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During photosynthesis and transpiration, crops exchange carbon dioxide and water 

with the atmosphere through stomata. When a crop experiences water stress, stomata 

are closed to reducing water loss. However, the closing of stomata also negatively 

affects the photosynthetic efficiency of the crop and leads to lower yields. Stomatal 

conductance (gs) quantifies the degree of stomatal opening and closing by using the 

rate of gas exchange between the crop and the atmosphere, which helps to understand 

the water status of the crop for better irrigation management. Unfortunately, gs 

measurement typically requires contact measuring instruments and manual collection 

in the field, which is time-consuming and labor-intensive. Thus, this study estimates gs 

in two ways. