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The words people choose to use hold a lot of power, whether that be in spread-

ing truth or deception. As listeners and readers, we do our best to understand

how words are being used. There are many current methods in computer

science literature attempting to embed words into numerical information for

statistical analyses. Some of these embedding methods, such as Bag of Words,

treat words as independent, while others, such as Word2Vec, attempt to gain

information about the context of words. It is of interest to compare how well

these various methods of translating text into numerical data work specifically

with detecting fake news. The term “fake news” can be quite divisive, but we

define it as news that is hyper-partisan, filled with untruths, and written to

cause anger and outrage, as defined in Potthast & Kiesel (2018). We hypothe-

size a person’s word choice relates to the factualness of an article. In Chapter

5, we utilize this embedded information in several binary classification meth-

ods. We find that words are only marginally valuable in detecting fake news

regardless of the embedding or classification method used. However, within

natural language processing tasks, there are many preprocessing steps taken to

get the text ready for analysis, which is explored in Chapter 6. The embedding

methods are confounded with the preprocessing methods used. Preprocessing

of text includes, but is not limited to, filtering out words that do not appear



a minimum number of times, filtering out stop words, removing numbers, and

translating all letters to lower case. We find filtering out stop words and

removing words not appearing a minimum number of times have the most

significant effect in combination with embedding and classification methods.

Finally, in Chapter 7, we extend the classification to six categories ranging

from true to pants-on-fire false and found these preprocessing methods are not

as influential as they were with the binary outcome. Other predictors outside

of the words and word embeddings themselves are necessary for improvement

in the detection of fake news.



iv

DEDICATION

Dedicated to Shirley Hauschild and Wilda McKee.



v

ACKNOWLEDGMENTS

I would like to start by thanking my parents, Craig and Dayna Hauschild.

They had to deal with every low point of this whole process. They patiently

listened to every phone call where I wanted to quit. They also celebrated with

me every high, and I am eternally grateful for their love and support. Next,

I would like to thank my advisor, Dr. Kent Eskridge. He has been incredibly

patient and supportive throughout the entirety of my graduate career. I have

learned much from him, and I hope to be a mentor like him in my future career.

I also need to thank Dr. Reka Howard, not only as a member of my committee,

but as my emotional support throughout this PhD program. She was always

a listening ear to struggles I was having, both personally and academically. I

have enjoyed having the opportunity to work with her as her teaching assistant

for multiple semesters and have learned a lot from her. I would like to thank

the rest of my committee members: Dr. Stephen Scott, Dr. Yuzhen Zhou, and

Dr. Susan VanderPlas. They provided beneficial input into my dissertation,

and I value the time they provided me in their busy schedules to serve on my

committee. Dr. VanderPlas provided invaluable time and feedback on all of

the plots you will see. I have so many friends to thank because I literally could

not have done this without them: Elizabeth McFaddin, Kelsey Karnik, Miguel

Fudolig, Emily Robinson, Alison Kleffner, Johnna Baller, Vamsi Manthena,

Ashley Erceg, and Ella Burnham. I would list off all the ways these people

have supported me and encouraged me over the years but that would take

pages and pages, and I just don’t have time (or space) for that. Lastly, I

send my thanks to my nieces, Avery and Aubriella, and my nephew, Zackary

(Bubba). They have no idea how much light they brought into my life, and I



vi

hope they never lose it.



vii

Table of Contents

List of Figures ix

List of Tables xxvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Review of Embedding Methods 9

2.1 Bag of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Global Vectors for Word Representation (GloVe) . . . . . . . 19

2.4 Bidirectional Encoder Representations from Transformers

(BERT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Review of Current Fake News Detection Methods 31

3.1 Opinion Spam . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Fake News Detection . . . . . . . . . . . . . . . . . . . . . . 35

4 PolitiFact Data 44

5 Comparing Methods for Classifying Fake News 49



viii

5.1 Classification Methods . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Applying the PolitiFact Data Set . . . . . . . . . . . . . . . . 56

6 Effect of Text Preprocessing Methods 67

6.1 Previous Literature on the Effect of Text Preprocessing . . . . 67

6.2 Preprocessing Methods Explored . . . . . . . . . . . . . . . . 70

6.3 An Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . 72

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Extending to Multiple Class Classification 98

7.1 Multi-Class Classification Methods . . . . . . . . . . . . . . . 99

7.2 Applying the PolitiFact Dataset . . . . . . . . . . . . . . . . . 101

7.3 Exploratory Analysis . . . . . . . . . . . . . . . . . . . . . . . 103

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Conclusions and Future Work 130

A Plots for Chapter 6 137

B Plots for Chapter 7 188

C Code 240

References 336



ix

List of Figures

2.1 Skip-Gram Model diagram from Karani (2020) . . . . . . . . . . . 16

2.2 A simple transformer at a glance. BERT only contains the left hand

side of a transformer (the encoders), but BERT-base contains 12

encoders instead of 6. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 A glance at the structure of BERT-Base with a stack of 12 encoders.

BERT-Large contains double this many encoders. . . . . . . . . . 26

2.4 On the left, a glance at the sub-layers contained within each of the

encoders. On the right, an idea of how the attention head works.

The attention head represented by the orange color finds ‘it’ to be

mostly related to ‘the animal’, where as the green attention head

finds ‘it’ to be mostly related to ‘tired.’ Image from (Alammar,

2018b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 The [CLS] token (stands for classification) denotes the beginning

of the sentence to be embedded. It helps BERT learn the order of

the words to better learn context. BERT outputs an embedding

vector per word of size 768, represented in this image with the

purple rectangle. The ‘120’ represents the max sequence length

inputted into the model. . . . . . . . . . . . . . . . . . . . . . . . 28



x

2.6 The [MASK] token masks a word from the model, and BERT at-

tempts to fill in with the appropriate word given the outputted

embedding. This is completed during training of the model. . . . 30

3.1 The breakdown of labels given to the articles in the BuzzFeed cor-

pus (Potthast & Kiesel, 2018). There were no articles from main-

stream sources given a rating of mostly false. We can see majority

of the false news is coming from hyper-partisan sources. . . . . . 40

5.1 A two-class example of Gaussian mixtures from Li (2017) . . . . . 54

5.2 Accuracy metric for each classification and embedding method

combination. Each classification method is represented by a let-

ter. T is for classification tree, and G is for logistic regression. All

others are based on the first letter of the method name. . . . . . . 59

5.3 Precision metric for each classification and embedding method

combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Sensitivity metric for each classification and embedding method

combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Specificity metric for each classification and embedding method

combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1 The breakdown of each label per year observed in our data set. . 99

8.1 The breakdown of the binary classes per year observed in our data

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



xi

A.1 C×E×S, F-ratio = 2.459. The difference in accuracy between fil-

tering of stop words (no-yes) for each combination of classification

and embedding method. Discriminant analyses are in blue. Lo-

gistic regression is red, and tree-based methods are in green. The

median is a black triangle, and the mean is a grey circle. . . . . . 138

A.2 C×S, F-ratio = 4.065. The effect of filtering stop words by classi-

fication method on accuracy. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 139

A.3 E × S, F-ratio = 5.061. The effect of filtering stop words by em-

bedding method on accuracy. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 140

A.4 C × F , F-ratio = 8.586. The effect of filtering based on minimum

number of appearances by classification method on accuracy. The

median is a black triangle, and the mean is a grey circle. . . . . . 141

A.5 E×F , F-ratio = 13.043. The effect of filtering based on minimum

number of appearances by embedding method on accuracy. The

median is a black triangle, and the mean is a grey circle. . . . . . 142

A.6 C × E, F-ratio = 11.359. The effect of classification method by

embedding method on accuracy. Discriminant analyses are in blue.

Logistic regression is red, and tree-based methods are in green. The

median is a black triangle, and the mean is a grey circle. . . . . . 143

A.7 C, F-ratio = 1425.005. The effect of classification method on ac-

curacy. Discriminant analyses are in blue. Logistic regression is

red, and tree-based methods are in green. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 144



xii

A.8 E, F-ratio = 86.977. The effect of embedding method on accuracy.

Word2Vec Continuous Bag of Words are in the blue-green shades,

and Word2Vec Skip-Gram are in the blue-purple shades. GloVe

is in the brown-orange shades. BERT is in pink, and PCA is in

green. The median is a black triangle, and the mean is a grey circle.145

A.9 S, F-ratio = 1389.398. The effect of filtering stop words on ac-

curacy. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.10 F , F-ratio = 196.127. The effect of filtering words based on mini-

mum number of appearances on accuracy. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 147

A.11 N , F-ratio = 4.074. The effect of filtering numbers on accuracy.

The median is a black triangle, and the mean is a grey circle. . . 148

A.12 C × E × F , F-ratio = 3.334. The effect of classification method,

embedding method, and filtering threshold on precision. Each clas-

sification method is represented by a letter. T is for classification

tree, and G is for logistic regression. All others are based on the

first letter of the method name. Only the means are plotted here.

Violin plots are not used due to the number of levels of filtering

threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.13 C ×E ×S, F-ratio = 2.17. The difference in precision between fil-

tering of stop words (no-yes) for each combination of classification

and embedding method. Discriminant analyses are in blue. Lo-

gistic regression is red, and tree-based methods are in green. The

median is a black triangle, and the mean is a grey circle. . . . . . 150



xiii

A.14 C × S, F-ratio = 11.891. The effect of filtering stop words by

classification method on precision. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 151

A.15 E × S, F-ratio = 6.576. The effect of filtering stop words by em-

bedding method on precision. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 152

A.16 C ×N , F-ratio = 2.814. The effect of filtering numbers by classi-

fication method on precision. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 153

A.17 E×N , F-ratio = 2.089. The effect of filtering numbers by embed-

ding method on precision. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.18 C×F , F-ratio = 71.954. The effect of filtering threshold by classi-

fication method on precision. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 155

A.19 E×F , F-ratio = 15.85. The effect of filtering threshold by embed-

ding method on precision. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.20 C × E, F-ratio = 13.202. The effect of classification method by

embedding method on precision. Discriminant analyses are in blue.

Logistic regression is red, and tree-based methods are in green. The

median is a black triangle, and the mean is a grey circle. . . . . . 157

A.21 C, F-ratio = 1126.108. The effect of classification method on pre-

cision. Discriminant analyses are in blue. Logistic regression is

red, and tree-based methods are in green. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 158



xiv

A.22 E, F-ratio = 156.542. The effect of embedding method on preci-

sion. Word2Vec Continuous Bag of Words are in the blue-green

shades, and Word2Vec Skip-Gram are in the blue-purple shades.

GloVe is in the brown-orange shades. BERT is in pink, and PCA

is in green. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.23 S, F-ratio = 835.244. The effect of filtering stop words on precision.

The median is a black triangle, and the mean is a grey circle. . . 160

A.24 F , F-ratio = 17.048. The effect of filtering threshold on precision.

The median is a black triangle, and the mean is a grey circle. . . 161

A.25 L, F-ratio = 12.68. The effect of converting to lowercase on pre-

cision. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.26 C × E × F , F-ratio = 3.598. The effect of classification method,

embedding method, and filtering threshold on sensitivity. Each

classification method is represented by a letter. T is for classifi-

cation tree, and G is for logistic regression. All others are based

on the first letter of the method name. Only the means are plot-

ted here. Violin plots are not used due to the number of levels of

filtering threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.27 C × S, F-ratio = 15.512. The effect of filtering stop words by

classification method on sensitivity. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 164

A.28 C ×N , F-ratio = 3.149. The effect of filtering numbers by classifi-

cation method on sensitivity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 165



xv

A.29 C×F , F-ratio = 65.52. The effect of filtering threshold by classifi-

cation method on sensitivity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 166

A.30 E × F , F-ratio = 10.2588. The effect of filtering threshold by

embedding method on sensitivity. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 167

A.31 C × E, F-ratio = 10.811. The effect of classification method by

embedding method on sensitivity. Discriminant analyses are in

blue. Logistic regression is red, and tree-based methods are in

green. The median is a black triangle, and the mean is a grey circle.168

A.32 C, F-ratio = 82.573. The effect of classification method on sen-

sitivity. Discriminant analyses are in blue. Logistic regression is

red, and tree-based methods are in green. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 169

A.33 E, F-ratio = 23.438. The effect of embedding method on sensi-

tivity. Word2Vec Continuous Bag of Words are in the blue-green

shades, and Word2Vec Skip-Gram are in the blue-purple shades.

GloVe is in the brown-orange shades. BERT is in pink, and PCA

is in green. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.34 S, F-ratio = 295.017. The effect of filtering stop words on sen-

sitivity. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.35 L, F-ratio = 2.701. The effect of converting to lowercase on sen-

sitivity. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



xvi

A.36 N , F-ratio = 7.061. The effect of filtering numbers on sensitivity.

The median is a black triangle, and the mean is a grey circle. . . 173

A.37 F , F-ratio = 219.469. The effect of filtering threshold on sensitivity.

The median is a black triangle, and the mean is a grey circle. . . 174

A.38 C × E × F , F-ratio = 3.492. The effect of classification method,

embedding method, and filtering threshold on specificity. Each

classification method is represented by a letter. T is for classifi-

cation tree, and G is for logistic regression. All others are based

on the first letter of the method name. Only the means are plot-

ted here. Violin plots are not used due to the number of levels of

filtering threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.39 C × S, F-ratio = 16.452. The effect of filtering stop words by

classification method on specificity. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 176

A.40 E × S, F-ratio = 2.347. The effect of filtering stop words by em-

bedding method on specificity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 177

A.41 C ×N , F-ratio = 3.67. The effect of filtering numbers by classifi-

cation method on specificity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 178

A.42 E×N , F-ratio = 2.173. The effect of filtering numbers by embed-

ding method on specificity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 179

A.43 C×F , F-ratio = 76.906. The effect of filtering threshold by classi-

fication method on specificity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 180



xvii

A.44 E × F , F-ratio = 11.126. The effect of filtering threshold by em-

bedding method on specificity. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 181

A.45 C × E, F-ratio = 11.752. The effect of embedding method by

classification method on specificity. Discriminant analyses are in

blue. Logistic regression is red, and tree-based methods are in

green. The median is a black triangle, and the mean is a grey circle.182

A.46 C, F-ratio = 136.591. The effect of classification method on speci-

ficity. Discriminant analyses are in blue. Logistic regression is

red, and tree-based methods are in green. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 183

A.47 E, F-ratio = 66.197. The effect of embedding method on specificity.

Word2Vec Continuous Bag of Words are in the blue-green shades,

and Word2Vec Skip-Gram are in the blue-purple shades. GloVe

is in the brown-orange shades. BERT is in pink, and PCA is in

green. The median is a black triangle, and the mean is a grey circle.184

A.48 L, F-ratio = 3.506. The effect of converting to lowercase on speci-

ficity. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.49 N , F-ratio = 3.31. The effect of filtering numbers on specificity.

The median is a black triangle, and the mean is a grey circle. . . 186

A.50 F , F-ratio = 79.932. The effect of filtering threshold on specificity.

The median is a black triangle, and the mean is a grey circle. . . 187



xviii

B.1 C × E × S, F-ratio = 2.401. The difference in overall accuracy

between filtering of stop words (no-yes) for each combination of

classification and embedding method. Discriminant analyses are

in blue. Logistic regression is red, and tree-based methods are in

green. The median is a black triangle, and the mean is a grey circle.189

B.2 C ×R, F-ratio = 36.49. The effect of including year as a predictor

by classification method on the overall accuracy. The median is a

black triangle, and the mean is a grey circle. . . . . . . . . . . . . 190

B.3 C × F , F-ratio = 5.213. The effect of filtering threshold by clas-

sification method on the overall accuracy. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 191

B.4 E × F , F-ratio = 2.805. The effect of filtering threshold by em-

bedding method on the overall accuracy. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 192

B.5 C × S, F-ratio = 8.694. The effect of filtering stop words by clas-

sification method on the overall accuracy. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 193

B.6 C × E, F-ratio = 11.719. The effect of classification method by

embedding method on the overall accuracy. Discriminant analyses

are in blue. Logistic regression is red, and tree-based methods are

in green. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.7 R, F-ratio = 325.709. The effect of including year as a predictor

on the overall accuracy. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 195



xix

B.8 F , F-ratio = 29.811. The effect of filtering threshold on the overall

accuracy. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.9 S, F-ratio = 249.807. The effect of filtering stop words on the

overall accuracy. The median is a black triangle, and the mean is

a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.10 E, F-ratio = 31.29. The effect of embedding method on overall ac-

curacy. Word2Vec Continuous Bag of Words are in the blue-green

shades, and Word2Vec Skip-Gram are in the blue-purple shades.

GloVe is in the brown-orange shades. BERT is in pink, and PCA

is in green. The median is a black triangle, and the mean is a grey

circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.11 C, F-ratio = 1369.341. The effect of classification method on over-

all accuracy. Discriminant analyses are in blue. Logistic regression

is red, and tree-based methods are in green. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 199

B.12 C×R, F-ratio = 49.388. The effect of including year as a predictor

by classification method on the sensitivity of a true label. The

median is a black triangle, and the mean is a grey circle. . . . . . 200

B.13 C × F , F-ratio = 5.371. The effect of filtering threshold by classi-

fication method on the sensitivity of a true label. The median is a

black triangle, and the mean is a grey circle. . . . . . . . . . . . . 201

B.14 C × S, F-ratio = 7.727. The effect of filtering stop words by clas-

sification method on the sensitivity of a true label. The median is

a black triangle, and the mean is a grey circle. . . . . . . . . . . . 202



xx

B.15 C × E, F-ratio = 7.095. The effect of classification method by

embedding method on the sensitivity of a true label. Discriminant

analyses are in blue. Logistic regression is red, and tree-based

methods are in green. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.16 F , F-ratio = 9.608. The effect of filtering threshold on the sensi-

tivity of a true label. The median is a black triangle, and the mean

is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.17 E, F-ratio = 10.451. The effect of embedding method on the sen-

sitivity of a true label. Word2Vec Continuous Bag of Words are in

the blue-green shades, and Word2Vec Skip-Gram are in the blue-

purple shades. GloVe is in the brown-orange shades. BERT is in

pink, and PCA is in green. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 205

B.18 C, F-ratio = 1443.107. The effect of classification method on the

sensitivity of a true label. Discriminant analyses are in blue. Lo-

gistic regression is red, and tree-based methods are in green. The

median is a black triangle, and the mean is a grey circle. . . . . . 206

B.19 C ×R, F-ratio = 47.17. The effect of including year as a predictor

by classification method on the specificity of a true label. The

median is a black triangle, and the mean is a grey circle. . . . . . 207

B.20 C × F , F-ratio = 8.112. The effect of filtering threshold by classi-

fication method on the specificity of a true label. The median is a

black triangle, and the mean is a grey circle. . . . . . . . . . . . . 208



xxi

B.21 C × S, F-ratio = 4.565. The effect of filtering stop words by clas-

sification method on the specificity of a true label. The median is

a black triangle, and the mean is a grey circle. . . . . . . . . . . . 209

B.22 C × E, F-ratio = 9.182. The effect of classification method by

embedding method on the specificity of a true label. Discriminant

analyses are in blue. Logistic regression is red, and tree-based

methods are in green. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.23 R, F-ratio = 2.606. The effect of including year as a predictor on

the specificity of a true label. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 211

B.24 F , F-ratio = 17.417. The effect of filtering threshold on the speci-

ficity of a true label. The median is a black triangle, and the mean

is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B.25 S, F-ratio = 4.427. The effect of filtering stop words on the speci-

ficity of a true label. The median is a black triangle, and the mean

is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

B.26 E, F-ratio = 15.516. The effect of embedding method on the speci-

ficity of a true label. Word2Vec Continuous Bag of Words are in

the blue-green shades, and Word2Vec Skip-Gram are in the blue-

purple shades. GloVe is in the brown-orange shades. BERT is in

pink, and PCA is in green. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 214



xxii

B.27 C, F-ratio = 1507.22. The effect of classification method on the

specificity of a true label. Discriminant analyses are in blue. Lo-

gistic regression is red, and tree-based methods are in green. The

median is a black triangle, and the mean is a grey circle. . . . . . 215

B.28 C × E × R, F-ratio = 2.353. The effect of classification method,

embedding method, and inclusion of year as a predictor on the sen-

sitivity of a pants-on-fire label. Only the means are plotted here.

Violin plots are not used due to the unbalanced number of combi-

nations between the levels since there were computational issues.

There are fewer combinations observed when year is included as a

predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B.29 C × E × F , F-ratio = 2.84. The effect of classification method,

embedding method, and filtering threshold on the sensitivity of a

pants-on-fire label. Each classification method is represented by a

letter. T is for classification tree, and G is for ordinal regression.

All others are based on the first letter of the method name. Only

the means are plotted here. Violin plots are not used due to the

number of levels of filtering threshold. . . . . . . . . . . . . . . . 217

B.30 E×R, F-ratio = 4.217. The effect of including year as a predictor

by embedding method on the sensitivity of a pants-on-fire label.

The median is a black triangle, and the mean is a grey circle. . . 218

B.31 C ×R, F-ratio = 4.217. The effect of including year as a predictor

by classification method on the sensitivity of a pants-on-fire label.

The median is a black triangle, and the mean is a grey circle. . . 219



xxiii

B.32 C × F , F-ratio = 16.803. The effect of filtering threshold by clas-

sification method on the sensitivity of a pants-on-fire label. The

median is a black triangle, and the mean is a grey circle. . . . . . 220

B.33 C × S, F-ratio = 20.903. The effect of filtering stop words by

classification method on the sensitivity of a pants-on-fire label. The

median is a black triangle, and the mean is a grey circle. . . . . . 221

B.34 C × E, F-ratio = 32.143. The effect of classification method by

embedding method on the sensitivity of the pants-on-fire label.

Discriminant analyses are in blue. Logistic regression is red, and

tree-based methods are in green. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 222

B.35 R, F-ratio = 355.736. The effect of including year as a predictor

on the sensitivity of the pants-on-fire label. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 223

B.36 F , F-ratio = 9.366. The effect of filtering threshold on the sen-

sitivity of the pants-on-fire label. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 224

B.37 S, F-ratio = 19.809. The effect of filtering stop words on the sen-

sitivity of the pants-on-fire label. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 225

B.38 E, F-ratio = 9.524. The effect of embedding method on the sensi-

tivity of a pants-on-fire label. Word2Vec Continuous Bag of Words

are in the blue-green shades, and Word2Vec Skip-Gram are in the

blue-purple shades. GloVe is in the brown-orange shades. BERT

is in pink, and PCA is in green. The median is a black triangle,

and the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . 226



xxiv

B.39 C, F-ratio = 2080.956. The effect of classification method on the

sensitivity of a pants-on-fire label. Discriminant analyses are in

blue. Logistic regression is red, and tree-based methods are in

green. The median is a black triangle, and the mean is a grey circle.227

B.40 C × E × R, F-ratio = 2.029. The effect of classification method,

embedding method, and inclusion of year as a predictor on the

specificity of a pants-on-fire label. Only the means are plotted

here. Violin plots are not used due to the unbalanced number of

combinations between the levels since there were computational is-

sues. There are fewer combinations observed when year is included

as a predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.41 C × E × F , F-ratio = 3.754. The effect of classification method,

embedding method, and filtering threshold on the specificity of a

pants-on-fire label. Each classification method is represented by a

letter. T is for classification tree, and G is for ordinal regression.

All others are based on the first letter of the method name. Only

the means are plotted here. Violin plots are not used due to the

number of levels of filtering threshold. . . . . . . . . . . . . . . . 229

B.42 E×R, F-ratio = 2.166. The effect of including year as a predictor

by embedding method on the specificity of a pants-on-fire label.

The median is a black triangle, and the mean is a grey circle. . . 230

B.43 C×R, F-ratio = 27.138. The effect of including year as a predictor

by classification method on the specificity of a pants-on-fire label.

The median is a black triangle, and the mean is a grey circle. . . 231



xxv

B.44 E×F , F-ratio = 2.828. The effect of filtering threshold by embed-

ding method on the specificity of a pants-on-fire label. The median

is a black triangle, and the mean is a grey circle. . . . . . . . . . 232

B.45 C × F , F-ratio = 17.852. The effect of filtering threshold by clas-

sification method on the specificity of a pants-on-fire label. The

median is a black triangle, and the mean is a grey circle. . . . . . 233

B.46 C × S, F-ratio = 32.135. The effect of filtering stop words by

classification method on the specificity of a pants-on-fire label. The

median is a black triangle, and the mean is a grey circle. . . . . . 234

B.47 C × E, F-ratio = 35.297. The effect of classification method by

embedding method on the specificity of the pants-on-fire label. Dis-

criminant analyses are in blue. Logistic regression is red, and tree-

based methods are in green. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 235

B.48 R, F-ratio = 122.45. The effect of including year as a predictor

on the specificity of the pants-on-fire label. The median is a black

triangle, and the mean is a grey circle. . . . . . . . . . . . . . . . 236

B.49 S, F-ratio = 9.214. The effect of filtering stop words on the speci-

ficity of the pants-on-fire label. The median is a black triangle, and

the mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . 237

B.50 E, F-ratio = 8.3. The effect of embedding method on the specificity

of a pants-on-fire label. Word2Vec Continuous Bag of Words are in

the blue-green shades, and Word2Vec Skip-Gram are in the blue-

purple shades. GloVe is in the brown-orange shades. BERT is in

pink, and PCA is in green. The median is a black triangle, and the

mean is a grey circle. . . . . . . . . . . . . . . . . . . . . . . . . . 238



xxvi

B.51 C, F-ratio = 2080.956. The effect of classification method on the

specificity of a pants-on-fire label. Discriminant analyses are in

blue. Logistic regression is red, and tree-based methods are in

green. The median is a black triangle, and the mean is a grey circle.239



xxvii

List of Tables

2.1 Document-Term Matrix Example . . . . . . . . . . . . . . . . . . 10

2.2 Simple Co-Occurrence Example . . . . . . . . . . . . . . . . . . . 20

2.3 Co-occurrence probabilities and ratios from a 6 billion word corpus

(Pennington et al., 2014; Sahil, 2021). . . . . . . . . . . . . . . . 21

3.1 The accuracy results of the SVM classifier used by Ott et al. (2011). 33

4.1 Breakdown of label frequency. 259 statements in LIAR but not

FNN were exclued from the analysis. . . . . . . . . . . . . . . . . 47

5.1 Confusion matrix for a binary response. . . . . . . . . . . . . . . 56

5.2 Average metric value and standard deviation by word embedding

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Average metric value and standard deviation by classification method 65

5.4 Maximum metric value by word embedding method . . . . . . . . 66

5.5 Maximum metric value by classification method . . . . . . . . . . 66

6.1 Effects of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Effects of Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Effects of Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Effects on Specificity . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Multiple Classes Confusion Matrix . . . . . . . . . . . . . . . . . 101



xxviii

7.2 Breakdown of the Six Labels in the PolitiFact Data Set . . . . . . 103

7.3 Effects on Overall Accuracy . . . . . . . . . . . . . . . . . . . . . 105

7.4 Effects on Sensitivity of True Label . . . . . . . . . . . . . . . . . 110

7.5 Effects on Specificity of True Label . . . . . . . . . . . . . . . . . 113

7.6 Effects on Sensitivity of Pants-on-Fire Label . . . . . . . . . . . . 117

7.7 Effects on Specificity of Pants-on-Fire Label . . . . . . . . . . . . 122

8.1 The classification method, embedding method, and preprocessing

methods combination creating the maximum for each metric for

binary classification. . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 The classification method, embedding method, and preprocessing

methods combination creating the minimum for each metric for

binary classification. . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3 The classification method, embedding method, and preprocessing

methods combination creating the maximum for each metric for

the muliple classes classification. . . . . . . . . . . . . . . . . . . 136

8.4 The classification method, embedding method, and preprocessing

methods combination creating the minimum for each metric for the

muliple classes classification. . . . . . . . . . . . . . . . . . . . . . 136



1

Chapter 1

Introduction

1.1 Motivation

The analysis of text has become very popular over the years. From an-

alyzing customer reviews left on products for sale, to clustering documents

by topic, to detecting fake news, the analytical information held by text has

become a valuable tool. Different methods have been developed to transform

the information presented in words, either written or spoken, into numerical

information. These methods tend to fall in one of two categories: treat all

words as independent or try to capture the semantic relationships between

the words.

1.1.1 Embedding Methods

The most basic method is known as the Bag of Words method. In the Bag

of Words method, each word within a document is treated as independent

from the others (Kwartler, 2017). For instance, within a sentence, let’s say

we focus on word 4. We ignore the word immediately prior and after word

4 in the bag of words method in regards to how they appear relative to each

other. Order does not matter. Using this method, we create what is called
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the document-term matrix. Each document makes up a row of the matrix,

and each unique word is a column of the matrix. A cell of the matrix contains

the total number of appearances of each unique word per document. In this

method, the relationship between words is lost - the relationship being the

number of times word pairs appear together; see Section 2.1.

Utilizing the document-term matrix created with the Bag of Words

method, we can apply the Term Frequency - Inverse Document Frequency

(TF-IDF) measure to determine how relevant a word is to a document by

weighting the term frequency in relation to how many documents the word

appears in (Silge & Robinson, 2021). If we are interested in determining

topics related to the documents, we can apply Principal Component Analysis

to the document-term matrix created with the Bag of Words method. We

can determine topics of documents by exploring what words are related to

each principal component (Bikienga, 2018). Details about TF-IDF are found

in Section 2.1.1, and details of the PCA method are in Section 2.1.2.

In writing, however, words appearing before and after a specific target word

usually have some importance. These words can offer context of the target

words, helping to give it meaning. Hence, the words surrounding the target

word are called context words. Methods working to capture the relationship

between context and target words have been heavily developed and researched

in the computer science and artificial intelligence literature. The main idea of

all these methods is one can derive the sense of a word based on the words that

surround it - i.e. words are similar if they appear with similar context words

(Harris, 1954; Torregrossa, Allesiardo, Claveau, Kooli, & Gravier, 2021). One

method, Word2Vec, works to capture this semantic relationship between the
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words utilizing a neural network. This neural network contains an input layer,

a single hidden layer, and an output layer. However, we are not interested

in the output layer with this method; we care about the weights learned in

the hidden layer (McCormick, 2016). There are two versions of Word2Vec

developed by Mikolov, Chen, Corrado, & Dean (2013) called Continuous Bag of

Words and Skip-Gram. These models are essentially reflections of one another.

The Skip-Gram model utilizes the target word to predict the context words,

and the Continuous Bag of Words model does the reverse. Details for the Skip-

Gram model will be shown in Section 2.2, as well as a depiction of the network

in Figure 2.1. Through the training of this neural network, the Skip-Gram

model calculates the probability a context word appears with the target word

in the output layer. Because we expect the probabilities of context words to be

close together for similar target words, the weights found in the hidden layer

should be similar (McCormick, 2016). Hence, this weight matrix in the hidden

layer contains information about the semantic relationships between words. If

a word embedding vector (i.e. a row in the weight matrix) is close to another

word embedding vector, then those words are more likely to be semantically

similar.

Another popular method, Global Vectors for Word Representation

(GloVe), involves dimension reduction of the co-occurrence matrix. The

co-occurrence matrix is a term-term matrix, where the number of rows and

columns is the number of unique words in the entire collection of documents.

A cell contains the frequency in which the two words appear together. Here,

we define “together” as within the same window-size around a target word.

A nearest-neighbors and weighted least squares approach is used to estimate
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a ratio comparing probabilities of a word given the presence of a target word

(Pennington, Socher, & Manning, 2014). Details are found in Section 2.3.

A popular, more current method of creating word embeddings capturing

context is Bidirectional Encoder Representations from Transformers (BERT).

The foundations of BERT are found in development of transformers. Trans-

formers can be considered as a type of language translator device comprised

of an encoder and decoder stack of multiple neural networks. BERT does not

contain all pieces of a transformer; it only contains the encoder stack. The

encoder stack contains multiple attention head and neural networks, all of

which are explained in detail in Section 2.4. This method, as compared to

Word2Vec and GloVe, allows for the context of a word be addressed from the

whole sequence instead of just a single direction (Horev, 2018).

All of these embedding methods, ranging from Bag of Words to BERT, are

used in multiple types of natural language processing tasks. For this disserta-

tion specifically, they will be used in the detection of fake news as described in

Chapter 2. The detection of fake news at its essence is a document clustering

and classification problem with the goal being able to identify real news from

fake news.

1.1.2 Fake News Detection

With the exploding popularity of social media, news is able to travel faster

than ever before, but this is not without consequences. The biggest conse-

quence is the transmittal of fake news. The term “fake news” can be quite

divisive. It has been used to describe any news source or story that does not

agree with a person’s viewpoints on matters such as politics, vaccines, climate
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change, gun control, etc. However, according to Potthast & Kiesel (2018),

fake news arose from the fact certain “news” spreads faster, and more suc-

cessfully, than others. The “news” spreading quickly with the most success

is hyper-partisan, filled with untruths, and written in such a way as to cause

anger and outrage. In other words, the news that seems to spread the fastest

is not always truthful.

