
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department
of

2022

Real-Time Dynamic Map with Crowdsourcing Vehicles in Edge Real-Time Dynamic Map with Crowdsourcing Vehicles in Edge

Computing Computing

Qiang Liu

Tao Han

Jiang (Linda) Xie

BaekGyu Kim

Follow this and additional works at: https://digitalcommons.unl.edu/csearticles

 Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csearticles
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Real-Time Dynamic Map with Crowdsourcing
Vehicles in Edge Computing

Qiang Liu, Member, IEEE, Tao Han, Senior Member, IEEE,
Jiang (Linda) Xie, Fellow, IEEE, and BaekGyu Kim, Member, IEEE,

Abstract—Autonomous driving perceives surroundings with
line-of-sight sensors that are compromised under environmental
uncertainties. To achieve real time global information in high defi-
nition map, we investigate to share perception information among
connected and automated vehicles. However, it is challenging
to achieve real time perception sharing under varying network
dynamics in automotive edge computing. In this paper, we
propose a novel real time dynamic map, named LiveMap to detect,
match, and track objects on the road. We design the data plane
of LiveMap to efficiently process individual vehicle data with
multiple sequential computation components, including detection,
projection, extraction, matching and combination. We design the
control plane of LiveMap to achieve adaptive vehicular offloading
with two new algorithms (central and distributed) to balance the
latency and coverage performance based on deep reinforcement
learning techniques. We conduct extensive evaluation through
both realistic experiments on a small-scale physical testbed and
network simulations on an edge network simulator. The results
suggest that LiveMap significantly outperforms existing solutions
in terms of latency, coverage, and accuracy.

Index Terms—Dynamic Map, Edge Computing, Autonomous
Driving

I. INTRODUCTION

AUTONOMOUS driving and advanced driving assistance
system (ADAS) are being evolved with the development

of modern machine learning and pervasive parallel comput-
ing. Vehicles leverage a variety of sensors, e.g., camera and
LiDAR, to perceive surroundings, and use onboard computers
to understand the collected raw data in real time, e.g., semantic
segmentation and object recognition. With the high-definition
(HD) map, advanced vehicular control algorithms accurately
relocalize the vehicle and can tackle road situations with the
perceived environmental context, e.g., pedestrians and lanes.

Achieving highly reliable and safe driving, however, is very
challenging, based on non-real-time HD map and individual
vehicle perception. On the one hand, the HD map [2], in-
cluding geometric, semantic, and map-prior layer, has no real
time road information, e.g., pedestrian and vehicles, in the
time scale of subseconds. On the other hand, the perceptions
of individual vehicles are limited and might be compromised

Qiang Liu is with the School of Computing, University of Nebraska-
Lincoln. E-mail: qiang.liu@unl.edu

Tao Han is with the Department of Electrical and Computer Engineering,
New Jersey Institute of Technology. E-mail: tao.han@njit.edu

Jiang (Linda) Xie is with the Department of Electrical and Com-
puter Engineering, University of North Carolina at Charlotte. E-mail:
linda.xie@uncc.edu

BaekGyu Kim is with the Department of Information and Communication
Engineering, Daegu Gyeongbuk Institute of Science and Technology. E-mail:
bkim@dgist.ac.kr

Partial contents of this article appeared in IEEE International Conference
on Computer Communications 2021 [1].

LiveMap

Transportation Systems

Edge Servers

Radio Access Points

Fig. 1: An example of automotive edge computing.

under a variety of environmental uncertainties such as weather
and occlusion [3]. For example, existing line-of-sight vehicle
sensors are with limited sensing ranges, which indicates that
they cannot perceive information in occluded areas [4]. Con-
sidering a car follows a truck that blocks the car’s front sensor,
passing the truck without the information about the opposite
lane is unsafe.

Connected and automated vehicles (CAVs) emerge in re-
cent years to connect vehicles [5], [6] via advanced wire-
less technologies, e.g., 5G and beyond, with pervasive edge
computing infrastructures [7], [8], e.g., edge servers in radio
access networks (RAN). The Automotive Edge Computing
Consortium estimates that more than 50% of all cars on the
road in the United States will have connected features by
2025 [9]. Various onboard sensors of vehicles, e.g., cameras
and LiDAR, can be leveraged to construct global information
via crowdsourcing. By using edge servers as the hub, the
information perceived by individual vehicles is seamlessly
collected, processed, and shared among vehicles and infras-
tructures with ultra-low latency.

However, it is non-trivial to share perception data among
CAVs because of the constrained network infrastructures
and resources (e.g., spectrum and servers). For example,
the perception of vehicles may have duplicated information
due to their heavily overlapped sensing ranges in a dense
urban scenario. In addition, the uplink transmission of vehicle
perception data, e.g., point clouds, demands a tremendous
data rate which may overwhelm mobile networks [10]. Edge
servers, that support hundreds of vehicles if not more, experi-
ence fast-changing traffic and workloads under varying vehicle
trajectories. Therefore, it is imperative to design intelligent
network management solutions to achieve real time perception
sharing under constrained network resources in automotive
edge computing.

In this paper, we propose LiveMap, a new real-time dynamic
map as shown in Fig. 1. LiveMap achieves the detection,

ar
X

iv
:2

21
0.

05
03

4v
1

 [
cs

.D
C

]
 1

0
O

ct
 2

02
2

proyster
Typewritten Text
Published (2022) in IEEE Transactions on Intelligent Vehicles, DOI: 10.1109/TIV.2022.3214119

2

Object
Detection

Feature
Extraction

Combination
& Tracking

Object
Matching

detections

Global Map

features

RGB-D
imageData

Acquisition

Service
Request

Object
Projection

configs

object
images

historical objects

Vehicle Server
Centralized scheme

D
at

a
Pl

an
e

C
on

tr
ol

Pl

an
e

objects

Local Map

ob
je

ct
s

D-HEAD
Algorithm HEAD Algorithm

Sensors

Fig. 2: The overview of LiveMap. The data plane is to process sensor data for detecting, matching and tracking objects. The control plane
is to manage networks for accelerating transmission and computation of vehicle offloadings.

matching, and tracking of objects on the road in the time
scale of subseconds via crowdsourcing data from CAVs.
We design LiveMap to achieve an efficient data plane for
vehicle data processing and an intelligent control plane for
vehicle offloading decisions. The data plane is composed of
object detection, object projection, feature extraction, object
matching, and object combination. In particular, we design to
improve the object detection with new neural network pruning
techniques, build concise feature extraction with variational
autoencoder techniques, optimize the feature matching with
a novel location-aware distance function, and increase the
combination accuracy with a new confidence-weighted com-
bination method. The control plane enables adaptive vehicle
offloading, e.g., offloading the computations from vehicles
to servers, under varying network dynamics. We design two
algorithms, that apply in central and distributed scenarios,
to minimize the latency of offloadings while satisfying the
requirement of map coverage. We design these two algorithms
based on deep reinforcement learning (DRL) that optimize the
vehicle scheduling and offloading decision of individual CAVs.
In addition, we implement LiveMap on a small-scale physical
testbed with multipleJetRacers (Nvidia Jetson Nano), a 5GHz
WiFi router, and an edge server with Nvidia GPU.

