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MR-PIPA: An Integrated Multi-level RRAM
(HfOx) based Processing-In-Pixel Accelerator

Minhaz Abedin, Student Member, IEEE, Arman Roohi, Member, IEEE, Maximilian Liehr, Student
Member, IEEE, Nathaniel Cady, Member, IEEE and Shaahin Angizi, Member, IEEE

Abstract—This work paves the way to realize a processing-
in-pixel accelerator based on a multi-level HfOx RRAM as
a flexible, energy-efficient, and high-performance solution
for real-time and smart image processing at edge devices.
The proposed design intrinsically implements and supports a
coarse-grained convolution operation in low-bit-width neural
networks leveraging a novel compute-pixel with non-volatile
weight storage at the sensor side. Our evaluations show that
such a design can remarkably reduce the power consumption
of data conversion and transmission to an off-chip processor
maintaining accuracy compared with the recent in-sensor
computing designs. Our proposed design, namely MR-PIPA,
achieves a frame rate of 1000 and efficiency of ∼1.89 TOp/s/W,
while it substantially reduces data conversion and transmis-
sion energy by ∼84% compared to a baseline at the cost of
minor accuracy degradation.

Index Terms—Resistive random-access memory (RRAM),
processing-in-pixel, accelerator, non-volatile memory, CNN

I. INTRODUCTION

Internet of Things (IoT) devices are expected to reach
$1100B in revenue by 2025, with a web of interconnec-
tions estimated to consist of approximately 75+ billion
IoT devices, including wearable devices as well as smart
cities and industries [1], [2]. Artificial Intelligence of
Things (AIoT) nodes are composed of a variety of sen-
sors, which are used to collect and process data from the
environment and people. There is usually a great deal
of redundant and unstructured sensory data captured.
The conversion and transmission of large raw data to
a backend processor at the edge are energy-intensive,
and high-latency [1], [3]. Those issues can be addressed
by shifting computing architecture from a cloud-centric
way of thinking to a thing-centric (data-centric) per-
spective, where IoT nodes process sensed data. Despite
such challenges, artificial intelligence tasks that require
hundreds of layers of Convolutional Neural Networks
(CNNs) have severe computational and storage con-
straints. There have been considerable advancements in
both software and hardware to improve CNN efficiency
by mitigating the “power and memory wall” bottleneck.
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From the software point of view, exploration of shal-
lower but wider CNN models, quantizing parameters,
and network binarization [4] are widely accomplished.
A recent development is reducing computing complexity
and model size using low-bit-width weights and activa-
tions. By converting the multiplication-and-accumulate
(MAC) operation into the corresponding AND-bitcount
operations in [4], the authors performed bit-wise convo-
lution between the inputs and the low-bit-width weights.
Binarized convolutional neural networks (BNN), as an
extreme quantization method, have achieved acceptable
accuracy on both small [5] and large datasets [4] after
removing some high precision requirements. By bina-
rizing the weight and/or input feature map, they offer
a promising solution to mitigate the aforementioned
bottlenecks in storage and computation.

From the hardware point of view, the underlying op-
erations should be realized using efficient mechanisms.
The conventional processing elements are designed to
work with a von-Neumann computing model involving
separate memory and processing blocks interconnected
via buses, which poses serious problems, such as long
memory access latency, limited memory bandwidth, and
energy-hungry data transfer, which limit the edge de-
vice’s efficiency and working time [2]. Additionally, this
presents several significant issues at the upper level,
including bandwidth congestion and security concerns.
The concept of instant image pre-processing with smart
image sensors has therefore been extensively investi-
gated [2], [6]–[8] as a potential remedy. By using an
on-chip processor, the digital output from pixels can be
accelerated where the sensor is located, paving the way
for enhanced sensor paradigms such as Processing-Near-
Sensor (PNS) as depicted in Fig. 1(b). Other promising
alternatives are a Process-in-Sensor (PIS) platform [7],
[9], as shown in Fig. 1(c), that processes pre-Analog-
to-Digital Converter (ADC) data and a hybrid PIS-PNS
[1] platform to incorporate vision sensors and eliminate
redundant data output. Generally, PIS units process im-
ages before transmitting them to an on-chip processor for
further processing. Typical designs rely on this type of
data transfer (from CMOS image sensors to memory),
which reduces the speed of feature extraction. With
this PIS unit, a computation core can (i) significantly
reduce the power consumption of converting photo-
currents into pixel values used for image processing, (ii)
accelerate data processing, and (iii) alleviate the memory
bottleneck problem [1], [2].

