarity.  

 355 

Prior to this study, Scientific Aviation and Alberta Airshed Stewardship performed a screening of all flights in the AEP-

NOAA-Scientific Aviation 2017-2018 Alberta Oil Sands Flight Campaign. This process includes looking at ‘circle’ files and 

assessing the wind direction and mixing ratio measurement for each lap. The circle files help detect plume capture, non-

stationarity of the wind, and any upwind flux that is not coming from the intended emission source. The SciAv lap divergence 

profiles are also inspected for plume capture and the shape of the plume. Stationarity and consistency of the wind data was 360 

deemed good, the plume was assessed as fully captured, and there was negligible upwind flux entering the box.  

 

The non-stationarity of F04 was not confirmed until post-hoc analysis was applied by Environment and Climate Change 

Canada. The TERRA step of kriging the data uses the lap data to produce spatially gridded emission mixing ratios. Figure S 

20 shows the middle step of gridded screen for F04 CH4. Some boxes contained a high (red) emission and a low (blue) emission 365 

enhancement (Figure S 18) which is evidence of non-stationarity as the plume and background mixing ratios changed over 

time. The change in mixing ratios may have occurred due to changing operating conditions at or near the facility, but operations 

conditions were not shared by the facility. The non-stationarity of the emission plume biased the TERRA estimates as the large 

mixing ratio differences in each square led to lower estimates from the kriging. For TERRA, there is a noticeable difference 

in the CH4 mixing ratios in the upward flight compared to the downward, with higher mixing ratios (red) detected in the 370 

ascending portion of the flight (Figure S 19).   
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Figure S 18: A zoomed in look at the final F04 CH4 box of kriging-interpolated data. A black circle is drawn around a gridded square 

that contained a large red enhancement at the same location as a low blue mixing ratio. The square was averaged to a yellow CH4 

value. Imagery provided by Environment and Climate Change Canada. 375 

 
Figure S 19: Per lap CH4 mixing ratio screen data for the box upward (left) and downward (right) prior to kriging of the data. 

Imagery provided by Environment and Climate Change Canada. 

 

  380 
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As part of the meteorological conditions’ analysis, the stability of the boundary layer was assessed. To thoroughly investigate 

conditions multiple variables were calculated to produce multiple estimates of the boundary layer. Following previous 

calculations for estimating the boundary layer from aircraft flight data (Dai et al., 2014) variables were computed: gradient 

Richardson number, bulk Richardson number, change in virtual temperature, change in potential temperature, and the change 385 

in virtual potential temperature. The boundary layer height was estimated from the maximum of each of these variables to 

assess any changes during the flight up versus down. These values were also compared to the SciAv estimate that was provided 

which was estimated the day of the flight. The calculated maximum values used to estimate the boundary layer are plotted in 

Figure S 20 for the full, upwards, and downwards F04 flight segments. Analysis by Dai et al. 2014 suggest the best practice is 

to estimate the boundary layer at maximum change in the virtual potential temperature (maxVPT/dz). For this flight, the 390 

boundary layer estimate is near SciAv’s estimate and appears stable. If the meteorological conditions caused a significant shift 

in the boundary layer this would likely show up during the reanalysis. The consistency in boundary layer estimates for the 

flight up versus down further indicates that the boundary layer was stationary during the flight.  

 

Thorough analysis of the boundary layer, and the wind components supports the conclusion that meteorological conditions 395 

were not the source of the non-stationarity of the emission plume for F04. Ruling out changing meteorological conditions 

leaves a change in the background mixing ratio, or a change in the facility emissions during the flight as potential causes of 

the non-stationarity. However, the cause of the non-stationarity of the emission plumes for F04 remains unknown as there was 

no independent measurement of the background mixing ratio during sampling, and the operating conditions near and at the 

facility were not shared. 400 
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Figure S 20: The five boundary layer estimates for the full, up and down F04 flight segments plotted as the maximum: gradient 

Richardson number (maxG.Rich), bulk Richardson number (maxB.Rich), change in virtual temperature (dVT/dz), change in 

potential temperature (dPT/dz), and change in virtual potential temperature (dVPT/dz). The acronym dz is the change in altitude 405 
above ground level. The y-axis gives the estimated boundary layer in meters above ground level. 
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