The main contributions of this paper are listed:
• We design a new real time dynamic map (LiveMap) via

crowdsourcing sensor data of CAVs in automotive edge
computing networks.

• We develop an efficient data plane with sequential process-
ing of sensor data for reducing the processing delay and
improving detection accuracy.

• We design an intelligent control plane with two new al-
gorithms that improve the latency performance without
compromising the map coverage.

• We develop an edge network simulator and prototype
LiveMap on a small-scale physical testbed.

• We evaluate LiveMap via both experiments and simulations,
and the results validate its superior performance.

II. LiveMap OVERVIEW

In Fig. 2, we overview the architecture of LiveMap, which
includes the data plane, i.e., sensor data processing for de-
tecting, matching and tracking objects, and the control plane,
i.e., network management for accelerating transmission and
computation.

The data plane is composed of several sequential process-
ing components. The acquisition component retrieves RGB-
D images from CAV sensors and its relocalization. The

detection component detects possible objects in RGB images
by exploiting state-of-the-art object detection framework, i.e.,
YOLOv3 [11]. The projection component projects the detected
objects from pixel coordinates to world coordinates based
on the depth information and camera-to-world transformation
matrix. The extraction component extracts visual features from
cropped object images by using a variational autoencoder. The
matching component matches detected objects in either the
local or global map according to their visual features and geo-
locations. The combination component combines multi-viewed
objects by integrating a variety of attributes, e.g., confidence
and geo-location. Note that all components, except acquisition
and combination, can be flexibly executed in either CAVs or
edge servers, according to the control plane. Finally, the global
map will be updated, where new updates will be broadcasted
to all vehicles for updating their local maps.

The control plane includes a central and a distributed
scheme. In the central scheme, a vehicle sends a service
request along with its local state to the edge server. The HEAD
algorithm optimizes the scheduling of this vehicle under the
current map coverage, and determines the offloading decision
with a central DRL agent under the global state if the vehicle
is scheduled. In the distributed scheme, the vehicle invokes the
D-HEAD algorithm independently to optimize its scheduling
and offloading decision according to the current local state.
The vehicle starts the data plane according to the offloading
decision if it is scheduled.

III. THE DESIGN OF DATA PLANE

The data plane is designed to efficiently process vehicle data
in terms of processing delay and detection accuracy.

A. Data Acquisition

We develop the acquisition component to acquire the sensor
data, i.e., LiDAR and RGB-D images. Without loss of gen-
erality, we consider the RGB and depth images from RGB-
D cameras, e.g., Intel RealSense D435. Besides, it obtains
the accurate vehicle location in world coordinates, which de-
pends on either high-accuracy GPS or advanced relocalization
algorithms such as ORB SLAM2 [12]. The accurate vehicle
location is necessitated for combining the multi-viewed objects
detected by multiple vehicles.

B. Object Detection

We design the detection component to detect transportation
objects from RGB images, e.g., trucks and pedestrians, where
detection results include the object classes, probability, and 2D

3

𝑋𝑐

𝑌𝑐

𝑍𝑐

camera

𝑍𝑤
𝑌𝑤

𝑋𝑤

world

𝑓 𝑥

𝑦

𝑢

𝑣

pixel

𝑑
𝑢0

𝑣0

Fig. 3: The camera coordinate system.

bounding boxes. Existing deep neural network (DNN) based
algorithms, e.g., Fast-RCNN [13], YOLO [11], and SSD [14],
are mainly designed for generic classes with up to hundreds of
object classes, e.g., book, kite, cup, and boat. In the scenario
of transportation systems, a large proportion of these generic
classes would not appear on the road and are not interested
in LiveMap, e.g., books and fruits. In general, the size of
DNN increases in order to achieve similar detection accuracy
under a larger number of classes, e.g., mean average precision
(mAP). As a result, the detection delay increases when these
algorithms are directly applied to embedded platforms on
vehicles.

To this end, we propose a slim detector with specified
transportation classes to decrease the detection time while
maintaining the detection accuracy. We leverage the neural
network pruning technique, which aims to decrease the size
of DNN by pruning unnecessary neurons without compromis-
ing the detection accuracy noticeably. We adopt the pruning
workflow in [15] to iteratively prune the DNN with sparsity
retrain, channel prune, and finetune. First, the loss of the DNN
retrain includes a weighted L1 regulation on the scaling factors
in batch normalization (BN) layers and is

Loss =
∑

(x,y)
l(f(x|W), y) + λ

∑
γ
g(γ), (1)

where W is the DNN weights, λ is a balancing factor, and
x, y are the input images and ground-truth labels, respectively.
The function l(·) is the original loss function, and g(γ) is the
sparsity-induced penalty on the scaling factors, where γ is the
scaling factor of the channel in convolutional layers. Second,
as the sparsity training completes, these insignificant convolu-
tional channels (nearly zeros scaling factors) are removed in
the channel pruning. Third, the DNN is further fine-tuned to
re-gain the accuracy performance. Note that these processes
repeat to trade-off between accuracy and size of the DNN.

The performances of our object detector (based on YOLOv3
tiny [11]) are as follows. The detection classes are reduced
from 80 to 10, and the network size is reduced from 8.69M
to 0.54M (93.7%) under 0.01 mAP degradation (from 0.534
to 0.524) on our dataset.

C. Object Projection

We design the projection component to derive the object
location in the world coordinate system according to the
detection results and depth information. In Fig. 3, we illustrate
the projection of objects in camera coordinate systems. Thus,
we can calculate the object location in world coordinates
by transforming pixel-to-camera and camera-to-world accord-
ingly.

First, we transform the locations from pixel to camera
coordinates, given the camera focal length f and the image
resolution (RW , RH). Denote (u0, v0) as the central pixel
location of an object, the 3D location1 (X,Y, Z) in the camera
coordinates are

X = −(d ∗ (v0 − 0.5 ∗RH))/f,

Y = (d ∗ (u0 − 0.5 ∗RW))/f, (2)
Z = d,

where d is the object depth in the Z-axis. However, calculating
the object depth is non-trivial, because objects usually occupy
irregular areas while its bounding box is a rectangle. In
traditional depth calculation approaches, all the depth values in
the bounding box of the object are averaged. These approaches
would lead to an inaccurate estimation of the object depth,
because the object usually does not cover all the pixels in the
rectangle bounding box. To address this issue, we randomly
sample multiple small squares (e.g., 4x4) around the center
of the bounding box. The average depth of all these small
squares are sorted, where the maximum and minimum value
are removed. The final depth is then the average depth of
these remaining small squares. This method achieves a more
robust estimation of object depth and improves the accuracy
of detected objects eventually.

Second, we transfer the location in camera coordinates to
world coordinates. The world location (Wx,Wy,Wz) are

[Wx, Wy, Wz, 1]
T
=Mc2w × [X, Y, Z, 1]

T
, (3)

where Mc2w is the conversion matrix.

D. Feature Extraction

We design the extraction component to extract concise
visual features from the cropped object images by using the
technique of variational autoencoder. Even if we obtain the ob-
ject location in world coordinates through the aforementioned
components, we still do not know who are them and where did
they from. We need further identify them for tracking their tra-
jectories consistently, which necessitates the feature extraction.
Traditional feature extraction methods (e.g., ORB [16]) cannot
apply here for two reasons. First, they may generate a similar
amount of features as compared to that of object images [17],
which worsens not only the following matching time but also
the transmission delay of possible vehicle offloading. Second,
they generate very limited features for small object images,
which substantially compromises the accuracy of the following
feature matching. In the transportation scenario, the dimension
of the cropped objects are typically small as they are far away
from vehicles, e.g., the image size of a truck may be 50x100
out of 1080p images.

To this end, we exploit the variational autoencoder [18] to
derive condensed features from small images. The autoencoder
is composed of an encoder (encoding input image into fea-
tures) and a decoder (rebuilding the image from features).
The variational autoencoder overcomes the deficiencies of
traditional autoencoders, i.e., irregulate latent space [18], by
using a new regularized loss function. Given the image x and

1The conversion from pixel-to-camera coordinates may vary according to
the axis setting of the camera coordinate system.

4

sampled latents z from the distribution N (µ, σ2), the loss
function of the variational autoencoder is expressed as
Loss = −Ez∼q(z|x) [log p(x|z)] +DKL [q(z|x)|p(z)] , (4)

where q(z|x) and p(x|z) are the encoder and decoder, respec-
tively. The DKL is the KL-divergence, which evaluates the
discrepancy between two distributions, and p(z) ∼ N (0, 1)
is a Gaussian distribution. We collect all the object images
detected by vehicles, and train the variational autoencoder
accordingly. During the inference phase, the generated features
will be treated as the features of the object.

E. Object Matching

We design the matching component to compare and match
detected objects in the map according to generated features
and geo-locations. Because a map may include hundreds or
thousands of objects, matching an object with all these objects
in the map is time-consuming and inefficient. Besides, recent
researches [10] indicate that the feature distance (i.e., features
generated by the feature extraction component) may fail in
transportation scenarios.

To this end, we use a new location-aware function to
measure the distance between two features and improve the
robustness of feature matching in three steps. First, we select
the candidate matching objects whose geo-distance is less than
100 meter with the detected object, which helps to reduce the
size of candidate objects for matching. Second, we build a
trajectory model for each object in the map, which is fitted
based on the historical locations and used to predict the future
location of the object. Third, we develop the following distance
function to include both the feature distance and geo-distance
of the ith and jth object, which is
Di,j = min(

[
||zi,m − zj,m||2,∀m ∈M

]
)+w||gi−gj ||2, (5)

where g is the location, w is a weight factor, z are the object
features, ||·||2 is the L2-norm operation, andM denotes the set
of features of an object. Note that an object could be viewed
by different vehicles, these multi-view features are considered
as valid and associated with the object.

F. Object Combination

We develop the combination component to integrate and
update the detected objects viewed by different vehicles in
the global map. The global map includes all the active objects,
where each object includes multiple attributes such as object
id, object name, geo-location, and feature. Note that the
objects with outdated locations are automatically removed
from the global map.

Note that the multi-viewed objects may have different
results, e.g., locations, confidences, and features. Thus, we use
a new combination method to calculate the geo-location of
objects as

g =
∑

m∈M
(Pm ∗ gm)/(

∑
m∈M

Pm), (6)

where Pm and gm are the detection confidence and geo-
location, respectively. In addition, the multi-view features of
the object are considered to be valid, which are included in the
map for achieving better matching accuracy as shown in Eq. 5.
Finally, only the newly updated information in the global map,
e.g., pedestrian features, are broadcasted to all the CAVs.

IV. THE DESIGN OF CONTROL PLANE

The control plane is designed to improve the system per-
formance in terms of latency and coverage. We introduce
the system model, formulate the problem, and propose new
algorithms in both central and distributed scenarios.

A. System Model

We consider multiple CAVs that connect to a cellular base
station and an edge server. To complete the dynamic map,
all vehicles asynchronously offload their computation tasks,
i.e., the data plane, to the edge server. As these tasks are
naturally separated, we consider the discrete partition between
these components. We denote I as the set of vehicles and
N = {0, 1, ..., N} as all the possible partitions, where N is the
maximum partition. Specifically, we define yi as the partition
of the ith vehicle, i.e., offloading decision. For instance,
the partition is 2 suggests that the detection and projection
component in LiveMap are completed on the vehicle. Then,
the generated intermediate data, e.g., cropped object images,
are transmitted to the edge server for further computation.
Next, the remaining extraction, matching and combination
components are executed on the edge server.

We consider individual vehicles have a geographic coverage
area, e.g., a circle with a 50m radius, depending on the sensing
range of onboard sensors and the vehicle locations. Denote the
coverage of the ith vehicle at time slot t is denoted as C(t)

i .
To avoid excessive computation offloading from vehicles with
heavy coverage overlap, we introduce the vehicle scheduling
indicator to determine if the vehicle is allowed to offload.
We define the scheduling indicator of the ith vehicle as
xi ∈ {0, 1}, where xi = 1 suggests that the vehicle is
scheduled to conduct the offloading. For the sake of simplicity,
we denote X as the set of vehicle scheduling and Y as the
set of offloading decision, respectively. The latency L(t)

i of the
ith vehicle at time slot t is defined as the elapsed time since
the vehicle starting its offloading until the map updates are
broadcasted.

B. Problem Formulation

The objective of the control plane is to provide real time en-
vironmental information to all the CAVs. In the transportation
scenarios, outdated transient information is less helpful for the
decision of autonomous driving and ADAS. For instance, the
location of vehicles 30 seconds ago probably fail to contribute
to the current control, e.g., lane changing. Moreover, we aim
to maintain the dynamic map with a large geographic coverage
to provide comprehensive information to all the CAVs. Hence,
we denote the achievable instant map coverage as

⋃
i∈I C

(t)
i

at the time t, i.e., the union of coverage of all vehicles. Then,
we formulate the optimization problem of the control plane as

min
{X ,Y}

∑
t∈T

∑
i∈I

L
(t)
i (7)

s.t.
⋃
i∈I,xi 6=0 C

(t)
i ≥ β

⋃
i∈I C

(t)
i ,∀t ∈ T , (8)

x
(t)
i ∈ {0, 1},∀i ∈ I, t ∈ T , (9)

y
(t)
i ∈ {0, 1, ..., N},∀i ∈ I, t ∈ T , (10)

5

where we introduce β ∈ [0, 1] as a factor to constrain the
overall instant map coverage. The T is a given time period
such as 15 minutes or 1 hour to evaluate the statistical
performance.

However, we observe that the above problem is challenging
to be resolved. First, the accurate mathematical model to
describe the latency of a vehicle can hardly be obtained in
real network systems, i.e., L(t)

i ,∀i ∈ I, t ∈ T are unknown.
On the one hand, the asynchronous mechanism of vehicle
offloadings inevitably leads to overlap among offloadings and
resource competition in the time domain. The shared radio
transmission, e.g., cellular networks, and server computation,
e.g., edge computing, are not considered to be virtualized
and controlled, from the perspective of operating LiveMap.
On the other hand, vehicles are heterogeneous in terms of
the capability of onboard hardware, routes, and the quality
of wireless channels. As a result, the resource competition is
fast-changing, whose status, e.g., which vehicles are uplink
transmitting and how they share radio resources, are unable to
be observed. Second, the offloading of all vehicles exhibit the
Markov property. For example, the decision made for a vehicle
at the current time not only affects the current performance of
vehicles but also influences the further system states.

C. Centralized Algorithm Overview

In this part, we overview the centralized HEAD algorithm
based on deep reinforcement learning (DRL) to effectively
solve the above problem in our previous work [1]. In the
HEAD algorithm, we solve this problem by alternatively
tackling the vehicle scheduling and offloading decision. We
observe that the offloading of vehicles are usually completed
in subseconds, in contrast, the scheduling of vehicles may run
at the higher time scales, e.g., seconds. Therefore, we design
a hierarchical algorithm named HEAD as follows. In the outer
layer, we determine the scheduling of vehicles by minimizing
the total number of scheduled vehicles while maintaining
the constraint of overall map coverage. Note that excluding
more vehicles suggests that there will be less competition
for network resources among vehicles, which thus accelerates
the transmission and computation of vehicle offloadings in
general. In the inner layer, we leverage the DRL technique
to intelligently optimize the offloading decision for individual
scheduled vehicles, where the dimension of the state and action
turns out to be fixed.

D. Distributed Algorithm Design

In this part, we design a new distributed HEAD (D-HEAD)
algorithm (Alg. 1) to solve the problem, which alleviates the
need for central decisions in the aforementioned centralized
algorithm. The idea of the distributed algorithm is to allow
individual vehicles to optimize their scheduling and offloading
according to their local states, e.g., local map. The distributed
algorithm follows the two-layer framework as the centralized
algorithm does, i.e., the vehicle scheduling and offloading
decision occur in the upper-layer and lower-layer, respec-
tively. In particular, individual vehicles optimize their vehicle
scheduling to determine if they participate in the offloading.

Algorithm 1: The D-HEAD Algorithm
Input: β, θ∗, i,
Output: xi, yi

1 st ← [svt , yt−1, L
(t−1)], / ∗ build state ∗ /;

2 Ck ← Ci, ∀k ∈ I, / ∗ estimate coverage ∗ /;
3 if time to schedule then
4 xk ← 1, ∀k ∈ I;
5 while True do
6 k ← argmaxk∈I,xk 6=0Ok;
7 xk ← 0;
8 if

⋃
k∈I,xk 6=0 C

(t)
k ≤ β

⋃
k∈I C

(t)
k then

9 xk ← 1;
10 break;

11 if xi == 1 (scheduled) then
12 yi ← argmaxat Q

∗(st,at|θ∗), / ∗ get action ∗ /;

13 else
14 yi ← −1, / ∗ not scheduled ∗ /;

15 return xi, yi;

This vehicle scheduling is designed to be asynchronous, for
avoiding the reduction of coverage requirements during the pe-
riodical scheduling interval due to the mobility of vehicles (see
Fig. 8). The offloading decisions are optimized (if scheduled)
locally whenever there is an offloading to start. In this way,
the communication overhead (incurred by transmitting states
to the central controller) and action delays (the delay to send
the state and receive the action from the central controller)
are eliminated. However, the lack of timely global states may
compromise the overall performance of the algorithm.

1) Vehicle Scheduling: The challenge of individual vehicle
scheduling is the unknown coverage and scheduling decisions
of other vehicles, even if the historical vehicle locations may
be obtained from its local map. For example, if nearby vehicles
are scheduled, this vehicle with heavy coverage overlap may
be exempt from participating offloadings and thus alleviate
the complex competition of network resources. We propose a
distributed scheduling method in three steps to address this
challenge.

First, we predict the location of all other vehicles at the next
time slots based on the local map in individual vehicles. As
the local map stores the historical trajectory of every detected
vehicles, we adopt the simple but effective linear prediction to
predict the location of vehicles as follows

g(t+ 1) = 2 · g(t)− g(t− 1). (11)
where g(t) is the 2-dim world location of a vehicle. Although
we adopt this linear prediction in this work, other advanced
trajectory prediction methods, e.g., LTSM, can be further
applied to improve the accuracy of prediction.

Second, we construct a complete graph (V,E) to represent
the correlation of coverage among vehicles. We denote the ver-
tices V as all the vehicles and the edges E as the overlapping
of vehicle coverages. In particular, the edge value between ith
and jth vertex (i.e., vehicle) are calculated as

ei,j = (Ci
⋂
Cj)/(Ci

⋃
Cj), (12)

6

where ei,j = ej,i. As the vehicle cannot obtain the accurate
coverage range of all other vehicles, we assume all vehicles
have the same coverage range as this vehicle. We will evaluate
the effect of heterogeneous coverage range on the effectiveness
of vehicle scheduling (see Fig. 9). Then, we define the average
overlapping ratio (AoR) of the ith vehicle as

Oi = 1/|I|
∑

j∈I,j 6=i
ei,j . (13)

Third, we iteratively prune the vertex in the graph (V,E)
with the highest AoR, i.e., i = argmaxk∈I Ok. The basic
idea is that we gradually exclude a vehicle from participating
offloading at the minimum cost of the overall map coverage.
With all the generated intermediate graphs, we search for the
optimal graph which achieves the minimum number of vertices
and meets the constraint of overall map coverage.