This paper develops a new efficient Processing-in-
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Figure 1: Visual systems with different architectures; (a)
Conventional, (b) PNS, (c) PIS, and (d) PIP architectures,
where green and pink (the outer box) boxes indicate
the pixel and the sensors, respectively, and blue boxes
represent where the computing is performed.

Pixel (PIP) paradigm, as shown in Fig. 1(d), named MR-
PIPA, co-integrating always-on sensing and processing
capabilities for image sensors. The main contributions
of this work are as follows. (1) We experimentally
demonstrate an integrated two-bit-per-cell RRAM-based
weight storage unit. As low resistance states of the
RRAM devices can lead to high power consumption, we
run extensive device-level experiments on the fabricated
device to achieve multi-level high resistive states; (2) The
MR-PIPA architecture is developed based on a set of
innovative microarchitectural and circuit-level schemes
optimized to process the 1st-layer of Quantized Neural
Networks (QNN) using non-volatile RRAM components
to store weights offering energy-efficiency and speed-up;
(3) We present a solid bottom-up evaluation framework
and a PIP assessment simulator to analyze the whole
system’s performance; and (4) MR-PIPA’s performance
and energy-efficiency are thoroughly evaluated and then
compared with the recent IoT sensory platforms.

II. BACKGROUND & MOTIVATION

Systematic integration of computing and sensor arrays
has been widely studied to eliminate off-chip data trans-
mission and reduce ADC bandwidth, known as PNS [8];
combining sensor and processing elements so-called PIS
[9]–[11]; and integrating pixels and computation unit,
known as PIP [7], [8]. In [8], photo-currents are converted
into pulse-width modulation signals, and a dedicated
analog processor is used to perform feature extraction,
reducing the amount of power consumed by the ADC.
To run spatiotemporal image processing, 3D-stacked
column-parallel ADCs, and processing elements are im-
plemented and utilized in [2]. The CMOS image sensor
with dual-mode delta-sigma ADCs described in [12]
is designed to process 1st-convolutional (Conv.) layer
of binarized-weight neural networks (BWNN). Charge-
sharing tunable capacitors are used by RedEye [13]
to implement the convolution operation. By sacrificing
accuracy in favor of energy savings, this design reduces
energy consumption compared to a CPU/GPU. How-
ever, for high accuracy computation, the required energy
per frame increases dramatically by 100×. As a PIS
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Figure 2: Energy consumption for a 3-layer MLP.

platform, MACSen [7] processes the 1st-Conv. layer of
BWNNs with the correlated double sampling procedure
and achieves speeds of 1000fps in computation mode.
This method, however, suffers from an expansive area
overhead and high-power consumption. In this work,
we are motivated mainly by three observations to develop a
PIP accelerator for the first layer of QNNs. First, from
the accuracy point of view, in most QNN accelerators,
the first and the last layers of the networks remain in
the full-precision, i.e., the floating-point domain. This
is translated to a performance bottleneck in different
hardware/software co-design accelerators and requires
excessive memory and processing resources [14]. The
continuous-valued inputs can be readily handled as
fixed points with n bits of precision. To verify this, we
utilize the deep neural network energy estimation tool
developed by MIT [15] to assess the energy require-
ments. Figure 2 depicts the breakdown of normalized
energy consumption of a 3-layer Multi-Layer Perceptron
(MLP). As observed, the first layer consumes consid-
erably higher energy than the other layers for com-
putation (purple block) and data movement (the other
three blocks). It is worth noting that this figure could be
varied for different neural network architectures. Second,
in conventional image sensors, most of the power (>96%
[16]) is consumed by processing and converting pixel
values. That means pixel circuits consume only 4% of
power to perform photovoltaic conversions, whereas sig-
nal amplification, Digital-to-Analog Conversion (DAC),
and data transmission consume most of the power. Third,
almost all the PNS/PIS/PIP systems are hardwired, so
the functionalities are limited to simple pre-processing
tasks such as 1st-layer BWNN computation.

III. PROPOSED RRAM-BASED MULTI-BIT STORAGE

Resistive Random Access Memory (RRAM) is a two-
terminal Non-Volatile Memory (NVM) that stores data
in varying resistive states by creating and rupturing a
conductive filament within the metal oxide insulator,
as shown in Fig. 3(a). Figure 3(b) illustrates a Trans-
mission Electron Micrograph (TEM) of the fabricated
TiN/Ti/HfO2/TiN RRAM device integrated with CMOS
n-channel Field-Effect Transistor (nFET) in 65nm CMOS
technology to realize a 1T1R unit cell as a primary
storage element in the proposed PIP accelerator. In the
set phase, the conductive filament connects the top and
bottom electrodes, leading to a Low Resistance State
(LRS), whereas in the reset phase, the filament breaks,
and the resistance of the device increases, yielding a
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Figure 3: (a) Operating principles of RRAM device in
reset and set phases, (b) 1T1R RRAM memory cell and
the TEM of the fabricated RRAM device, and (c) Device
resistance in single and multi-level cell (MLC).

High Resistance State (HRS), as shown in Fig. 3(a).
Switching between LRS and HRS allows RRAM to op-
erate as binary storage/memory elements. Leveraging
different switching schemes enable RRAM devices to
store multi-level resistance states (Fig. 3(c)) for multi-
bit per cell storage [17]. The most commonly used ways
to produce multi-level resistance states are modulating
the compliance current at lower resistant states and the
reset voltage amplitude to reach multiple high resistance
states [18], [19]. The first approach results in an increased
cell current due to low resistance and consequently
increases overall system power consumption, while the
latter results in higher HRS variability. Therefore, we
propose a promising device-to-system level co-design
approach to reduce overall system power consumption
aiming at multiple well-defined HRS levels. Figure 4(a)
shows the experimental results for switching voltage
pulse widths across RRAM and gate voltages on the
transistor (Fig. 3(b)). The device-level switching exper-
iments are performed using a semi-automated Suss Mi-
crotech probe station with a high-precision semiconduc-
tor device analyzer B1500. A switching pulse width
of 100ns to 1ms and a gate voltage during switching
on 15 devices with 1000 cycles for each condition are
considered. The median resistance values at the HRS
state range from 80kΩ to 200kΩ. This approach shows
much higher resistances compared to low resistance
levels, ranging from 3kΩ to 30kΩ [20]. To reduce HRS
variability, we adopted a read-write-verify approach to
achieve resistances in a specific window, as shown in
Fig. 4(b) [17]. The selected experimental resistance states
will then serve as the potential memory states for MR-
PIPA. We confirmed that the read-write-verify strategy
employed requires a minimal amount of programming
cycles. The box plots in Fig. 4(b) show that the required
median programming cycles are as low as 20.

IV. MR-PIPA ARCHITECTURE

We propose an energy-efficient and high-performance
solution for real-time and smart image processing for

Figure 4: (a) The experimental results of the median
values of HRS for pulse width and Vg, (b) Four distin-
guishable resistance levels programmed into 1T1R cell.

AIoT devices. MR-PIPA will integrate sensing and pro-
cessing phases and can intrinsically implement a coarse-
grained convolution operation required in a wide variety
of image processing tasks such as classification by pro-
cessing the 1st-layer in QNNs. Once the object is roughly
detected, MR-PIPA will switch to a typical sensing mode
to capture the image for a fine-grained convolution.

A. Microarchitecture
At the architecture-level, the MR-PIPA’s array con-

sists of an m × n Compute Focal Plane (CFP), Row
and Column controllers (Ctrl), command decoder, sensor
timing ctrl, and sensor I/O operating in two modes, i.e.,
sensing and processing, as shown in Fig. 5(a). The CFP
is designed to co-integrate sensing and processing of the
1st-layer of QNNs targeting a low-power and coarse-
grained classification. To enable this, the conventional
pixel unit is upgraded to a Compute Pixel (CP). The Ri
(Row) signal is controlled by the Row Ctrl and shared
across pixels located in the same row to enable access
during the row-wise sensing mode. The core part of MR-
PIPA is the CP unit consisting of a pixel connected to
v NVM elements, as shown in Fig. 5(b). A Sense Bit-
line (SBL) is shared across pixels on the same column
connected to the sensor I/O for sensing mode. Moreover,
CPs share v Compute Bit-lines (CBL), each connected to a
sense amplifier for processing, as indicated by the purple
line in Fig. 5(a). The 1st-layer weight corresponding
to each pixel is pre-stored into RRAM conductance,
and an efficient coarse-grained MAC operation is then
accomplished in a voltage-controlled crossbar fashion.
Figure 6(a) depicts a sample MLP, wherein CP1,1-CPm,n
are linked to out1 via NVM1’s weight. Similarly, ev-
ery pixel is connected to out2-outv. To maximize MAC
computation throughput and fully leverage MR-PIPA’s
parallelism, we propose a hardware mapping scheme
and a connection configuration between CP elements
and corresponding NVM add-ons shown in Fig. 6(b) to
implement the target neural network.

B. Pixel Design
1) Basic Pixel Structure: A basic three-transistor (3T)

pixel structure is depicted in Fig. 7(a) [21]. It comprises
a Photodiode (PD) as the primary sensing component,
a reset transistor, a source-follower transistor, and a
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Figure 5: (a) The MR-PIPA architecture, (b) a m×1 CFP array in processing mode with compute pixels (CPs), (c)
CP’s read and conversion circuits in sensing mode, and (d) Differential amplifier design.

transfer transistor. PD is a semiconductor sensor which
generates the photo-current (IPH), proportional to the
brightness of incident light or the number of photons. A
simplified equivalent circuit of the PD is shown in Fig.
7(a) [22]. During exposure, the PD functions as a leaky
capacitance while the leakage rate proportionally de-
pends on the illumination [23]. The photo-current, IPH ,
generated from PD can be calculated from the active PD
area (APD), responsivity (R), and input IRRadiance (Ein)
as IPH = APD × R × Ein. As shown in Fig. 7(b), during
the bright illumination phase, the capacitor discharges
faster and decreases the voltage across the PD quicker.
During low illumination, IPH is low, which results in a
low voltage drop across the PD. The source follower (SF)
operates as a voltage buffer between the sensing element
PD and replicates the voltage for readout.

2) Compute add-on: The compute add-on structure de-
picted in Fig. 5(b) consists of two functional blocks,
i) an input encoder followed by ii) 1T1R cells. The
input encoder converts input from the basic pixel circuit
to the input of the 1T1R cell. The 1T1R cell (part of
the 1T1R array) acts as an analog multiplier unit for
column-wise MAC operation. The input encoder unit
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Figure 6: (a) An example of a fully-connected network
with v output, (b) The mapping scheme for a m×n CFP.

consists of four transistors, of which T4-T5 are logic
transistors with an operating voltage of 1.2V while T6-
T7 are thick oxide 1.8V transistors. The 1T1R devices are
integrated with thick gate-oxide transistors, T8 and T9.
These transistors’ maximum operating voltage is 3.3V,
allowing them to form and program high voltages for the
RRAM cells. The proposed design follows three critical
considerations (Cs) as follows. C1. Location of RRAM
devices: The thin oxide transistors require a smaller area
and are suitable for low power applications; as they
have a low safe operating voltage, e.g., 1.2V. On the
other hand, the thick oxide transistors can withstand
large operating voltage, e.g., 3.3V, but suffers from higher
power and area consumption. Hence, to reduce power
and area, the pixel circuit is typically designed using
low operating voltage thin oxide transistors. However,
RRAM devices require high forming and programming
voltages (∼3.3V). If the RRAM devices are connected
directly across PD or pixel circuit transistors, during
the forming/programming voltages will far exceed their
operating voltages (Fig. 8(a)), which can damage the low
voltage devices. MR-PIPA separates the pixel sensing
and computing modules by transferring the signal from
the pixel circuit through input encoders to the gate of
the thick oxide transistors, as shown in Fig. 5(b). We
then used thick oxide transistors with RRAM, allowing
it to be formed or programmed at the required higher
voltage. C2. Compute add-on output: The following