If people are relying on social media as their source of news, they must take

the time to check the credibility of the story or the site posting it. However,

there have been many psychological studies showing once a misconception has

been formed and then solidified by an article supporting the misconception,

the presentation of true, factual information is unhelpful in reducing said mis-

conceptions. In fact, presenting this true and factual information may even

increase misconceptions (Shu, Sliva, Wang, Tang, & Liu, 2017).

Additionally, on social media, there is a psychological phenomenon known

as the “echo chamber effect.” A person tends to follow like-minded people on

social media, and due to this, the psychological challenges mentioned previ-

ously of surmounting the impact of fake news are even more difficult to over-

come. If a person sees another share an article, that person is likely to believe

the article is credible since someone else already does. In addition, if a person

continually hears certain information, whether it is true or false, the person is

more likely to believe it. Both factors are heightened on social media because

of the echo chamber effect since “segmented, homogeneous communities” have

been created (Shu et al., 2017).

Generally, an entire news article is neither completely true nor completely

false; it is usually a mixture of the two. This leads to looking specifically at
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statements made in these articles or made verbally to determine if statements

are true or false. The non-profit organization PolitiFact does just this. The

credibility of this organization will be described in Chapter 4, but briefly, the

people who work at PolitiFact scour articles every day looking for statements

to fact check. A portion of the statements they choose to fact check are

submitted by every day people. After choosing statements to fact check and

following an extensive process, the statement is given one of six labels that

can be condensed into real or fake news.

1.2 Objectives

Using statements collected and labeled by PolitiFact, we will assess how

treating words as independent compare to methods capturing context when

classifying these statements. We will be focusing purely on how well the words

by themselves classify fake news in order to investigate these methods at more

of a pure level with regards to classification. In much of the literature, other

features, such as number of paragraphs, are used to assist in the classification,

and these other features will be ignored for this dissertation. It is of note these

other features have been found to be useful with classification (Horne & Adali,

2017; Potthast & Kiesel, 2018; Shu et al., 2017).

The Bag of Words and TF-IDF methods allow for the document-term ma-

trix to be used directly for classification of documents, where each variable -

i.e. a unique word - is a column. With a word embedding method utilizing a

neural network or dimension reduction, using this for classification is not as

straight forward. Recall these methods output a unique vector for each word

contained in the group of documents. These vectors can then be concate-
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nated into a matrix where the number of rows is the number of unique words

and the number of columns is the number of dimensions. From there, a few

methods have been developed in order to translate this to a vector per docu-

ment, including averaging over each dimension for every word contained in the

document or using the minimum and maximum for each dimension (Boom,

Canneyt, Demeester, & Dhoedt, 2016; Palachy, 2019). In this dissertation,

we will be utilizing the average across the dimensions for the vectors of words

contained in a statement. We begin by exploring the relationship between

these embedding methods and different classification methods on fake news

detection with only a binary response (real or fake news) in Chapter 5.

As with all natural language processes, there are multiple ways of prepro-

cessing the text to get it ready to be used in an embedding method. The

preprocessing methods utilized affect how well the embedding methods cap-

ture context as well as the complexity of the document-term matrix. Thus,

classification of fake news is confounded with what preprocessing methods are

utilized by the authors. As a contribution to current fake news detection lit-

erature, an exploratory analysis is completed in order to explore how certain

preprocessing methods affect binary classification. We explore the effect of re-

moving numbers, converting to lowercase, filtering stop words, and removing

any word not appearing a minimum number of times, as explained in Chapter

6.

Lastly, we extend from the binary classification of real/fake news to the

six labels used by PolitiFact in Chapter 7. We will explore how well the em-

bedding methods and classification methods extend to a multi-class response.

In addition, any preprocessing methods found to have an effect in the binary
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case will be explored further with the multi-class case.

There are three major objectives of this dissertation.

1. Compare Bag of Words, TF-IDF, PCA on the document-term matrix,

Word2Vec Continuous Bag of Word, Word2Vec Skip-Gram, GloVe, and

BERT with how well they classify fake news.

2. Investigate the effect of text preprocessing methods on classification and

embedding methods with regard to classification of fake news.

3. Extend classification from the binary case to the multi-class case, and

evaluate the classification of fake news.
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Chapter 2

Review of Embedding Methods

The purpose of this chapter is to introduce methods used to translate

words into quantitative values. Before we begin, let us define a few terms to

assist us. There are target and context words within a sentence. A target word

is the one of interest, and context words surround the target. We will denote

the target word as wt and denote a context word as wc. To find a context word,

a window of size k is used around wt. This window would include the k words

before wt and the k words after wt, as shown in the following example and as

defined in Mikolov, Sutskever, Chen, Corrado, & Dean (2013) and Pennington

et al. (2014).

The
Window of size k=2︷ ︸︸ ︷

dog︸︷︷︸
wc

barked︸ ︷︷ ︸
wc

loudly︸ ︷︷ ︸
wt

at︸︷︷︸
wc

the︸︷︷︸
wc

mailman.

2.1 Bag of Words

As mentioned in Chapter 1, we discussed the simplest form of transforming

text to numerical information is the Bag of Words method, where all words

are treated as independent from one another. Independence here means the

context words have no connection with the target word. Thus, the words be-
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Table 2.1: Document-Term Matrix Example

at barked cat dog loudly mailman meowed the
Statement 1 1 1 0 1 1 1 0 2
Statement 2 1 0 1 1 0 0 1 2

fore and after have no effect on the context of the target word. This is a major

assumption. It allows us to treat each word individually without taking into

account the context. Using this method, we can create the document-term

matrix (DTM) (Kwartler, 2017). Each row in the matrix is a document/s-

tatement in our data set. Each column presents a unique word found in the

collection of documents. The word count per statement appears in the cell of

the matrix.

For a very basic example, suppose we have two statements (i.e. documents)

as follows:

• The dog barked loudly at the mailman.

• The cat meowed at the dog.

These two statements would make the document-term matrix seen in Table

2.1. The columns are in alphabetical order to match the default settings in the

text2vec package in R (Selivanov, Bickel, & Wang, 2022). The words “the,”

“at,” and “dog” show up in both statements, but each word is only represented

in a single column.

This document-term matrix can easily be used in classification methods.

Each column (i.e. unique word) can be an individual variable used to help

classify the document. Thus, the number of unique words contained in the

collection of documents is the number of predictors used. In many applications,
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it is important to filter words such that only important words (i.e. distinguish-

ing words) are used to classify documents. This filtering can be done a number

of different ways and can likely change results of our classification. Too much

filtering could lead to a significant word not being included, whereas too little

filtering could lead to too much noise. Effects of filtering will be explored with

fake news classification in Chapter 6. For instance, one of the common filter-

ing techniques is to remove stop words from the documents. Stop words are

common words used frequently in text, such as “the,” “but,” and “through.”

Because these words are used frequently, they are considered to be additional

noise. They tend to not be informative to the document itself.

A major drawback of the Bag of Words method is the loss of information

resulting from the assumption of independence. We lose the ability to draw

context about a word given the words that surround it. This led to the devel-

opment of word embedding methods attempting to maintain this information.

2.1.1 Term Frequency - Inverse Document Frequency

As an extension of the Bag of Words method, a few values can be calculated

from the DTM to capture the information available in text. We can calculate

the term frequency (TF), the inverse document frequency (IDF), and the term

frequency-inverse document frequency (TF-IDF), all of which are based on the

counts located in the DTM. TF measures how often a term appears within a

document (Silge & Robinson, 2021). This is calculated as follows:

TF (wi) =
wid

ΣV
j=1wjd
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where wid is the total number of appearances of word i in document d. In the

denominator, we have the length (i.e. total number of words) of document d,

and where V is the total number of unique words in the collection.

This measurement does not take into account how often the word shows

up across all documents. By using TF only, words that show up many, many

times will have a large value, but those words actually do not tell us much

about what the specific document is about. For instance, words such as “and”

or “the” appear often in a single document, but they do not provide useful

information. One way of handling this issue (other than filtering out these

words from the data set as part of data preprocessing procedures) is to use

the IDF.

The IDF measures how important a word actually is to the collection of

documents, and it is calculated as follows:

IDF (wi) = log( D

ΣD
k=1Iwik

)

where log is the natural logarithm and D is the total number of documents

in the collection. In the denominator, we are counting the total number of

documents in which word i appears (Silge & Robinson, 2021). By combining

the IDF measure with the TF measure, we address the problem mentioned

earlier by decreasing the weight of terms occurring frequently but not providing

useful information. IDF also increases the weight of rare, informative words

(Silge & Robinson, 2021). TF-IDF is formally calculated as

TF − IDF (wi) = TF (wi)× IDF (wi)
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.

The issues discussed with the Bag of Words method are still present despite

the additional information weighting TF by IDF provides. We still assume all

words are independent and ignore the semantic relationship between words.

2.1.2 Principal Component Analysis on Bag of Words

We can apply Principal Component Analysis (PCA) to reduce the dimen-

sion of the DTM matrix from Bag of Words to determine the topics contained

in the corpus of documents. We decompose the DTM such that

XD×V = ZD×KBK×V

where

• K is the number of dimensions explaining a high percentage of the vari-

ation,

• ZD×K is the PC scores matrix with the principal component scores per

document,

• BK×V is the loadings matrix.

The PC loadings in BK×V allow us to determine which words are associ-

ated with each principal component, providing an indication of what topic is

represented by that PC. We can then explore the PC scores in ZD×K to deter-

mine which PCs have higher weights per document, allowing us to determine

topics of each document based on the associations found in the weight matrix

(Bikienga, 2018; Landauer & Dumais, 1997). To utilize this as an embedding
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method, we run PCA on our training corpus of documents, and we use the

transposed loadings matrix as our embedding matrix. Thus, to get our docu-

ment embeddings, we take XD×VB
T
K×V , where we multiply the word frequency

by the associated PC loading and sum across the component.

2.2 Word2Vec

Word2Vec is a neural network approach to quantifying textual informa-

tion created by Mikolov, Sutskever, et al. (2013). This method incorporates

two different types of relationships between words: paradigmatic and syntag-

matic. Paradigmatic relations are the individual concepts each word repre-

sents (i.e. the part of speech), and syntagmatic relations are the context of

a word inferred by the surrounding words (Torregrossa et al., 2021). These

relationships contain the bulk of the information excluded by the indepen-

dence assumption of the Bag of Words method. We maintain two important

aspects of a target word: the information provided by the context words and

the information of the target word itself. For instance, if the target word is

“barked,” we are able to maintain that this word is a verb while also adding

in information that “dog” shows up in the same window.

There are two Word2Vec models: Skip-Gram (SG) and Continuous Bag of

Words (CBoW). In the SG model, the goal is to predict context words given the

target word, while the CBoW model aims to do the opposite. Depending on

the language of your collection of documents, the CBoW model has been shown

to outperform the SG model in terms of capturing relationships, which makes

the model choice a parameter needing to be optimized (Grave, Bojanowski,

Gupta, Joulin, & Mikolov, 2018; Torregrossa et al., 2021). Here, we will focus
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on the SG model, as the CBoW is similar. In both cases, the neural network

is shallow, and it contains only an input layer, a single hidden layer, and an

output layer.

In the Word2Vec SG model, seen in Figure 2.1, the input to the neural

network is known as a one-hot word vector representation. A one-hot vector

representation is a row vector of length, V , which is the size of the vocabu-

lary. The vocabulary is the set of unique words extracted from the collection

of documents. The one-hot word vector contains a value of 1 at wt and 0

everywhere else. When this input vector is entered into the neural network, it

acts as a searching tool for a randomly initialized weight matrix. This weight

matrix is size V × N , where is N is a user-specified number of dimensions.

This is inputted into the hidden layer. There is no activation at this hidden

layer, so this layer is just the row of the input weight matrix. We calculate a

score vector by using an output weight matrix of size N × V . We can denote

this as follows:

h′WIWO = z (2.1)

where h′ is the one-hot vector, WI is the input weight matrix, WO is the

output weight matrix, and z is the final score vector of size 1 × V . Finally,

the softmax activation is used to calculate a probability for every possible

context word in the vocabulary. This is the output layer (Chaubard, Fang,

Genthial, Mundra, & Socher, 2019; Karani, 2020). The softmax activation is

σ(zj) =
ezj∑V
i=1 e

zi
, where zj is the jth observation of the score vector.

Since the goal of the neural network in the SG model is to learn the proba-
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Figure 2.1: Skip-Gram Model diagram from Karani (2020)
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bility of a context word appearing with the target word, once the output layer

has been calculated, a loss function must be applied to determine how accurate

the probability estimate is. If this loss function is above a specific criterion,

we work backwards in the neural network to update the weights in order to

more accurately capture the probability. This updating process is done using

stochastic gradient descent (Chaubard et al., 2019). This updating will only

effect the row of the input matrix associated with wt. We repeat this process

for each word in our vocabulary, meaning we have V total one-hot vectors.

After the updating is complete and the loss function has been minimized for all

words, we actually discard the output layer. We are interested in the learned

input weight matrix, that is size V ×N , as our word embedding matrix.

Because the softmax activation function involves several dot products to

find zj, the function cannot easily be solved in polynomial time. In Mikolov,

Sutskever, et al. (2013), they proposed a solution called Negative Sampling.

The main idea of this method is to add random context words into the vo-

cabulary and detect them. The method will classify target-context pairs that

actually exist in our collection of documents and those randomly generated.

At the end, word pairs that are real (called positives) are geometrically close

together, whereas word pairs that were randomly generated (called negatives)

are not (Torregrossa et al., 2021).

As previously stated, the output layer is not of interest, and it only serves

as a means to an end. We want to use the output layer to help us update

the input weight matrix. Once we have minimized loss for all V word in-

put vectors, the final input weight matrix is our word embedding matrix we

have been trying to retrieve. These word embeddings were optimized to cap-
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ture the probability a context word appears with the target word. Thus, the

embeddings have captured the relationships between pairs of words. Words

appearing in similar contexts should have similar embeddings based on the

optimization. The dimensions, which were user specified, show those relation-

ships - similar values for the same dimensions indicate a relationship. However,

what those dimensions represent are not typically interpretable. Despite this,

Mikolov, Sutskever, et al. (2013) did address the drawback of the Bag of

Words method.

Recall this matrix is size V ×N . Since V is the size of the unique words in

our vocabulary and N is the number of dimensions in which we have embedded,

we only get a single vector per word, i.e. our word embedding. We have no

knowledge of the document/statement level information, which is what we

are trying to classify. Therefore, some form of aggregation is needed in order

to use these embeddings in a classification task. Aggregating based on the

mean, minimum, or maximum of each dimension are popular and widely used

methods to find document-level representations (Boom et al., 2016). This

aggregation is completed over the rows of the embedding matrix that are

associated with the unique words in each document.

An issue with the Word2Vec method is the focus on local information.

By focusing on local information, we lose global information that allows us to

generalize results better (Torregrossa et al., 2021). The focus is very narrow

due to only one-hot vectors being the input into the neural network. It raises

the question of what information we lose when we ignore global information.

Additionally, the size of the embedding dimension is selected by the user and

is a parameter typically optimized for performance. Typically, a value around
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300 is selected. Of course, the more dimensions selected, the higher the quality

of the information captured.

2.3 Global Vectors for Word Representation (GloVe)

To address the shallow focus of only local information of the Word2Vec

method, Pennington et al. (2014) developed a method that incorporates global

information. The GloVe method gathers word co-occurrence frequencies from

the entire collection of documents, hence global information is captured. The

method is based on a co-occurrence matrix, which is a square matrix where

the number of rows and columns are equal to V (Pennington et al., 2014). The

co-occurrence matrix, denoted as C, records the number of windows where wc

and wt both occur. When creating the co-occurrence matrix, we will assume

the row denotes the target word, and the column denotes the context word.

Currently, we will be focusing on a window size of 5, where we are looking

at the 5 words directly prior and directly after the target word. This is the

default window size with the GloVe procedure in the R package text2vec

(Selivanov et al., 2022). We also assume a symmetric window, which ensures

the co-occurrence matrix is symmetric as well.

Let us look at a trivially small example with a window size of 1. Suppose

we have the following two sentences:

• The dog barked loudly tonight.

• The cat meowed loudly tonight.

We begin by assigning each unique word a number. In R, by default,

this assignment is done in alphabetical order. For our trivial example, the
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Table 2.2: Simple Co-Occurrence Example

Context
Word Number barked cat dog loudly meowed the tonight

barked 1 0 0 1 1 0 0 0
cat 2 0 0 0 0 1 1 0
dog 3 1 0 0 0 0 1 0
loudly 4 1 0 0 0 1 0 2
meowed 5 0 1 0 1 0 0 0
the 6 0 1 1 0 0 0 0

Target

tonight 7 0 0 0 2 0 0 0

numbering would go as follows:

•
6︷︸︸︷

The
3︷︸︸︷

dog
1︷ ︸︸ ︷

barked
4︷ ︸︸ ︷

loudly
7︷ ︸︸ ︷

tonight .

• The︸︷︷︸
6

cat︸︷︷︸
2

meowed︸ ︷︷ ︸
5

loudly︸ ︷︷ ︸
4

tonight︸ ︷︷ ︸
7

.

By doing this, the rows and columns of the co-occurrence are in alpha-

betical order as well, making it fairly straight forward to make. Since each

unique word is assigned a number, the number will correspond to the row and

column it is assigned to. For instance, the word “loudly” would be in row

4 and column 4. Suppose “loudly” is our target word. The window around

“loudly” would look like:

• The dog
︷ ︸︸ ︷
barked loudly tonight .

• The cat meowed loudly tonight︸ ︷︷ ︸ .
In these window, both “barked” and “meowed” appear once, and “tonight”

appears twice. The co-occurance matrix will reflect this with 1 in C4,1 and

C4,5 and 2 in C4,7. To see the complete co-occurrence matrix for this simple

example, see Table 2.2.
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The main idea behind GloVe is to model a ratio between probabilities. Let

the cell of the co-occurrence matrix be denoted as xtc, the number of times

wc appears in context of wt. We can calculate the empirical probability of

this relationship appearing by finding P (wc|wt) = xtc

xt
, where xt = ΣV

i=1xti.

The ratio of interest is between two target words, say wt1 and wt2 , and the

probability of a specific wc appearing with the respective target words. This

looks like P (wc|wt1 )

P (wc|wt2 )
. The closer this ratio is to one, the less of a distinguishing

context word wc is. The larger the ratio, the more wc is related to wt1 . A

value closer to zero means wc is related more to wt2 . The ratio allows us to

figure out which words are relevant or irrelevant to distinguishing the context

of it (Pennington et al., 2014). For an example, see Table 2.3. Clearly, the

word solid is more related to the word ice, hence the large ratio value. The

word water is equally related to both ice and steam, which makes the ratio

approximately 1.

Table 2.3: Co-occurrence probabilities and ratios from a 6 billion word corpus
(Pennington et al., 2014; Sahil, 2021).

k = solid k = gas k = water k = fashion

P (k|ice) 1.9 ×10−4 6.6 ×10−5 3.0 ×10−3 1.7 ×10−5

P (k|steam) 2.2 ×10−5 7.8 ×10−4 2.2 ×10−3 1.8 ×10−5

P (k|ice)
P (k|steam)

8.9 8.5 ×10−2 1.36 0.96

Instead of utilizing these ratios directly, GloVe attempts to approximate

the ratios by embedding into vectors of dimension N . Therefore, a function

is needed for approximation that meets specific criteria. The input of this

function is the embedded vectors for wt1 , wt2 , and wc. Let us denote these
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embedded vectors as vt1 , vt2 , and vc respectively. The first criteria of the

function F is to restrict it to only consider the difference between vt1 and vt2 ,

such that

F (vt1 − vt2 , vc).

Additionally, F needs to output a scalar. Since F is a function of vectors, the

dot product is utilized. Now

F ((vt1 − vt2)
′vc) =

P (wc|wt1)

P (wc|wt2)
,

which can be rewritten as

F ((vt1 − vt2)
′vc) =

F (v′t1vc)

F (v′t2vc)
.

Lastly, F needs to be interchangeable between context words and target words.

A natural choice is the exponential function, which means

P (wc|wt1) = F (v′t1vc) ↔ v′t1vc = log(xt1c)− log(xt1).

In the previous equation, the log(xt1) violates this ability to exchange the

distinction between target and context word. Since it does not depend on

the context word, it is absorbed into a bias vector, bt1 , and an additional

bias vector, bc, is added in order to maintain the interchangeability between a

target and context word (Pennington et al., 2014; Sahil, 2021).

To measure loss, GloVe utilizes weighted least squares regression. They

use a weight function, f(xtc), to address the issue that arises with log(xtc).

Recall the formulation of the co-occurrence matrix described earlier. Most of
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the xtc values will be 0, and the natural logarithm will not be well defined.

The weight function should have the following properties (Torregrossa et al.,

2021):

• f(0) = 0 and limx→0 f(x) log2(x) is finite

• f should increase

• f should be small for large values

Pennington et al. (2014), the developers of the GloVe procedure, suggest

using

f(x) =

 ( x
xmax

)α for x < xmax

1 Otherwise.

The word embedding vectors are considered optimal when the following is

minimized (Pennington et al., 2014; Torregrossa et al., 2021):

V∑
t,c=1

f(xtc)(v
′
tvc + bt + bc − log(xtc))

2.

A unique feature of this method is we get two different embeddings for a

word, vt and vc. We get an embedding for when the word was considered the

target word and when it was a context word. To get a single word embedding

vector per word, we find vt + v′c per word. This can then be used similarly

as Word2Vec for document classification by aggregating word vectors by the

mean, minimum, or maximum. These word embeddings encapsulate local

information by using a window around each target word and global information

by tabulating the results for the entire document. While the main idea is
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similar to Word2Vec in terms of capturing relationships between words in a

collection of documents, GloVe has two main advantages. It includes global

information, and negative sampling does not need to be utilized in order to

train the word embedding vectors (Torregrossa et al., 2021). As a result,

GloVe is more computationally efficient. Nonetheless, the user still defines the

number of dimensions, as discussed in Section 2.2. As with Word2Vec, 300

dimensions is a standard choice.

2.4 Bidirectional Encoder Representations from Trans-

formers (BERT)

The previous methods of Word2Vec and GloVe are unidirectional methods,

meaning they only look at context from a single direction. Text information

is inputted sequentially into these models, restricting the direction of context

(Horev, 2018). For instance, with Word2Vec, the objective of negative sam-

pling is to determine a correct context word from incorrect context words,

specifically assessing correctness based on position to the left or right of the

target word (Devlin, Chang, Lee, & Toutanova, 2019; Mikolov, Sutskever, et

al., 2013). To address this, Devlin et al. (2019) developed the Bidirectional

Encoder Representations from Transformers (BERT), in which the input is

completed for the whole sequence at once, allowing for the context to be gen-

erated from all surroundings (Horev, 2018). This allows words with multiple

meanings, such as “bank,” to have different embeddings related to the dif-

ferent meanings. Thus, a river bank and a bank that holds money would be

embedded differently since the surroundings of these words would be different.
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Figure 2.2: A simple transformer at a glance. BERT only contains the left
hand side of a transformer (the encoders), but BERT-base contains 12 encoders
instead of 6.

The foundation of BERT is a deep neural network known as a transformer.

A transformer contains Encoder and Decoder components, which one can con-

sider as translation device (see Figure 2.2). Consider the Encoder as person

who speaks English and the Decoder as a person who speaks German. The

Encoder takes in an input in English and translates it to a shared language

with the Decoder. The Decoder then translates from that shared language

into German. This shared language between the Encoder and Decoder must

be learned between them. In the original development of the transformer,

each component contained a stack of six encoders and decoders respectively
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(Alammar, 2018b). BERT only contains the stack of encoders, and only the

structure of the encoding stack will be discussed in this dissertation.

Figure 2.3: A glance at the structure of BERT-Base with a stack of 12 encoders.
BERT-Large contains double this many encoders.

BERT is a pre-trained model available for users to access word embeddings

trained on a large amount of data from books and Wikipedia entries. Two of
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the pretrained models are BERT-Base and BERT-Large. For each subsequent

model, the creators of BERT (Devlin et al., 2019) extended the stacks from

six encoders to 12 and 24 encoders respectively (see Figure 2.3). Each of the

encoders in the stack are identical in structure, but each encoder contains

separate weights. Within each encoder, there are two sub-layers as seen in

Figure 2.4: self-attention and a feed forward neural network (Alammar, 2018a).

At a high level, one can think of the self-attention layer as a method of having

the Encoder component learn how to read context clues. When we read a

statement containing the word “it,” we have the capability of using context

clues from before or after “it” to determine what “it” is referencing.

Figure 2.4: On the left, a glance at the sub-layers contained within each of
the encoders. On the right, an idea of how the attention head works. The
attention head represented by the orange color finds ‘it’ to be mostly related
to ‘the animal’, where as the green attention head finds ‘it’ to be mostly related
to ‘tired.’ Image from (Alammar, 2018b).

BERT utilizes positional encoding to help the model learn where the word

is located in the sentence, which improves its learning of context clues (see

Figure 2.5). BERT Base contains 12 attention heads and 768 hidden units

per encoding element. Attention heads can be considered a cross-validation
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approach to learning context clues. Each attention head may find a different

relationship, or context, but over all of them, the best representation of the

context is likely to be identified. The idea can be seen in Figure 2.4 The 768

hidden units are the dimensions in which words are being embedded (Alammar,

2018a). Unlike Word2Vec and GloVe, the dimension size of the pre-trained

BERT model is not user-defined and cannot be changed.

Figure 2.5: The [CLS] token (stands for classification) denotes the beginning
of the sentence to be embedded. It helps BERT learn the order of the words
to better learn context. BERT outputs an embedding vector per word of size
768, represented in this image with the purple rectangle. The ‘120’ represents
the max sequence length inputted into the model.

The training of the model includes two steps: Masked Language Model and

Next Sentence Prediction. In the masked language model, 15% of the tokens in
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the input are masked as seen in Figure 2.6. The goal is to predict the missing

word based on the output of the position of the missing word (Alammar,

2018a). This again helps improve the model’s ability to gain information

about a particular word given the words that surround it. The model will

find the word with the embedding most closely related to the output of the

missing token embedding. Within this same step, words will also randomly be

replaced by a different word, and the model must learn which word has been

replaced (Alammar, 2018a). This again helps improve the model’s ability to

capture the relationships between the words. In addition to the relationships

between words, the model is interested in capturing relationships between

sentences. Context from one sentence can be carried over to the next, therefore

understanding the order of sentences can be helpful. The model will be trained

in such a way it finds the probability Sentence B follows Sentence A (Alammar,

2018a).
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Figure 2.6: The [MASK] token masks a word from the model, and BERT
attempts to fill in with the appropriate word given the outputted embedding.
This is completed during training of the model.

For the purposes of this dissertation, the pre-trained embeddings are used

via the BERT-Base model, a mean pooling layer, and the sentence transformer

function developed by Reimers & Gurevych (2019). This will take the model,

trained as described above, and average the word embeddings together in order

to form sentence embeddings, which will then be used for classification.
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Chapter 3

Review of Current Fake News Detection Methods

This chapter serves as a review of the current methods being used to

classify news as either real or fake. In Chapter 1, we defined fake news as

news that is untruthful and written in such a way it is intended to cause anger

and outrage. We begin by looking at methods used in detecting opinion spam,

which helped build some of the methods we use with fake news detection.

Fake news detection and the success some researchers have had will then be

explored. In this chapter, unless otherwise specified, assume the bag-of-words

embedding method was used to translate text into numerical quantities.

3.1 Opinion Spam

Opinion spam is where users leave a review on an item, such as a hotel

or a good bought on Amazon.com, meant to be perceived as real in order to

deceive the reader. It has become common for companies to hire people to

write positive reviews to outshine some of the negative ones; another tactic is

to use automatic bots programmed to leave positive reviews. In other cases,

these reviews may be used to promote or demote a different, but similar,

product. Many human users are unable to determine whether a review is real
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or fake, but consumers would undoubtedly prefer to read true reviews when

determining whether to purchase a product.

Within opinion spam detection, researchers have access to what is con-

sidered the gold standard data set created by Ott, Choi, Cardie, & Hancock

(2011). This data set was constructed to contain 400 truthful and 400 gold

standard deceptive positive reviews. To create these gold standard deceptive

reviews, the authors enlisted the work to a marketplace of small tasks to be

completed by people with basic programming skills. Each person was only

allowed to submit one entry to ensure each review was done by a unique user.

Each user was assigned a name and website of a hotel (one of the top 20

Chicago hotels). They were asked to pretend they worked for the marketing

department of the hotel, and their boss asked them to write a review. For the

truthful reviews, the authors collected reviews from the same top 20 Chicago

hotels. After eliminating reviews that were not 5 stars, not English, less than

150 characters, and reviews written by first-time authors, the authors were left

with 2,124 truthful reviews. To select 400, the authors made sure the document

lengths were similarly distributed as the collected deceptive reviews. To model

the distribution of document lengths, a log-normal distribution truncated at

150 characters was used. A log-normal has been shown to be an appropriate

model for document lengths (Serrano, Flammini, & Menczer, 2009).

Ott et al. (2011) focused their research on comparing the use of n-grams

to keyword based detection in classifying reviews. A n-gram is a set of features

from the document, where the feature(s) could be a word or group of words.

A unigram is a single word, where a bigram is a set of two words (Kwartler,

2017). In the work of Ott et al. (2011), a unigram and a bigram are used, and
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Table 3.1: The accuracy results of the SVM classifier used by Ott et al. (2011).

Accuracy
Keyword-based 0.768
Unigrams 0.884
Bigrams 0.896
Keyword-based + bigrams 0.898

in each case, the words are lowercase and left unstemmed. Unstemmed words,

such as “like” and “liking,” are not treated as the same word because the “-

ing” part is not dropped from the word. For their keyword based detection

approach, the authors use a software, Linguistic Inquiry and Word Count, that

is popular in social sciences. The software contains a list of 4500 keywords that

have been grouped into 80 psychologically meaningful dimensions. Each of

the 80 dimensions are used as a single feature of the review. A support vector

machine was used as a classifier with both the n-gram approach and keyword-

based approach to classifying reviews. Their results on the gold-standard data

set they collected are summarized in Table 3.1. Unigrams and bigrams on their

own improved the accuracy by over 10% when compared to the keyword-based

approach. Combining bigrams with the keyword-based approach only offered

minor improvement over bigrams alone. They determined using the actual

words, or n-grams, improves the ability to accurately determine if a review is

real or fake.

Ott et al. (2011) examined only positive leaning reviews. In a follow-up

study, Ott, Cardie, & Hancock (2013) created a gold-standard data set for neg-

ative reviews, employing a similar methodology as the positive reviews. The

n-gram based classification of reviews produce similar results as the positive

reviews of Ott et al. (2011). Subsequent studies (Ahmed, Traore, & Saad,
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2017; Shojaee, Murad, Azman, Sharef, & Nadali, 2013) utilize a combined

data set of both positive and negative reviews.

Shojaee et al. (2013) adopted 234 stylometeric features, broadly catego-

rized into character-based lexical, word-based lexical, and syntatic features.

Character-based lexical features consist of character count, ratio of digits to

character count, ratio of letters to characters, and many more; there are a total

of 52 of these features. Word-based features include total number of tokens,

average sentence length in terms of characters, average token length, and an

additional 22 features. For the syntatic features, they count the occurrence

of punctations (7 features) and occurrences of 150 function words defined in

Zheng, Li, Chen, & Huang (2006). For a full list of features explored, see Sho-

jaee et al. (2013). Naive Bayes and Support Vector Machine with Sequential

Minimal Optimization with a polynomial kernel (SVM with SMO) are utilized

in order to classify the reviews of the hotels. SMO is an algorithm to efficiently

solve the optimization problem when training a SVM. Shojaee et al. (2013)

use these methods in three feature spaces: lexical (both character-based and

word-based), syntatic, and then the full set. For all three of these different

feature sets, SVM with SMO outperformed Naive Bayes, with the use of all

234 stylometeric features performing the best at an accuracy of 84%. Syntactic

features alone performed the worst for both classification methods (Shojaee et

al., 2013). Thus, even with 234 stylometeric features, the accuracy was lower

than the 89.8% reported by Ott et al. (2011). This seems to imply n-grams

perform the best at distinguishing between real and fake reviews, though this

difference could be due to the combined positive and negative review data set.

Ahmed et al. (2017) worked on a method that built from the basic n-
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gram and hopefully improved accuracy using the data set containing both

positive and negative reviews from Ott et al. (2011) and Ott et al. (2013).

Using n-grams varying from n = 1 to 4, the term frequency (TF) and the

term frequency-inverted document frequency (TF-IDF) are calculated. The

TF is a measure of the observed probability of a n-gram appearing within

a certain document. They count how many times a n-gram appears in the

document and divide by the total number of n-grams within the document.

The TF-IDF metric is discussed in Chapter 2.1.1. Using the Python natural

language toolkit, Ahmed et al. (2017) compare classification using stochastic

gradient descent, support vector machine, linear support vector machine, K-

nearest neighbor, logistic regression, and decision trees. Only the top features

were used and were selected using the TF and TF-IDF criteria, varying the

threshold of inclusion from 1000 to 50,000 n-grams. The highest accuracy

(90%) in distinguishing real and fake reviews was achieved using linear support

vector machines and ten thousand bigrams (n = 2). Thus, the Ahmed et al.

(2017) were able to improve on the 84% accuracy reported in Shojaee et al.

(2013). Thus, it appears using the TF and TF-IDF based on the n-grams

provides improvement.

3.2 Fake News Detection

There are two main approaches researchers have used to facilitate the

classification of fake news utilizing the news contents: knowledge-based and

style-based. In Shu et al. (2017), both approaches are reviewed. Knowledge-

based approaches utilize fact checking of the major claims in a news article.

There are three major categories for fact checking: expertise, crowd sourcing,
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and computational. Expert-oriented methods use the expertise of a person in

the related field to the news article. This method is extremely time consuming

and demands a lot of contacts and pooled, intellectual resources. It is therefore

not feasible for large data sets. The second method is the use of crowd sourcing

information from regular people who may not be experts in a specific area.

Commonly, this data is acquired through the reporting of suspicious articles

on social media or through comments made on a particular section of a news

article on websites dedicated to detecting fake news. The crowd sourcing

method combines these reports and comments to gauge the truthfulness of

an article. Unfortunately, there is no guarantee the crowd is being objective.

This method can only offer an overall assessment. The last method of fact

checking is computational-oriented. This method attempts to automatically

detect false claims by comparing statements from an article of interest to

already established statements of truth. One way to gather statements of

truth is through references made on open web sources already verified by an

expert (Shu et al., 2017).

In style-based approaches, researchers look at stylistic differences in writ-

ing between fake and real news. Since fake news spreads misleading, distorted

information, the writing style used by authors of fake news will be different

than the writing style used by authors of real news. Authors of fake news want

to manipulate information to deceive the reader. Therefore, researchers have

explored the possibility of detecting these stylistic differences automatically

in news articles. Two methods have been proposed: deception-oriented or

objectivity-oriented methods. A deception-oriented stylometric method is one

that attempts to capture the untruthful (deceptive) statements in an article.
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One way this method approaches deception detection is by looking for struc-

tural differences between deceptive and truthful sentences. An objectivity-

oriented method looks for stylistic differences between real and fake news that

indicate a decreased neutrality of the news content. Real news is meant to

present the facts and not spin them to mislead readers. Therefore, the further

an article is from neutrality, the more likely it is fake news. These stylistic

differences can be measured utilizing linguistic features (Shu et al., 2017).

Knowledge-based approaches tend to heavily rely on experts as well as a

lot of trust in the overall mass of readers of the articles, and are limited to a

specific skill-set of the experts. Taking a learning method and applying it to

articles outside of the specific news content would not work since the knowl-

edge (experts) needed for different contents are needed. For instance, news

about politics would require different experts then news about medicine. Ad-

ditionally, knowledge-based approaches can only be applied after publication

and are typically slow. Many of the automatic approaches already developed

require a data set labeled by an expert. It would be useful to develop meth-

ods solely based on the writing style of an article as a writing style can be

learned for any genre article. Style-based approaches could be applied before

an article goes viral (i.e. has been shared among social media members many,

many times). Between the two approaches, style-based seems to be more ro-

bust in terms of classifying fake news (Shu et al., 2017). Researchers such as

Horne & Adali (2017) and Potthast & Kiesel (2018) have applied style-based

approaches to data sets containing political news content. However, they dis-

agree on the ability of style-based approaches in predicting fake news. We

should note writing style can differ based on the topic as well as the outlet of
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the news content. Exploring how those writing styles differ between topics,

such as politics and medicine, or news outlets, such as NY Times and Wall

Street Journal, could be a potential route for future studies but is not explored

in this dissertation.

Both Horne & Adali (2017) and Potthast & Kiesel (2018) utilized data

sets collected by BuzzFeed in 2016, but the data sets were different in terms

of collection and ground truth. The BuzzFeed-Webis Fake News Corpus 2016,

employed by Potthast & Kiesel (2018), contains a total of nine publishers,

of which six are prolific hyper-partisan sources (equally split between right-

wing and left-wing politics) and three are mainstream. All publishers selected

earned a blue check-mark on Facebook; this blue check-mark indicates to a

social media user the publisher is an authentic source, elevating the status

of the publisher. The articles were published on seven workdays close to the

United States Presidential Election in 2016. These seven dates are specifically

September 19-23, 26, and 27.

The articles contained in the BuzzFeed-Webis Fake News Corpus 2016

were all fact-checked by BuzzFeed journalists. Two journalists would review

an article, and then they would rate it as either “mostly true,” “mostly false,”

“mixture of true and false,” and “no factual content.” Journalists were given

the following guidelines:

• A rating of “mostly true” is given when the article and any included links

or images with the article are based on fact. This information is pre-

sented accurately. Authors are able to interpret the factual information

as they please, just as long as they do not misrepresent the information.

This means they cannot make unsupported claims and speculations.
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• A rating of “mixture of true and false” contains factually accurate infor-

mation, but there are elements of unsupported claims and speculation.

This label is used when the title of the article contains a false claim, and

the associated article contains accurate presentation of information. This

rating is only used when the false information is approximately equal to

the true information, and when authors’ use unconfirmed information.

• A rating of “mostly false” consists of articles where most or all of the

information presented is inaccurate.

• A rating of “no factual content” consists of mostly satirical and pure

opinion articles. This category is also used for comics, videos, and social

media posts of the “Like this if you think…” variety.

If a reviewer gives a rating of “mostly false” or “mixture of true or false,”

the reviewer has to justify the rating. If there was doubt regarding a rating or

a disagreement between the two reviewers, a third was consulted. An article

being given a “mostly false” rating was given one final check to make sure the

rating was justified in case a publisher were to argue. In the news industry,

long-term publishers update their websites frequently. Therefore, in order to

maintain access to the corpus created by BuzzFeed, Potthast & Kiesel (2018)

archived posts, linked articles, and other data. Of the original data set, 1627

articles were recovered: 826 mainstream (ABC News, CNN, Politico), 256 left-

wing (Addicting Info, Occupy Democrats, The Other 98%), and 545 right-wing

(Eagle Rising, Freedom Daily, Right Wing News). Figure 3.1 contains the

breakdown of the labels per source.
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Figure 3.1: The breakdown of labels given to the articles in the BuzzFeed
corpus (Potthast & Kiesel, 2018). There were no articles from mainstream
sources given a rating of mostly false. We can see majority of the false news
is coming from hyper-partisan sources.

Based on the corpus construction, it is clear there are imbalances between

the ratings. There are multiple ways of handling this imbalance, but one way

is to combine the rating of mixture of true and false with the rating of mostly

false (Potthast & Kiesel, 2018). In practice, fake news is hardly ever presented

without some kernel of truth. Typically, all articles given a rating of n/a were

disregarded, unless they were deemed satirical writing. After this, Potthast

& Kiesel (2018) gathered different stylistic features. These features include n-

grams of size 1 to 3 (of characters, stop words, and parts-of-speech), readability

scores, dictionary features (frequency of words), ratio of quoted words and

external links, number of paragraphs, and average length. A random forest

was implemented for classification.
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When attempting to classify news as either fake or real, all articles written

by mainstream portals were disregarded as none of those articles had been

labelled as mostly false and very few were labelled as a mixture. Thus, only

hyper-partisan news was used to develop the classifier. Predictions were made

across the orientation of an article as well as based on orientation-specific

information. However, the probability of correctly classifying a statement

based on stylistic features was only 55% for both sets of predictions. Thus,

Potthast & Kiesel (2018) concluded style-based fake news classification is not

very useful in general.

By combining the ratings of “mixture of true and false” with “mostly

false,” an aspect of “mixture of true and false” has been ignored: articles with a

false/misleading headline but largely accurate content. If the bulk of the article

itself is true, then this could affect the accuracy of the resulting classifier. The

classifier will be trained to understand an actually mostly true article under

a classification label of mostly false. Therefore, it seems logical to include the

information from titles in the classifier in hopes there is improvement since

the misleading information will now be included, which was done by Horne &

Adali (2017). The data used by Horne & Adali (2017) was from BuzzFeed, but

it was at a smaller scale of the BuzzFeed-Webis Fake News Corpus 2016 and

collected slightly differently. The data set contains only articles receiving high

engagement on social media (i.e. lots of comments, shares, likes, etc.), and

they were collected from known fake and real news sources. They collected

60 real and 60 fake articles, but they filtered out opinion based and satirical

articles. After filtering, there were only 36 real and 35 fake articles (Horne &

Adali, 2017). Taking ground truth as the portal it came from was clearly not
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accurate, based on the breakdown of the article classifications seen earlier by

Potthast & Kiesel (2018).

The stylistic features used in this study, measured for both articles and

titles, consist of the number of part of speech tags, stop words, punctua-

tion, quotes, negations, informal/swear words, interrogatives, and words in

all capital letters. They also included “complexity” features such as number

of words per sentence, readability scores, and ratio of unique words to total

words (Horne & Adali, 2017). Because there are a lot of features to use to

build a classifier, the authors conducted multiple one-way ANOVA tests (or a

Wilcoxon rank sum when the normality assumption failed) to determine which

features were significantly different between real and fake news. After deter-

mining the top 4 features that were significantly different between real and

fake news articles and titles, a Support Vector Machine with a linear kernel

model was fit to identify real and fake news. The top 4 features found for

articles were the number of nouns, ratio of unique words to total words, word

count, and number of quotes; the SVM model achieved 77% accuracy. The top

4 features found for titles were the number of nouns, percent of stop words,

average word length, and the readability score measured by the Flesh-Kincaid

grade level index; the SVM model achieved 71% accuracy (Horne & Adali,

2017). The features Horne & Adali (2017) explore are easily manipulated.

Thus, developing classifiers based on these features may not be useful for very

long because authors can change their writing styles (Potthast & Kiesel, 2018).

In Section 3.1, Ahmed et al. (2017) was discussed in regards to detection

of opinion spam. In the paper, they also explored their methods and how they

would apply to fake news detection. For their news data set, they combine a
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data set containing only fake news from websites that PolitiFact deemed un-

reliable (available at kaggle.com) and a data set collected from Reuters.com,

which is considered to be reliable and true. All articles were related to po-

litical news topics. They achieved results indicating TF-IDF performs better

than TF and found unigrams with a linear-based classifier provided the best

performance. With 50,000 of the top features, TF-IDF, and unigrams, they

achieved a 92% classification accuracy. In contrast to the opinion spam detec-

tion, not much accuracy is lost between bigrams and trigrams. Only fourgrams

caused a drastic drop in accuracy. On the BuzzFeed data set used in Horne &

Adali (2017), Ahmed et al. (2017) achieved a classification accuracy of 87%

using linear SVM and unigrams. This greatly outperforms the results seen in

Horne & Adali (2017) and demonstrates n-grams may outperform text-based

features.

Based on the success of n-grams in the classification of fake news, it is of

interest to explore how capturing the context of a word effects classification.

With n-grams, we can assume some sort of context is captured in the win-

dow. Through multiple natural language process methods, such as Word2Vec,

GloVe, and BERT, the context of word is captured in the word embeddings

they create. Thus, it seems to be a reasonable hypothesis these methods should

outperform the traditional bag-of-words methods. We hypothesize the indi-

vidual word embedding methods will distinguish between real and fake news,

indicating word choice alone is different between them.
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Chapter 4

PolitiFact Data

The methods explained previously will be compared based on their stan-

dalone ability to classify fake news. We are only interested in how well words

and the relationships between words can be used to classify real and fake news.

To complete this task, we will be using a data set from PolitiFact.

In order to combat fake news related to or spread by politicians, the non-

profit, nonpartisan company PolitiFact was formed. PolitiFact is owned by the

non-profit Poynter Institute for Media Studies, which is the parent company

to Tampa Bay Times. PolitiFact developed the Truth-O-Meter rating system

to evaluate statements made by politicians. This rating system contains six

different levels: true, mostly true, half true, mostly false, false, and pants on

fire. A rating of true indicates the statement is accurate with nothing signif-

icant missing. Mostly true signals the statement is accurate, but it requires

clarification and additional information. If the statement is partially accurate,

it receives a rating of half true. It is either missing an important detail or

takes something out of context. A mostly false statement has an element of

truth in it, but it ignores a critical fact that gives a different impression. An

inaccurate statement is given a rating of false. Lastly, a rating of pants on fire
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is also not accurate but in turn makes a ridiculous claim (Holan, 2020). Note,

in the data set we are using, mostly false is instead labeled “barely true.”

Each statement goes through the same, extensive review process. The as-

signing editor gives a reporter a statement flagged for fact checking. Based

on the information available at the time the statement was made, the re-

porter conducts research to support their rating. This review is conducted

using primary sources and original documentation, requiring direct access to

government reports, academic studies, etc. The reporter must only rely on in-

formation they can verify independently. After the reporter makes a decision

on what they believe would be the correct rating, they return to the assigning

editor, and the two of them come to an agreement on the rating (Holan, 2020).

Once an agreement has been reached between the assigning editor and the

reporter, the assigning editor takes their agreed upon rating to two additional

editors. The three editors and the reporter discuss four major questions:

• Is the statement literally true?

• Is there another way to interpret the statement? Is it open to interpre-

tation?

• Does the speaker of the statement provide any evidence and prove the

statement to be true?

• How has PolitiFact handled previous, similar statements?

After discussion, the three editors vote on a rating, which is either the

original rating the reporter gave or a vote to change it. Only 2 editors are

needed to pass a rating on a statement (Holan, 2020). Thus not all ratings are

agreed upon unanimously before getting published on PolitiFact’s website.
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As one can see, a statement is thoroughly vetted before the report is

published for public viewing. PolitiFact decides which statements they will

review based on submissions from the public in addition to any statements

journalists feel need to be fact checked. They check statements they feel are

the most significant and newsworthy. As with the vetting of statements, there

is a checklist a statement must meet in order to even be considered (Holan,

2020):

1. The statement is verifiable and rooted in fact. If the statement is opinion,

it is not reviewed. As these are statements by politicians, PolitiFact

editors do allow for some hyperbole, as long as the hyperbole is not

misleading.

2. Is the statement misleading or does it sound wrong?

3. If the statement is significant, would a typical person wonder if the

statement is true?

4. Does the statement appear to be one that will be passed on and repeated?

This is the critical idea behind fake news as defined earlier. There are

specific types of statements that will spread faster and further than others. If

a statement appears to likely be spread, it is important to fact check it as soon

as possible.

PolitiFact is a non-profit organization, which operates solely from dona-

tions. This can lead to a conflict of interest when choosing statements, but

PolitiFact has a very strict code of conduct for their journalists in addition to

disclosing donations of a certain size. PolitiFact journalists are to avoid public

expression of political opinion and public involvement in public processes such
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Real Fake
FNN 8767 (50.6%) 8557 (49.4%) 17324
LIAR 2403 (13.9%) 3096 (17.9%) 3268 (18.9%) 2897 (16.7%) 3648 (21.1%) 2012 (11.6%) 17324

True Mostly
True

Half
True

Barely
True False Pants on

Fire

Table 4.1: Breakdown of label frequency. 259 statements in LIAR but not
FNN were exclued from the analysis.

as voting. This applies to all full-time staffers, correspondents, and interns.

To remain nonpartisan, they try to select equal number of statements made

by Democrats and Republicans, but the political party in power does tend to

be fact checked more often (Holan, 2020). People and companies who make

large donations are named on their website.

Based on the credibility of PolitiFact and their rating process, Sadeghi,

Jalaly Bidgoly, & Amirkhani (2020) collected statements and ratings available

on the website from 2007 to April 26, 2020. They created two data sets; the

first maintains the original labels given by PolitiFact, which was denoted as the

LIAR data set. The second places the labels into two groups: real and fake.

“Real” is given to statements receiving a true, mostly true, or half true rating.

“Fake” is given to statements that received a mostly false, false, and pants

on fire rating. This data set was labeled as the Fake News Net (FNN). We

will use the FNN data for Chapters 5 and 6, where we evaluate performance

of a binary classifier. The LIAR data containing original PolitiFact ratings

will be explored in Chapter 7. The researchers who collected the data already

randomly split the set into training, validation, and evaluation data sets. In

order to avoid potential bias from the researchers, all three sets were combined,

and we created our own split for training and evaluation based on a preset and

recorded seed.
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The breakdown of the data set is found in Table 4.1. Using their data set,

we extract the statements PolitiFact placed under investigation and the classi-

fication label given to it. We ignore the research done by PolitiFact journalists

which supports why a given rating was given. We remove all punctuation,

new line spacing syntax, and all non-alphanumeric symbols for all parts of

this dissertation. Other data preprocessing methods are explicitly explained

in future chapters.



49

Chapter 5

Comparing Methods for Classifying Fake News

In this chapter, we compare the word embedding methods’ ability to cap-

ture textual information by comparing their stand alone ability to classify fake

news utilizing the PolitiFact FNN data set. We will additionally be compar-

ing how well these different classification methods work using multiple perfor-

mance metrics. We ignore other stylistic features, such as number of nouns,

punctuation, etc. We want to know purely how treating words as indepen-

dent versus capturing relationships between words affects this classification.

Note we are assuming each dimension of PCA, both Continuous Bag of Words

(CBoW) and Skip-Gram (SG) Word2Vec models, GloVe, and BERT are not

highly correlated as this is an assumption of the classification methods used.

The use of embedding methods with respect to the classification models are

described later in this chapter. We will first review the classification methods

utilized in this dissertation and then explore the results of the embedding and

classification methods.
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5.1 Classification Methods

Multiple classification analyses are applied to compare each embedding

methods to determine if a specific classification analysis and embedding

method combination works better at classifying fake news. We treat the

response as binary as follows:

Y =

 1 D ∈ Real

0 Otherwise

where D is the document. Methods include logistic regression, linear dis-

criminant analysis, quadratic discriminant analysis, mixture discriminant anal-

ysis, flexible discriminant analysis, classification tree, and random forest. We

explore the performance of the common classification methods with classifying

our binary response. As stated in Chapter 4, a classification of “Fake” actually

consists of multiple labels from PolitiFact, as does “Real.” Thus, extending

past a binary response for some of these classification methods is of interest,

and this will be explored in Chapter 7.

Predictor variables for each classification method are defined as follows.

With Bag of Words and TF-IDF, the predictors are the frequency value or

the TF-IDF value of each unique word in the vocabulary of the collection,

respectively. For PCA, CBoW, SG, GloVe, and BERT, we find individual

vectors for each unique word in the vocabulary, which are the length of the

dimension embedded. To get statement level embeddings, for each word in the

statement, we use element-wise addition to sum together the individual word

vectors. Each embedded dimension is used as a predictor variable.
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5.1.1 Logistic Regression

Logistic regression is an approach for a categorical response variable. The

purpose of logistic regression is to predict the probability of an observation

being in group 1, or in our case, the probability of a document being real news.

We do this by fitting the logit to our typical regression model as follows:

log
(

pi
1− pi

)
= x′

ib

where pi is the probability of being in group i, xi are the predictors used

to estimate the logit, and b are the parameters associated with each predictor.

Maximum likelihood is used to estimate b.

To train the regression model, we utilize observations where group mem-

bership is known to get estimates of b. We test how well the logistic regression

model is working by using observations of “unknown” group membership and

predicting the probability of being in group 1.

Unlike other classification methods, logistic regression does not minimize

the expected cost of misclassification. Sometimes classifying an observation as

being in group 1 when it is really in group 2 can be costly. In our case, this is

equivalent to classifying a statement as real news when it really is fake news.

We need to decide which direction of misclassification is more costly (Johnson

& Wichern, 2008). Currently, we are assuming the cost of misclassification is

the same. Is the cost of classifying real news as fake worse than classifying fake

news as real? Both directions have different, but significant, consequences.

With both types of misclassification, people are going to have a hard time

trusting real, actual facts. It is believed treating the cost of misclassification
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as the same is reasonable for this dissertation.

5.1.2 Discriminant Analyses

Multiple discriminant analyses are executed in the attempt to classify fake

news. There are two goals of a discriminant analysis. The first is to develop a

discriminant rule to separate the groups as much as possible, and the second is

to use this rule to classify observations with an “unknown” group membership

(Johnson & Wichern, 2008). This is different from logistic regression as it has

a deterministic prediction of group classification. Logistic regression provides

a probability of group 1 membership, and the user must determine a cutoff

threshold.

Linear discriminant analysis (LDA) creates a linear function from all pre-

dictor variables to classify the response as best as possible. This linear function

is found by maximizing the difference between the means of group 1 and group

2. A new observation is classified based on the closest group mean. In LDA,

we assume the observation vectors are N(µ
i
,Σ), where µ

i
is the mean vec-

tor of the ith group. It is also assumed Σ = Σ1 = Σ2. In other words, we

have homogeneous covariance matrices across group membership. Additional

assumptions include equal cost of misclassification, and the prior probability

of group membership is equally likely. If we believe the last two assumptions

are violated, the discriminant rule can be updated accordingly (Johnson &

Wichern, 2008). As discussed earlier, the assumption about the cost of mis-

classification being equal seems to make sense when trying to classify fake

news. Based on the PolitiFact FNN data set, where we have approximately

50/50 real and fake labels, the prior chance of group membership is also rea-



53

sonable. However, it is important to note this assumption may not extend

outside of this data set since it is unclear how much fake news is actually in

the population of political statements. Generalization is not possible.

As noted, covariance matrices are assumed to be homogeneous between the

two groups, but there are times this assumption might be in question. In those

cases, quadratic discriminant analysis (QDA) can be utilized. We now assume

the observation vectors are N(µ
i
,Σi), where where µ

i
is the mean vector of

the ith group and Σi is the covariance matrix of the ith group. We now have

the ability to assume Σ1 ̸= Σ2. We maintain the assumption of the prior

probability of group membership being equal, and the cost of misclassification

being equal. If the covariance matrices are in fact equal, QDA reduces to LDA

(Johnson & Wichern, 2008).

Additionally, in LDA, we assume observations from each class are from a

single Gaussian distribution. However, Hastie & Tibshirani (1996) proposed

this might be too restrictive in some cases, and some observations actually

come from a mixture of Gaussian distributions. The class/group is actually

made up of subclasses that are N(µ
ji
,Σ), where µ

ji
is the mean vector for the

jth subclass of the iih group. We assume each subclass has the same covariance

structure. This type of discriminant analysis is called Mixture Discriminant

Analysis (MDA). In Figure 5.1, this idea of Gaussian mixtures is presented

visually for two groups. Group 1, presented in blue, is a mixture of two

Gaussians, and Group 2 is a mixture of three. Each Gaussian has a common

variance of 3 (Li, 2017).

Finally, Flexible Discriminant Analysis (FDA) is also applied, as this form

of discriminant analysis allows for a non-parametric approach to finding the
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Figure 5.1: A two-class example of Gaussian mixtures from Li (2017)

boundary between the two groups (Hastie, Tibshirani, & Buja, 1994). This

method applies non-parametric regression approaches, such as splines, in order

to estimate non-linear boundaries between the groups. This allows for more

flexibility with the assumptions of LDA, QDA, and MDA as we no longer rely

on the Gaussian distribution. Essentially, FDA performs a version of LDA in

an extended space, and then projects it back down into two dimensions, which

is the archetype of Support Vector Machines (Hastie, Tibshirani, & Friedman,

2009).

5.1.3 Classification Trees and Random Forests

One of the final classification methods exploited is a classification tree. A

classification tree is a set of if/then logic statements to determine group mem-

bership of an observation. These are a useful tool to assist in classification as

the approach is non-parametric and non-linear. A classification tree consists
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of multiple nodes, where each node consists of a logical if/then statement.

Since they just consist of these logic statements, we do not have the underly-

ing assumption of a linear relationship between the predictors and response.

Usually, a classification tree only results in a few nodes, and those nodes show

which predictor variables seem to relate most with the response. Classifica-

tion trees are sometimes simpler to interpret than some of the other methods

discussed above (Sungur, 2011).

Classification trees are “grown” through binary recursive partitioning. We

start at the base node, and if we meet the condition, we follow branch one. If we

do not meet the condition, we follow branch 2. Within both of these branches,

a new logical statement occurs. In other words, the if/then statement at the

node on branch one may not be the same statement as on branch two. The

tree continues to branch until one reaches a good stopping point. One common

issue with classification trees is over-fitting. If you let the tree continue to

“grow” as tall as possible, it will potentially create a rule to fit every single

observation perfectly. Thus, typically you grow the tree to that point and then

“prune” the tree by collapsing nodes to avoid over-fitting the data (Sungur,

2011).

With a classification tree, there is no guarantee the tree you grow is the

“best” tree. To combat this issue, random forests (RF) were developed. A

random forest consists of many classification trees, which then vote on an

outcome. These trees are fit using subsets of variables and data, leading to

more robust outcomes during the tree growing process (Breiman & Cutler,

2004). This addresses the issue of a single classification tree by creating an

ensemble method resulting from multiple trees.
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(FN)
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Sensitivity/True Positive Rate Specificity/True Negative Rate Accuracy

Table 5.1: Confusion matrix for a binary response.

5.2 Applying the PolitiFact Data Set

For each classification and embedding method combination, four perfor-

mance metrics are utilized to measure the efficiency of classifying fake news:

accuracy, precision/positive predictive value, sensitivity/true positive rate,

and specificity/true negative rate. In Table 5.1, we see an outline of a confu-

sion matrix generated from a binary classification method. The four metrics

are calculated directly from this matrix as follows.

Accuracy =
TP + TN

TP + FP + FN + TN
(5.1)

Precision =
TP

TP + FP
(5.2)

Sensitivity =
TP

TP + FN
(5.3)

Specificity =
TN

TN + FP
(5.4)

Equation 5.1 measures the probability of correct classifications out of all
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classifications done by the method. Equation 5.2 is the probability of correctly

predicting a true real statement out of all statements predicted as real. If

precision is large, the more real news is being accurately predicted as real

(true positive). If precision is small, then more fake news is being predicted

incorrectly as real (false positive). Equation 5.3 is the probability of correctly

classifying a true real statement. If sensitivity is large, real news has been

correctly classified as real. If it is small, then real news has been incorrectly

classified as fake. Lastly, Equation 5.4 is the probability of correctly predicting

a fake label (DataTechNotes, 2019). If specificity is high, fake news has been

correctly identified as fake, whereas if it is small, fake news has been incorrectly

identified as real.

For this chapter, the PolitiFact FNN data set was cleaned with the fol-

lowing details. As a reminder, all punctuation, new line spacing syntax, and

all non-alphanumeric symbols are removed. Beyond this, all characters are

transformed to lower case letters, and any numbers are removed, such as year.

Common English words, called stop words, are removed as well. The list of

stop words within the tidytext package in R contains 1,149 words, such as

“she,” “her,” “problem,” and “member” as a few examples (Silge & Robinson,

2016). Lastly, any word appearing less than 5 times in the entire data set is

removed. The effect of some of these preprocessing measures will be explored

in Chapter 6. After preprocessing and randomly splitting the data set, we are

left with 13,852 documents in the training set and 3,463 documents in the test

set. Each classification model is trained with 10-fold cross-validation.

After these preprocessing methods, we are left with a total of 4,298 unique

words across both training and test sets. This means for Bag of Words and TF-
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IDF methods, classification methods have 4,298 predictor variables. However,

the matrices associated with both of these methods are highly sparse, even

with the data preprocessing steps taken, and many of the classification models

did not be converge due to the amount of zeros in the data. The only methods

which produced valid models were logistic regression and LDA, and even those

should be examined with caution.

With the PCA method, we found 1900 PCs were sufficient in explaining

90% of the document term matrix. Thus, we reduce the dimension to 1900,

and we use the method described in Section 2.1.2 to use this in our classifi-

cation methods. BERT by default embeds into 768 dimensions. As discussed

in Chapter 2, Word2Vec CBow, Word2Vec SG, and GloVe require the user to

specify the number of dimensions to embed. For these methods, 768 dimen-

sions was selected to compare to BERT in addition to popular choices of 100,

200, and 300 dimensions. Since all these methods involve reducing the number

of dimensions, we are left with a dense matrix with these embedding methods,

and all classification models can be fit with these embedding methods.
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Figure 5.2: Accuracy metric for each classification and embedding method
combination. Each classification method is represented by a letter. T is for
classification tree, and G is for logistic regression. All others are based on the
first letter of the method name.

Plots depicting accuracy, precision, sensitivity, and specificity for each

embedding and classification method are seen in Figures 5.2, 5.3, 5.4, and

5.5 respectively. Let’s first focus on accuracy. All methods perform simi-

larly at a little over 60%, except for the classification tree method. For the

classification models Bag of Words and TF-IDF work with, they consistently

under-perform compared to the other embedding methods. In Table 5.2, we

see SG300 performs the best when averaged over all the classification models

at 0.6089 (0.0227). We see, according to Table 5.3, QDA performs the best

averaged over all embedding methods at 0.6081 (0.0111). A more interesting

tidbit would be which combination produces the highest accuracy, which is

SG300 and LDA with 0.626. This can be seen Tables 5.4 and 5.5. Thus, no
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method significantly outperforms guessing whether a statement is real or fake

in overall accuracy.
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Figure 5.3: Precision metric for each classification and embedding method
combination.

As for how precise our classification models are performing per embedding

method, we see much the same as we did with accuracy. All method combina-

tions perform right around 60%. SG300 performs the best at 0.6075 (0.0238)

when averaged over all the classification models. QDA performs the best at

0.6079 (0.0207) averaged over all embedding methods. The highest precision

occurs for combination PCA and QDA with 0.6297. The probability of cor-

rectly classifying a true real statement out of all predicted real statements still

seems like the method is not doing much better than guessing if the statement

is real or fake.
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Figure 5.4: Sensitivity metric for each classification and embedding method
combination.

With the metric sensitivity, we start to see some interesting things. Clas-

sification trees produce sensitivity values over 60% for some methods, which

is somewhat surprising given its accuracy and precision results. One can also

see QDA performs very well. In fact, the maximum sensitivity value occurs

with the combination GloVe100 and QDA with 0.692. If you are interested in

predicting real news correctly out of all actual real news, the previous com-

bination would perform the best for this objective. On average, GloVe100,

with a value of 0.6129 (0.0441), is the highest across all classification methods.

Across all the embedding methods, RF performs the best on average at 0.5972

(0.0246). However, it is not expected these averages are different from the

other methods for both embedding and classification methods.
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Figure 5.5: Specificity metric for each classification and embedding method
combination.

Lastly, with the specificity metric, we can find the combination that de-

tected fake news the best. This combination was CBoW768 and QDA with

0.7043. We have decent success in correctly classifying fake news. We can also

look at the averages for the embedding methods and classification methods.

Across the classification methods, SG768 was best with a value of 0.6296 on

average (0.0287). Then, on average, QDA performs the best across the em-

bedding methods at 0.6219 (0.0624). Yet again, it is not expected, however,

for these averages to be different from one another for both the embedding

and classification methods.

If we take into account the sensitivity and specificity metrics, it appears

we may have some good combinations of embedding methods and classifica-

tion methods if one is interested in predicting real news or fake news well
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respectively. However, we need to look at these results together. With the

QDA classification method and GloVe in 100 dimensions, we had a pretty

high sensitivity rate compared to other classification and embedding methods.

When we look at specificity, the rate for QDA and GloVe in 100 dimensions

is the smallest, with a value below 50%. We see a similar reciprocal relation-

ship when looking at QDA and Word2Vec Continuous Bag of Words in 768

dimensions, except this time sensitivity is one of the lowest and specificity is

the highest. Classification trees also show a similar pattern of methods with

high sensitivity rates having low specificity. This indicates that for some em-

bedding methods, the classification method is not actually learning what the

difference is between real and fake news. The classification method is just

predicting majority of statements as being real for those high with sensitivity

and low specificity, or vice versa. This is something to keep in mind when

viewing these results.

From all these metrics, we see the most success in classifying fake news ac-

curately or real news accurately but only marginally for both. QDA appears

as part of the “best” combination for 3 out of the 4 metrics, leading us to

think the covariance matrix of each group is not equal. As was pointed out,

however, these maximum values we are seeing for sensitivity and specificity do

not tell the whole story. When looking at those metrics together, we start to

see a pattern evolving of the classification method just classifying every state-

ment one way or the other depending on the embedding method. Remember

we were wanting to see how well the different embedding methods performed

to know if capturing relationships between words improves these classification

performance metrics. We see there really is only marginal differences between
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the embedding methods themselves, as seen in Figures 5.2, 5.3, 5.4, and 5.5.

This leads one to believe that capturing the relationships between words may

slightly have an effect on the ability to classify news as real or fake as com-

pared to Bag of Words and TF-IDF but not so much to make a significant

difference. It is worth to note though that this comparison is only able to

be made with logistic regression and LDA. Capturing relationships does allow

for more efficiency in the fact we do not have to worry about sparsity and a

classification method being able to calculate all important metrics. Within the

classification methods where all the embedding methods capturing relation-

ships, GloVe appears to be performing the worst across the board on average.

The type of classification method does not seem to make much of a difference,

except not to use classification trees on their own.