Note that all individual vehicles follow this method to
determine their scheduling decisions independently. If this
vehicle is not in the generated list of scheduled vehicles, then
it will continue to process all the computation components
locally, i.e., its offloading decision is the maximum by default.
This vehicle scheduling process is initialized when all the
computations of this vehicle are completed in either the local
vehicle or the remote edge server.

2) Offloading Decision: The vehicle offloading is compli-
cated in dynamic automotive edge computing networks, which
depends on not only the high-dim network states but also the
complex and unknown resource competitions among vehicles.
Therefore, we propose to exploit deep reinforcement learn-
ing [19] to determine the offloading decision for individual
vehicles. As the aforementioned vehicle scheduling assures
the constraint of map coverage, the optimization of offloading
decision becomes an unconstrained problem with a fixed size
of state and action space.

As the offloading decision is made in individual vehicles,
the offloading problem falls in the multi-agent reinforcement
learning (MARL) setting. There are multiple agents N (each
in scheduled vehicles) that interact with the environment
asynchronously. At every decision time t, individual agent can
observe the network state st and needs to take an offloading
action at. Then, the agent will receive a reward r(st,at), and
the environment transits to the next state st+1 accordingly. The
objective is to find policies π∗ = {π∗n,∀n ∈ N} for all agents
to map local states to actions and maximizes the discounted
cumulative reward R0 =

∑∞
t=0 γ

tr(st,at). Here, γ ∈ [0, 1) is
a non-negative discounting factor.

The challenge of solving the MARL lies in the interrelations
among these agents and the lack of global states in individual
agents, e.g., the queuing vehicles on the edge server. We design
a distributed method by following the centralized training and
distributed execution framework to solve the MARL problem.
In particular, a common policy is created in the central edge
server during the training phase, which is updated by gathering
all the transitions from individual agents in vehicles. Then,
the updates of the common policy are sent back to individual
agents. As the transitions are available in the edge server, the
common policy is trained by following the procedures in the
central algorithm, i.e., DQN [20] with prioritized experience
replay (PER) [19]. During the execution phase, all agents in

vehicles share the same policy and optimize their offloading
decision independently.

State space is designed to completely and concisely repre-
sent the status regarding vehicle offloadings. Specifically, the
state space is defined as st , [svt , s

s
t]. The svt is the status of

the vehicle, which includes its quality of wireless channel (e.g.,
RSSI) and its capability of hardware (e.g., CPU architecture,
CPU cores and frequency, GPU architecture and frequency).
The sst is the status of the system, which incorporates the
capability of the edge server, the number of total connected
and queued vehicles and the total wireless bandwidth of the
base station.

Action space is designed to enable adaptive vehicle offload-
ing, i.e., different partitions of computation tasks of vehicles,
which is at , [y].

Reward is designed to guide the training of the DRL agent
for reducing the cumulative latency of vehicle offloadings,
which is the negative offloading latency, i.e., r(st,at) ,
−L(t).

V. SYSTEM IMPLEMENTATION

We develop the system prototype of LiveMap on a small-
scale physical testbed and a network simulator for large-scale
evaluations.

A. System Prototype

We build a small-scale testbed to implement LiveMap and
evaluate the efficiency of the data plane. We use four JetRacers
as the CAVs, where each JetRacer has an embedded Nvidia
Jetson Nano. We use a 5GHz WiFi router to connect the edge
server with Intel i7 and Nvidia GTX 1070 [21]. To emulate
wireless channel dynamics, we dynamically change the trans-
mit power (from 1dBm to 22dBm) of both the transmitter and
receivers with Linux ”iw” command. In addition, we develop
a FIFO queue on the edge server to serve all the incoming
vehicle offloadings. In addition, we compress the intermediate
offloading data with the LZ4 compression.

We develop DRL agents with Python 3.7 and PyTorch 1.4.
To train DRL agents, we adopt Deep Q network (DQN) [20]
with prioritized experience replay [19]. In particular, we cre-
ate the [256, 256] fully-connected DNN with the activation
function of Leaky Recifier [22]. We set the learning rate
as 0.5e-3 with batch size 512 and γ = 0.9. Besides, a ε-
greedy exploration is applied, which will be decayed during
the training.

B. Traces DataSet

Both experiments and simulations require the vehicle data
and traffic traces. Thus, we build an environment to gener-
ate traces with Unity3d (i.e., modern city package) with a
variety of transportation scenarios such as intersection and
highway. In each scenario, we simulate hundreds of pedes-
trians and vehicles with different velocities, where the paths
of pedestrians and vehicles are predefined. We collect more
than 1K time stamps, where each time stamp includes the
RGB-D image, ground-truth location, and camera-to-world
transformation matrix of all vehicles. Besides, the location of
pedestrians are also recorded for evaluating the accuracy of

7

LiveMap. Individual vehicles are with a front RGB-D camera
(50mm focal length, 54.04

◦
FoV, 50m perception range), and

the generated images are with 741x540 dimension.

C. Network Simulator

We build a time-driven simulator to simulate automotive
edge computing networks. The simulator includes vehicular
computation modules, a radio transmission component, and an
edge computation module. We develop the radio transmission
module based on a 5G system-level simulator [23], where the
urban micro (UMi - Street Canyon) channel model [24] is
adopted. The total uplink and downlink bandwidth are equally
shared by all the available vehicles (i.e., they are scheduled
and currently transmitting data) for the sake of simplicity. Both
the onboard and server computation are simulated with FIFO
queues.

The feature of this simulator lies in the tasks object,
where a task corresponds to the computation of a vehicle.
The task includes multiple variables, including the vehicular
computation time, the uplink transmission data size, and edge
computation time. These data are obtained by sampling from
real-world measurements in the testbed (see Fig. 11). First,
a task will be created once the offloading decision is deter-
mined, which starts from the onboard computation module of
individual vehicles. The task computation onboard is simu-
lated by reducing the remaining onboard computation time
for every simulation time step such as 1 ms. Then, the task
is transferred to the next wireless transmission module if its
remaining onboard computation time is zero. Accordingly,
the task will be sent to the server computation if its up-
link transmission data size is reduced to zero. The server
computation is similar to that of onboard, but it has multiple
parallel queues with a min load queue scheduling method
for assigning the incoming tasks to these queues. Eventually,
the task is completed as its downlink transmission data size
becomes zero, and its latency will be recorded.

D. Comparison Algorithms

We compare LiveMap with the following algorithms that
schedule all vehicles:
• Edge offloading (EO): The offloading decision of vehicles in

EO are at = 0,∀t, where all the computations are executed
on the edge server.

• Local process (LP): The offloading decision of vehicles in
LP are at = 4,∀t, where all the computations are completed
on the vehicles.

• Random offloading (RO): The offloading decision of vehi-
cles in RO are randomly selected.

• Regression model (RM): RM relies on a multivariate poly-
nomial regression model to predict the offloading latency
under different network states. RM selects the offloading
decision with the predicted minimum latency. Two factors
are identified as the key network states, i.e., the number
of CAVs and wireless conditions. The input dimension of
RM includes the network states and the offloading decision.
The RM model is trained with scikit-learn tool, where the
training dataset is collected from experiments.

100 200 300 400 500
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ula
tiv

e P
ro

ba
bil

ity

LP
RO
RM
LiveMap
LiveMap-Dist

Fig. 4: The cumulative probability of latency.

• LiveMap-Lite: LiveMap-Lite optimizes offloading decision
as LiveMap does, but it schedules all vehicles.

• LiveMap-Dist: LiveMap-Dist uses the D-HEAD algorithm
to optimize the vehicle scheduling and offloading decisions.

VI. PERFORMANCE EVALUATION

We evaluate the performance of LiveMap through both
experiments in the small-scale testbed and simulations in the
network simulator. The objective of the evaluation includes:
1) compare LiveMap with state-of-the-art solutions in terms
of overall performance; 2) quantify latency and coverage
performance of the D-HEAD algorithm in the control plane
under varying network dynamics; 3) justify the latency and
accuracy performance achieved by the data plane. In the
experiments, the constraint of overall map coverage β = 0.8
and available offloading decisions are {0, 1, 2, 3, 4}.

A. Control Plane Performance

In this part, we evaluate LiveMap and LiveMap-Dist via
large scale network simulation. The default wireless bandwidth
is 0.1 MHz, and the number of CAVs and edge servers are 50
and 5, respectively. The default coverage range of vehicles are
circles with a 50m radius.

Overall Performance. Fig. 4 shows the cumulative proba-
bility of latency achieved by different algorithms. We see that,
LiveMap and LiveMap-Dist are with almost the same perfor-
mance and achieve the best latency performance among all
algorithms. This result suggests that, although LiveMap-Dist
has no central information in individual vehicles, its effective
design of distributed decision still obtains comparative perfor-
mance to LiveMap. In addition, RO may occasionally achieve
low latency (e.g., less than 150ms), which indicates that the
random decision fails to achieve low latency offloadings. The
performance of EO is out-of-the-axis, since offloading the
original sensor data overwhelms the wireless transmission and
thus substantially deteriorates the latency performance (i.e., all
of them are above 500ms).

Network Dynamics. Fig. 5 shows the average latency of all
algorithms under different number of CAVs. With 50 vehicles
in the system, LiveMap and LiveMap-Dist can reduce more
than 10% average latency than RM. When there are more vehi-
cles, LiveMap and LiveMap-Dist achieve higher reductions of
the average latency over the other algorithms. This is because,
when there are more vehicles in the given geographic area, the

8

10 50 1000.1

0.15

0.2

0.25

Number of Vehicles

Av
g.

 L
at

en
cy

 (s
)

0.43 1.76 8.68
1.65 2.98

17.3

LiveMap
LiveMap-Lite

RM
EO

RO LP

LiveMap-Dist

Fig. 5: Latency under different number of
CAVs.

0.1 1 10
Bandwidth (MHz)

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

(s
)

LP
EO
RO
RM
LiveMap
LiveMap-Dist

Fig. 6: Latency under different wireless
bandwidth.

1 5 10
Number of servers

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

(s
)

EO
LP
RO
RM
LiveMap
LiveMap-Dist

Fig. 7: Latency under different number of
servers.

60 80 100
Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y Acutal Coverage
Esti. Coverage

Fig. 8: Actual coverage in LiveMap.

60 70 80 90 100
Coverage (%)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
pr

ob
ab

ilit
y Acutal Coverage

Esti. Coverage

Fig. 9: Actual coverage in LiveMap-Dist.

20 40 60 80
Coverage Requirement (%)

0

50

100

Ac
tu

al
 C

ov
er

ag
e

(%
)

LiveMap
LiveMap-Dist

Fig. 10: The fulfillment of coverage require-
ments.

average AoR of all vehicles are higher in general. Thus, the ef-
ficient design of vehicle scheduling in LiveMap and LiveMap-
Dist can satisfy the coverage requirement by scheduling fewer
vehicles. Fig. 6 and Fig. 7 show the latency performance under
different radio bandwidth and the number of edge servers.
It can be observed that the higher radio bandwidth improves
the latency performance, but the improvement gains diminish.
This situation also applies to the number of edge servers. In
the edge computation model in the network simulator, the
more edge servers will mostly reduce the queuing latency
of incoming tasks, rather than accelerating their computation.
Thus, as compared to increasing the number of edge servers,
improving the capability of individual edge servers may be the
better option to reduce the computation latency of tasks. From
these results, we can see LiveMap and LiveMap-Dist obtain
similar latency performance, which validates the effectiveness
of the D-HEAD algorithm in LiveMap-Dist on optimizing
scheduling and offloading for distributed vehicles.

Coverage. Fig. 8 and Fig. 9 show the coverage performance
of LiveMap and LiveMap-Dist. As LiveMap periodically op-
timizes the vehicle scheduling on a larger time scale, the
instant overall coverages may be varying due to the mobility
of vehicles during scheduling intervals. Fig. 8 shows that the
actual instant coverage of LiveMap ranges from 55% to 100%.
Although the average coverage of 81% is above the given
threshold, instant coverage cannot be guaranteed all the time.
Fig. 9 shows the similar situation in LiveMap-Dist, where
we simulate the random coverage ranges of vehicles between
25m to 75m radius. In other words, although LiveMap-Dist
maintains the coverage requirement asynchronously, its actual
instant coverages may be compromised if the coverage ranges
of vehicles are very different. Fortunately, the coverage ranges
of vehicles are relatively static and can be obtained from the
global map when they are connected to LiveMap. Besides,

the coverage fulfillment are shown in Fig. 10. We can see
that both LiveMap and LiveMap-Dist can satisfy the coverage
requirements on average, and may occasionally violate the
coverage requirements in the meantime. In addition, LiveMap-
Dist achieves better coverage performance as compared to
LiveMap, which can be attributed to the asynchronous vehicle
scheduling mechanism.

B. Data Plane Performance

We evaluate the data plane of LiveMap in terms of process-
ing latency, offloading data size, and overall detection accuracy
by comparing it with a baseline. Note that LiveMap and
LiveMap-Dist use the same data plane. We build the baseline
system by using tiny YOLOv3 model [11] for the object
detection component, ORB algorithm [16] for the feature
extraction component, and brutal-force feature matching algo-
rithm. The other components, e.g., projection and combination,
are implemented as same as that of LiveMap.

Fig. 11 (a) and (b) show the onboard computation latency
and intermediate data size under different offloading decisions.
As compared to the baseline system, LiveMap obtains lower
computation latency in terms of both the mean value and the
variance. This performance improvement can be attributed to
a variety of optimized computation components in LiveMap.
For example, we design the object detector to reduce its
inference time while achieving a similar accuracy perfor-
mance in LiveMap. We design the object matcher to use both
geo-location and feature distance, which decreases the size
of candidate matching objects. Specifically, the detection in
LiveMap obtains almost 10% latency reduction than that of
the baseline system. Besides, we design the feature extractor
in LiveMap to adopt new autoencoder architecture, which
generates condensed but effective features for small cropped
images. Hence, we see a substantially decrease in feature sizes

9

(b)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e

P
ro

b
ab

il
it

y

Number of Detected Objects
(d)(c)

0 1 2 3 4
0

20

40

60

80

100

1200

1400

Offloading Decision

O
ff

lo
ad

in
g
 D

at
a

S
iz

e
(K

B
)

LiveMap

Baseline

0.23 0.19

0

0.1

0.2

0.3

0 1 2 3 4
Offloading Decision

O
n
-b

o
ar

d
 L

at
en

cy
 (

s)

LiveMap

Baseline

(a)

detection

extraction

projection

matching

Latency(s)

C
u

m
u
la

ti
v
e

P
ro

b
ab

il
it

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LiveMap

Baseline
HEAD + Baseline

LP + Baseline

LiveMap

Fig. 11: The system comparison between LiveMap and baseline [1].

as compared to the baseline system after feature extraction in
Fig. 11 (b).

Fig. 11 (c) shows the CDF of latency achieved by different
systems. Here, we introduce the HEAD algorithm under the
baseline system to evaluate the effectiveness of the data plane,
as LiveMap also uses the HEAD algorithm. We observe that
LiveMap decreases 20.1% and 34.1% latency on average as
compared to the HEAD and LP algorithm under the baseline
system, respectively. In other words, this improvement in
latency performance justifies the efficacy of the data plane in
LiveMap. In addition, the performance difference between the
HEAD algorithm and LP algorithm also validates the efficacy
of the control plane of LiveMap. Besides, we evaluate the
detection accuracy of LiveMap and the baseline system in
Fig. 11 (d). Here, the criteria for determining if an object
is detected successfully is that: 1) the object id should be
matched correctly; 2) meanwhile, the deviation of estimated
geo-location should be less than 1 meter. It can be seen
that LiveMap improves 74.9% number of detected objects on
average as compared to the baseline system, which is mainly
attributed to the efficacy of the autoencoder-base feature
extractor on the small object images. Hence, we conclude that
the data plane in LiveMap outperforms existing solutions in
multiple aspects.

VII. RELATED WORK

Computation offloading aims to accelerate the computa-
tion of mobile devices via offloading the needed data to edge
and cloud computing. Ran et. al. [25] proposed DeepDecision,
a new framework to optimize the offloading strategy for aug-
mented reality (AR), while balancing the detection accuracy,
video quality, battery, and network data usage. DARE [26]
achieves a dynamic adaptive offloading scheme in mobile aug-
mented reality, which optimizes the offloading image quality
and computation models in edge servers according to the
availability of network resources. Liu et. al. [27] designed
an edge analytics system including parallel offloading and
rendering pipeline and object tracking method, which achieves
a high-fps and accurate object detection on over-the-shelf
AR devices. These works have shown substantial computation
acceleration in mobile edge computing, which inspires the idea
of crowdsourcing from CAVs in LiveMap.

Machine learning has demonstrated a great potential to
handle complex network systems in recent years. Bao et.
al. [28] developed Harmony, an ML cluster scheduler (based
on DRL techniques), to optimize the placement of ML tasks
and accelerate their completion time. Wang et. al. [29] de-
signed DeepCast, which relies on a new DRL algorithm to

learn the individualize QoE of online viewers and deter-
mine the scheduling and transcoding selection in interactive
crowdsourcing livecast. Existing works, however, tackle un-
constrained DRL problems, whose action and state space are
fixed. In contrast, LiveMap deals with the problem under
varying number of CAVs in both centralized and distributed
manner.

Vehicle co-perception has shown promising accuracy per-
formance in autonomous driving, which aggregates multi-
viewed sensor data from different vehicles. Qiu et. al. de-
veloped augmented vehicular reality (AVR) [4] and Auto-
Cast [30] to achieve infrastructure-less cooperative percep-
tion using direct vehicle-to-vehicle communication. Different
mechanisms are applied to reduce the size of transmission
data, e.g., distinguishing dynamic objects from static ob-
jects and prioritizing safety-critical transmissions. Ahmad et.
al. [10] designed CarMap, a feature-represented lean 3D map
via crowdsourcing sensor data from CAVs. This map achieves
near real-time update, which is accomplished by excluding
transient information, e.g., pedestrians, from map generation
and processing. These systems mainly share static information
(e.g., point clouds among vehicles), while LiveMap enables
dynamic information sharing (e.g., features or images) accord-
ing to contextual offloading decisions of vehicles.

VIII. CONCLUSION

In this work, we presented a new real-time dynamic map
that achieves efficient perception sharing among crowdsourc-
ing vehicles. We designed an efficient data plane to detect,
match, and track objects on the road in the time scale of
subseconds. We designed an intelligent control plane with
two new algorithms to schedule vehicles and optimize of-
floading decisions under network dynamics. We have shown
our solution achieves better latency, coverage, and accuracy
performance than existing solutions through both experiments
and simulations.

REFERENCES

[1] Q. Liu, T. Han, J. L. Xie, and B. Kim, “Livemap: Real-time dynamic
map in automotive edge computing,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications. IEEE, 2021, pp. 1–10.

[2] J. Jiao, “Machine learning assisted high-definition map creation,” in 2018
IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), vol. 1. IEEE, 2018, pp. 367–373.

[3] I. Yaqoob, L. U. Khan, S. A. Kazmi, M. Imran, N. Guizani, and
C. S. Hong, “Autonomous driving cars in smart cities: Recent advances,
requirements, and challenges,” IEEE Network, vol. 34, no. 1, pp. 174–
181, 2019.

[4] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “AVR:
Augmented vehicular reality,” in Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications, and Services,
2018, pp. 81–95.

10

[5] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and auto-
mated vehicles: State of the art and future challenges,” Annual reviews
in control, vol. 45, pp. 18–40, 2018.

[6] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1066–1077, 2016.

[7] Y. Mao et al., “A survey on mobile edge computing: The communication
perspective,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
pp. 2322–2358, 2017.

[8] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet
of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[9] A. E. C. Consortium, “Break Down the Barriers to Automotive
Edge Adoption,” Automotive Edge Computing Consortium,” White
Paper, June. 2021. [Online]. Available: https://aecc.org/events/
breaking-down-the-barriers-to-automotive-edge-adoption/

[10] F. Ahmad et al., “CarMap: Fast 3d feature map updates for automobiles,”
in 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20), 2020, pp. 1063–1081.

[11] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[12] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[13] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[15] Z. Liu et al., “Learning efficient convolutional networks through network
slimming,” in The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[16] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in 2011 International conference on
computer vision. IEEE, 2011, pp. 2564–2571.

[17] W. Zhang, B. Han, and P. Hui, “Jaguar: Low latency mobile augmented
reality with flexible tracking,” in Proceedings of the 26th ACM interna-
tional conference on Multimedia, 2018, pp. 355–363.

[18] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[20] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[21] C. Nvidia, “Nvidia CUDA C programming guide,” Nvidia Corporation,
vol. 120, no. 18, p. 8, 2011.

[22] I. Goodfellow et al., Deep learning. MIT press, 2016.
[23] E. J. Oughton et al., “An open-source techno-economic assessment

framework for 5G deployment,” IEEE Access, vol. 7, pp. 155 930–
155 940, 2019.

[24] G. T. . R. 14, Study on channel model for frequencies from 0.5 to 100
GHz. 3GPP, 2018.

[25] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1421–1429.

[26] Q. Liu and T. Han, “Dare: Dynamic adaptive mobile augmented reality
with edge computing,” in 2018 IEEE 26th International Conference on
Network Protocols (ICNP). IEEE, 2018, pp. 1–11.

[27] L. Liu et al., “Edge assisted real-time object detection for mobile
augmented reality,” in The 25th Annual International Conference on
Mobile Computing and Networking, 2019, pp. 1–16.

[28] Y. Bao et al., “Deep learning-based job placement in distributed ma-
chine learning clusters,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 505–513.

[29] F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun, et al., “Intelligent
edge-assisted crowdcast with deep reinforcement learning for person-
alized qoe,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications. IEEE, 2019, pp. 910–918.

[30] H. Qiu et al., “Autocast: Scalable infrastructure-less cooperative
perception for distributed collaborative driving,” arXiv preprint
arXiv:2112.14947, 2021.

Qiang Liu is currently an Assistant Professor at
the School of Computing, University of Nebraska-
Lincoln. He earned his Ph.D. degree in Electrical
Engineering from the University of North Carolina
at Charlotte (UNCC) in 2020. His paper won IEEE
International Conference on Communications (ICC)
Best Paper Award 2019, 2022, and IEEE Commu-
nications Society’s Transmission, Access, and Op-
tical Systems (TAOS) Best Paper Award 2019. His
research interests lie in the broad field of wireless
communication, computer networking, edge comput-

ing, and machine learning.

Tao Han (M’15-SM’20) is an Associate Profes-
sor in the Department of Electrical and Computer
Engineering at New Jersey Institute of Technology
(NJIT) and an IEEE Senior Member. Before joining
NJIT, Dr. Han was an Assistant Professor in the
Department of Electrical and Computer Engineering
at the University of North Carolina at Charlotte. Dr.
Han received his Ph.D. in Electrical Engineering
from NJIT in 2015 and is the recipient of NSF
CAREER Award 2021, Newark College of Engi-
neering Outstanding Dissertation Award 2016, NJIT

Hashimoto Prize 2015, and New Jersey Inventors Hall of Fame Graduate
Student Award 2014. His papers win IEEE International Conference on
Communications (ICC) Best Paper Award 2019 and IEEE Communications
Society’s Transmission, Access, and Optical Systems (TAOS) Best Paper
Award 2019. His research interest includes mobile edge computing, machine
learning, mobile X reality, 5G system, Internet of Things, and smart grid.

Jiang Xie (Fellow, IEEE) received the B.E. de-
gree from Tsinghua University, Beijing, China, the
M.Phil. degree from the Hong Kong University of
Science and Technology, and the M.S. and Ph.D.
degrees from Georgia Institute of Technology, all in
electrical and computer engineering. She joined the
Department of Electrical and Computer Engineer-
ing, the University of North Carolina at Charlotte
(UNC Charlotte) as an Assistant Professor in Au-
gust 2004, where she is currently a Full Professor.
Her current research interests include resource and

mobility management in wireless networks, mobile computing, Internet of
Things, cloud/edge computing, and virtual/augmented reality. She received
the U.S. National Science Foundation NSF Faculty Early Career Devel-
opment (CAREER) Award in 2010, the Best Paper Award from IEEE
Global Communications Conference in 2017, the Best Paper Award from
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
in 2010, and the Graduate Teaching Excellence Award from the College of
Engineering at UNC-Charlotte in 2007. She is on the editorial boards of
the IEEE Transactions on Wireless Communications, IEEE Transactions on
Sustainable Computing, and Journal of Network and Computer Applications
(Elsevier). She is a Senior Member of ACM.

BaekGyu Kim earned B.S. and M.S. in electrical
engineering and computer science from Kyungpook
National University in South Korea, and earned
Ph.D in computer science from University of Penn-
sylvania. He is currently an assistant professor at
Department of Information and Communication En-
gineering in DGIST (Daegu Gyeongbuk Institute of
Science and Technology). Before joining DGIST, he
was a principal researcher at Toyota Motor North
America, InfoTech Labs where he conducted indus-
trial research on connected car software platforms

for six years. His primary research area includes verification, validation and
optimization techniques to guarantee assurances for Internet of Things and
Cyber Physical Systems.

https://aecc.org/events/breaking-down-the-barriers-to-automotive-edge-adoption/
https://aecc.org/events/breaking-down-the-barriers-to-automotive-edge-adoption/

	Real-Time Dynamic Map with Crowdsourcing Vehicles in Edge Computing
	I Introduction
	II LiveMap Overview
	III The Design of Data Plane
	III-A Data Acquisition
	III-B Object Detection
	III-C Object Projection
	III-D Feature Extraction
	III-E Object Matching
	III-F Object Combination

	IV The Design of Control Plane
	IV-A System Model
	IV-B Problem Formulation
	IV-C Centralized Algorithm Overview
	IV-D Distributed Algorithm Design
	IV-D1 Vehicle Scheduling
	IV-D2 Offloading Decision

	V System Implementation
	V-A System Prototype
	V-B Traces DataSet
	V-C Network Simulator
	V-D Comparison Algorithms

	VI Performance Evaluation
	VI-A Control Plane Performance
	VI-B Data Plane Performance

	VII Related Work
	VIII Conclusion
	References
	Biographies
	Qiang Liu
	Tao Han
	Jiang Xie
	BaekGyu Kim