Figure 7: (a) Basic 3T pixel circuit, (b) Operation timing
of the pixel.
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Figure 8: (a) Impractical design of an RRAM-based CP,
(b) Desired output of ADD-on cell for MAC. The colors
represent output currents from 4 levels of resistance
states (high to low). (c) The total pixel area consisted
of the PD-based sensing area and the transistors area.

subtle but critical consideration focuses on input en-
coding for RRAM cells, converting PD voltage to input
for RRAM cells. In the standard RRAM-based matrix
multiplication, for binary input x, which can be either
0 or 1, each RRAM cell current can be expressed by
I = x · (VR/R) [24]. Here, VR is the applied voltage
across the device, and R is the RRAM resistance of the
cell. It can be realized from the given equation that
for input zero, the RRAM-based compute unit should
result in ideally zero current. Due to improper input
encoder for the PIP circuit, the RRAM cell can result
in non-zero cell current IRR when the input is 0 (Fig.
8(b)). In our design, we follow the conventional RRAM-
based in-memory crossbar operations for neural network
inference as shown in Fig. 8(b). C3. Fill-factor: The pixel
is fabricated on silicon for hardware deployment using
the CMOS fabrication process. Typically for imaging
applications, a larger sensing area is preferred. The ratio
of PD sensing area to total pixel area is defined as the
fill factor. It is optimal to increase the PD area, which
results in increasing the fill factor. However, depending
on the application and add-on pixel capability, such as
in-pixel digital processing, the fill-factor-feature trade-off
is chosen. Since the RRAM devices are fabricated at the
back of the line, no large silicon area is consumed, as
shown in Fig. 8(c). Although the fill factor is unaffected
by RRAM, its access transistors can affect the fill factor.

C. Operational Modes
To initialize the MR-PIPA, the proposed pixel circuit

requires to go through forming and programming of the
RRAM devices for weight storage. The filament (Fig.
3(a)), required for resistive switching, can be formed by
applying VR=3.3V across the RRAM one-time. Forming
can be performed by turning on transistor T1; this results
in the input encoder output to be VIG. As the input
encoder is followed by RRAM cells, VIG is applied to
the gate of T8 and T9 integrated into series with RRAM
(Fig. 9(b)). As for the multilevel programming, different
1T1R gate voltage is required from 1V to 1.8V (Fig.
4(a)), it can be possible with similar approach applying
different VIG=(1V to 1.8V) (Fig. 9(c)). As we utilize a
bipolar RRAM, it requires opposite polarity voltages for
set and reset operations as shown in Fig. 3(a). This can
be accomplished by applying positive voltages across
opposite electrodes of the RRAM as shown in Fig. 9(c).

Figure 9: (a) Current vs. Voltage (I-V) for RRAM. Oper-
ation timing diagram for (b) Forming, (c) Programming,
and (d) MAC (note: ICC stands for compliance current.)

In the sensing mode, initially setting Rst=‘high’, the
reverse biased PD is charged to VDDL=1.2V (Fig. 7(a,b))
[21]. In this way, turning on the access transistor T3 and
the k1 switch at the shared ADC (Fig. 5(c)) allows the C1
capacitor to fully charge through SBL. By turning off T1,
PD generates a IPH based on the external light intensity,
which leads to a voltage drop (VPD) at the gate of T2.
Once again, by turning on T3, and this time the k2 switch,
C2 is selected to record the voltage drop. Therefore, the
voltage values before and after the image light exposure,
i.e., V1 and V2 in Fig. 5(c), are sampled. The difference
between two voltages is sensed with an amplifier, while
this value is proportional to the voltage drop on VPD.
In other words, the voltage at the cathode of PD can be
read at the pixel output.

During object-detection mode, we leverage the efficient
crossbar MAC with 1T1R array. As RRAM cells store
data as resistive states, the resultant cell current IRR =
VR/R when VR is the voltage applied across the cell
(see Fig. 5(b)). The voltage applied across the 1T1R cell,
also known as read voltage VR, is chosen as low as
0.2V such that it does not alter the programmed state
of the device (e.g., the voltage required to set or reset
the device is ≥0.7V). Here, the T8/T9 transistor gate
voltage controls the output of the input encoder (Fig.
5(b)). If T8/T9’s gate voltage is larger than the threshold
voltage (0.7V), it allows the current to pass through; as a
result, the cell current is IRR = VR/R = VR · G. Here R is
one of the four resistive states representing the weighted
state, and G represents the conductance of the cell. If the
T8/T9 transistor gate voltage is 0, the transistor blocks
the current, resulting in no cell current (IRR= 0A).