We must keep in mind these results are depend on the data preprocessing

methods utilized. Recall we filtered out words appearing fewer than 5 times

across the data set, converted words to lower case, removed numbers, and

filtered out stop words. What if the stop words are used differently between

real and fake news? What about numbers? Capital letters? Is there too much

or too little filtering? These data preprocessing methods could potentially have

important ramifications on the results. With embedding methods capturing

relationships, every part of the preprocessing process impacts how the models

define relationships between words, which in turn affects the classification

method. We explore the effects of these data preprocessing decisions in the

next chapter.
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Table 5.2: Average metric value and standard deviation by word embedding
method

Accuracy Precision Sensitivity Specificity
Embedding Method Average SD Average SD Average SD Average SD
CBoW100 0.5989 0.0181 0.5963 0.0164 0.5801 0.0458 0.6173 0.0216
CBoW200 0.6046 0.0152 0.6006 0.0145 0.5955 0.0278 0.6135 0.0154
CBoW300 0.5996 0.0172 0.5954 0.0213 0.5974 0.0154 0.6018 0.0454
CBoW768 0.6028 0.0114 0.6026 0.0198 0.5844 0.0449 0.6208 0.0617
SG100 0.6047 0.0188 0.6011 0.0152 0.5917 0.0523 0.6174 0.0230
SG200 0.6008 0.0219 0.5974 0.0227 0.5892 0.0275 0.6122 0.0250
SG300 0.6089 0.0227 0.6075 0.0238 0.5892 0.0329 0.6281 0.0286
SG768 0.6026 0.0183 0.6025 0.0194 0.5748 0.0388 0.6296 0.0287
BagOfWords 0.5712 0.0037 0.5757 0.0027 0.5515 0.0106 0.5910 0.0033
TFIDF 0.5706 0.0008 0.5754 0.0016 0.5492 0.0041 0.5922 0.0057
BERT 0.6038 0.0188 0.6019 0.0239 0.5910 0.0160 0.6162 0.0494
PCA 0.5919 0.0134 0.5967 0.0220 0.5840 0.0372 0.5998 0.0609
GloVe100 0.5867 0.0131 0.5770 0.0122 0.6129 0.0441 0.5611 0.0340
GloVe200 0.5777 0.0157 0.5708 0.0144 0.5840 0.0357 0.5716 0.0182
GloVe300 0.5812 0.0236 0.5739 0.0230 0.5920 0.0262 0.5707 0.0235
GloVe768 0.5808 0.0283 0.5765 0.0296 0.5732 0.0283 0.5883 0.0346

Table 5.3: Average metric value and standard deviation by classification
method

Accuracy Precision Sensitivity Specificity
Classification Method Average SD Average SD Average SD Average SD
LogReg 0.6011 0.0144 0.5991 0.0141 0.5900 0.0164 0.6119 0.0218
LDA 0.6003 0.0151 0.5983 0.0146 0.5889 0.0201 0.6115 0.0222
QDA 0.6081 0.0111 0.6079 0.0207 0.5940 0.0482 0.6219 0.0624
MDA 0.5988 0.0144 0.5943 0.0152 0.5958 0.0226 0.6017 0.0246
FDA 0.5877 0.0123 0.5824 0.0138 0.5903 0.0156 0.5850 0.0289
Tree 0.5602 0.0151 0.5561 0.0163 0.5524 0.0568 0.5677 0.0516
RF 0.6080 0.0143 0.6053 0.0148 0.5972 0.0246 0.6187 0.0232
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Table 5.4: Maximum metric value by word embedding method

Embedding Method Accuracy Precision Sensitivity Specificity
CBoW100 0.6168 0.6181 0.6125 0.6455
CBoW200 0.6154 0.6134 0.6335 0.6313
CBoW300 0.6133 0.6170 0.6160 0.6524
CBoW768 0.6136 0.6276 0.6610 0.7043
SG100 0.6240 0.6217 0.6581 0.6461
SG200 0.6211 0.6181 0.6236 0.6513
SG300 0.6260 0.6267 0.6242 0.6684
SG768 0.6208 0.6281 0.6189 0.6826
BagOfWords 0.5738 0.5776 0.5590 0.5933
TFIDF 0.5712 0.5765 0.5521 0.5962
BERT 0.6223 0.6279 0.6230 0.6655
PCA 0.6131 0.6297 0.6304 0.6715
GloVe100 0.6038 0.5968 0.6920 0.5970
GloVe200 0.5923 0.5851 0.6365 0.5845
GloVe300 0.6003 0.5937 0.6265 0.5953
GloVe768 0.6107 0.6084 0.5956 0.6256

Table 5.5: Maximum metric value by classification method

Classification Method Accuracy Precision Sensitivity Specificity
LogReg 0.6246 0.6252 0.6148 0.6490
LDA 0.6260 0.6267 0.6178 0.6501
QDA 0.6223 0.6297 0.6920 0.7043
MDA 0.6206 0.6160 0.6335 0.6461
FDA 0.6064 0.6052 0.6298 0.6273
Tree 0.5784 0.5745 0.6610 0.6461
RF 0.6240 0.6217 0.6242 0.6634
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Chapter 6

Effect of Text Preprocessing Methods

During natural language processes, there are many preprocessing methods

researchers use to make text easier to analyze. In this work, we have removed

all punctuation, new line spacing syntax, all non-alphanumeric symbols, stop

words, numbers, converted to lowercase, and filtering minimum number of

appearances. There are various rationales for using these preprocessing meth-

ods, but majority of these reasons boils down to reducing the complexity of

the text (Silge & Robinson, 2016). However, these preprocessing methods

may affect the ability to capture context of words as well as the ability to

classify fake news. In this chapter, we will explore the effects of removing stop

words and numbers, converting to lowercase, and filtering minimum number

of appearances.

6.1 Previous Literature on the Effect of Text Prepro-

cessing

The effect of preprocessing textual data has been briefly explored in areas

of text classification similar to fake news. In 2014, the effect of tokeniza-

tion, stop word removal, lowercase conversion, and stemming were explored



68

on emails (spam/not) and news (10 categories) in both the Turkish and En-

glish languages. Tokenization is the process of splitting the text into words or

phrases based on a specified dictionary, or in this case, the tokenization pro-

cess involves alphanumeric characters or just alphabetic characters. Stemming

is the process of obtaining the root of a word. For instance, with stemming,

the word “talk” and “talking” would be shortened to the root. Thus, “talking”

becomes “talk” and are counted as the same word. Tokenization, stop word

removal, and stemming algorithms are all dependent on the language of the

text (Uysal & Gunal, 2014).

Uysal & Gunal (2014) explore all 16 possible combinations of the text pre-

processing methods. Feature selection was completed using the chi-squared

method and only the top (most useful) features are maintained. They only

utilize a Support Vector Machine classifier, and compare the different combi-

nations based on the micro-F1 score (Uysal & Gunal, 2014). The F1 score

considers both precision and sensitivity measures. We can think of the F1

score as an average of precision and sensitivity, which allows us to get a more

well-rounded understanding of the model performance by taking these classi-

fication metrics into consideration at the same time. The micro-F1 score is

a global average of the F1 score (Leung, 2022). Thus, for the news data set,

Uysal & Gunal (2014) utilize the true positives, false positives, and false neg-

atives across all 10 classification groups globally. There does not appear to be

much difference in the minimum and maximum micro-F1 scores for the email

data sets, both in Turkish and English. However, for smaller feature sizes (10

and 20), the score appears much smaller than with larger feature sizes (1000

and 2000) with the news data set in both Turkish and English.
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With both the email and news data sets, Uysal & Gunal (2014) report

different combinations of preprocessing methods resulting in the minimum

and maximum of the micro-F1 score for each feature size. For the feature

size that produces the overall maximum score, they did perform a two-tailed

paired t-test and find the minimum and maximum scores are significantly

different for Turkish emails, Turkish news, English emails, and English news.

However, no other formal hypothesis testing was done. The authors conclude

different preprocessing methods significantly improve classification methods,

and it varies based on language, type of text classification (email or news),

and feature size (Uysal & Gunal, 2014). This conclusion is based primarily

on empirical evidence with no formal statistics. For instance, there were no

formal tests that the feature size makes a difference or for interaction effects

of the preprocessing methods. They also only consider a single classification

algorithm.

In another study regarding the effect of text preprocessing, the role of

n-grams, stop word removal, stemming, top feature selection based on two

different weighting schemes, and text normalization were all explored in rela-

tion to their effect on classifying reviews (Barushka & Hajek, 2019). The data

they used related to hotel reviews. They had a data set containing positive

reviews, both legitimate and fake and another containing negative reviews,

both legitimate and fake, related to multiple hotels. They compared the ef-

fects of the mentioned text preprocessing methods using three classification

methods: Naive Bayes (NB), Support Vector Machine (SVM), and a Neural

Network (NN). They create a baseline setting, consisting of the top 2000 tri-

grams found via the TF-IDF weighting scheme, stop word removal, stemming,



70

and document normalization. Document normalization is the process of ad-

justing the term frequencies such that the length of the document is taken into

account. In this review, we will only focus on the accuracy statistic reported

by Barushka & Hajek (2019). For positive and negative reviews, the baseline

preprocessing methods produced accuracies higher than 80% for all classifica-

tion methods. All but keeping stop words led to an increase in accuracy of

less than 1% (Barushka & Hajek, 2019). Interactions of these preprocessing

methods were not explored, and formal testing was not conducted.

6.2 Preprocessing Methods Explored

Stop words are typically removed during natural language processes due

to the assumption of their lack of information. In works discussed in Chapter

3, there were mixed results about the importance of stop words. Potthast

& Kiesel (2018) found stop words, as part of different stylistic features, may

not provide any informative data to detecting fake news, but Horne & Adali

(2017) discovered stop words might be informative, especially in the article

title. Logic dictates words such as “the” and “as” do not add to the overall

meaning of a sentence. However, it is worth exploring how words contained

within the 1,149 words in the tidytext package in R affect the meaning and

context of sentences (Silge & Robinson, 2016). For instance, some of the

words removed is “help,” “member,” and “problem.” While in general these

words may not provide much information, in political statements, it might.

Additionally, removing stop words may put words into the same window, which

would change how they are treated in Word2Vec, GloVe, and BERT. Filtering

of stop words is the first factor we will be exploring to examine its effect on
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fake news classification.

The second factor we will be exploring is the filtering of numbers. In

a recent study, there has been evidence people tend to remember numerical

information that fit their views of the world, even if those numbers are false.

Additionally, in the same study, as this numerical information is passed person-

to-person, the distortion of these numbers becomes worse (Coronel, Poulsen,

& Sweitzer, 2019). This holds the potential for dramatic effects in political

statements. Therefore, including numbers in our study on the effect of data

preprocessing on text seems to be important.

Another preprocessing method commonly used in natural language pro-

cesses is converting all characters to lowercase. Converting to lowercase makes

sense with words at the start of the sentence. For instance, take the first sen-

tence of this paragraph; the first word is “Another.” It does not make sense to

treat “Another” and “another” as different words. However, when it comes to

proper nouns, this distinction might be significant. As an example, if a pos-

sessive, proper noun such as “President Trump’s” is used, based on the fact we

are removing punctuation, converting to lowercase would look like “president

trumps.” Now, suppose there is another statement using “trumps” in a manner

such as “this policy trumps that one.” A proper noun and a verb are going to

be treated as the same word in majority of the embedding methods, with the

exception of BERT (see Section 2.4). Thus, it is of interest to explore the effect

of converting all characters to lowercase on classification and embedding.

Lastly, another common preprocessing method is filtering out words that

do not appear a minimum number of times across the collection of documents.

In this work, we filter out words at a minimum appearance of 5, 30, and
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60 times across all statements. We also include when no words are filtered

at all; this would include situations where a word only appears in a single

statement in our collection of 17,324 statements. In theory, filtering words

out not meeting a specified number of appearances removes uninformative (or

misspelled) words. However, we could be filtering out words that would help us

distinguish between real and fake news. We explore if we are actually filtering

out informative words aiding in classification.

6.3 An Exploratory Analysis

6.3.1 Methods

Following the set-up used in Chapter 5, logistic regression, LDA, QDA,

MDA, FDA, classification trees, and random forest are all classification meth-

ods explored, and 10-fold cross-validation is used. We compare the effect of

classification on multiple embedding methods: PCA, Word2Vec CBoW (100,

200, 300, and 768 dimensions), Word2Vec SG (100, 200, 300, and 768 dimen-

sions), GloVe (100, 200, 300, and 768 dimensions), and BERT. Bag of Words

and TF-IDF are ignored in this chapter due to the computational issues re-

lated to the sparsity of these matrices. For each combination of classification

and embedding method, the following effects are investigated:

• stop word removal (yes/no)

• converting to lowercase (yes/no)

• filtering numbers (yes/no)

• filtering minimum number of appearances (0/5/30/60 words minimum).
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We are interested in only some subsets of the full 7 × 14 × 2 × 2 × 2 × 4

factorial. We will be focusing our analysis on the following effects:

• main effects

– classification method (C)

– embedding method (E)

– stop word removal (S)

– converting to lowercase (L)

– filtering numbers (N)

– filtering minimum number of appearances (F )

• two-way interactions

– C × E

– C × S

– C × L

– C ×N

– C × F

– E × S

– E × L

– E ×N

– E × F

• three-way interactions

– C × E × S

– C × E × L

– C × E ×N

– C × E × F
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We will compare each of these based on their effect on accuracy, precision,

sensitivity, and specificity.

It is important to note we lack replication in this study; we only have

one observation per C × E × S × L × N × F combination. Thus, all other

interactions will be contained within the error of the model. In addition, due

to the large degrees of freedom for many of these interactions (error degrees of

freedom = 2,387), p-values will produce misleading results. The F-ratio will

provide more reliable understanding of the effects on our classification metrics

and training time. We will be focusing only on F-ratios greater than 2. We

will also be relying on visual exploration of the effects, which can be found in

Appendix A. In all plots, the black triangle is the median, and the grey circle

is the mean. We have used violin plots to explore our data. A violin plot

allows us to visualize the distribution of the observations. Since we see the

distribution of observations, we get to see how the variability is affected along

with the means and medians. This is more insight than a typical mean plot. It

is worth to note that for GloVe, Continuous Bag of Words, and Skip-Gram in

768 dimensions, there were computational issues with classification methods

QDA, MDA, and FDA when a minimum appearances of 60 was required. This

comes from trying to embed into more dimensions than unique words. As a

result, these results are exploratory only.

6.3.2 Accuracy

Let us first look at the effect of the classification method, embedding

method, and preprocessing methods on the accuracy of our model. Recall

accuracy is the probability of correctly classifying real and fake news overall
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Table 6.1: Effects of Accuracy

Effect Degrees of Freedom F-ratio
C 6 1425.005
E 13 86.977
S 1 1389.398
L 1 0.110
N 1 4.074
F 3 196.127
C x E 78 11.359
C x S 6 4.065
E x S 13 5.061
C x L 6 1.099
E x L 13 1.244
C x N 6 1.497
E x N 13 1.092
C x F 18 8.586
E x F 39 13.043
C x E x S 78 2.459
C x E x L 78 0.790
C x E x N 78 0.580
C x E x F 225 1.688

(see Equation 5.1). Results are in Table 6.1. Among the three-way inter-

actions, classification method, embedding method, and filtering of stop words

appears to have some impact with a F-ratio of 2.459. In Figure A.1, we can see

for every classification method, almost every embedding method is improved

in overall accuracy by not removing stop words. The only combination not

improved when stop words remain is a classification tree and PCA. Most of

the improvements are small and do not appear practical. Because almost all

methods are improved when stop words are kept and the differences are so sim-

ilar, this indicates visually no interaction between the classification method,

embedding method, and filtering of stop words.
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Examining Figure A.2, we see including stop words (FilterStopwords = No)

does increase the average accuracy rate across all classification methods. In

general, however, there does not actually appear to be an interaction, at least

visually, despite a F-ratio of 4.065 for the C×S interaction since keeping stop

words improves accuracy across all classification methods. The differences also

do not appear to be very large. We also see logistic regression and classification

trees are more skewed than other classification methods with their long tails

but not significantly as the median and the mean are approximately the same.

However, the long tails may be indicative of those methods not doing well (or

at least as consistent) in learning the difference between real and fake news.

In Figure A.3, we can see all embedding methods benefit with stop words

not being removed. The embedding methods BERT, PCA, and GloVe in

all dimensions seem to be aided the most when stop words are maintained

in terms of accuracy. Visually, we can only see the slightest of interactions,

with the difference in accuracy between keeping and removing stop words

for the Word2Vec embedding methods being smaller than the others (F-ratio

= 5.061). We see visual evidence of PCA being slightly more skewed when

stop words are maintained, indicating potential reliability issues. There is

more variability, which a firm statement about PCA and maintaining stop

words is difficult. If we combine this with what we saw in the three-way

interaction discussed before, this makes sense because PCA and classification

trees actually did better when stop words were removed. We can also see many

of the distributions of the observations are slightly skewed and have more than

a single mode. More than a single mode indicates there is inconsistency in

how well methods are classifying real and fake news overall. For a unimodal,
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skewed distribution, majority of the methods are doing well, but there are a

few outliers.

Classification method interacts with filtering threshold (F-ratio = 8.586).

In Figure A.4, we see filtering out words appearing less than 30 times is slightly

better in terms of accuracy per classification method, except for QDA. For

QDA, removing words not appearing a minimum of 5 times improves accuracy

slightly, and for random forests, filtering of a minimum of 30 performs the same

as with 60. However, there does not appear to be any practical significance

between any of the methods in regards to how accurate they are for the number

of words filtered out. Classification trees perform the worst regardless of the

filtering level. Filtering out words not appearing a minimum of 60 times has

quite a few outliers when using logistic regression. We believe this represents

the fact when removing words not appearing at least 60 times, we have fewer

than 768 words left in the corpus of statements. Thus, embedding into 768

dimensions is actually making dimensionality larger in this case instead of

smaller, and logistic regression is more sensitive to this issue than the other

methods.

The interaction between embedding method and removing words not ap-

pearing a minimum number of times has a F-ratio of 13.043. In Figure A.5,

BERT appears to do worse the more words we remove. There does not ap-

pear to be much difference between no filtering, filtering a minimum of 5, and

filtering a minimum of 30 with BERT. Conversely, GloVe performs better the

more words we filter out. In fact, across all dimensions of GloVe and with

PCA, there appears to be a significant increase in mean and median accuracy

the more words are filtered out. The Word2Vec methods are also increasing
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in accuracy but it is not as visually noticeable.

There is an effect of classification method by embedding method (F-ratio

= 11.359) . There does not appear to be one classification method and em-

bedding method greatly outperforming the other combinations (Figure A.6).

One can say for certain not to use classification trees. With PCA in particular,

the classification tree method is highly variable has quite of few outliers. Lo-

gistic regression with both Word2Vec methods in 768 dimension is performing

inconsistently. Majority of the observations are performing similarly to the

other classification methods, but there are several outliers affecting the mean.

Lastly, when we look at main effects, classification method, embedding

method, filtering stop words, and filtering words out appearing less than a min-

imum number of times have very high F-ratios at 1425.005, 86.977, 1389.398,

and 196.127 respectively. Filtering out numbers appears to be significant with

a F-ratio of 4.074. For the classification methods, random forest seems to per-

form the best, though this method does not appear to be practically different

from LDA, logistic regression, MDA, and QDA (Figure A.7). This is still seen

in the medians. The methods of FDA and classification tree do not perform

as well. As for embedding methods, we do not see many practical differences

between the methods in terms of the means. BERT appears has the highest

mean accuracy, followed by PCA (Figure A.8). The Word2Vec methods seem

to be performing similarly, with SG300 being the best, but not practically

different from BERT or PCA. GloVe under performs across all embedding

dimensions.

As we saw earlier, maintaining stop words improves accuracy (Figure A.9).

However, the difference is 0.0105918, which in the practical sense is not much
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of an improvement unless consumers are interested in a 1% increase. We can

see the distributions of observations between filtering stop words and not are

approximately the same, just shifted down when stop words are removed. In

terms of filtering words not appearing a specified amount of times, a minimum

appearance of 30 seems to perform best with an average of 0.6017579, though

this is only 0.0094509 higher than when we filter out no words (Figure A.10).

This does not seem very practical. We can see as more words are filtered

out, the longer the left tails of the distributions get. This indicates as more

words are removed, the more unreliable the classification gets (i.e. the more

outliers we observe). Lastly, while the F-ratio seems to indicate there is an

effect of filtering out numbers, the difference is only 5.7357702× 10−4 between

maintaining numbers and removing them (Figure A.11). This is not a practical

difference. When we are comparing the distributions resulting from filtering

numbers (or not), we can see more outliers occur when numbers are removed.

Overall, it appears the interaction of classification method, embedding

method, and filtering stop words is the most influential on the accuracy rate.

Maintaining stop words does improve the accuracy of the classification and

embedding method combinations. Unlike what we saw in the previous chap-

ter, there do appear to be some differences between the embedding methods

as a main effect. BERT appears visually to be outperforming the other em-

bedding methods when averaged across all other effects. As for classification

methods, FDA and classification trees appear to perform the worst in terms

of average accuracy. If a consumer or company is interested in maximizing

the probability of correctly classifying real and fake news overall, they should

maintain stop words, filter words out not appearing a minimum of 30 times, use
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Table 6.2: Effects of Precision

Effect Degrees of Freedom F-ratio
C 6 1126.108
E 13 156.542
S 1 835.244
L 1 12.680
N 1 0.020
F 3 17.048
C x E 78 13.202
C x S 6 11.891
E x S 13 6.576
C x L 6 0.887
E x L 13 1.199
C x N 6 2.814
E x N 13 2.089
C x F 18 71.954
E x F 39 15.850
C x E x S 78 2.170
C x E x L 78 0.726
C x E x N 78 1.077
C x E x F 225 3.334

the BERT embedding method, or use a random forest classification method.

Out of all C ×E × S × L×N × F combinations, logistic regression, PCA on

the document-term matrix, including stop words, maintaining capitalization,

keeping numbers, and filtering words not appearing a minimum of 60 times has

a maximum accuracy of 0.6395. However, as we observed, logistic regression

and PCA are both highly variable methods.

6.3.3 Precision

Precision is the probability of correctly predicting real news; see Equation

5.2. This value gives an indication of the precision of the predictions. If

the probability is high, then more real news is being predicted as real (true



81

positives), whereas if the probability is small, then more fake news is being

predicted as real (false positives). The effects on precision can be found in

Table 6.2. With the interaction between classification method, embedding

method, and filtering words not appearing a minimum number of appearances,

there is an effect on precision with a F-ratio of 3.334. QDA noticeably improves

precision for all Word2Vec methods when no words are removed from the

analysis as seen in Figure A.12. As more words are filtered out, PCA and

Random Forest appear to be performing better. GloVe across all classification

methods and dimensions seems to improve the more words are filtered out.

Similarly to the accuracy metric, we see there is possibly an effect on

precision from the interaction of classification, embedding, and filtering stop

words with a F-ratio of 2.17. In Figure A.13, precision is slightly improved

when stop words are not removed from the analysis for almost classification

methods. PCA and classification trees have improved average precision when

stop words are removed. There is no difference between the presence of stop

words and no stop words for all Word2Vec methods and random forest. We

see more outliers with the Word2Vec methods in 768 dimensions.

For the two-way interactions, filtering of stop words again is interacting

with classification method with a F-ratio of 11.891 and affecting precision.

We can see in Figure A.14, maintaining stop words improves precision, but

it is only slightly. Both the means and the medians appear to visually be

equal across classification methods between the levels of filtering stop words.

Logistic regression seems to have the most outliers.

Filtering stop words also appears to interact with embedding method (F-

ratio = 6.576). All embedding methods, except Continuous Bag of Words in
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100 dimensions, appears visually to have significant differences in the medians

between removing or keeping stop words (Figure A.15). The largest improve-

ments in precision visually appear with BERT and PCA, where both benefit

from keeping stop words.

Unlike with accuracy, there is the slightest evidence of an interaction with

classification method and filtering numbers with a F-ratio of 2.814 as well as

embedding method and filtering numbers with a F-ratio of 2.089. However,

Figures A.16 and A.17 shows the mean and median precision at each classi-

fication method and each embedding method is approximately the same for

when numbers are maintained versus removed.

Filtering words not appearing a minimum number of times is interacting

with classification method and embedding method individually, with F-ratios

of 71.954 and 15.85 respectively. The primary driver of the interaction between

filtering and classification method appears to be QDA and random forest seen

in Figure A.18. For QDA, the best mean (and median) precision comes with

no words filtered, whereas with random forest, filtering out words appearing

less than 30 times or less than 60 times has the best mean (and median)

precision. Filtering words appearing less than 30 times appears to produce

the highest mean precision for each classification method other than QDA.

The interaction between embedding method and filtering is visually explored

in Figure A.19. For BERT, one achieves similar mean (and median) precision

for all levels of filtering except with filtering out a minimum number of 60

appearances. GloVe across all dimensions appears to have a decent increase in

mean (and median) precision when more filtering occurs. PCA and Word2Vec

methods do not appear to have as “large” of differences as with BERT and
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GloVe, but the fewer words removed with these methods, the better.

We also see evidence (F-ratio = 13.202) of an interaction between em-

bedding method and classification method. Unsurprisingly, for all embedding

methods, classification trees provide worse precision (Figure A.20). For QDA,

embedding methods of BERT, Continuous Bag of Words 768, and Skip-Gram

768 produce the largest average precision rate. This is interesting because

recall 768 dimensions was picked for Word2Vec methods to see how well they

compare to BERT, which has 768 dimensions. However, QDA across the all

Word2Vec methods and dimensions has high variability, indicating it is not

a reliable method with this embedding method. For all other embedding

methods, random forest classification performs the best in terms of precision.

Logistic regression also contains multiple outliers with the Word2Vec methods

in 768 dimensions, which is not seen with other methods.

Lastly, similar to accuracy, classification method, embedding method, and

filtering stop words have large F-ratios (1126.108, 156.542, and 835.244 respec-

tively). With classification method (Figure A.21), random forest is performing

the best, but it does not seem practically different from LDA, logistic Regres-

sion, MDA, and QDA. Classification trees again perform worst in terms of

precision. QDA has high variability, indicating it does not appear to actually

be learning the difference between real and fake news. Logistic regression has

a fairly symmetric distribution of observations, but it contains much longer

tails than the rest of the classification methods due to many extreme outliers.

For the embedding methods, PCA actually produces the highest precision, but

this embedding method has high variability (Figure A.22). BERT does not

seem practically different from PCA and also has large variability. As the
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number of dimensions increase, the Word2Vec methods begin to have more

extreme outliers. GloVe appears to be performing the worse in terms of pre-

cision. With filtering stop words, 0.0098283 is the difference in means for

when stop words are maintained and when they are removed, which is again

probably not practical (Figure A.23).

Filtering words not appearing a minimum number of times and converting

to lowercase also appear to have an effect on precision with F-ratios 17.048

and 12.68 respectively. The maximum precision occurs with filtering out words

appearing less than 30 times, but this maximum is only 0.0039094 higher than

the minimum precision (Figure A.24). When converting to lowercase, the

difference in precision is even smaller at 0.0012109, with maintaining capi-

talization producing the highest precision (Figure A.25). For both of these

effects, these differences are so small that they do not appear to make any

practical difference to precision.

On the whole, the classification method, embedding method, filtering stop

words, and filtering minimum appearances look to be the driving effects on

precision. Including stop words seems to improve precision on average for

both classification method and embedding method. The number of words

to filter out based on the minimum number of appearances greatly depends

on the classification method or embedding method used. QDA, Continuous

Bag of Words, Skip-Gram, BERT, and PCA perform better respectively when

fewer words are removed. As more words are filtered out, Random Forest and

GloVe perform better. Out of all C × E × S × L × N × F combinations,

QDA, Word2Vec Skip-Gram 768, including stop words, maintaining capital-

ization, keeping numbers, and filtering out no words has a maximum precision
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Table 6.3: Effects of Sensitivity

Effect Degrees of Freedom F-ratio
C 6 82.573
E 13 23.438
S 1 295.017
L 1 2.701
N 1 7.061
F 3 219.469
C x E 78 10.811
C x S 6 15.512
E x S 13 1.165
C x L 6 0.795
E x L 13 1.345
C x N 6 3.149
E x N 13 1.643
C x F 18 65.520
E x F 39 10.259
C x E x S 78 1.193
C x E x L 78 1.231
C x E x N 78 0.959
C x E x F 225 3.598

of 0.6829. This indicates this specific combination was creating more true pos-

itives than false positives. However, Skip-Gram in 768 dimensions and QDA

are both respectively highly variable, as well as variable in combination as seen

in Figure A.20.

6.3.4 Sensitivity

Found in Table 6.3 are the results exploring the effect on sensitivity. Sen-

sitivity is the probability of correctly identifying real news; see Equation 5.3.

If this number is high, we have more true positives, where real news is being

accurately classified as real. If it is low, we have more false negatives, where

more real news is being classified as fake. The interaction of classification
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method, embedding method, and removing words not appearing a specified

minimum number times looks to be impacting sensitivity (F-ratio = 3.598).

In Figure A.26, we notice there is a lot of variability with QDA, with average

sensitivity generally improving as the number of words removed increases. The

Word2Vec methods in particular do poorly when no words are removed, and

QDA is used. PCA and random forest is also not performing well in terms of

sensitivity.

The interaction between classification method and filtering of stop words

is still creating an impact of sensitivity just as it did with accuracy and pre-

cision (F-ratio = 15.512). Figure A.27 shows for majority of the classification

methods, the difference in the mean (and median) sensitivity for when stop

words are present and when they are removed is about the same is largest for

random forest and classification trees. Maintaining stop words appears to help

random forest and classification trees predict real news correctly. All other

classification methods visually do not show much difference at all between

keeping stop words and removing them. Logistic regression has a symmet-

ric distribution but has long tails. QDA also seems pretty skewed given the

differences in mean and median. Both of these do not seem as reliable.

Classification method and filtering numbers also appear to interact in

terms of sensitivity (F-ratio = 3.149). However, it does not appear there

is a difference between the mean (and median) sensitivity rates for when we

include numbers versus when we do not for all classification methods, as seen

in Figure A.28. The “largest” difference is with QDA, where keeping numbers

seems to improve the probability of correctly identifying real news. Logistic

regression has a symmetric distribution with long tails for when numbers are
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removed. When numbers are kept, the distribution for logistic regression is no

longer symmetric and has outliers performing worse than the bulk of the ob-

servations. QDA again seems pretty skewed both with and without numbers

with the differences in means and medians.

With F-ratios 65.52 and 10.2588 respectively, both classification method

and embedding method interact individually with filtering out words not ap-

pearing a minimum number of times. For the discriminant analyses, there are

similar average sensitivities for filtering minimum of 30 and 60 appearances

(Figure A.29). For random forest, filtering out fewer words improves mean

(and median) sensitivity. Classification trees do not appear to have much

difference between the numbers of words removed. We again see quite a bit

of variation when using QDA, and this classification method seems to per-

form much better when words appearing less than 30 or less than 60 times

are removed. QDA has high variability when no words are removed. Logistic

regression when removing words not appearing a minimum of 60 times also

has many extreme outliers. When exploring the effect of embedding method

and filtering words (Figure A.30), removing no words from the analysis has

the lowest sensitivity rate across the board, except again with BERT. In gen-

eral, filtering out words that do not appear a minimum of 30 times appears to

help each embedding method outside of BERT. When removing no words, the

Word2Vec methods do much worse across the board. Multiple combinations

appear to have outliers, creating long tails.

The last interaction creating an impact on sensitivity is between classifi-

cation method and embedding method (F-ratio = 10.811), as we have seen

with both accuracy and precision. Figure A.31 shows large variability with



88

QDA across the Word2Vec methods. Random forest and PCA are producing

the lowest average sensitivity rate. The distributions associated with classi-

fication trees have high variability. The distribution for GloVe 100/200/300

with QDA is noticeably higher than other combinations.

Finally, we explore the main effects. In terms of sensitivity, all main effects

appear to be influential. Classification method has a F-ratio of 82.573, and

in Figure A.32, we notice a decrease in sensitivity with classification trees.

We see how variable QDA and classification trees are in comparison to other

methods, and logistic regression creates many extreme outliers. The median

sensitivity for QDA does visually appear to be the highest. In Figure A.33,

we gain insight into the embedding methods (F-ratio = 23.438). GloVe in

100 dimensions produces the highest mean (and median) sensitivity, where

as Skip-Gram in 768 dimensions is the lowest. In general, fewer dimensions

produce higher sensitivity rates.

The filtering of stop words again has a large F-ratio at 295.017. Not

removing stop words improves sensitivity by 0.0215402. If we are wanting to

detect real news correctly, we are better off not removing stop words. While

the F-ratio of 2.701 implies there could possibly be an effect of converting to

lowercase, Figure A.35 indicates there is no difference between maintaining

capitalization and converting to lowercase. Converting letters to lowercase

only increases sensitivity by 0.0020611 compared to maintaining capitalization,

which is not practically significant. The F-ratio of 7.061 for removing numbers

also indicates a significant effect on sensitivity. However, in Figure A.36, there

does not appear to be a difference, and maintaining numbers only increases

sensitivity by 0.0033325.