As discussed previously, in high illumination, the
voltage across PD, VPD is low and vice versa (Fig. 7(b)).
The proposed input encoder converts the VPD so that
output is logic ‘1’ during low illumination (dark pixel)
and logic ‘0’ for high illumination (bright pixel). The first
inverter (T4, T5) of the input encoder operates at 1.2V
and converts the VPD to 0 or 1.2V output for the second
inverter. The second inverter consists of thick oxide 1.8V-
transistors (T6, T7) which allow the 0-1.8V gate voltage
for multi-level programming (Fig. 9(c)). As the threshold
voltage of T6 and T7 transistors is below 0.7V, the output
of second inverter results in (VIG, 0V) (Fig. 5(b)). The
resultant output of the input encoder is VIG and 0V
for low/dark illumination and high/bright illumination,
respectively. Accordingly, the resultant cell’s current for
low and high illumination are IRR = VR/R and 0, respec-
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Figure 10: Evaluation framework.

tively. Then, to combine and quantify the currents from
both positive and negative weight connections, we con-
structed a differential amplifier (Fig. 5(d)). Input currents
into the operational amplifier in each column pair consist
of two columns of the positive and the negative weights
(Fig. 5(a)). Each column current is the summation current
from each 1T1R cells, e.g., the positive weight current
for j − th column can be described as ∑M

i=1 VR · G+
i,j.

The resultant output voltage of the operational amplifier

will be proportional to ∑M
i=1

(
(VR) · (G+

i,j − G−
i,j)

)
where

G+
i,j, G−

i,j is the conductance of the RRAM cell indexed
by i and j storing the positive and negative weights,
respectively. From a programmer’s standpoint, MR-PIPA
is a third-party accelerator rather than a memory unit.
Thus, for general-purpose parallel execution, an ISA and
virtual machine will be needed. With this, any user-level
program can be translated at install time to the MR-
PIPA’s hardware instruction set to support MAC.

V. PERFORMANCE EVALUATION

A. Framework & Methodology
To assess the performance of the proposed design, we

developed a simulation framework from scratch consist-
ing of three main components as shown in Fig. 10. First,
at the device-level, we fabricated the proposed RRAM
device and extracted the switching data, and resistance
ranges experimentally. Second, at the circuit-level, we
fully implemented MR-PIPA with peripheral circuity
with IBM 65nm CMOS10LPe PDK in Cadence to achieve
the performance parameters. We trained a PyTorch QNN
model inspired by [4] extracting the 1st-layer weights.
MR-PIPA’s RRAM elements are then programmed at the
circuit-level by the quantized 2-bit weights. Third, after
the 1st-layer computation, the results are recorded and
fed into a behavioral-level in-house simulator to simulate
the whole network at the architecture-level and extract
the performance parameters and inference accuracy.

B. Device-to-circuit Level results
The proposed CP was designed at a 65nm process

node. The pixel’s PD was simulated as a parallel capac-

Figure 11: Proposed circuit response for high and low
input illumination showing (a) voltage across PD, (b)
input encoder output, (c) RRAM CP’s current with only
IPH variation and no RRAM variation, and (d) RRAM
CP’s current with both IPH and RRAM variation. Panels
(e-h) show the circuit responses at low illumination.

itor, and the photo-current represented the illumination.
The capacitance value (13 fF) was calculated from the
doping concentration of the 65nm CMOS process and the
PD area (section IV B). To demonstrate the lowest case
for high illumination (/bright pixel) was considered as
∼13k lux and the highest case for low illumination/dark
pixel was considered as ∼130 lux. The resultant IPHs
used for the simulations are 10nA and 0.1nA for high
and low illumination, respectively.

We simulated both high and low illumination with
10% variation and observed the response at different
points of the circuit. First, the voltage response across
the PD shows expected high voltage drop and low
voltage drop over time respectively (Fig. 11 (a,e)). It also
confirms that the add-on compute unit does not affect
the pixel sensing operation. Figures 11 (b,f) show the
input encoder output. As the proposed input encoders
are inverters, the inverters tend to switch to rail voltages
0V and 1.2V during MAC operation. The switching
from 1.2V to 0V occurs before the ‘read’ operation (at
0.8 × 10−6s). We observe that the proposed design is
immune to IPH’s variation as any VPD during high
illumination and low illumination are converted as rail
to rail 0V and 1.2V (Fig. 11 (f)). As the input encoder
output acts as an input for the thick oxide transistor
integrated with RRAM, the 0V and 1.2V voltages fall
below and above the transistor’s threshold voltage of
0.7V. As a result, no current flows through the RRAM
cell during 0V input encoder output or during high illu-
mination. On the other hand, during low illumination,
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Figure 12: The histogram shows the in-pixel compute
cell current. Blue, green, red, and black represent the
cell current from the compute cell with RRAM resistance
levels 1, 2, 3, and 4 (low to high), respectively.

the input encoder output becomes 1.2V, and the cell
output current according to Ohm’s law is IRR = VR/R.
It is noteworthy that the RRAM cell output current (Fig.
11(b,f)) is independent of IPH’s variation. The immunity
to IPH’s variation is a result of using inverters for
input encoding. As for an analog voltage range above
and below VDDL/2, the output of an inverter is 0V or
VDDL respectively. Figure 11(d,h) show that when IPH
and RRAM resistance variation are present, the output
RRAM cell current is only dependent on the RRAM
resistance variation. The RRAM cell current for four
different resistance levels shown in Fig. 12. Even with
variations considered, the cell currents are distinguish-
able for different resistance/weight stored.

C. Circuit-to-architecture Level results

We limited the weight precision to four resistance
levels. This can be readily used to map and accelerate
binary, ternary, and quaternary neural networks. Table
I compares the literature’s structural and performance
parameters of selective processing-in-pixel and sensor
designs. As different designs are developed for specific
domains, for an impartial comparison, we estimated
and normalized the power consumption when all units
executed the similar task of processing the 1st-layer of
CNN. Our cross-layer simulation results show that the
MR-PIPA achieves a frame rate of 1000. This comes from
the massively-parallel CPs. However, the design in [6]
achieves the highest frame rate, and the design in [2] im-
poses the least pixel size enabling in-sensor computing.
As for the area, our simulation results reported in Table
I show the proposed MR-PIPA’s compute-pixel occupies
∼6×6µm2 in 65nm. As we do not have access to the other
layouts’ configurations, it is almost impossible to have a
fair comparison between area overheads. However, we
believe a rough assessment can be made by comparing
the number of transistors in previous SRAM-based de-
signs and MR-PIPA’s lower-overhead compute add-on.
We re-implemented MACSen [7] at the circuit-level as
the only CNN accelerator developed with the same pur-
pose. Our evaluation showed that MR-PIPA consumes
∼74% less power consumption compared with MACSen
performing the same task. Compared to [6], MR-PIPA
substantially reduces data conversion and transmission
energy by ∼84%. While Table I focuses on various PIS
architectures (close-to-pixel computation) primarily sup-

porting CNNs in the binary domain, recent architectures
show a systolic neural CPU fusing the operation of a
traditional CPU and a systolic CNN accelerator [26].
Compared with our work, the design in [26] shows a
systolic neural CPU fusing the operation of a traditional
CPU and a systolic CNN accelerator. It converts 10 CPU
cores into an 8-bit systolic CNN accelerator showing
a comparable performance (1.82 TOPS/W @65nm vs.
1.89 TOPS/W @65nm in MR-PIPA) but provides higher
flexibility and bit-width (up to 8-bit). Putting everything
together, MR-PIPA offers: 1) a low-overhead, dual-mode
and reconfigurable design to keep the sensing perfor-
mance and realize a processing mode to remarkably
reduce the power consumption of data conversion and
transmission; 2) single-cycle in-sensor processing mech-
anism to improve image processing speed; 3) highly
parallel in-sensor processing design to achieve ultra-
high-throughput; 4) exploiting NVM reduces standby
power consumption during idle time and offers instant
wake-up time and resilience to power failure to achieve
high performance.