89

Lastly, filtering out words not appearing a minimum number of times has

a F-ratio of 219.469, indicating very strong evidence of an effect on sensitiv-

ity. Figure A.37 shows filtering words not appearing a minimum of 30 times

performs the best, and a minimum of 60 appearances does not seem that dif-

ferent from 30. Filtering out no words performs much worse than the other

levels. The average sensitivity when removing words not appearing 30 times

is 0.0420397 higher than when no words are removed. This indicates the more

words one filters out, the better the probability of correctly classifying real

news. There are, however, many extreme outliers for all levels of minimum

number of appearances, which would affect the means. However, the medians

seem to follow the same pattern as we see with the means.

In general, we see many of the same patterns we saw with accuracy and

precision. Classification method, embedding method, filtering of stop words,

and filtering out words not appearing a minimum number of times play a role

in how well we are detecting real news correctly. In general, random forest

and classification trees do not perform as well as other methods. To improve

sensitivity, we want to keep stop words as well as increase the minimum number

of appearances a word must have in order to remain in the analysis. GloVe in

100 dimensions seems to produce the highest sensitivity, but much like we saw

in Chapter 5, sensitivity is much more variable than accuracy and precision,

as seen with many of the extreme outliers in many of the distributions. We

really need to consider these results in conjunction with specificity. Out of all

C×E×S×L×N×F combinations, Logistic Regression, Word2Vec Skip-Gram

768, including stop words, maintaining capitalization, removing numbers, and

filtering out words not appearing a minimum of 60 times has a maximum
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Table 6.4: Effects on Specificity

Effect Degrees of Freedom F-ratio
C 6 136.591
E 13 66.197
S 1 0.015
L 1 3.506
N 1 3.310
F 3 79.932
C x E 78 11.752
C x S 6 16.452
E x S 13 2.347
C x L 6 0.479
E x L 13 1.300
C x N 6 3.670
E x N 13 2.173
C x F 18 76.906
E x F 39 11.126
C x E x S 78 1.280
C x E x L 78 1.155
C x E x N 78 1.197
C x E x F 225 3.492

sensitivity of 0.9087. Thus, we are able to classify real news alone extremely

well with this combination. However, the minimum sensitivity value is 0.17719

is for the exact same combination as the maximum except numbers are kept in

the analysis. This further supports the large variability we see in sensitivity.

We also need to keep in mind both logistic regression and Skip-Gram in 768

dimensions were the combination that produced the most extreme outliers.

6.3.5 Specificity

The effects on specificity are presented in Table 6.4. Specificity is the

probability of correctly classifying fake news. If this number is large, then

we have more true negatives, where we have correctly found fake news. If
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the number is small, then we have more false positives, where we have incor-

rectly identified fake news as real. See Equation 5.4. We see much of the

same as we saw before with the three-way interactions with sensitivity. The

only interaction seemingly significant is between classification method, em-

bedding method, and removing words not appearing a minimum number of

times (F-ratio = 3.492). If we look at Figure A.38, we see QDA has large

variability again, especially when no words are removed. Skip-Gram in 300

dimensions with QDA clearly performs the best when no words are removed.

However, as more words are removed, specificity is significantly affected for

that combination. In general, random forest appears to be performing better

as more words are removed, especially with PCA. If we were to put this plot

side-by-side with the associated plot with sensitivity, we see an almost inverse

relationship. The methods performing the worst in regards to sensitivity are

performing the best in terms of specificity. This is what we saw in Chapter

5. This inverse relationship is particularly seen in classification methods of

QDA and random forest, but for other classification methods, the number of

words removed performing the best across the embedding methods does flip

from sensitivity.

Classification method and filtering of stop words again seem to have an

effect on specificity (F-ratio = 16.452). In Figure A.39, random forest and

classification tree methods are actually aided by removing stop words. There

does not appear to be much difference between keeping stop words and remov-

ing them for all other classification methods except for FDA. FDA appears to

be aided the most by maintaining stop words. This plot does provide indica-

tion of an interaction. We do see visual evidence of the inverse relationship
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with sensitivity, specifically in QDA (Figure A.27). For the other classification

methods, the inverse relationship with sensitivity is only seen in the extreme

outliers, which seemed to represent unreliable combinations anyways.

Embedding method and filtering of stop words has a F-ratio of 2.347, but

Figure A.40 reveals there is not much difference between removing or keeping

stop words across all embedding methods. We see multiple outliers with the

Word2Vec methods in all dimensions.

Figure A.41 shows the possible interaction between filtering numbers and

classification method (F-ratio = 3.67). There does not appear to be any differ-

ences in the mean (and median) in specificity between keeping and removing

numbers for all classification methods. This graph also visually appears to

be a complete mirror of the associated graph with sensitivity (Figure A.28).

The primary drivers of this inverse relationship appears to be QDA and lo-

gistic regression. When numbers are not filtered, the outliers are now per-

forming better than the bulk of the observations. The interaction between

filtering numbers and embedding methods has a F-ratio of 2.173, but Figure

A.42 shows there is not much difference between keeping or removing numbers

across the different embedding methods.

Filtering threshold is interacting with classification method and embedding

method respectively (F-ratios 76.906 and 11.126). We can see, in Figure A.43,

QDA again has the most variability, with no words being filtered performing

the best for specificity. For random forest, it appears the more words one

filters out, the better the predictive performance of fake news. The same is

said with classification trees, but the difference is not as large as with random

forests. For all other methods, when fewer words are filtered out, the better
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specificity is attained. When compared to the associated interaction plot with

sensitivity (Figure A.29), it is a mirrored image again. In general, as more

words are filtered out, the centers of the distributions are decreasing except

with random forest. This is opposite of the distributions seen with sensitivity.

For the embedding methods, filtering out no words appears to significantly

help improve specificity for both Word2Vec methods across all dimensions

(Figure A.44). With GloVe, the more words removed, the better specificity

is achieved. The Word2Vec methods and PCA have a mirrored relationship

compared to what we saw with sensitivity (Figure A.30). With sensitivity,

the more words we removed, the better the performance on fake news with

Word2Vec and PCA.

The last two-way interaction, classification method and embedding

method, is also significant with a F-ratio of 11.752. We again see large

variability with QDA across the embedding methods in Figure A.45, except

for BERT and GloVe in all dimensions. Random forest performs the best

across all embedding methods in general. QDA performs better in terms of

the mean (and the median) for certain embedding methods, but due to the

variability, this does not seem like a reliable method. This again appears

to be the opposite of sensitivity, primarily seen with QDA and the random

forest/PCA combination (see Figure A.31).

Classification method (F-ratio = 136.591), embedding method (F-ratio =

66.197), converting to lowercase (F-ratio = 3.506), filtering numbers (F-ratio

= 3.31), and filtering threshold (F-ratio = 79.932) are all significant. In Figure

A.46, random forest appears to be improving the specificity rate. We also see

high variability with both QDA and classification tree as we did with sensitiv-
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ity. Logistic regression is a symmetric distribution, but it seems to produce

outliers. For embedding methods, BERT is performing the best, but it does

not appear significantly different from Skip-Gram in 768 dimensions. GloVe

in 100 dimensions is noticeably the worst (Figure A.47). In this case, as the

number of dimensions increases, so does the probability of correctly classifying

fake news, which is the opposite of what we saw with sensitivity. There are

again many extreme outliers with the embedding methods and specificity.

Converting to lowercase and filtering out numbers have somewhat high F-

ratios, as mentioned. However, in Figures A.48 and A.49, we see the F-ratio is

slightly misleading. There does not visually appear to be a difference, let alone

a practical difference. Maintaining capital letters only improves specificity

by 0.0022164 over converting to lowercase. Removing numbers only improves

specificity by 0.0021533 over keeping numbers. For both of these preprocessing

methods, the extreme outliers seem to be the driving influence on the inverse

relationship with sensitivity. When filtering out words based on number of

appearances, filtering out no words seems to offer the most improvement, and

it is 0.0180034 above a cutoff of a minimum of 5 appearances (Figure A.50).

The trend we see with specificity is again an approximate inverse of what we

see with sensitivity, but the primary driver looks to be the extreme outliers.

Overall, specificity seems most influenced by classification method, em-

bedding method, and filtering out words not appearing a specified minimum

number of times. QDA appears to be, again, highly variable across the dif-

ferent embedding methods and preprocessing methods. In general, random

forest seems to be able to classify fake news correctly the best. For embedding

methods, BERT and Skip-Gram in 768 dimensions appears to be the best in
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terms of specificity. Removing no words appears to also be helping classify fake

news correctly. Unlike with other metrics, stop words only appear to be in-

teracting with classification method, where removing stop words aids random

forests and classification trees. Out of all C × E × S × L × N × F combi-

nations, Logistic Regression, Word2Vec Skip-Gram 768, including stop words,

maintaining capitalization, including numbers, and filtering out words not ap-

pearing a minimum of 60 times has a maximum specificity of 0.91838. The

minimum (0.1975) is again for the same combination except for with remov-

ing numbers. These combinations are exactly reversed from what we saw with

sensitivity! The maximum sensitivity value occurs for the combination that

has the minimum specificity value. This leads us to question if the methods

are actually learning the difference between real and fake news or just picking

one to place all observations, and as we saw, the extreme outliers were the

primary influences on this flipped relationship. These combinations definitely

fall as extreme outliers and need to be carefully considered.

6.4 Conclusions

Across all of the metrics calculated, classification method, embedding

method, filtering of stop words, and filtering out words not appearing a min-

imum number of times appear to be the most influential, as well as various

interactions involving these four factors. In general, classification trees do not

perform well for any of the metrics, and for all but sensitivity, random forest

outperforms the other classification methods. This pattern emerges across all

interactions involving classification method. There are occasions when QDA

outperforms random forest, but QDA does have higher variability. As for the
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embedding methods, no method really seemed to be outperforming the others

for all four metrics. For accuracy and precision, BERT and PCA appeared to

be the best. For sensitivity and specificity, GloVe and Skip-Gram appear to

be the best methods. Again, this pattern recurs in the interactions involving

embedding method.

Filtering out stop words and filtering out words not appearing a mini-

mum number of times are not individually impactful on the four metrics. The

differences between levels of the respective individual factors are quite small.

However, when each factor interacts with classification method and/or em-

bedding method, we start to see how those preprocessing method affect our

metrics. In general, keeping stop words in the analysis improves all four met-

rics. The only instance maintaining stop words was not beneficial was with

random forest and classification trees in terms of the probability of correctly

classifying fake news. The effect of filtering out words not appearing a mini-

mum number of times depended quite a bit on which embedding method was

used. For BERT in particular, it was aided by keeping more words in the

analysis, whereas with GloVe, the more words we filtered out the better.

In a majority of the figures related to specificity, the patterns we see are

the inverse of what we saw with sensitivity, similar to what we saw in Chapter

5. This raises the question: are the classification methods actually learning

the difference between real and fake news? It looks as if the classification

methods are choosing to classify as either all real or all fake and not really

learning. However, this does depend on which embedding method and prepro-

cessing methods we use. The embedding method and preprocessing methods

are playing some kind of role in whether or not the classification method over
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predicts real news or over predicts fake news. Embedding methods and pre-

processing methods correctly identifying real news do poorly when correctly

identifying fake news. One of the possible explanations is the fact the orig-

inal six labels in the PolitiFact data set have been condensed down to two,

which could muddle the classification methods. We will explore this in the

next chapter. Additionally, the inverse relationship seems to be primarily in-

fluenced by the extreme outliers. More exploration on what these outliers have

in common is needed. If the outliers are primarily related to embedding meth-

ods, this could indicate the method of averaging across dimensions used to

combine word embeddings into statement embeddings is inadequate. Further

exploration of methods of embedding whole statements instead of just words

are needed and is left for future work.

Lastly, the preprocessing method of stemming was not considered in this

work. There are many stemming methods available for consideration, adding

in another layer of complexity. Stemming would have some effect on all of the

metrics explored here and will also be considered in a future work.
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Chapter 7

Extending to Multiple Class Classification

In Chapter 4, we discussed how PolitiFact uses a six label system, where

a statement can be given a label of true, mostly true, half true, barely true,

false, or pants-on-fire. For the previous chapters, we condensed these six labels

into two categories: real and fake. We are now going to extend the classifi-

cation methods used in the previous chapters from the binary class problem

to the multi-class problem. We will briefly explore how the previous classi-

fication methods extend to the non-binary class problem as well as how the

interpretation of the classification metrics change. We will focus primarily on

the preprocessing methods of filtering stop words and the filtering of words

not appearing a minimum number of times as these were the effects found in

Chapter 6 to have the biggest effects. For all combinations, numbers will be

removed, and all words will be converted to lowercase.

Additionally for this chapter, we explore how adding information regard-

ing the year a statement was made affects classification. In Figure 7.1, we

can see how the six labels are distributed over our observed time frame from

2007 to 2020. Most notable are the classifications of true, false, and pants-

on-fire. Since 2007, the proportion of statements labeled true is decreases,
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whereas the proportion of labels of false and pants-on-fire gets larger. This

indicates including year as a predictor of the class may possibly improve the

classification.
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Figure 7.1: The breakdown of each label per year observed in our data set.

7.1 Multi-Class Classification Methods

We extend the classification methods used in Chapters 5 and 6 to a multi-

nomial response Y = (Y1, Y2, . . . , Y6), where

Yi =

 1 D ∈ ith Label

0 Otherwise

The ith label corresponds to true, mostly true, half true, barely true, false,

or pants-on-fire respectively. With this case of a multinomial response, we use



100

ordinal regression as the extension of the binary logistic regression. In ordinal

regression, the response categories are ordered, and we can incorporate this

ordering by utilizing the cumulative probability. We consider not only the

probability of an outcome but also the probability of categories before it.

There are five different link functions to be utilized with ordinal regression:

Logit = ln pi
1− pi

(7.1)

Complementary log-log = ln(− ln(1− pi)) (7.2)

Negative log-log = − ln(− ln(pi)) (7.3)

Probit = Φ−1(pi) (7.4)

Inverse Cauchy = tan(π(pi − 0.5)) (7.5)

In all of these, pi = P (Y ≤ i), where P (Y ≤ i) is the probability of being

in class i or below. Equations 7.1 and 7.4 are useful with evenly distributed

categories or gradual changes in pi. Equation 7.2 is useful when higher cate-

gories are more probable, whereas Equation 7.3 is better when lower categories

have higher probabilities. Lastly, Equation 7.5 is useful when there are ex-

treme values (Hua, Choi, & Shi, 2021). In R with the polr function and the

caret package, determining which of these link functions to use is a tuning
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Table 7.1: Multiple Classes Confusion Matrix

Actual
True Mostly True Half True Barely True False Pants-on-Fire

Predicted
True TN TN TN TN FN TN
Mostly True TN TN TN TN FN TN
Half True TN TN TN TN FN TN
Barely True TN TN TN TN FN TN
False FP FP FP FP TP FP
Pants-on-Fire TN TN TN TN FN TN

parameter; the link function with the highest training accuracy is used. All

other classification methods used extend naturally to the multiple classes.

7.2 Applying the PolitiFact Dataset

Extending to multiple classes extends the confusion table, as seen in Ta-

ble 7.1. In this table, the columns indicate the actual label assigned by the

PolitiFact team, and the rows indicate the label predicted by the classifica-

tion method. Let us assume we have a statement given a rating of “false” by

PolitiFact. If one recalls from Chapter 4, a rating of false is given to a state-

ment that is inaccurate, whereas a statement given a rating of pants-on-fire

is inaccurate plus makes a ridiculous claim. These two categories, while both

indicate fake news, are different severities of false claims. If the classification

method correctly identifies this statement as false, this is a true positive (TP).

If the false statement is incorrectly predicted as one of the other five classes,

this is a false negative (FN). If a statement given any of the other ratings

by the PolitiFact team is predicted as false, this is a false positive (FP). Any

other predication not involving a label of false, either actual or predicted, is

considered a true negative (TN).
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From this confusion matrix, we can calculate the overall accuracy of the

classification method similar to Equation 5.1 in the binary case. Assume the

confusion matrix for multiple classes is called C. The overall accuracy for a

classification method can be found as follows:

Accuracy =
trC∑n

i=1

∑n
j=1 cij

(7.6)

where n is the number of classes and cij is an element of C. Unlike with

binary classification, we can no longer look at sensitivity (true positive rate)

and specificity (true negative rate) for the overall method; we explore these

metrics per class. The calculations remain the same as we saw in Equations

5.3 and 5.4, but we will now have these values for all six classes. For an

example, let us stick with the illustration used in Table 7.1. Sensitivity would

be the probability of correctly classifying a statement given the rating of false.

Thus, with a high sensitivity value, the method correctly identifies false news

from the other five classes. Specificity would be the probability of correctly

identifying the statement as not false. However, with the specificity value, we

are not given any indication of how well the other groups are being classified. If

specificity is large, the method correctly identifies the statement is something

other than false, but we still do not know if this particular statement was

predicted to the correct class. For this chapter, we will not explore the effect on

precision due to the fact some classification methods produce 0 true positives

and 0 false positives across multiple groups, leading to division by 0. In other

words, some methods do not make predictions in all categories (i.e. a row of

the confusion matrix sums to 0).

As previously noted in Chapter 4, the six labels in the PolitiFact data
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Table 7.2: Breakdown of the Six Labels in the PolitiFact Data Set

Label Percent
True 0.138
Mostly True 0.179
Half True 0.189
Barely True 0.167
False 0.211
Pants-on-Fire 0.116

set are not equally distributed. This breakdown can be found in Table 7.2.

We determined that while the labels are not balanced among the groups, the

imbalance is not severe. We proceed with splitting the data set into training

and test sets without considering sampling strategies to address the imbalance.

7.3 Exploratory Analysis

7.3.1 Methods

We follow the set-up of the exploratory analysis used in Chapter 6. How-

ever, we no longer include the effects of converting to lowercase and removing

numbers. For all combinations, all letters are converted to lowercase, and all

numbers are removed. We only focus on the effect of filtering stop words and

removing words not appearing a minimum number of times. We also include

a new factor, whether or not year was included as a predictor. We will focus

on the following effects:

• main effects

– classification method (C)

– embedding method (E)



104

– stop word removal (S)

– filtering minimum number of appearances (F )

– year included (R)

• two-way interactions

– C × E

– C × S

– C × F

– C ×R

– E × S

– E × F

– E ×R

• three-way interactions

– C × E × S

– C × E × F

– C × E ×R

We will compare each of these based on their effect on overall accuracy.

We will also compare based on their effect of sensitivity and specificity for the

two extreme classes: true and pants-on-fire.

It is important to note we still lack replication in this study; we only have

one observation per C × E × S × F × R combination. As before, all other

interactions will be contained within the error of the model, where there are

currently 934 error degrees of freedom. P-values will again produce misleading

results, so we will focus only on the F-ratios greater than 2. The visual ex-

plorations of these effects are found in Appendix B. We again use violin plots,
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Table 7.3: Effects on Overall Accuracy

Effect Degrees of Freedom F-ratio
C 6 1369.341
E 13 31.290
S 1 249.807
F 3 29.811
R 1 325.709
C x E 78 11.719
C x S 6 8.694
E x S 13 0.895
C x F 18 5.213
E x F 39 2.805
C x R 6 36.490
E x R 13 1.152
C x E x S 78 2.401
C x E x F 221 1.502
C x E x R 78 1.064

and we denote the median with a black triangle and mean with a grey circle.

Kindly note that for the Word2Vec methods and GloVe, when embedding is

done in 768 dimensions for a filtering of 60 minimum appearances, there are

several classification methods which result in errors of missing metrics for the

analysis: ordinal regression, QDA, MDA, and FDA. This is a result of em-

bedding into a dimension larger than the number of unique words in the data

set, resulting in sparse embeddings. The same issue occurs with PCA with

the classification methods of ordinal regression and QDA when the level of

filtering out words not appearing a minimum number of times is 0 or 5. These

results are exploratory only.
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7.3.2 Overall Accuracy

We begin by exploring the effects on the overall accuracy of the model.

Based on the label distribution, if a method was randomly selecting a class to

predict all labels, then the classification method would achieve at most a 21%

accuracy rate. Thus, the graphs depicting the effect on the overall accuracy

display a dashed line at 0.21, indicating this best rate possible if randomly

guessing.

The only three-way interaction with a F-ratio greater than 2 is between

classification method, embedding method, and the filtering of stop words, seen

in Table 7.3 (F-ratio = 2.401). In Figure B.1, we can see that for LDA and

QDA, not removing stop words improves accuracy for all embedding methods.

For the other classification methods, there is no consistency on the embedding

method where filtering stop words does improve overall accuracy. For instance,

with MDA, GloVe in 768 dimensions is improved when stop words are removed,

but that is not seen elsewhere with MDA. In particular, multiple classification

methods with PCA do better when stop words are filtered. Also with PCA,

all discriminant analyses, except with FDA, are highly variable. In general,

there are not many practical differences between when stop words are kept

and when they are removed.

We now explore the two-way interactions. The interaction between clas-

sification method and year is significant (F-ratio = 36.49). Looking at Figure

B.2, we see the discriminant analyses are greatly aided by including year as

a predictor. Ordinal regression and random forest are also aided by including

year, but the difference is not as large. The tree based methods do not appear

to have any difference in overall accuracy when year is included. We see ordi-
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nal regression and classification trees are the only methods with observations

appearing below our “best” accuracy of 21%, but the bulk of the observations

are above the random chance line.

Filtering threshold and classification method are also interacting (F-ratio

= 5.213). For QDA, removing no words produces a better overall accuracy,

which is the opposite of what was seen with the binary case where removing

no words did the worst (Figure B.3). For ordinal regression and classification

trees, there does not appear to be much difference between the levels of min-

imum appearances. Removing words not appearing at least 5 times looks to

be performing the best for all other methods, but not significantly.

There is moderate evidence of a possible interaction between the filter-

ing threshold and embedding method (F-ratio = 2.805). In Figure B.4, the

more words kept in the analysis, the better overall accuracy BERT provides.

For the Word2Vec methods, removing words not appearing a minimum of 5

times greatly improves overall accuracy, except with Skip-Gram in 300 and

768 dimensions. We also see more skewed distributions; there are noticeable

differences between the means and medians for multiple combinations. This is

an indication of the methods struggling to differentiate between the six classes.

We have evidence of an interaction between classification method and the

filtering of stop words (F-ratio = 8.694; Figure B.5). The associated graphs

reveal not removing stop words improves overall accuracy across all classifica-

tion methods, as we saw in the binary case. The difference between keeping

stop words and removing them is not as large for the random forest method

as it is with the other methods. The largest improvements in overall accuracy

with keeping stop words occurred with LDA, QDA, and MDA.
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Classification method and embedding method also interact (F-ratio =

11.719). Figure B.6 reveals ordinal regression and classification trees perform

the worst across all embedding methods. Random forest produces the highest

average overall accuracy for almost all embedding methods. LDA works best

with PCA and Skip-Gram in 100 dimensions. GloVe in 768 dimensions works

best with QDA. We see there is a lot of variability with many of the classifi-

cation method and embedding method combinations, seen with the very long

and flat distributions. We also see many skewed distributions with noticeable

differences between the mean and the median. As before, this implies multiple

classification methods are struggling distinguishing between the six classes.

All main effects have high F-ratios. Overall accuracy improved when year

was included. However, the difference in the mean overall accuracy between

including year and not including it is only 0.0056553 (F-ratio = 325.709; Fig-

ure B.7). There seems to be a more significant difference between the medians,

where including year improves overall accuracy. Filtering out words not ap-

pearing a minimum of 5 times improves the accuracy the most, but there does

not visually appear to be a difference between 0 and 30 minimum appearances

(F-ratio = 29.811; Figure B.8). When stop words are kept, the overall accu-

racy is again improved but only by 0.0050824 as seen in Figure B.9 (F-ratio =

249.807). The medians seem to show more of a significant difference between

keeping stop words and removing them.

For the main effect of embedding method (F-ratio = 31.29), the plot in

Figure B.10 reveals the Word2Vec methods improve accuracy more than the

other embedding methods. They do not appear significantly different from

BERT, GloVe in 100 dimensions, and GloVe in 300 dimensions however. In
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addition, there does not appear to be any practical differences. The embed-

ding methods with the largest average overall accuracy (Skip-Gram in 100

and 200 dimensions) is only 0.0069354 larger than the smallest (GloVe in 768

dimensions). However, we do see significant differences between the mean and

median for many of the embedding methods. Thus, the medians are a better

representation. BERT has the highest median overall accuracy, followed by

Word2Vec Continuous Bag of Words in 300 dimensions.

Lastly, classification method is significant with a F-ratio of 1369.341. We

can see ordinal regression and classification trees clearly perform the worst

in terms of mean overall accuracy, whereas random forest performs the best

(Figure B.11). Practically, random forest performs similarly to LDA with a

difference of only 0.0036214. However, random forest outperforms classifica-

tion trees by 0.0368441, indicating the choice of classification method does

matter. None of the classification methods are doing significantly better than

random chance despite the improvement seen with random forest.

As a whole, we do not see as drastic of an effect of the embedding method

and filtering words not appearing a minimum number of times as we did in

the binary case. We do continue to see not removing stop words improves the

overall accuracy. We also see evidence that the inclusion of the year a state-

ment was made improves accuracy, especially for the discriminant analyses.

Out of all C × E × S × F × R combinations, random forest, Continuous Bag

of Words in 768 dimensions, removing stop words, filtering a minimum of 5

appearances, and including year produces the highest overall accuracy with

0.2834.
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Table 7.4: Effects on Sensitivity of True Label

Effect Degrees of Freedom F-ratio
C 6 1443.107
E 13 10.451
S 1 0.753
F 3 9.608
R 1 1.800
C x E 78 7.095
C x S 6 7.727
E x S 13 1.897
C x F 18 5.371
E x F 39 0.816
C x R 6 49.388
E x R 13 1.213
C x E x S 78 1.427
C x E x F 221 0.800
C x E x R 78 1.313

7.3.3 Sensitivity - True Label

We now shift our focus to the class of true statements. Namely, we will

explore the effect on sensitivity, the probability of correctly classifying a true

statement as true. Only about 14% of all classes in the PolitiFact data set are

true. Therefore, if a classification method is merely guessing, the best it can

do with the true class specifically is 14%.

None of the three-way interactions have a F-ratio greater than 2 (Table

7.4), so we begin with the two-way interactions. We start with the interaction

between classification method and the inclusion of the year a statement was

made (F-ratio = 49.388). As with the overall accuracy, the inclusion of year

improves the correct classification of true news with the use of discriminant

analyses, seen in Figure B.12. Ordinal regression is greatly aided with year not

included as a predictor. One will notice classification trees have a sensitivity
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rate of 0 for both with and without year. Classification trees consistently

classify all statements to the middle classes. We see FDA is consistently under

performing when compared to random guessing. We also see ordinal regression

is the most variable compared to the other classification methods.

Classification method and the filtering threshold are interacting (F-ratio

= 5.371). Random forest and QDA do better at classifying true news the more

words are filtered out, seen in Figure B.13. Removing words not appearing

at least 60 times does worse for ordinal regression, but there does not appear

to be differences with the other levels of filtering. There appears to be no

differences between the levels of filtering thresholds for LDA and MDA.

With a F-ratio of 7.727, classification method and filtering of stop words

interact. Ordinal regression slightly benefit from keeping stop words (Figure

B.14). QDA and random forest are improved with the removal of stop words.

There does not appear to be a difference between keeping and removing stop

words for LDA, MDA, and FDA.

We also find classification method and embedding method interact (F-ratio

= 7.095). On average, we find the discriminant analyses, other than FDA,

out perform random guessing across all embedding methods (Figure B.15).

BERT and MDA seem to perform best when evaluated on the detecting of

true statements correctly. We have already discussed classification trees never

classifying any statement as true, but FDA does not do much better on average.

Random forest also performs worse than random guessing on average. Ordinal

regression has large variability regardless of the classification method, except

with Skip-Gram in 200 dimensions. We also see noticeable differences between

the means and medians, particularly with ordinal regression.
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Filtering words not appearing a minimum number of times (F-ratio =

9.608), embedding method (F-ratio = 10.451), and classification method (F-

ratio = 1443.107) are all significant. A minimum of 30 appearances has the

highest average sensitivity rate, but it only appears to be significantly different

than removing no words (Figure B.16). This difference is only 0.0106534. The

differences are more apparent in the medians.

With the embedding methods, Figure B.17 reveals high variability with all

embedding methods. Continuous Bag of Words in 768 dimensions performs

the best, but it does not appear to be significantly different from CBoW in

100, 200, and 300 dimensions, GloVe in 300 dimensions, and Skip-Gram in 300

and 768 dimensions. GloVe in 100 dimension performs the worst and has an

average 0.0150202 smaller than CBoW in 768 dimensions. Similar trends are

seen with the medians.

Lastly, Figure B.18 reveals the effect of classification method on the prob-

ability of classifying true statements correctly. Other than FDA, the discrim-

inant analyses greatly out perform the other classification methods. There do

not appear to be any significant differences among LDA, QDA, and MDA, with

QDA having the lowest mean sensitivity rate at 0.1742734. The next high-

est average sensitivity rate is with ordinal regression and is 0.0450147 lower

than QDA. Ordinal regression has the most variability out of all classification

methods.

Overall, if a person is primarily interested in detecting true news correctly,

using LDA, QDA, or MDA are the better options. They still do not perform

well, but they do at least a bit better than random guessing on average. With

all discriminant analyses, including year improves sensitivity. Using any min-
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Table 7.5: Effects on Specificity of True Label

Effect Degrees of Freedom F-ratio
C 6 1507.220
E 13 15.516
S 1 4.427
F 3 17.417
R 1 2.606
C x E 78 9.182
C x S 6 4.565
E x S 13 1.221
C x F 18 8.112
E x F 39 0.868
C x R 6 47.170
E x R 13 1.549
C x E x S 78 1.333
C x E x F 221 0.771
C x E x R 78 1.497

imum appearances cutoff other than 60 and including stop words improves

sensitivity for LDA and MDA. However, for QDA, not including year and fil-

tering words not appearing at least 30 times improves sensitivity. The highest

sensitivity occurs with the combination of ordinal regression, PCA, not re-

moving stop words, not including year, and filtering words not appearing a

minimum of 5 times at a value of 0.30205. However, as noted, ordinal regres-

sion has the most variability among all the classification methods.

7.3.4 Specificity - True Label

We now explore the effect on specificity relative to the true class of state-

ments. Results are located in Table 7.5. Specificity measures the probability

of classifying a not true statement as not true. In other words, the probability

of correctly identifying a statement as not true, but this does not mean the
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statement was correctly identified. It was only correctly identified as not true.

If this number is large, then the method is correctly identifying statements as

not true. If this number is small, then the method is incorrectly classifying

statements as true.

Starting again with the two-way interactions, classification method and

the inclusion of year are interacting with a F-ratio of 47.17. In Figure B.19,

there is not much of a difference between including year and not for LDA,

QDA, MDA, and random forest. FDA is improved when year is not included,

whereas ordinal regression is improved when it is included. Ordinal regression

has more variability both with and without year as a predictor when com-

pared to the other methods, which was expected based on what we saw with

sensitivity of a true class. Again, as we noted before, classification trees never

classify any statement as true. Thus, this method appears to do well at cor-

rectly identifying as not true, but in combination with what we saw with how

classification trees correctly identified true statements, this method is actually

performing extremely poorly.

Classification method and removing words not appearing a minimum num-

ber of times interact as well (F-ratio = 8.112). The biggest differences appear

to be occurring within QDA and random forest classification methods, where

the fewer words one removes, the better (Figure B.20). The other methods

show very little, if any, differences between the levels of filtering. We again

see large variability with the ordinal regression method.

We have moderate evidence of an interaction between classification method

and filtering of stop words (F-ratio = 4.565). However, after examining Fig-

ure B.21 there does not appear to be much of a difference between keeping



115

and removing stop words for the classification methods. Ordinal regression is

the only classification method showing a possible significant difference in the

medians.

In Figure B.22, we see the interaction effect of classification method and

embedding method on the probability of correctly identifying a statement as

not true is the reverse of what we saw with sensitivity (F-ratio = 9.182). The

discriminant analyses, except for FDA, are performing the worst across almost

all embedding methods. We believe this is an indication the discriminant anal-

yses are actually attempting to learn the difference between the classes and

not merely picking a subset of the classes to classify all statements. Ordinal

regression shows quite a bit of variability, as expected based on previous re-

sults. This variability is not showing up, however, for ordinal regression and

Skip-Gram 200 dimensions.

The main effect of including year as a predictor appears significant with a

F-ratio of 2.606. However, Figure B.23 reveals this F-ratio is misleading. In

addition, the difference in the mean specificity between including year and not

including year is only 0.0014752.

With the filtering threshold, the F-ratio for the main effect is 17.417, but

again, Figure B.24 reveals this is might be misleading with the mean specificity.

The highest specificity occurs when no words are removed, and this is only

slightly different when filtering words not appearing at least 30 or 60 times.

Not removing any words has an average specificity that is only 0.0063299 larger

than the average specificity when a minimum of 30 appearances is used. There

is visual evidence of significant differences in the medians however. Filtering no

words or words appearing less than 5 times significantly outperform a threshold
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of 60 in terms of the medians.

We also have evidence of a main effect of filtering stop words (F-ratio =

4.427). However, Figure B.25 reveals this is misleading in terms of the means.

The difference between the mean specificity when stop words are not removed

is only 0.0021737 bigger than when stop words are filtered. Visually, there does

appear to be a significant difference between the medians, but the practicality

of this difference does not seem relevant.

Embedding method is also significant (F-ratio = 15.516). The mean speci-

ficity in Figure B.26 is almost a mirror image of what we saw with sensitivity of

the true class, where Skip-Gram in 100 dimensions is performing the best and

Continuous Bag of Words in 768 dimensions is performing the worst. However,

the distributions are skewed, so the median may be a better representation of

the data. With the median, Skip-Gram in 100 dimensions and BERT appear

to be performing similarly, which is not seen with the means.

Figure B.27 reveals the main effect of classification method (F-ratio =

1507.22). LDA, QDA, and MDA appear to be classifying not true news cor-

rectly with a lower probability than the other methods. However, in combi-

nation with the results from sensitivity relative to the true label, it appears

these methods are actually finding reasonable discriminant rules between the

groups instead of just guessing.

Overall, if a person is wanting to make sure a method does not misclassify

statements as true, the use of the FDA classification method is suggested.

With FDA, using GloVe in 768 dimensions, including stop words, filtering out

no words, and not including year improves the average specificity in individual

combinations. Clearly, among all C ×E × S × F ×R, any combination using
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Table 7.6: Effects on Sensitivity of Pants-on-Fire Label

Effect Degrees of Freedom F-ratio
C 6 2080.956
E 13 9.524
S 1 19.809
F 3 9.366
R 1 355.736
C x E 78 32.143
C x S 6 20.903
E x S 13 1.719
C x F 18 16.803
E x F 39 1.909
C x R 6 44.062
E x R 13 4.217
C x E x S 78 0.982
C x E x F 221 2.840
C x E x R 78 2.353

a classification tree is going to be the best since specificity is always 1 relative

to the true class, though this is not the method we recommend to use.

7.3.5 Sensitivity - Pants-on-Fire Label

With the pant-on-fire class, we explore the effect on sensitivity (Table

7.6), the probability of correctly identifying this specific class. Only 11.6% of

all statements received a rating of pants-on-fire. In this case, there are two

significant three-way interactions. The first is between classification method,

embedding method, and the inclusion of year with a F-ratio of 2.353. Figure

B.28 reveals that for each classification method, including year improves the

probability of classifying pants-on-fire statements correctly. There does not

appear to be any differences within random forest and FDA across all embed-

ding dimensions. As with the classification of true labels, classification trees
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are not classifying any statement into the pants-on-fire category with FDA

having nearly the same result.

We have moderate evidence the filtering threshold, classification method,

and embedding method interact (F-ratio = 2.84). In Figure B.29, FDA and

random forest do not perform much better than classification trees. While

these methods do sometimes classify pants-on-fire statements correctly, it is not

often. LDA and MDA perform the most consistently above random guessing.

For most classification and embedding method combinations, there does not

appear to be any differences between the levels of filtering. The exception

is QDA with any embedding method of dimensions 100, 200, or 300 (except

GloVe in 300) where filtering out no words does better.

The first two-way interaction we will explore is embedding method and

the inclusion of year as a predictor (F-ratio = 4.217). Observing from the

means in Figure B.30, sensitivity is improved for all embedding methods when

year is included as a predictor. The smallest difference in means occurs with

Skip-Gram in 768 dimensions. When looking at the medians, we still see an

increase in sensitivity for almost all embedding methods when year is included.

The medians show Skip-Gram in 768 is actually slightly improved in detecting

pants-on-fire statements when year is not included. BERT and PCA are the

only embedding methods with median sensitivity below random chance for

both the inclusion and exclusion of year. Because this is different from what

we see in the means, this indicates skewness in the distributions, and analyzing

the medians may be more appropriate.

Classification method and the inclusion of year also interact (F-ratio =

44.062). Figure B.31 reveals for all classification methods, including year im-
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proves the probability of detecting a pants-on-fire statement correctly, though

not significantly for FDA and random forest. We see high variability within

the QDA and ordinal regression classification methods, both when year is in-

cluded as a predictor and when it is not. Additionally, outside one outlier with

FDA and including year, both FDA and random forest perform consistently

below random guessing on average.

Filtering words not appearing a minimum number of times and classifica-

tion method interact as well (F-ratio = 16.803). QDA shows the most differ-

ences in the levels of minimum appearances (Figure B.32), where removing no

words better classify pants-on-fire statements. For random forest, removing

words not appearing at least 60 times performs best. There is no difference

between minimum appearances with the LDA, MDA, and FDA classification

method. With QDA, most of the variability is seen when no words are removed

and when words not appearing a minimum of 5 times are removed. The other

levels with QDA still have high variability, but it is not as extreme. As before,

FDA and random forest consistently perform below random chance, except for

an outlier with FDA and no words removed.

For the interaction of classification method and filtering of stop words (F-

ratio = 20.903), there are no differences in the inclusion or removal of stop

words with any classification method, except ordinal regression seen in Figure

B.33. Ordinal regression has improved sensitivity relative to the pants-on-fire

label when we keep stop words, but it has high variability. Again, random

forest and FDA perform worse than random chance, except for the outlier

with FDA and not filtering stop words.

With a F-ratio of 32.143, classification method and embedding method
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interact. In Figure B.34, we see discriminant analyses consistently perform

better than random chance, outside of FDA and the QDA/BERT combina-

tion. Random forest and FDA consistently under perform compared to random

chance. Ordinal regression varies between being better and worse than random

chance, but we also see that this method is essentially a line for almost all em-

bedding methods because of the variability. Ordinal regression does not have

the same variability with the Skip-Gram embedding method. QDA primarily

has high variability with PCA and Skip-Gram in 100 dimensions. Interest-

ingly, PCA and QDA have two very distinct modes with no observations in

between.

All main effects appear to be significant. The inclusion of year (F-ratio =

355.736) is greatly improved when year is included as a predictor. Without

year, the average sensitivity is below random guessing but is higher with year

(Figure B.35). In fact, including year is 0.0288157 larger than not including

it. We see the same improvement with the medians.

The main effect of filtering words not appearing a minimum number of

times has a F-ratio of 9.366. In Figure B.36, we see a minimum appearance

of at least 30 is the only level with a mean and median slightly above random

chance. The mean does not appear to be significantly different from removing

no words. The average sensitivity at a minimum of 30 appearances is only

0.0108069 higher than minimum appearances of at least 5 times, however.

There seems to be more significant differences, at least visually, between the

medians. In terms of the distributions, we see the most variability in the

probability of detecting pants-on-fire statements correctly when no words are

removed.
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Including stop words is significantly different from not including stop words

(F-ratio = 19.809). When stop words are not removed, we see the average

sensitivity improve by 0.0061235, which is not much of a practical improvement

(Figure B.37). The medians show more of a significant difference but still not

a practical significant difference.

With the embedding methods (F-ratio = 9.524), the violin plots reveal

very skewed distributions (Figure B.38), and the interpretation of the results

is remarkably different between the means and the medians. Because of this,

we will focus on the medians. Only Continuous Bag of Words in 300 and 768

dimensions as well as Skip-Gram in dimensions in 200, 300, and 768 dimensions

have medians above random chance. They seem to be performing significantly

better than Continuous Bag of Words in 100 dimensions, Skip-Gram in 100

dimensions, GloVe in 100 dimensions, and BERT. For classification method (F-

ratio = 2080.956), LDA, QDA, MDA, and ordinal regression are all performing

better than random chance, as seen in Figure B.39. This is seen in both the

means and the medians. However, QDA and ordinal regression appear to be

performing very inconsistently due to the high variability.

Overall, if a person is mostly interested in classifying pants-on-fire state-

ments correctly, using QDA performs the best on average. However, due to

the high variability, it does not seem very reliable. The next method would

be MDA. With the true statements, we did not see the variability with QDA,

but the discriminant analyses were also performing the best. If they are not

concerned about the variability seen with QDA, they could use Skip-Gram in

100 dimensions, filtering no words, and QDA for best results overall. They

could also include year or filter stop words in combination with QDA. If a
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Table 7.7: Effects on Specificity of Pants-on-Fire Label

Effect Degrees of Freedom F-ratio
C 6 1695.592
E 13 8.300
S 1 9.214
F 3 1.590
R 1 122.450
C x E 78 35.297
C x S 6 32.135
E x S 13 1.208
C x F 18 17.852
E x F 39 2.828
C x R 6 27.138
E x R 13 2.166
C x E x S 78 0.913
C x E x F 221 3.754
C x E x R 78 2.029

person does want something a bit more reliable, BERT and filtering no words

with MDA is the best combination. Including year or not removing stop words

also improves average sensitivity with the pants-on-fire class in combination

with MDA. From all combinations of C×E×S×F ×R, QDA, Skip-Gram in

100 dimensions, removing stop words, not including year as a predictor, and a

minimum of appearances of 0 with a sensitivity of 0.64375. This is fairly high,

so the combination seems very promising. However, as we have seen, QDA is

considerably variable and not the most reliable of methods.

7.3.6 Specificity - Pants-on-Fire Label

Lastly, we explore the effect on the specificity relative to the pants-on-fire

class. As a reminder, this is the probability of correctly identifying a state-

ment as not part of the pants-on-fire class. Between classification method,
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embedding method, and the inclusion of year as a predictor, we have evi-

dence of an interaction with a F-ratio of 2.029. In Figure B.40, we see the

only classification method with the largest differences in specificity between

including year or not is for ordinal regression with Continuous Bag of Words

in 100/200/768 dimensions, BERT, and PCA. LDA and MDA as show slight

improvement when year is not included as well for multiple embedding meth-

ods. Most combinations show little to no difference between the use of year

as a predictor in relation to the specificity of pants-on-fire labels. We also

note classification trees never classify any statement as pants-on-fire, leading

to every combination having a probability of correctly identifying a statement

as not pants-on-fire of 1.

The three-way interaction between filtering words not appearing a mini-

mum number of times, classification method, and embedding method is signif-

icant (F-ratio = 3.754). We see a lot of variability in the embedding method

and minimum appearances interaction by classification method for QDA and

ordinal regression (Figure B.41). The graph appears to be a mirror image to

what we saw with sensitivity relative to the pants-on-fire class. The combina-

tions that did well in sensitivity are doing the worst in specificity. However,

“worst” is still doing pretty well, usually above an average specificity of 0.8.

The exceptions are with Continuous Bag of Words in 100 dimensions and

Skip-Gram in 100, 200, and 300 dimensions, removing no words, and QDA. In

addition, removing words not appearing a minimum of 5 times, Skip-Gram in

100 dimensions, and QDA is below 0.8 as is BERT, ordinal regression, and a

minimum of 60 appearances.

With a F-ratio of 2.166, we have evidence the interaction of including year
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as a predictor and the embedding method are interacting. In Figure B.42, we

see that across all embedding methods, not including year improves specificity

relative to the pants-on-fire label. The largest increases occurs with BERT,

GloVe in 100 dimensions, and Continuous Bag of Words in both 100 and 200

dimensions. The smallest increase happens with Skip-Gram in 768 dimensions.

These differences are seen in both the means and the medians.

Classification method and the inclusion of year as a predictor is also affect-

ing specificity (F-ratio = 27.138). Figure B.43 shows all classification methods

have visually no difference between the including and excluding year. Large

variability is found with QDA and ordinal regression similar to the results with

sensitivity relative to the pants-on-fire label.

Embedding method and filtering threshold interact (F-ratio = 2.828). Fig-

ure B.44 shows there is really no consistent level of minimum appearances that

increases the mean specificity across all embedding methods. Large differences

exist with GloVe in 768 dimensions, Continuous Bag of Words in 768 dimen-

sions, and Skip-Gram in 100 and 768 dimensions. For GloVe, Continuous Bag

of Words, and Skip-Gram methods, all in 768 dimensions, a minimum of 30

appearances performs vastly lower than the other levels. Removing no words

performs the worst for Skip-Gram 100, but this is not seen with medians; re-

moving no words actually does best for Skip-Gram 100 based on the medians.

With Skip-Gram 768, the best level is filtering out words not appearing a

minimum of 60 times, which is also the best average specificity combination

overall. This trend is partially seen in the medians. In terms of the medians,

we also see a minimum of 30 appearances is much better than other levels

for GloVe in 300. We see high variability across all minimum appearances for
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BERT. We also see high variability with minimum appearances of 30 for PCA

and GloVe in 768 dimensions. With the Skip-Gram and Continuous Bag of

Words embedding methods, we see variability when no words are removed and

in small dimensions.

The same preprocessing method also interacts with classification method

(F-ratio = 17.852). Across the classification methods, only QDA appears to

have differences, at least visually, between the levels of minimum appearances

(Figure B.45). Not filtering any words performs the worst for QDA. We see

the same variability among observations from the QDA and ordinal regression

classification methods as we did with sensitivity relative to the pants-on-fire

label.

Classification method and the preprocessing method of filtering stop words

interact in their effect on specificity (F-ratio = 32.135). Only for ordinal re-

gression does removing stop words improve the mean (and median) specificity

(Figure B.46). Not removing stop words only slightly aids QDA in improving

specificity. All other classification methods do not show visually a difference

in correctly identifying statements as not pants-on-fire.

The last significant two-way interaction is classification method and em-

bedding method with a F-ratio of 35.297. The plot in Figure B.47 is a mirror

image of sensitivity relative to the pants-on-fire class. In this case, discrimi-

nant analyses, except for FDA, perform poorly compared to other methods.

However, they are still performing relatively well with high specificity values.

The methods with the best specificity (FDA and random forest) have the worst

sensitivity values relative to the pants-on-fire label, indicating these methods

are mostly guessing the group membership. We see ordinal regression is pri-
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marily unreliable with BERT, PCA, and GloVe due to the distributions that

appear to be a line. QDA seems most variable with PCA, Continuous Bag of

Words in 100 dimensions, and Skip-Gram in 100 and 200 dimensions.

The main effect of including year is again significant (F-ratio = 122.45),

where not including year as a predictor improves mean (and median) specificity

seen in B.48. The difference in the means is only 0.0105783, which is not much.

However, the difference in the medians is 0.03152, which does seem relevant.

Not including year seems to lead to large variability.

The main effect of filtering stop words may also be significant (F-ratio

= 9.214). The plot again reveals the F-ratio may be misleading, and there

are possibly no differences in the mean specificity between the presence and

removal of stop words (Figure B.49). The medians also appear similar between

keeping and removing stop words.

As with sensitivity, embedding method is significant (F-ratio = 8.3). We

again see large differences between the means and the medians (Figure B.50).

Based on the means, BERT is one of the embedding methods performing the

worst on average. However, based on the median, BERT is the best embedding

method. Skip-Gram in 100 dimensions appears to be the most unreliable

embedding method as it has the highest variability.

Lastly, we look at the main effect of classification method, which has an F-

ratio of 1695.592. Outside of classification trees, FDA has the highest probabil-

ity of correctly identifying statements as not pants-on-fire on average, whereas

QDA is performing the worst. QDA has several outliers and the most vari-

ability out of all classification methods (Figure B.51).

In conclusion, if a person wants to make sure statements are correctly
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identified as not pants-on-fire, the use of FDA is recommended. One could

also argue to use any combination including classification trees if they really

do not want to classify any statement as pants-on-fire. With FDA, using GloVe

or either Word2Vec method in combination improves the average specificity.

For those combinations, it does not seem to make a difference the level of

minimum appearance. Additionally, if a person uses FDA, not including year

as a predictor slightly improves average specificity but not by much.

7.4 Conclusions

On average, all classification methods perform better than random chance

in terms of overall accuracy. However, only LDA and MDA seem to be clas-

sifying the extreme classes of true and pants-on-fire properly. Neither overall

accuracy or sensitivity for the extreme classes do much better than random

chance. With LDA and MDA, including year as a predictor improves average

sensitivity for the extreme cases as well as overall accuracy. Not filtering stop

words, removing words not appearing a minimum of 5 times, and Skip-Gram

in 100 dimensions combine individually with LDA and MDA to improve the

average overall accuracy. BERT with LDA or MDA produce the highest aver-

age sensitivity relative to the true label as do these combinations for sensitivity

relative to the pants-on-fire label. Additionally, filtering words not appearing

a minimum of 30 times does best with LDA and MDA for correctly identifying

pants-on-fire statements.

Unlike with the binary classification in the previous chapter, we do not

see as strong of an effect of embedding method. The interactions with em-

bedding methods and the preprocessing methods are not as prominent. The
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preprocessing methods seem to predominantly affect the classification meth-

ods. There does not seem to be consistency among the preprocessing methods

and maximizing the classification metrics we explored in the multi-class sce-

nario.

The inclusion of year as a predictor does not appear to be as impactful

as predicted based on Figure 7.1 led us to believe. While including year as a

predictor does improve the average overall accuracy, average sensitivity relative

to the true class, and average sensitivity relative to the pants-on-fire class, it

is not that large of a difference. The only metric including year as a predictor

did not improve on average was specificity relative to the pants-on-fire class.

In general, if a person is not interested in classifying the extreme cases,

then the use of classification trees is warranted. Classification trees never

classify any statement as true or pants-on-fire, only in the middle classes. In

terms of overall accuracy, this classification method is one of the worst, but it

still does better than random guessing. FDA and random forest perform better

with overall accuracy on average compared to classification trees, but they still

do not perform accurately with the extreme cases. The fact that classification

trees performs practically as well as the other classification methods overall

while never classifying statements into the extreme classes makes us think

there is not enough distinguishing characteristics between word embedding

methods and the inclusion of year to distinguish the classes, and one is better

off just making a guess.

More work is needed to explore other predictors to be used to distinguish

between the six classes in the PolitiFact data set. Semantic information such

as number of nouns, verbs, etc. could be considered as additional predictors
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of fake news. Additionally, information regarding the political affiliation of

the speaker or writer could be beneficial, as well as an interaction between

political affiliation with year it was made. At this time, we do not have this

information and is considered for future work. Lastly, stemming was again

not considered with the multi-class classification and is hypothesized to have

a significant effect.
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Chapter 8

Conclusions and Future Work

We set out to determine how well word embedding methods alone detected

fake news, if treating words as independent and methods capturing context

behaved differently. The Bag of Words and TF-IDF methods treat words

as independent. Because of the nature of these methods, the matrices are

highly sparse, leading to computational issues with many of the classification

methods. As a result, they were only used with the binary outcome classifi-

cation. As seen in Chapter 5, these methods perform poorly compared to the

embedding methods capturing context, except in the probability of correctly

identifying fake news. While PCA on the document-term matrix has the un-

derlying assumption of independence between the words, this method does

perform similarly to the word embedding methods capturing context. There

does not appear to be a single embedding and classification method combina-

tion outperforming the others. We did not have major differences indicating

word embeddings alone classified statements well.

However, all of these embedding methods are dependent on the word pre-

processing methods utilized in natural language processing procedures. A de-

termination of the usefulness of the word embeddings alone cannot be made
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without taking into consideration the effects of the preprocessing techniques.

In this case, we explored the effects of filtering stop words, filtering words not

appearing a minimum number of times, converting words to lowercase, and

removing numbers on the classification of fake news in Chapter 6. When only

considering the binary case of real and fake news, other than classification

method and embedding method, the filtering of stop words and filtering based

on minimum appearances had the most influence on the classification metrics

explored. Again, not one embedding method and combination of preprocess-

ing methods seemed to consistently surpass the others. It depended on the

classification metric of interest. For accuracy and precision (positive predictive

value), BERT and PCA worked the best. BERT did better with less filter-

ing, but PCA was the opposite. They both did best with stop words but in

combination with different classification methods. In terms of correctly iden-

tifying real news (sensitivity) and correctly identifying fake news (specificity),

GloVe and Skip-Gram were the better embedding methods to use. There was

an inverse relationship between these metrics. Combinations with high sen-

sitivity had low specificity, as seen in Tables 8.1 and 8.2. The combination

that produced the highest observed probability of correctly classifying real

news preformed the worst in terms of the observed probability of correctly

classifying fake news. Even through exploring the effects of the preprocessing

methods, we still find the word embeddings alone do not provide enough to

accurately classify political statements as they still do not perform much bet-

ter than random chance. Thus, future work might include other predictors to

explore how it affects classification.

Lastly, we also explored whether the results of the binary classes are con-
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founded with the fact the PolitiFact data set contains six classes. Additionally,

we explored the effect of including the year the statement was made. We only

focused on the preprocessing methods deemed significant in the binary case:

filtering stop words and filtering words not appearing a minimum number of

times. In the case of the multiple classes explored in Chapter 7, the prepro-

cessing methods did not have the same effect on the embedding methods as

they did with the binary case, only with the classification methods. In terms

of overall accuracy and correctly identifying the extreme cases, employing the

classification methods of LDA and MDA offers the most reliable improvement.

QDA also does, but it is the most unreliable and variable. Classification trees

never classify any statement into those categories. Including year as a predic-

tor does also seem to improve the overall accuracy and identifying the extreme

cases. However, the use of word embeddings and year still does not appear to

be enough in the multiple categories classification as it does not improve much

beyond random chance. Tables 8.3 and 8.4 reveal the maximum and minimum

observed value for the metrics we explored for the multiple classes scenario.

One will see that the combination giving the maximum sensitivity for each la-

bel is the same combination producing the minimum specificity for each label.

This again shows the classification methods that appear to be working “best”

may actually be unreliable and just selecting a random category to classify

statements.

Even though the inclusion of the year a statement was made only slightly

improved classification with the multiple classes, it is still of interest to explore

how this affects the binary case. Figure 8.1 reveals that much like the multiple

classes, the year a statement was made is associated with the category of the
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statement. Because multi-class classification is a much more difficult problem,

the effect of year may be more pronounced with binary classification. This

will be pursued in future work.
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Figure 8.1: The breakdown of the binary classes per year observed in our data
set.

In addition to including year as a predictor, other demographic information

could be of use in the classification of fake news, such as political party of the

speaker of the statement, whether or not it was from a blog, etc. We have

information regarding the speaker or writer of the statement and can easily find

this information, such as political party, to add to our classification methods.

Relating to the classification methods, we utilized more classical methods,

such as discriminant analyses. These classical methods are non-sequential,

meaning they do not take into account the order of the words, which could

be worthwhile. Investigating sequential classification methods which take into
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account order of the words is also a future direction of this research.

With the preprocessing methods, we did not explore the effect of stemming

words. Recall the act of stemming is trimming a word down to its root. For

instance, in the previous sentence, stemming would shorten the word “trim-

ming” down to “trim.” This allows words with essentially the same meaning

to be treated as the same word, which, in theory, greatly reduces the amount

of noise in the data set. There are multiple stemming algorithms in existence,

some more conservative in how much they trim than others. Thus, the type of

stemming algorithm used can play a role in the embedding methods as well.

It is important to note that all of this exploration into the effect of the

preprocessing methods is limited to only this data set. We do not have a

random sample and, more than likely, is not representative of all possible

political statements ever made. In addition, we are limited to politics in the

United States and English speakers. PolitiFact does its best to pick statements

from a wide range of speakers and political ideologies, but they openly admit

the party in power may be sampled more often. Thus, finding a data set

from another reliable source documenting fake news as well as collecting more

recent statements from PolitiFact is important to establishing the relevance

of this work to a broader context. We need to explore just how generalizable

these classification methods are. We can also expand past fake news to other

classification problems, such as hate speech detection.

Lastly, with the word embedding methods, we averaged across the dimen-

sions of the word embedding vectors for the words in the statement. This may

not be the best method to get a statement level embedding. Other methods

involve using the minimum or maximum of each dimension across all words in
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the statement. The median of each dimension could also be a useful method of

finding statement level embeddings. Exploring other options to obtain these

statement level of embedding is of interest in a future work.
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Table 8.1: The classification method, embedding method, and preprocessing
methods combination creating the maximum for each metric for binary clas-
sification.

Metric Classification Method Embedding Method Filter stop words? Convert to Lowercase? Filter Numbers? Minimum Appearances Maximum
Accuracy LogReg PCA No No No 60 0.63950
Precision QDA SG768 No No No 0 0.68290
Sensitivity LogReg SG768 No No Yes 60 0.90870
Specificity LogReg SG768 No No No 60 0.91838

Table 8.2: The classification method, embedding method, and preprocessing
methods combination creating the minimum for each metric for binary classi-
fication.

Metric Classification Method Embedding Method Filter stop words? Convert to Lowercase? Filter Numbers? Minimum Appearances Minimum
Accuracy LogReg CBoW768 Yes No Yes 60 0.50660
Precision LogReg CBoW768 Yes No Yes 60 0.49740
Sensitivity LogReg SG768 No No No 60 0.17719
Specificity LogReg SG768 No No Yes 60 0.19750

Table 8.3: The classification method, embedding method, and preprocessing
methods combination creating the maximum for each metric for the muliple
classes classification.

Metric Classification Method Embedding Method Filter stop words? Include Year? Minimum Appearances Maximum
Overall Accuracy RF CBoW768 Yes Yes 5 0.28340
Sensitivity-True OrdReg PCA No No 5 0.30205
Sensitivity-PantsFire QDA SG100 Yes No 0 0.64375

Table 8.4: The classification method, embedding method, and preprocessing
methods combination creating the minimum for each metric for the muliple
classes classification.

Metric Classification Method Embedding Method Filter stop words? Include Year? Minimum Appearances Minimum
Overall Accuracy OrdReg PCA Yes No 0 0.1938
Specificity-True OrdReg GloVe768 Yes No 5 0.7880
Specificity-PantsFire QDA SG100 Yes No 0 0.4896
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Appendix A

Plots for Chapter 6

This appendix contains all interaction and main effect mean plots dis-

cussed in Chapter 6 for effects with a F-ratio greater than 2. It also contains

appropriate violin plots for the main effect and two-way interactions to give

us an understanding of the distribution of observations.
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Figure A.1: C × E × S, F-ratio = 2.459. The difference in accuracy between
filtering of stop words (no-yes) for each combination of classification and em-
bedding method. Discriminant analyses are in blue. Logistic regression is red,
and tree-based methods are in green. The median is a black triangle, and the
mean is a grey circle.



139

RF

LogReg Tree

MDA FDA

LDA QDA

No Yes

No Yes

0.50

0.55

0.60

0.65

0.50

0.55

0.60

0.65

0.50

0.55

0.60

0.65

0.50

0.55

0.60

0.65

Filter Stop Words?

A
cc

ur
ac

y 
R

at
e

Figure A.2: C × S, F-ratio = 4.065. The effect of filtering stop words by
classification method on accuracy. The median is a black triangle, and the
mean is a grey circle.
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Figure A.3: E × S, F-ratio = 5.061. The effect of filtering stop words by
embedding method on accuracy. The median is a black triangle, and the
mean is a grey circle.
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Figure A.4: C ×F , F-ratio = 8.586. The effect of filtering based on minimum
number of appearances by classification method on accuracy. The median is
a black triangle, and the mean is a grey circle.



142

BERT PCA

GloVe100 GloVe200 GloVe300 GloVe768

SG100 SG200 SG300 SG768

CBoW100 CBoW200 CBoW300 CBoW768

0 5 30 60 0 5 30 60

0 5 30 60 0 5 30 60

0.50

0.55

0.60

0.65

0.50

0.55

0.60

0.65

0.50

0.55

0.60

0.65

0.50

0.55

0.60

0.65

Minimum Number of Appearances

A
cc

ur
ac

y 
R

at
e

Figure A.5: E×F , F-ratio = 13.043. The effect of filtering based on minimum
number of appearances by embedding method on accuracy. The median is a
black triangle, and the mean is a grey circle.
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Figure A.6: C × E, F-ratio = 11.359. The effect of classification method by
embedding method on accuracy. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.7: C, F-ratio = 1425.005. The effect of classification method on
accuracy. Discriminant analyses are in blue. Logistic regression is red, and
tree-based methods are in green. The median is a black triangle, and the mean
is a grey circle.
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Figure A.8: E, F-ratio = 86.977. The effect of embedding method on accu-
racy. Word2Vec Continuous Bag of Words are in the blue-green shades, and
Word2Vec Skip-Gram are in the blue-purple shades. GloVe is in the brown-
orange shades. BERT is in pink, and PCA is in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.9: S, F-ratio = 1389.398. The effect of filtering stop words on
accuracy. The median is a black triangle, and the mean is a grey circle.
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Figure A.10: F , F-ratio = 196.127. The effect of filtering words based on
minimum number of appearances on accuracy. The median is a black triangle,
and the mean is a grey circle.
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Figure A.11: N , F-ratio = 4.074. The effect of filtering numbers on accuracy.
The median is a black triangle, and the mean is a grey circle.
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Figure A.12: C ×E ×F , F-ratio = 3.334. The effect of classification method,
embedding method, and filtering threshold on precision. Each classification
method is represented by a letter. T is for classification tree, and G is for
logistic regression. All others are based on the first letter of the method name.
Only the means are plotted here. Violin plots are not used due to the number
of levels of filtering threshold.
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Figure A.13: C × E × S, F-ratio = 2.17. The difference in precision between
filtering of stop words (no-yes) for each combination of classification and em-
bedding method. Discriminant analyses are in blue. Logistic regression is red,
and tree-based methods are in green. The median is a black triangle, and the
mean is a grey circle.
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Figure A.14: C × S, F-ratio = 11.891. The effect of filtering stop words by
classification method on precision. The median is a black triangle, and the
mean is a grey circle.
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Figure A.15: E × S, F-ratio = 6.576. The effect of filtering stop words by
embedding method on precision. The median is a black triangle, and the
mean is a grey circle.
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Figure A.16: C × N , F-ratio = 2.814. The effect of filtering numbers by
classification method on precision. The median is a black triangle, and the
mean is a grey circle.
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Figure A.17: E × N , F-ratio = 2.089. The effect of filtering numbers by
embedding method on precision. The median is a black triangle, and the
mean is a grey circle.
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Figure A.18: C × F , F-ratio = 71.954. The effect of filtering threshold by
classification method on precision. The median is a black triangle, and the
mean is a grey circle.
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Figure A.19: E × F , F-ratio = 15.85. The effect of filtering threshold by
embedding method on precision. The median is a black triangle, and the
mean is a grey circle.
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Figure A.20: C × E, F-ratio = 13.202. The effect of classification method by
embedding method on precision. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.21: C, F-ratio = 1126.108. The effect of classification method on
precision. Discriminant analyses are in blue. Logistic regression is red, and
tree-based methods are in green. The median is a black triangle, and the mean
is a grey circle.
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Figure A.22: E, F-ratio = 156.542. The effect of embedding method on pre-
cision. Word2Vec Continuous Bag of Words are in the blue-green shades, and
Word2Vec Skip-Gram are in the blue-purple shades. GloVe is in the brown-
orange shades. BERT is in pink, and PCA is in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.23: S, F-ratio = 835.244. The effect of filtering stop words on
precision. The median is a black triangle, and the mean is a grey circle.
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Figure A.24: F , F-ratio = 17.048. The effect of filtering threshold on precision.
The median is a black triangle, and the mean is a grey circle.
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Figure A.25: L, F-ratio = 12.68. The effect of converting to lowercase on
precision. The median is a black triangle, and the mean is a grey circle.
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Figure A.26: C ×E ×F , F-ratio = 3.598. The effect of classification method,
embedding method, and filtering threshold on sensitivity. Each classification
method is represented by a letter. T is for classification tree, and G is for
logistic regression. All others are based on the first letter of the method name.
Only the means are plotted here. Violin plots are not used due to the number
of levels of filtering threshold.
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Figure A.27: C × S, F-ratio = 15.512. The effect of filtering stop words by
classification method on sensitivity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.28: C × N , F-ratio = 3.149. The effect of filtering numbers by
classification method on sensitivity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.29: C × F , F-ratio = 65.52. The effect of filtering threshold by
classification method on sensitivity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.30: E × F , F-ratio = 10.2588. The effect of filtering threshold by
embedding method on sensitivity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.31: C × E, F-ratio = 10.811. The effect of classification method by
embedding method on sensitivity. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.32: C, F-ratio = 82.573. The effect of classification method on
sensitivity. Discriminant analyses are in blue. Logistic regression is red, and
tree-based methods are in green. The median is a black triangle, and the mean
is a grey circle.
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Figure A.33: E, F-ratio = 23.438. The effect of embedding method on sensi-
tivity. Word2Vec Continuous Bag of Words are in the blue-green shades, and
Word2Vec Skip-Gram are in the blue-purple shades. GloVe is in the brown-
orange shades. BERT is in pink, and PCA is in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.34: S, F-ratio = 295.017. The effect of filtering stop words on
sensitivity. The median is a black triangle, and the mean is a grey circle.



172

0.25

0.50

0.75

No Yes
Convert to Lowercase?

S
en

si
tiv

ity
 R

at
e

Figure A.35: L, F-ratio = 2.701. The effect of converting to lowercase on
sensitivity. The median is a black triangle, and the mean is a grey circle.
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Figure A.36: N , F-ratio = 7.061. The effect of filtering numbers on sensitivity.
The median is a black triangle, and the mean is a grey circle.
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Figure A.37: F , F-ratio = 219.469. The effect of filtering threshold on sensi-
tivity. The median is a black triangle, and the mean is a grey circle.
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Figure A.38: C ×E ×F , F-ratio = 3.492. The effect of classification method,
embedding method, and filtering threshold on specificity. Each classification
method is represented by a letter. T is for classification tree, and G is for
logistic regression. All others are based on the first letter of the method name.
Only the means are plotted here. Violin plots are not used due to the number
of levels of filtering threshold.
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Figure A.39: C × S, F-ratio = 16.452. The effect of filtering stop words by
classification method on specificity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.40: E × S, F-ratio = 2.347. The effect of filtering stop words by
embedding method on specificity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.41: C ×N , F-ratio = 3.67. The effect of filtering numbers by classi-
fication method on specificity. The median is a black triangle, and the mean
is a grey circle.
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Figure A.42: E × N , F-ratio = 2.173. The effect of filtering numbers by
embedding method on specificity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.43: C × F , F-ratio = 76.906. The effect of filtering threshold by
classification method on specificity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.44: E × F , F-ratio = 11.126. The effect of filtering threshold by
embedding method on specificity. The median is a black triangle, and the
mean is a grey circle.
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Figure A.45: C × E, F-ratio = 11.752. The effect of embedding method by
classification method on specificity. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.46: C, F-ratio = 136.591. The effect of classification method on
specificity. Discriminant analyses are in blue. Logistic regression is red, and
tree-based methods are in green. The median is a black triangle, and the mean
is a grey circle.
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Figure A.47: E, F-ratio = 66.197. The effect of embedding method on speci-
ficity. Word2Vec Continuous Bag of Words are in the blue-green shades, and
Word2Vec Skip-Gram are in the blue-purple shades. GloVe is in the brown-
orange shades. BERT is in pink, and PCA is in green. The median is a black
triangle, and the mean is a grey circle.
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Figure A.48: L, F-ratio = 3.506. The effect of converting to lowercase on
specificity. The median is a black triangle, and the mean is a grey circle.
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Figure A.49: N , F-ratio = 3.31. The effect of filtering numbers on specificity.
The median is a black triangle, and the mean is a grey circle.
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Figure A.50: F , F-ratio = 79.932. The effect of filtering threshold on speci-
ficity. The median is a black triangle, and the mean is a grey circle.
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Appendix B

Plots for Chapter 7

This appendix contains all interaction and main effect mean plots dis-

cussed in Chapter 7 for effects with a F-ratio greater than 2. It also contains

appropriate violin plots for the main effect and two-way interactions allowing

us to visualize the distribution of observations.
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Figure B.1: C × E × S, F-ratio = 2.401. The difference in overall accuracy
between filtering of stop words (no-yes) for each combination of classification
and embedding method. Discriminant analyses are in blue. Logistic regression
is red, and tree-based methods are in green. The median is a black triangle,
and the mean is a grey circle.
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Figure B.2: C × R, F-ratio = 36.49. The effect of including year as a predic-
tor by classification method on the overall accuracy. The median is a black
triangle, and the mean is a grey circle.
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Figure B.3: C × F , F-ratio = 5.213. The effect of filtering threshold by
classification method on the overall accuracy. The median is a black triangle,
and the mean is a grey circle.
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Figure B.4: E × F , F-ratio = 2.805. The effect of filtering threshold by
embedding method on the overall accuracy. The median is a black triangle,
and the mean is a grey circle.



193

RF

OrdReg Tree

MDA FDA

LDA QDA

No Yes

No Yes

0.19

0.21

0.23

0.25

0.27

0.19

0.21

0.23

0.25

0.27

0.19

0.21

0.23

0.25

0.27

0.19

0.21

0.23

0.25

0.27

Filter Stop Words?

O
ve

ra
ll 

A
cc

ur
ac

y 
R

at
e

Figure B.5: C × S, F-ratio = 8.694. The effect of filtering stop words by
classification method on the overall accuracy. The median is a black triangle,
and the mean is a grey circle.
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Figure B.6: C × E, F-ratio = 11.719. The effect of classification method by
embedding method on the overall accuracy. Discriminant analyses are in blue.
Logistic regression is red, and tree-based methods are in green. The median
is a black triangle, and the mean is a grey circle.
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Figure B.7: R, F-ratio = 325.709. The effect of including year as a predictor
on the overall accuracy. The median is a black triangle, and the mean is a
grey circle.



196

0.19

0.21

0.23

0.25

0.27

0 5 30 60
Minimum Number of Appearances

O
ve

ra
ll 

A
cc

ur
ac

y 
R

at
e

Figure B.8: F , F-ratio = 29.811. The effect of filtering threshold on the overall
accuracy. The median is a black triangle, and the mean is a grey circle.
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Figure B.9: S, F-ratio = 249.807. The effect of filtering stop words on the
overall accuracy. The median is a black triangle, and the mean is a grey circle.
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Figure B.10: E, F-ratio = 31.29. The effect of embedding method on overall
accuracy. Word2Vec Continuous Bag of Words are in the blue-green shades,
and Word2Vec Skip-Gram are in the blue-purple shades. GloVe is in the
brown-orange shades. BERT is in pink, and PCA is in green. The median is
a black triangle, and the mean is a grey circle.
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Figure B.11: C, F-ratio = 1369.341. The effect of classification method on
overall accuracy. Discriminant analyses are in blue. Logistic regression is red,
and tree-based methods are in green. The median is a black triangle, and the
mean is a grey circle.
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Figure B.12: C × R, F-ratio = 49.388. The effect of including year as a pre-
dictor by classification method on the sensitivity of a true label. The median
is a black triangle, and the mean is a grey circle.
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Figure B.13: C × F , F-ratio = 5.371. The effect of filtering threshold by
classification method on the sensitivity of a true label. The median is a black
triangle, and the mean is a grey circle.
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Figure B.14: C × S, F-ratio = 7.727. The effect of filtering stop words by
classification method on the sensitivity of a true label. The median is a black
triangle, and the mean is a grey circle.
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Figure B.15: C × E, F-ratio = 7.095. The effect of classification method by
embedding method on the sensitivity of a true label. Discriminant analyses
are in blue. Logistic regression is red, and tree-based methods are in green.
The median is a black triangle, and the mean is a grey circle.
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Figure B.16: F , F-ratio = 9.608. The effect of filtering threshold on the
sensitivity of a true label. The median is a black triangle, and the mean is a
grey circle.
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Figure B.17: E, F-ratio = 10.451. The effect of embedding method on the
sensitivity of a true label. Word2Vec Continuous Bag of Words are in the
blue-green shades, and Word2Vec Skip-Gram are in the blue-purple shades.
GloVe is in the brown-orange shades. BERT is in pink, and PCA is in green.
The median is a black triangle, and the mean is a grey circle.
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Figure B.18: C, F-ratio = 1443.107. The effect of classification method on
the sensitivity of a true label. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure B.19: C×R, F-ratio = 47.17. The effect of including year as a predictor
by classification method on the specificity of a true label. The median is a black
triangle, and the mean is a grey circle.
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Figure B.20: C × F , F-ratio = 8.112. The effect of filtering threshold by
classification method on the specificity of a true label. The median is a black
triangle, and the mean is a grey circle.
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Figure B.21: C × S, F-ratio = 4.565. The effect of filtering stop words by
classification method on the specificity of a true label. The median is a black
triangle, and the mean is a grey circle.
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Figure B.22: C × E, F-ratio = 9.182. The effect of classification method by
embedding method on the specificity of a true label. Discriminant analyses
are in blue. Logistic regression is red, and tree-based methods are in green.
The median is a black triangle, and the mean is a grey circle.
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Figure B.23: R, F-ratio = 2.606. The effect of including year as a predictor on
the specificity of a true label. The median is a black triangle, and the mean is
a grey circle.
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Figure B.24: F , F-ratio = 17.417. The effect of filtering threshold on the
specificity of a true label. The median is a black triangle, and the mean is a
grey circle.
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Figure B.25: S, F-ratio = 4.427. The effect of filtering stop words on the
specificity of a true label. The median is a black triangle, and the mean is a
grey circle.
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Figure B.26: E, F-ratio = 15.516. The effect of embedding method on the
specificity of a true label. Word2Vec Continuous Bag of Words are in the
blue-green shades, and Word2Vec Skip-Gram are in the blue-purple shades.
GloVe is in the brown-orange shades. BERT is in pink, and PCA is in green.
The median is a black triangle, and the mean is a grey circle.
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Figure B.27: C, F-ratio = 1507.22. The effect of classification method on
the specificity of a true label. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure B.28: C ×E ×R, F-ratio = 2.353. The effect of classification method,
embedding method, and inclusion of year as a predictor on the sensitivity of a
pants-on-fire label. Only the means are plotted here. Violin plots are not used
due to the unbalanced number of combinations between the levels since there
were computational issues. There are fewer combinations observed when year
is included as a predictor.
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Figure B.29: C × E × F , F-ratio = 2.84. The effect of classification method,
embedding method, and filtering threshold on the sensitivity of a pants-on-
fire label. Each classification method is represented by a letter. T is for
classification tree, and G is for ordinal regression. All others are based on the
first letter of the method name. Only the means are plotted here. Violin plots
are not used due to the number of levels of filtering threshold.
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Figure B.30: E×R, F-ratio = 4.217. The effect of including year as a predictor
by embedding method on the sensitivity of a pants-on-fire label. The median
is a black triangle, and the mean is a grey circle.
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Figure B.31: C×R, F-ratio = 4.217. The effect of including year as a predictor
by classification method on the sensitivity of a pants-on-fire label. The median
is a black triangle, and the mean is a grey circle.
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Figure B.32: C × F , F-ratio = 16.803. The effect of filtering threshold by
classification method on the sensitivity of a pants-on-fire label. The median is
a black triangle, and the mean is a grey circle.
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Figure B.33: C × S, F-ratio = 20.903. The effect of filtering stop words by
classification method on the sensitivity of a pants-on-fire label. The median is
a black triangle, and the mean is a grey circle.
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Figure B.34: C × E, F-ratio = 32.143. The effect of classification method by
embedding method on the sensitivity of the pants-on-fire label. Discriminant
analyses are in blue. Logistic regression is red, and tree-based methods are in
green. The median is a black triangle, and the mean is a grey circle.
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Figure B.35: R, F-ratio = 355.736. The effect of including year as a predictor
on the sensitivity of the pants-on-fire label. The median is a black triangle,
and the mean is a grey circle.
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Figure B.36: F , F-ratio = 9.366. The effect of filtering threshold on the
sensitivity of the pants-on-fire label. The median is a black triangle, and the
mean is a grey circle.
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Figure B.37: S, F-ratio = 19.809. The effect of filtering stop words on the
sensitivity of the pants-on-fire label. The median is a black triangle, and the
mean is a grey circle.
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Figure B.38: E, F-ratio = 9.524. The effect of embedding method on the
sensitivity of a pants-on-fire label. Word2Vec Continuous Bag of Words are
in the blue-green shades, and Word2Vec Skip-Gram are in the blue-purple
shades. GloVe is in the brown-orange shades. BERT is in pink, and PCA is
in green. The median is a black triangle, and the mean is a grey circle.
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Figure B.39: C, F-ratio = 2080.956. The effect of classification method on the
sensitivity of a pants-on-fire label. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Figure B.40: C ×E ×R, F-ratio = 2.029. The effect of classification method,
embedding method, and inclusion of year as a predictor on the specificity of a
pants-on-fire label. Only the means are plotted here. Violin plots are not used
due to the unbalanced number of combinations between the levels since there
were computational issues. There are fewer combinations observed when year
is included as a predictor.
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Figure B.41: C ×E × F , F-ratio = 3.754. The effect of classification method,
embedding method, and filtering threshold on the specificity of a pants-on-
fire label. Each classification method is represented by a letter. T is for
classification tree, and G is for ordinal regression. All others are based on the
first letter of the method name. Only the means are plotted here. Violin plots
are not used due to the number of levels of filtering threshold.
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Figure B.42: E×R, F-ratio = 2.166. The effect of including year as a predictor
by embedding method on the specificity of a pants-on-fire label. The median
is a black triangle, and the mean is a grey circle.
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Figure B.43: C × R, F-ratio = 27.138. The effect of including year as a
predictor by classification method on the specificity of a pants-on-fire label.
The median is a black triangle, and the mean is a grey circle.
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Figure B.44: E × F , F-ratio = 2.828. The effect of filtering threshold by
embedding method on the specificity of a pants-on-fire label. The median is a
black triangle, and the mean is a grey circle.
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Figure B.45: C × F , F-ratio = 17.852. The effect of filtering threshold by
classification method on the specificity of a pants-on-fire label. The median is
a black triangle, and the mean is a grey circle.
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Figure B.46: C × S, F-ratio = 32.135. The effect of filtering stop words by
classification method on the specificity of a pants-on-fire label. The median is
a black triangle, and the mean is a grey circle.
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Figure B.47: C × E, F-ratio = 35.297. The effect of classification method by
embedding method on the specificity of the pants-on-fire label. Discriminant
analyses are in blue. Logistic regression is red, and tree-based methods are in
green. The median is a black triangle, and the mean is a grey circle.
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Figure B.48: R, F-ratio = 122.45. The effect of including year as a predictor
on the specificity of the pants-on-fire label. The median is a black triangle,
and the mean is a grey circle.
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Figure B.49: S, F-ratio = 9.214. The effect of filtering stop words on the
specificity of the pants-on-fire label. The median is a black triangle, and the
mean is a grey circle.
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Figure B.50: E, F-ratio = 8.3. The effect of embedding method on the speci-
ficity of a pants-on-fire label. Word2Vec Continuous Bag of Words are in the
blue-green shades, and Word2Vec Skip-Gram are in the blue-purple shades.
GloVe is in the brown-orange shades. BERT is in pink, and PCA is in green.
The median is a black triangle, and the mean is a grey circle.
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Figure B.51: C, F-ratio = 2080.956. The effect of classification method on the
specificity of a pants-on-fire label. Discriminant analyses are in blue. Logistic
regression is red, and tree-based methods are in green. The median is a black
triangle, and the mean is a grey circle.
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Appendix C

Code

The following code was ran using the Crane server at the Holland Com-

puting Center, located at the University of Nebraska-Lincoln.

Binary Classification

Bag of Words

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(caret)

library(doParallel)

set.seed(121565)

############## COMBINING DATA SETS ############################
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rawdata_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

(substr(statement,1,nchar(statement)-1))))))

#For all lowercase

#tolower(substr(statement,1,nchar(statement)-1))

news_tokens <- data %>% select(id, label_fnn, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers to be included

#Change to "[A-z']+" for all cases

mutate(word = str_extract(word, "[[:alnum:]]+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%
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filter(token_freq >=60) %>%

group_by(id, label_fnn) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Getting the labels

y <- news_new %>% select(label_fnn) %>% pull() %>% as.array()

y <- as.factor(y)

levels(y)

y <- ifelse(y == "fake", 0, 1)

it <- itoken(news_new$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab <- create_vocabulary(it)

vocab <- prune_vocabulary(vocab)

vectorizer <- vocab_vectorizer(vocab)

news_new <- news_new %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new)

#put integers in a sequence

sequences<- texts_to_sequences(tokenizer, news_new)

##########################Document-term matrix all########################

un.words <- length(tokenizer$word_index)

docs <- length(sequences)

dtm <- matrix(0, nrow = docs, ncol = un.words)

for (i in 1:docs){
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word.vec <- sequences[[i]]

c <- length(sequences[[i]])

a <- 0

for (j in 1:c){

a <- a + 1

b <- word.vec[a]

dtm[i,b] <- dtm[i,b] + 1

}

}

dtm_y <- cbind(dtm, y)

dtm_y <- as.data.frame(dtm_y)

words <- unlist(tokenizer$index_word, use.names = TRUE)

words <- c(words, "PolitiFactRating")

colnames(dtm_y) <- words

trainIndex <- createDataPartition(dtm_y$PolitiFactRating,

p = .8, list = F, times = 1)

dtm_train_y <- dtm_y[trainIndex,]

dtm_test_y <- dtm_y[-trainIndex,]

mean(dtm_train_y$PolitiFactRating)

mean(dtm_test_y$PolitiFactRating)

dtm_train_y$PolitiFactRating <- as.factor(dtm_train_y$PolitiFactRating)

dtm_test_y$PolitiFactRating <- as.factor(dtm_test_y$PolitiFactRating)
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###################### BoW CV ################

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

#Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

#Quadratic Discriminant Analysis directly on DTM
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#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = dtm_train_y,

# trControl = train.control, method = "qda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(dtm_test_y)

#confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

#Mixture Discriminant Analysis directly on DTM

library(mda)

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = dtm_train_y,

# trControl = train.control, method = "mda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(dtm_test_y)

#confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

#Flexible Discriminant Analysis directly on DTM

#library(earth)

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = dtm_train_y,

# trControl = train.control, method = "fda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model
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#predictions <- model %>% predict(dtm_test_y)

#confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()



247

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions, dtm_test_y$PolitiFactRating)

BERT

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)

library(doParallel)

set.seed(121565)

rawdata_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,
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stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

(substr(statement,1,nchar(statement)-1))))))

#For all lowercase

#tolower(substr(statement,1,nchar(statement)-1))

news_tokens <- data %>% select(id, label_fnn, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers and cases to be included

#Change to "[A-z']+" for all cases

mutate(word = str_extract(word, "[[:alnum:]]+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >=60) %>%

group_by(id, label_fnn) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

trainIndex <- createDataPartition(news_new$label_fnn,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)
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news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#write.csv(news_new_train,

"fnntrain60NumbersUpperStopwords.csv",

row.names = FALSE)

#write.csv(news_new_test,

"fnntest60NumbersUpperStopwords.csv",

row.names = FALSE)

bert_train <- read.csv(file =

"BERT_Train_60_Numbers_Upper_Stopwords.csv",

header = F)

dim(bert_train)

bert_train <- bert_train[-1,]

dim(bert_train)

bert_test <- read.csv(file =

"BERT_Test_60_Numbers_Upper_Stopwords.csv",

header = F)

dim(bert_test)

bert_test <- bert_test[-1,]

dim(bert_test)

#Getting the labels

y_train <- news_new_train %>% select(label_fnn) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label_fnn) %>% pull() %>% as.array()

y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)
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levels(y_test)

y_train <- ifelse(y_train == "fake", 0, 1)

y_test <- ifelse(y_test == "fake", 0, 1)

dtm_train_y <- cbind(bert_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(bert_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

##### CV DIM#####

#Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,
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trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)
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confusionMatrix(predictions,dtm_test_y$y_test)

#Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

### Random Forest
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library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

BERT, Python portion (Reimer, 2022)

import tensorflow as tf

import torch

import pandas as pd

df_train = pd.read_csv("fnntrain60NumbersUpperStopwords.csv")

df_test = pd.read_csv("fnntest60NumbersUpperStopwords.csv")

#Get the lists of sentences and their labels.

sentences_train = df_train.newsTextClean.values

sentences_test = df_test.newsTextClean.values
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from sentence_transformers import SentenceTransformer, models

#change to 'bert-base-cased' to tell difference between

#upper and lower case

word_embedding_model = models.Transformer('bert-base-uncased',

max_seq_length=120)

pooling_model = models.Pooling(word_embedding_model.

get_word_embedding_dimension())

sbert_model = SentenceTransformer(modules=[word_embedding_model,

pooling_model])

document_train = sbert_model.encode(sentences_train)

document_test = sbert_mode.encode(sentences_test)

df_train.to_csv("BERT_Train_60_Numbers_Upper_Stopwords.csv")

df_test.to_csv("BERT_Test_60_Numbers_Upper_Stopwords.csv")

GloVe

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)
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library(doParallel)

library(pROC)

set.seed(121565)

############## COMBINING DATA SETS ############################

rawdata_train <- read.csv(file = "DataFakeNewsNets/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "DataFakeNewsNets/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "DataFakeNewsNets/fnn_dev.csv",

header = T,

stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

tolower(substr(statement,1,nchar(statement)-1))))))

data <- data %>% separate(date, c("Year", "Month", "Day","Junk"), sep = "-")

#For all lowercase

#tolower(substr(statement,1,nchar(statement)-1))

news_tokens <- data %>% select(id, label_fnn, Year, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers and cases to be included
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#Change to "[A-z']+" for all cases

mutate(word = str_extract(word, "[a-z']+"))

news_tokens <- news_tokens %>% drop_na(word)

news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 5) %>%

group_by(id, label_fnn, Year) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

max.length <- max(str_count(news_new$newsTextClean, "[[:alnum:]]+"))

trainIndex <- createDataPartition(news_new$label_fnn,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#Getting the labels

y_train <- news_new_train %>% select(label_fnn) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label_fnn) %>% pull() %>% as.array()

y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

y_train <- ifelse(y_train == "fake", 0, 1)

y_test <- ifelse(y_test == "fake", 0, 1)
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year_train <- news_new_train %>% select(Year) %>% pull() %>% as.array()

year_test <- news_new_test %>% select(Year) %>% pull() %>% as.array()

year_train <- as.factor(year_train)

year_test <- as.factor(year_test)

levels(year_train)

levels(year_test)

it_train <- itoken(news_new_train$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

it_test <- itoken(news_new_test$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab_train <- create_vocabulary(it_train)

vocab_test <- create_vocabulary(it_test)

vocab_train <- prune_vocabulary(vocab_train)

vocab_test <- prune_vocabulary(vocab_test)

vectorizer_train <- vocab_vectorizer(vocab_train)

vectorizer_test <- vocab_vectorizer(vocab_test)

news_new_train <- news_new_train %>% select(newsTextClean) %>% pull()

news_new_test <- news_new_test %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer_train <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_train)

tokenizer_test <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_test)

#put integers in a sequence
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sequences_train <- texts_to_sequences(tokenizer_train, news_new_train)

sequences_test <- texts_to_sequences(tokenizer_test, news_new_test)

dtm_train <- create_dtm(it_train, vectorizer_train)

dtm_train <- as.matrix(dtm_train)

dtm_test <- create_dtm(it_test, vectorizer_test)

dtm_test <- as.matrix(dtm_test)

tcm_train <- create_tcm(it_train, vectorizer_train,

skip_grams_window_context = c("symmetric"))

xmax <- max(tcm_train)

######################## GloVe Embedding Dim 300 ###############

glove_train <- GlobalVectors$new(rank = 300, x_max = xmax)

# This gets the embeddings for target words.

wv_tar_train <- glove_train$fit_transform(tcm_train, n_iter = 100)

dim(wv_tar_train)

# This gets the embedding for the context words.

wv_con_train <- glove_train$components

dim(wv_con_train)

word_vect_train <- wv_tar_train + t(wv_con_train)

dim(word_vect_train)

word_vect_train <- as.matrix(word_vect_train)

### Getting embeddings per document

intersection <- colnames(dtm_train) %in% rownames(word_vect_train)

dtm_train <- dtm_train[,intersection]

words <- colnames(dtm_train)

dtm_emb_train <- matrix(0, nrow = nrow(dtm_train),

ncol = ncol(word_vect_train))

for (i in 1:nrow(dtm_train)){



259

for (j in 1:ncol(dtm_train)){

if (dtm_train[i,j] != 0){

dtm_emb_train[i,] <- dtm_emb_train[i,] + dtm_train[i,j] *

word_vect_train[which(rownames(word_vect_train) == words[j]),]

}

}

}

int_test <- colnames(dtm_test) %in% rownames(word_vect_train)

dtm_test <- dtm_test[,int_test]

words_test <- colnames(dtm_test)

dtm_emb_test <- matrix(0, nrow = nrow(dtm_test),

ncol = ncol(word_vect_train))

for (i in 1:nrow(dtm_test)){

for (j in 1:ncol(dtm_test)){

if (dtm_test[i,j] != 0){

dtm_emb_test[i,] <- dtm_emb_test[i,] + dtm_test[i,j] *

word_vect_train[which(rownames(word_vect_train) == words_test[j]),]

}

}

}

dtm_train_y <- cbind(dtm_emb_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(dtm_emb_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

train.control <- trainControl(method = "cv", number = 10)
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cl <- makePSOCKcluster(5)

registerDoParallel(cl)

##### CV 300 DIM#####

#Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,
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trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)
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#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model
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predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

PCA

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(caret)

library(doParallel)

set.seed(121565)

rawdata_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%
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mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

(substr(statement,1,nchar(statement)-1))))))

#For all lowercase

#tolower(substr(statement,1,nchar(statement)-1))

news_tokens <- data %>% select(id, label_fnn, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = F) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers and cases to be included

#Change to "[A-z']+" for all cases

mutate(word = str_extract(word, "[[:alnum:]]+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 60) %>%

group_by(id, label_fnn) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Getting the labels

y <- news_new %>% select(label_fnn) %>% pull() %>% as.array()

y <- as.factor(y)

levels(y)

y <- ifelse(y == "fake", 0, 1)

it <- itoken(news_new$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,
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progressbar = T, tolower = F)

vocab <- create_vocabulary(it)

vocab <- prune_vocabulary(vocab)

vectorizer <- vocab_vectorizer(vocab)

news_new <- news_new %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer <- text_tokenizer(lower = F) %>% fit_text_tokenizer(news_new)

#put integers in a sequence

sequences<- texts_to_sequences(tokenizer, news_new)

library(MASS)

#Document-term matrix all

un.words <- length(tokenizer$word_index)

docs <- length(sequences)

dtm <- matrix(0, nrow = docs, ncol = un.words)

for (i in 1:docs){

word.vec <- sequences[[i]]

c <- length(sequences[[i]])

a <- 0

for (j in 1:c){

a <- a + 1

b <- word.vec[a]

dtm[i,b] <- dtm[i,b] + 1

}

}

dtm_y <- cbind(y, dtm)

dtm_y <- as.data.frame(dtm_y)
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words <- unlist(tokenizer$index_word, use.names = TRUE)

words <- c("PolitiFactRating", words)

colnames(dtm_y) <- words

trainIndex <- createDataPartition(dtm_y$PolitiFactRating,

p = .8, list = F, times = 1)

dtm_train_y <- dtm_y[trainIndex,]

dtm_test_y <- dtm_y[-trainIndex,]

mean(dtm_train_y$PolitiFactRating)

mean(dtm_test_y$PolitiFactRating)

dtm_train_y$PolitiFactRating <- as.factor(dtm_train_y$PolitiFactRating)

dtm_test_y$PolitiFactRating <- as.factor(dtm_test_y$PolitiFactRating)

dtm_train <- dtm_train_y[,-1]

pca_train <- prcomp(dtm_train, center = T)

pct_train <- (pca_train$sdev^2/sum(pca_train$sdev^2))*100

sum(pct_train[1:400])

embeds <- pca_train$rotation[,1:400]

pc_train <- as.matrix(dtm_train) %*% as.matrix(embeds)

pc_train_y <- cbind(dtm_train_y[,1],pc_train)

pc_train_y <- as.data.frame(pc_train_y)

pc_train_y$V1 <- ifelse(pc_train_y$V1 == 1, 0, 1)

pc_train_y$V1 <- as.factor(pc_train_y$V1)
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pc_test <- as.matrix(dtm_test_y[,-1]) %*% as.matrix(embeds)

pc_test_y <- cbind( dtm_test_y[,1], pc_test)

pc_test_y <- as.data.frame(pc_test_y)

pc_test_y$V1 <- ifelse(pc_test_y$V1 == 1, 0, 1)

pc_test_y$V1 <- as.factor(pc_test_y$V1)

identical(pc_test_y$V1, dtm_test_y[,1])

###################### PCA CV ################

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

#Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "lda")
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end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

#Flexible Discriminant Analysis directly on DTM
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library(earth)

start_time <- Sys.time()

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(pc_train_y)-1))

if (mtry > 10){

a <- mtry - 10
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} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(V1 ~ ., data = pc_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$V1)

TF-IDF

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(caret)

library(doParallel)

set.seed(121565)

############## COMBINING DATA SETS ############################
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rawdata_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

(substr(statement,1,nchar(statement)-1))))))

#For all lowercase

#tolower(substr(statement,1,nchar(statement)-1))

news_tokens <- data %>% select(id, label_fnn, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers and cases to be included

#Change to "[A-z']+" for all cases

mutate(word = str_extract(word, "[[:alnum:]]+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >=60) %>%
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group_by(id, label_fnn) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Getting the labels

y <- news_new %>% select(label_fnn) %>% pull() %>% as.array()

y <- as.factor(y)

levels(y)

y <- ifelse(y == "fake", 0, 1)

it <- itoken(news_new$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab <- create_vocabulary(it)

vocab <- prune_vocabulary(vocab)

vectorizer <- vocab_vectorizer(vocab)

news_new <- news_new %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new)

#put integers in a sequence

sequences<- texts_to_sequences(tokenizer, news_new)

library(MASS)

#Document-term matrix all

un.words <- length(tokenizer$word_index)

docs <- length(sequences)

dtm <- matrix(0, nrow = docs, ncol = un.words)
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for (i in 1:docs){

word.vec <- sequences[[i]]

c <- length(sequences[[i]])

a <- 0

for (j in 1:c){

a <- a + 1

b <- word.vec[a]

dtm[i,b] <- dtm[i,b] + 1

}

}

dtm_y <- cbind(y, dtm)

dtm_y <- as.data.frame(dtm_y)

words <- unlist(tokenizer$index_word, use.names = TRUE)

words <- c("PolitiFactRating", words)

colnames(dtm_y) <- words

trainIndex <- createDataPartition(dtm_y$PolitiFactRating,

p = .8, list = F, times = 1)

dtm_train_y <- dtm_y[trainIndex,]

dtm_test_y <- dtm_y[-trainIndex,]

mean(dtm_train_y$PolitiFactRating)

mean(dtm_test_y$PolitiFactRating)

dtm_train_y$PolitiFactRating <- as.factor(dtm_train_y$PolitiFactRating)

dtm_test_y$PolitiFactRating <- as.factor(dtm_test_y$PolitiFactRating)
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dim(dtm_train_y)

#Term Frequency

tf_train <- t(apply(dtm_train_y[,-1],1,function(x) x/sum(x)))

tf_test <- t(apply(dtm_test_y[,-1],1,function(x) x/sum(x)))

#IDF

idf_train <- t(apply(dtm_train_y[,-1], 2, function(x)

log(nrow(dtm_train_y)/sum(x != 0))))

#TF-IDF

tf.idf.train <- t(apply(tf_train, 1, function(x) x*idf_train))

tf.idf.test <- t(apply(tf_test, 1, function(x) x*idf_train))

dtm_train_y <- cbind(tf.idf.train, dtm_train_y[,1])

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(tf.idf.test, dtm_test_y[,1])

dtm_test_y <- as.data.frame(dtm_test_y)

words <- unlist(tokenizer$index_word, use.names = TRUE)

words <- c(words, "PolitiFactRating")

colnames(dtm_train_y) <- words

colnames(dtm_test_y) <- words

dtm_train_y$PolitiFactRating <- as.factor(dtm_train_y$PolitiFactRating)

dtm_test_y$PolitiFactRating <- as.factor(dtm_test_y$PolitiFactRating)

levels(dtm_train_y$PolitiFactRating)

dtm_train_y$PolitiFactRating <-
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ifelse(dtm_train_y$PolitiFactRating == 1, 0, 1)

dtm_train_y$PolitiFactRating <- as.factor(dtm_train_y$PolitiFactRating)

dtm_test_y$PolitiFactRating <-

ifelse(dtm_test_y$PolitiFactRating == 1, 0, 1)

dtm_test_y$PolitiFactRating <- as.factor(dtm_test_y$PolitiFactRating)

levels(dtm_train_y$PolitiFactRating)

###################### TF-IDF CV ################

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

#Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$PolitiFactRating)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")
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end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$PolitiFactRating)

#Quadratic Discriminant Analysis directly on DTM

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = dtm_train_y,

# trControl = train.control, method = "qda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(dtm_test_y)

#confusionMatrix(predictions,dtm_test_y$PolitiFactRating)

#Mixture Discriminant Analysis directly on DTM

library(mda)

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = dtm_train_y,

# trControl = train.control, method = "mda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(dtm_test_y)

#confusionMatrix(predictions,dtm_test_y$PolitiFactRating)
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#Flexible Discriminant Analysis directly on DTM

library(earth)

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = dtm_train_y,

# trControl = train.control, method = "fda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(dtm_test_y)

#confusionMatrix(predictions,dtm_test_y$PolitiFactRating)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$PolitiFactRating)

### Random Forest

library(randomForest)

start_time <- Sys.time()
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mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(PolitiFactRating ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$PolitiFactRating)

Word2Vec Continuous Bag of Words

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)

library(doParallel)
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set.seed(121565)

rawdata_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

(substr(statement,1,nchar(statement)-1))))))

news_tokens <- data %>% select(id, label_fnn, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers to be included