D. Accuracy
An image classification task is selected to demonstrate

the benefits of MR-PIPA design. In the original BWNN
topology, all the layers, except the first and last, were
implemented with quantized weights [27]. However, in
these tasks, the number of input channels is relatively
lower than the number of internal layers’ channels, so
the required parameters and computations are small,
and converting the input layer will not be a significant
issue [27]. Therefore, in almost all previously devel-
oped 3T and 4T -pixel PIP designs, the first layer is
implemented with quantized weights, realizing BWNN
[7]. Then an identical NN accelerator can be used to
accelerate the remaining layers after the first layer has
been computed.
Datasets: We conducted experiments on several datasets,
including MNIST [28], Fashion-MNIST [29], MCFD [30]
and SVHN [31]. MNIST is leveraged as a gray-scale
dataset that contains 70,000 28×28 images of handwrit-
ten digits from 0 to 9, 60,000 images for training, and
10,000 images for testing sets. Similar to MNIST, Fashion-
MNIST consists of 28×28 gray-scale images but includes
10,000 images for each training and testing set to form
ten fashion categories. MCFD face recognition database
contains face images of 10 subjects, where each image
is normalized to 20×20 pixels. Training data consists of
6,977 images, while testing data consists of 24,045 im-
ages. Finally, we also exploit SVHN with 73,257 training
digits, 26,032 testing digits, and 531,131 additional digits
for extra training data. The images are pre-processed to
20×20 from the original 32×32 cropped version and fed
to the model.
NN Architecture: In order to evaluate our design and
perform a fair comparison, we developed two networks,
including a 2-layer MLP and a CNN with 3 convolu-
tional and 3 FC layers, which are equivalently imple-
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Table I: Performance comparison of various PIP and PIS units.
Designs Technology

(nm) Purpose Comput. Scheme Memory NV*
Pixel Size

(µm2) Array Size Frame Rate
( f rame/s)

Power
(mW)

Efficiency
(TOp/s/W)

[25] 180 2D optic flow est. raw-wise Yes No 28.8×28.8 64×64 30 0.029 0.0041

[8] 180 edge*/blur/sharpen/
1st layer DNN raw-wise No No 7.6×7.6 128×128 480 sensing: 0.077

processing: 0.091 0.777

[2] 60/90 STP† raw-wise Yes No 3.5×3.5 1296×976 1000 sensing: 230
processing:363 0.386

[7] 180 1st layer BNN entire-array No No 110×110 32×32 1000 0.0121 1.32
[6] 180 edge*/TMF‡ raw-wise Yes No 32.6×32.6 256×256 100,000 1230 0.535

MR-PIPA 65 1st layer QNN entire-array Yes Yes 6×6 256×256 1000 sensing:0.021
processing:0.088 1.89

* Edge extraction. †Spatial Temporal Processing. ‡Thresholding Median Filter.

Table II: Classification accuracy (%).
Configuration MNIST FashionMNIST MCFD SVHN
BWNN [27] 98.6 90.02 – 97.47
PIP [7] 96.0 83.17 90.67 –
PISA [32] 95.12 – – 90.35
MR-PIPA 97.26 85.68 92.30 91.05

*BWNN is a software implementation and is considered a baseline.
While the PIP and PISA designs are hardware-based techniques.

mented by convolutional layers. Herein, the 1st-layer is
performed at the device-level, and its outputs are then
fed into the second layer of the algorithm, which is
implemented in Python. The comparison of classification
accuracy is summarized in Table II. The results show
that higher accuracy can be achieved using our MR-PIPA
architecture, which can handle four analog values (2-bit
quantized) rather than two (1-bit).

VI. CONCLUSION
This work presents a PIP accelerator that intrinsi-

cally implements and supports a coarse-grained con-
volution operation in low-bit-width quantized neural
networks leveraging a novel compute-pixel with non-
volatile weight storage at the sensor side. We demon-
strate four distinct high resistance levels in order to
decrease overall system power consumption. Our results
demonstrate acceptable accuracy on various data sets,
while MR-PIPA achieves the frame rate of 1000 and the
efficiency of ∼1.89 TOp/s/W.
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