#"[A-z']+"

mutate(word = str_extract(word, "[[:alnum:]]+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 60) %>%
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group_by(id, label_fnn) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers to be included

max.length <- max(str_count(news_new$newsTextClean, "[[:alnum:]]+"))

trainIndex <- createDataPartition(news_new$label_fnn,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#Getting the labels

y_train <- news_new_train %>% select(label_fnn) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label_fnn) %>% pull() %>% as.array()

y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

y_train <- ifelse(y_train == "fake", 0, 1)

y_test <- ifelse(y_test == "fake", 0, 1)

it_train <- itoken(news_new_train$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

it_test <- itoken(news_new_test$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,
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progressbar = T, tolower = FALSE)

vocab_train <- create_vocabulary(it_train)

vocab_test <- create_vocabulary(it_test)

vocab_train <- prune_vocabulary(vocab_train)

vocab_test <- prune_vocabulary(vocab_test)

vectorizer_train <- vocab_vectorizer(vocab_train)

vectorizer_test <- vocab_vectorizer(vocab_test)

news_new_train <- news_new_train %>% select(newsTextClean) %>% pull()

news_new_test <- news_new_test %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer_train <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_train)

tokenizer_test <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_test)

#put integers in a sequence

sequences_train <- texts_to_sequences(tokenizer_train, news_new_train)

sequences_test <- texts_to_sequences(tokenizer_test, news_new_test)

dtm_train <- create_dtm(it_train, vectorizer_train)

dtm_train <- as.matrix(dtm_train)

dtm_test <- create_dtm(it_test, vectorizer_test)

dtm_test <- as.matrix(dtm_test)

############WORD2VEC WITH 300 DIM##################

model_train <- word2vec(x = news_new_train, dim = 300, iter = 100,

min_count = 0L)

model_train$success

emb_train <- as.matrix(model_train)

emb_train[1:5, 1:5]
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emb_train_ord <- emb_train[order(rownames(emb_train)),]

emb_train_ord[1:5, 1:5]

### Getting embeddings per document

intersection <- colnames(dtm_train) %in% rownames(emb_train_ord)

dtm_train <- dtm_train[,intersection]

words <- colnames(dtm_train)

dtm_emb_train <- matrix(0, nrow = nrow(dtm_train),

ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_train)){

for (j in 1:ncol(dtm_train)){

if (dtm_train[i,j] != 0){

dtm_emb_train[i,] <- dtm_emb_train[i,] + dtm_train[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words[j]),]

}

}

}

dtm_emb_train[1:5, 1:5]

max(dtm_emb_train)

int_test <- colnames(dtm_test) %in% rownames(emb_train_ord)

dtm_test <- dtm_test[,int_test]

words_test <- colnames(dtm_test)

dtm_emb_test <- matrix(0, nrow = nrow(dtm_test),

ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_test)){

for (j in 1:ncol(dtm_test)){

if (dtm_test[i,j] != 0){

dtm_emb_test[i,] <- dtm_emb_test[i,] + dtm_test[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words_test[j]),]

}
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}

}

dtm_emb_test[1:5, 1:5]

max(dtm_emb_test)

dtm_train_y <- cbind(dtm_emb_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(dtm_emb_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

##### CV 300 DIM#####

# #Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)
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#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# #Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model
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predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# #Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# #Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# ### Random Forest

library(randomForest)
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start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

Word2Vec Skip-Gram

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)

library(doParallel)
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set.seed(121565)

rawdata_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

rawdata_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

rawdata_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

rawdata <- rbind(rawdata_train, rawdata_valid, rawdata_test)

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

(substr(statement,1,nchar(statement)-1))))))

news_tokens <- data %>% select(id, label_fnn, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers to be included

#"[A-z']+"

mutate(word = str_extract(word, "[[:alnum:]]+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%
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filter(token_freq >= 60) %>%

group_by(id, label_fnn) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Use just "[a-z']+" for lower case letters

#Change to "[[:alnum:]]+" for numbers to be included

max.length <- max(str_count(news_new$newsTextClean, "[[:alnum:]]+"))

trainIndex <- createDataPartition(news_new$label_fnn,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#Getting the labels

y_train <- news_new_train %>% select(label_fnn) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label_fnn) %>% pull() %>% as.array()

y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

y_train <- ifelse(y_train == "fake", 0, 1)

y_test <- ifelse(y_test == "fake", 0, 1)

it_train <- itoken(news_new_train$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)
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it_test <- itoken(news_new_test$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab_train <- create_vocabulary(it_train)

vocab_test <- create_vocabulary(it_test)

vocab_train <- prune_vocabulary(vocab_train)

vocab_test <- prune_vocabulary(vocab_test)

vectorizer_train <- vocab_vectorizer(vocab_train)

vectorizer_test <- vocab_vectorizer(vocab_test)

news_new_train <- news_new_train %>% select(newsTextClean) %>% pull()

news_new_test <- news_new_test %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer_train <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_train)

tokenizer_test <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_test)

#put integers in a sequence

sequences_train <- texts_to_sequences(tokenizer_train, news_new_train)

sequences_test <- texts_to_sequences(tokenizer_test, news_new_test)

dtm_train <- create_dtm(it_train, vectorizer_train)

dtm_train <- as.matrix(dtm_train)

dtm_test <- create_dtm(it_test, vectorizer_test)

dtm_test <- as.matrix(dtm_test)

############WORD2VEC SG WITH 300 DIM##################

model_train <- word2vec(x = news_new_train, type = "skip-gram",

dim = 300, iter = 100, min_count = 0L)
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model_train$success

emb_train <- as.matrix(model_train)

emb_train_ord <- emb_train[order(rownames(emb_train)),]

### Getting embeddings per document

intersection <- colnames(dtm_train) %in% rownames(emb_train_ord)

dtm_train <- dtm_train[,intersection]

words <- colnames(dtm_train)

dtm_emb_train <- matrix(0, nrow = nrow(dtm_train),

ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_train)){

for (j in 1:ncol(dtm_train)){

if (dtm_train[i,j] != 0){

dtm_emb_train[i,] <- dtm_emb_train[i,] + dtm_train[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words[j]),]

}

}

}

int_test <- colnames(dtm_test) %in% rownames(emb_train_ord)

dtm_test <- dtm_test[,int_test]

words_test <- colnames(dtm_test)

dtm_emb_test <- matrix(0, nrow = nrow(dtm_test),

ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_test)){

for (j in 1:ncol(dtm_test)){

if (dtm_test[i,j] != 0){

dtm_emb_test[i,] <- dtm_emb_test[i,] + dtm_test[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words_test[j]),]

}

}
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}

dtm_train_y <- cbind(dtm_emb_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(dtm_emb_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

##### CV 300 DIM#####

#Logistic regression directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "glm",

family="binomial", control = list(maxit = 50))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time
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model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,
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trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))
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model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

Multi-Class Classification

BERT

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(caret)

library(doParallel)

library(nnet)

set.seed(121565)

fnn_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)
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fnn_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

fnn_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

fnn <- rbind(fnn_train, fnn_valid, fnn_test)

LIAR_train <- read.csv(file = "/work/wtp/jhaus4/liar_train.csv",

header = T,

stringsAsFactors = F)

LIAR_test <- read.csv(file = "/work/wtp/jhaus4/liar_test.csv",

header = T,

stringsAsFactors = F)

LIAR_valid <- read.csv(file = "/work/wtp/jhaus4/liar_dev.csv",

header = T,

stringsAsFactors = F)

LIAR <- rbind(LIAR_train, LIAR_valid, LIAR_test)

common <- intersect(fnn$id, LIAR$id)

rawdata <- LIAR[LIAR$id %in% common, ]

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

tolower(substr(statement,1,nchar(statement)-1))))))

data <- data %>% separate(date,

c("Year", "Month", "Day","Junk"), sep = "-")

#For all lowercase
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#tolower(substr(statement,1,nchar(statement)-1))

news_tokens <- data %>% select(id, label.liar, Year, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

mutate(word = str_extract(word, "[a-z']+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 60) %>%

group_by(id, label.liar, Year) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

trainIndex <- createDataPartition(news_new$label.liar,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#write.csv(news_new_train, "liartrain60Stopwords.csv", row.names = FALSE)

#write.csv(news_new_test, "liartest60Stopwords.csv", row.names = FALSE)

bert_train <- read.csv(file = "BERT_LIAR_Train_60_Stopwords.csv",

header = F)

dim(bert_train)

bert_train <- bert_train[-1,]
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dim(bert_train)

bert_test <- read.csv(file = "BERT_LIAR_Test_60_Stopwords.csv",

header = F)

dim(bert_test)

bert_test <- bert_test[-1,]

dim(bert_test)

#Getting the labels

y_train <- news_new_train %>% select(label.liar) %>%

pull() %>% as.array()

y_test <- news_new_test %>% select(label.liar) %>%

pull() %>% as.array()

y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

levels(y_train) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

levels(y_test) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

#year_train <- news_new_train %>% select(Year) %>% pull() %>% as.array()

#year_test <- news_new_test %>% select(Year) %>% pull() %>% as.array()

#year_train <- as.factor(year_train)

#year_test <- as.factor(year_test)

#levels(year_train)

#levels(year_test)

dtm_train_y <- cbind(bert_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)
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dtm_test_y <- cbind(bert_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

#dtm_test_y <- dtm_test_y %>% rename("year_train"="year_test")

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

#dtm_train_y$year_train <- as.factor(dtm_train_y$year_train)

#dtm_test_y$year_train <- as.factor(dtm_test_y$year_train)

##### CV DIM#####

#Ordinal Logistic regression

library(MASS)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "polr",

control = list(maxit = 100))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time
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model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,
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trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))
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model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

GloVe

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)

library(doParallel)

library(nnet)

set.seed(121565)

############## COMBINING DATA SETS ############################

fnn_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",
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header = T,

stringsAsFactors = F)

fnn_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

fnn_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

fnn <- rbind(fnn_train, fnn_valid, fnn_test)

LIAR_train <- read.csv(file = "/work/wtp/jhaus4/liar_train.csv",

header = T,

stringsAsFactors = F)

LIAR_test <- read.csv(file = "/work/wtp/jhaus4/liar_test.csv",

header = T,

stringsAsFactors = F)

LIAR_valid <- read.csv(file = "/work/wtp/jhaus4/liar_dev.csv",

header = T,

stringsAsFactors = F)

LIAR <- rbind(LIAR_train, LIAR_valid, LIAR_test)

common <- intersect(fnn$id, LIAR$id)

rawdata <- LIAR[LIAR$id %in% common, ]

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

tolower(substr(statement,1,nchar(statement)-1))))))
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data <- data %>% separate(date,

c("Year", "Month", "Day","Junk"), sep = "-")

news_tokens <- data %>% select(id, label.liar, Year, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

mutate(word = str_extract(word, "[a-z']+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 30) %>%

group_by(id, label.liar, Year) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

max.length <- max(str_count(news_new$newsTextClean, "[a-z']+"))

trainIndex <- createDataPartition(news_new$label.liar,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#Getting the labels

y_train <- news_new_train %>% select(label.liar) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label.liar) %>% pull() %>% as.array()

y_train <- as.factor(y_train)
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y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

#y_train <- relevel(y_train, ref = "true")

#y_test <- relevel(y_test, ref = "true")

levels(y_train) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

levels(y_test) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

#year_train <- news_new_train %>% select(Year) %>% pull() %>% as.array()

#year_test <- news_new_test %>% select(Year) %>% pull() %>% as.array()

#year_train <- as.factor(year_train)

#year_test <- as.factor(year_test)

#levels(year_train)

#levels(year_test)

it_train <- itoken(news_new_train$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

it_test <- itoken(news_new_test$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab_train <- create_vocabulary(it_train)

vocab_test <- create_vocabulary(it_test)

vocab_train <- prune_vocabulary(vocab_train)

vocab_test <- prune_vocabulary(vocab_test)

vectorizer_train <- vocab_vectorizer(vocab_train)

vectorizer_test <- vocab_vectorizer(vocab_test)



305

news_new_train <- news_new_train %>% select(newsTextClean) %>% pull()

news_new_test <- news_new_test %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer_train <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_train)

tokenizer_test <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_test)

#put integers in a sequence

sequences_train <- texts_to_sequences(tokenizer_train, news_new_train)

sequences_test <- texts_to_sequences(tokenizer_test, news_new_test)

dtm_train <- create_dtm(it_train, vectorizer_train)

dtm_train <- as.matrix(dtm_train)

dtm_test <- create_dtm(it_test, vectorizer_test)

dtm_test <- as.matrix(dtm_test)

tcm_train <- create_tcm(it_train, vectorizer_train,

skip_grams_window_context = c("symmetric"))

xmax <- max(tcm_train)

######################## GloVe Embedding Dim 300 ###############

glove_train <- GlobalVectors$new(rank = 300, x_max = xmax)

# This gets the embeddings for target words.

wv_tar_train <- glove_train$fit_transform(tcm_train, n_iter = 100)

dim(wv_tar_train)

# This gets the embedding for the context words.

wv_con_train <- glove_train$components

dim(wv_con_train)

word_vect_train <- wv_tar_train + t(wv_con_train)
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dim(word_vect_train)

word_vect_train <- as.matrix(word_vect_train)

### Getting embeddings per document

intersection <- colnames(dtm_train) %in% rownames(word_vect_train)

dtm_train <- dtm_train[,intersection]

words <- colnames(dtm_train)

dtm_emb_train <- matrix(0, nrow = nrow(dtm_train),

ncol = ncol(word_vect_train))

for (i in 1:nrow(dtm_train)){

for (j in 1:ncol(dtm_train)){

if (dtm_train[i,j] != 0){

dtm_emb_train[i,] <- dtm_emb_train[i,] + dtm_train[i,j] *

word_vect_train[which(rownames(word_vect_train) == words[j]),]

}

}

}

int_test <- colnames(dtm_test) %in% rownames(word_vect_train)

dtm_test <- dtm_test[,int_test]

words_test <- colnames(dtm_test)

dtm_emb_test <- matrix(0, nrow = nrow(dtm_test),

ncol = ncol(word_vect_train))

for (i in 1:nrow(dtm_test)){

for (j in 1:ncol(dtm_test)){

if (dtm_test[i,j] != 0){

dtm_emb_test[i,] <- dtm_emb_test[i,] + dtm_test[i,j] *

word_vect_train[which(rownames(word_vect_train) == words_test[j]),]

}

}

}
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dtm_train_y <- cbind(dtm_emb_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(dtm_emb_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

#dtm_test_y <- dtm_test_y %>% rename("year_train"="year_test")

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

#dtm_train_y$year_train <- as.factor(dtm_train_y$year_train)

#dtm_test_y$year_test <- as.factor(dtm_test_y$year_test)

##### CV 300 DIM#####

#Ordinal Logistic regression

library(MASS)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "polr",

control = list(maxit = 100))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")
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end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Flexible Discriminant Analysis directly on DTM
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library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10
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} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

PCA

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(caret)

library(doParallel)

library(nnet)

set.seed(121565)

fnn_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",
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header = T,

stringsAsFactors = F)

fnn_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

fnn_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

fnn <- rbind(fnn_train, fnn_valid, fnn_test)

LIAR_train <- read.csv(file = "/work/wtp/jhaus4/liar_train.csv",

header = T,

stringsAsFactors = F)

LIAR_test <- read.csv(file = "/work/wtp/jhaus4/liar_test.csv",

header = T,

stringsAsFactors = F)

LIAR_valid <- read.csv(file = "/work/wtp/jhaus4/liar_dev.csv",

header = T,

stringsAsFactors = F)

LIAR <- rbind(LIAR_train, LIAR_valid, LIAR_test)

common <- intersect(fnn$id, LIAR$id)

rawdata <- LIAR[LIAR$id %in% common, ]

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

tolower(substr(statement,1,nchar(statement)-1))))))
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data <- data %>% separate(date,

c("Year", "Month", "Day","Junk"), sep = "-")

news_tokens <- data %>% select(id, label.liar, Year, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

mutate(word = str_extract(word, "[a-z']+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

#filter(token_freq >= 60) %>%

group_by(id, label.liar, Year) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Getting the labels

y <- news_new %>% select(label.liar) %>% pull() %>% as.array()

y <- as.factor(y)

levels(y)

levels(y) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

#year <- news_new %>% select(Year) %>% pull() %>% as.array()

#year <- as.factor(year)

#levels(year)

it <- itoken(news_new$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = F)
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vocab <- create_vocabulary(it)

vocab <- prune_vocabulary(vocab)

vectorizer <- vocab_vectorizer(vocab)

news_new <- news_new %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer <- text_tokenizer(lower = F) %>% fit_text_tokenizer(news_new)

#put integers in a sequence

sequences<- texts_to_sequences(tokenizer, news_new)

library(MASS)

#Document-term matrix all

un.words <- length(tokenizer$word_index)

docs <- length(sequences)

dtm <- matrix(0, nrow = docs, ncol = un.words)

for (i in 1:docs){

word.vec <- sequences[[i]]

c <- length(sequences[[i]])

a <- 0

for (j in 1:c){

a <- a + 1

b <- word.vec[a]

dtm[i,b] <- dtm[i,b] + 1

}

}

dtm_y <- cbind(y, dtm)

dtm_y <- as.data.frame(dtm_y)
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words <- unlist(tokenizer$index_word, use.names = TRUE)

words <- c("PolitiFactRating", words)

colnames(dtm_y) <- words

trainIndex <- createDataPartition(dtm_y$PolitiFactRating,

p = .8, list = F, times = 1)

dtm_train_y <- dtm_y[trainIndex,]

dtm_test_y <- dtm_y[-trainIndex,]

dtm_train_y$PolitiFactRating <- as.factor(dtm_train_y$PolitiFactRating)

dtm_test_y$PolitiFactRating <- as.factor(dtm_test_y$PolitiFactRating)

#dtm_train_y$Year <- as.factor(dtm_train_y$Year)

#dtm_test_y$Year <- as.factor(dtm_test_y$Year)

dtm_train <- dtm_train_y[,-c(1)]

pca_train <- prcomp(dtm_train, center = T)

pct_train <- (pca_train$sdev^2/sum(pca_train$sdev^2))*100

sum(pct_train[1:2000])

embeds <- pca_train$rotation[,1:2000]

pc_train <- as.matrix(dtm_train) %*% as.matrix(embeds)

pc_train_y <- cbind(dtm_train_y[,c(1)],pc_train)

pc_train_y <- as.data.frame(pc_train_y)

names(pc_train_y)[names(pc_train_y) == 'V1'] <- 'PolitiFactRating'

pc_train_y$PolitiFactRating <- as.factor(pc_train_y$PolitiFactRating)

identical(pc_train_y$PolitiFactRating, dtm_train_y[,1])

pc_test <- as.matrix(dtm_test_y[,-c(1)]) %*% as.matrix(embeds)
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pc_test_y <- cbind( dtm_test_y[,c(1)], pc_test)

pc_test_y <- as.data.frame(pc_test_y)

names(pc_test_y)[names(pc_test_y) == 'V1'] <- 'PolitiFactRating'

pc_test_y$PolitiFactRating <- as.factor(pc_test_y$PolitiFactRating)

identical(pc_test_y$PolitiFactRating, dtm_test_y[,1])

###################### PCA CV ################

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

#Ordinal Logistic regression

#library(MASS)

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = pc_train_y,

# trControl = train.control, method = "polr",

# control = list(maxit = 100))

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(pc_test_y)

#confusionMatrix(predictions,pc_test_y$PolitiFactRating)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = pc_train_y,

trControl = train.control, method = "lda")



316

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$PolitiFactRating)

#Quadratic Discriminant Analysis directly on DTM

#start_time <- Sys.time()

#model <- train(PolitiFactRating ~ ., data = pc_train_y,

# trControl = train.control, method = "qda")

#end_time <- Sys.time()

#glm.time <- end_time - start_time

#glm.time

#model

#predictions <- model %>% predict(pc_test_y)

#confusionMatrix(predictions, pc_test_y$PolitiFactRating)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = pc_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$PolitiFactRating)

#Flexible Discriminant Analysis directly on DTM
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library(earth)

start_time <- Sys.time()

model <- train(PolitiFactRating ~ ., data = pc_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$PolitiFactRating)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(PolitiFactRating ~ ., data = pc_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$PolitiFactRating)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(pc_train_y)-1))

if (mtry > 10){

a <- mtry - 10
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} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(PolitiFactRating ~ ., data = pc_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(pc_test_y)

confusionMatrix(predictions, pc_test_y$PolitiFactRating)

Word2Vec Continuous Bag of Words

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)

library(doParallel)

library(nnet)

set.seed(121565)
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fnn_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

fnn_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,

stringsAsFactors = F)

fnn_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

fnn <- rbind(fnn_train, fnn_valid, fnn_test)

LIAR_train <- read.csv(file = "/work/wtp/jhaus4/liar_train.csv",

header = T,

stringsAsFactors = F)

LIAR_test <- read.csv(file = "/work/wtp/jhaus4/liar_test.csv",

header = T,

stringsAsFactors = F)

LIAR_valid <- read.csv(file = "/work/wtp/jhaus4/liar_dev.csv",

header = T,

stringsAsFactors = F)

LIAR <- rbind(LIAR_train, LIAR_valid, LIAR_test)

common <- intersect(fnn$id, LIAR$id)

rawdata <- LIAR[LIAR$id %in% common, ]

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

tolower(substr(statement,1,nchar(statement)-1))))))
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data <- data %>% separate(date,

c("Year", "Month", "Day","Junk"), sep = "-")

news_tokens <- data %>% select(id, label.liar, Year, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%

#Use just "[a-z']+" for lower case letters

mutate(word = str_extract(word, "[a-z']+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 30) %>%

group_by(id, label.liar, Year) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Use just "[a-z']+" for lower case letters

max.length <- max(str_count(news_new$newsTextClean, "[a-z']+"))

trainIndex <- createDataPartition(news_new$label.liar,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#Getting the labels

y_train <- news_new_train %>% select(label.liar) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label.liar) %>% pull() %>% as.array()
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y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

levels(y_train) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

levels(y_test) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

#year_train <- news_new_train %>% select(Year) %>% pull() %>% as.array()

#year_test <- news_new_test %>% select(Year) %>% pull() %>% as.array()

#year_train <- as.factor(year_train)

#year_test <- as.factor(year_test)

#levels(year_train)

#levels(year_test)

it_train <- itoken(news_new_train$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

it_test <- itoken(news_new_test$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab_train <- create_vocabulary(it_train)

vocab_test <- create_vocabulary(it_test)

vocab_train <- prune_vocabulary(vocab_train)

vocab_test <- prune_vocabulary(vocab_test)

vectorizer_train <- vocab_vectorizer(vocab_train)

vectorizer_test <- vocab_vectorizer(vocab_test)

news_new_train <- news_new_train %>% select(newsTextClean) %>% pull()
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news_new_test <- news_new_test %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer_train <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_train)

tokenizer_test <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_test)

#put integers in a sequence

sequences_train <- texts_to_sequences(tokenizer_train, news_new_train)

sequences_test <- texts_to_sequences(tokenizer_test, news_new_test)

dtm_train <- create_dtm(it_train, vectorizer_train)

dtm_train <- as.matrix(dtm_train)

dtm_test <- create_dtm(it_test, vectorizer_test)

dtm_test <- as.matrix(dtm_test)

############WORD2VEC WITH 300 DIM##################

model_train <- word2vec(x = news_new_train, dim = 300, iter = 100,

min_count = 0L)

model_train$success

emb_train <- as.matrix(model_train)

emb_train[1:5, 1:5]

emb_train_ord <- emb_train[order(rownames(emb_train)),]

emb_train_ord[1:5, 1:5]

### Getting embeddings per document

intersection <- colnames(dtm_train) %in% rownames(emb_train_ord)

dtm_train <- dtm_train[,intersection]

words <- colnames(dtm_train)

dtm_emb_train <- matrix(0, nrow = nrow(dtm_train),
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ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_train)){

for (j in 1:ncol(dtm_train)){

if (dtm_train[i,j] != 0){

dtm_emb_train[i,] <- dtm_emb_train[i,] + dtm_train[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words[j]),]

}

}

}

dtm_emb_train[1:5, 1:5]

max(dtm_emb_train)

int_test <- colnames(dtm_test) %in% rownames(emb_train_ord)

dtm_test <- dtm_test[,int_test]

words_test <- colnames(dtm_test)

dtm_emb_test <- matrix(0, nrow = nrow(dtm_test), ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_test)){

for (j in 1:ncol(dtm_test)){

if (dtm_test[i,j] != 0){

dtm_emb_test[i,] <- dtm_emb_test[i,] + dtm_test[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words_test[j]),]

}

}

}

dtm_emb_test[1:5, 1:5]

max(dtm_emb_test)

dtm_train_y <- cbind(dtm_emb_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(dtm_emb_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)
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#dtm_test_y <- dtm_test_y %>% rename("year_train"="year_test")

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

#dtm_train_y$year_train <- as.factor(dtm_train_y$year_train)

#dtm_test_y$year_test <- as.factor(dtm_test_y$year_test)

##### CV 300 DIM#####

#Ordinal Logistic regression

library(MASS)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "polr",

control = list(maxit = 100))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)
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confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# #Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# #Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()
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glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# #Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

# ### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",
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tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

Word2Vec Skip-Gram

library(tidyverse)

library(tidytext)

library(textdata)

library(text2vec)

library(keras)

library(uwot)

library(tensorflow)

library(nomclust)

library(ggplot2)

library(word2vec)

library(caret)

library(doParallel)

library(nnet)

set.seed(121565)

fnn_train <- read.csv(file = "/work/wtp/jhaus4/fnn_train.csv",

header = T,

stringsAsFactors = F)

fnn_test <- read.csv(file = "/work/wtp/jhaus4/fnn_test.csv",

header = T,
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stringsAsFactors = F)

fnn_valid <- read.csv(file = "/work/wtp/jhaus4/fnn_dev.csv",

header = T,

stringsAsFactors = F)

fnn <- rbind(fnn_train, fnn_valid, fnn_test)

LIAR_train <- read.csv(file = "/work/wtp/jhaus4/liar_train.csv",

header = T,

stringsAsFactors = F)

LIAR_test <- read.csv(file = "/work/wtp/jhaus4/liar_test.csv",

header = T,

stringsAsFactors = F)

LIAR_valid <- read.csv(file = "/work/wtp/jhaus4/liar_dev.csv",

header = T,

stringsAsFactors = F)

LIAR <- rbind(LIAR_train, LIAR_valid, LIAR_test)

common <- intersect(fnn$id, LIAR$id)

rawdata <- LIAR[LIAR$id %in% common, ]

data <- rawdata %>%

mutate(newsTextClean=gsub('[[:punct:]]+', '',

gsub('\\\\n|\\.|\\,|\\;',' ',

gsub("[^[:alnum:]]", " ",

tolower(substr(statement,1,nchar(statement)-1))))))

data <- data %>% separate(date,

c("Year", "Month", "Day","Junk"), sep = "-")

news_tokens <- data %>% select(id, label.liar, Year, newsTextClean) %>%

unnest_tokens(word, newsTextClean, to_lower = FALSE) %>%
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#Use just "[a-z']+" for lower case letters

mutate(word = str_extract(word, "[a-z']+"))

news_tokens <- news_tokens %>% drop_na(word)

#news_tokens <- news_tokens %>% anti_join(stop_words)

news_new <- news_tokens %>% group_by(word) %>%

mutate(token_freq = n()) %>%

filter(token_freq >= 30) %>%

group_by(id, label.liar, Year) %>%

summarise(newsTextClean = str_c(word, collapse = " "))

#Use just "[a-z']+" for lower case letters

max.length <- max(str_count(news_new$newsTextClean, "[a-z']+"))

trainIndex <- createDataPartition(news_new$label.liar,

p = .8, list = F, times = 1)

train.control <- trainControl(method = "cv", number = 10)

cl <- makePSOCKcluster(5)

registerDoParallel(cl)

news_new_train <- news_new[trainIndex,]

news_new_test <- news_new[-trainIndex,]

#Getting the labels

y_train <- news_new_train %>% select(label.liar) %>% pull() %>% as.array()

y_test <- news_new_test %>% select(label.liar) %>% pull() %>% as.array()

y_train <- as.factor(y_train)

y_test <- as.factor(y_test)

levels(y_train)

levels(y_test)

levels(y_train) <- c("true", "mostly-true", "half-true",
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"barely-true", "false", "pants-fire")

levels(y_test) <- c("true", "mostly-true", "half-true",

"barely-true", "false", "pants-fire")

#year_train <- news_new_train %>% select(Year) %>% pull() %>% as.array()

#year_test <- news_new_test %>% select(Year) %>% pull() %>% as.array()

#year_train <- as.factor(year_train)

#year_test <- as.factor(year_test)

#levels(year_train)

#levels(year_test)

it_train <- itoken(news_new_train$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

it_test <- itoken(news_new_test$newsTextClean,

tokenizer = word_tokenizer,

ids = news_new$id,

progressbar = T, tolower = FALSE)

vocab_train <- create_vocabulary(it_train)

vocab_test <- create_vocabulary(it_test)

vocab_train <- prune_vocabulary(vocab_train)

vocab_test <- prune_vocabulary(vocab_test)

vectorizer_train <- vocab_vectorizer(vocab_train)

vectorizer_test <- vocab_vectorizer(vocab_test)

news_new_train <- news_new_train %>% select(newsTextClean) %>% pull()

news_new_test <- news_new_test %>% select(newsTextClean) %>% pull()

#Vectorize tokens - token receiving a unique integer

tokenizer_train <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_train)
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tokenizer_test <- text_tokenizer(lower = FALSE) %>%

fit_text_tokenizer(news_new_test)

#put integers in a sequence

sequences_train <- texts_to_sequences(tokenizer_train, news_new_train)

sequences_test <- texts_to_sequences(tokenizer_test, news_new_test)

dtm_train <- create_dtm(it_train, vectorizer_train)

dtm_train <- as.matrix(dtm_train)

dtm_test <- create_dtm(it_test, vectorizer_test)

dtm_test <- as.matrix(dtm_test)

############WORD2VEC SG WITH 300 DIM##################

model_train <- word2vec(x = news_new_train, type = "skip-gram",

dim = 300, iter = 100, min_count = 0L)

model_train$success

emb_train <- as.matrix(model_train)

emb_train_ord <- emb_train[order(rownames(emb_train)),]

### Getting embeddings per document

intersection <- colnames(dtm_train) %in% rownames(emb_train_ord)

dtm_train <- dtm_train[,intersection]

words <- colnames(dtm_train)

dtm_emb_train <- matrix(0, nrow = nrow(dtm_train),

ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_train)){

for (j in 1:ncol(dtm_train)){

if (dtm_train[i,j] != 0){

dtm_emb_train[i,] <- dtm_emb_train[i,] + dtm_train[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words[j]),]

}
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}

}

int_test <- colnames(dtm_test) %in% rownames(emb_train_ord)

dtm_test <- dtm_test[,int_test]

words_test <- colnames(dtm_test)

dtm_emb_test <- matrix(0, nrow = nrow(dtm_test),

ncol = ncol(emb_train_ord))

for (i in 1:nrow(dtm_test)){

for (j in 1:ncol(dtm_test)){

if (dtm_test[i,j] != 0){

dtm_emb_test[i,] <- dtm_emb_test[i,] + dtm_test[i,j] *

emb_train_ord[which(rownames(emb_train_ord) == words_test[j]),]

}

}

}

dtm_train_y <- cbind(dtm_emb_train, y_train)

dtm_train_y <- as.data.frame(dtm_train_y)

dtm_test_y <- cbind(dtm_emb_test, y_test)

dtm_test_y <- as.data.frame(dtm_test_y)

#dtm_test_y <- dtm_test_y %>% rename("year_train"="year_test")

dtm_train_y$y_train <- as.factor(dtm_train_y$y_train)

dtm_test_y$y_test <- as.factor(dtm_test_y$y_test)

#dtm_train_y$year_train <- as.factor(dtm_train_y$year_train)

#dtm_test_y$year_test <- as.factor(dtm_test_y$year_test)

##### CV 300 DIM#####

#Ordinal Logistic regression
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library(MASS)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "polr",

control = list(maxit = 100))

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Linear Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "lda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Quadratic Discriminant Analysis directly on DTM

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "qda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model
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predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Mixture Discriminant Analysis directly on DTM

library(mda)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "mda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Flexible Discriminant Analysis directly on DTM

library(earth)

start_time <- Sys.time()

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "fda")

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

#Classification trees directly on DTM

library(rpart)

start_time <- Sys.time()

cpGrid <- expand.grid(.cp=seq(0.01, 0.5,0.01))
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model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rpart",

tuneGrid = cpGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)

### Random Forest

library(randomForest)

start_time <- Sys.time()

mtry <- floor(sqrt(ncol(dtm_train_y)-1))

if (mtry > 10){

a <- mtry - 10

} else {a <- mtry}

b <- mtry + 10

mtryGrid <- expand.grid(.mtry=seq(a, b, 1))

model <- train(y_train ~ ., data = dtm_train_y,

trControl = train.control, method = "rf",

tuneGrid = mtryGrid)

end_time <- Sys.time()

glm.time <- end_time - start_time

glm.time

model

predictions <- model %>% predict(dtm_test_y)

confusionMatrix(predictions,dtm_test_y$y_test)
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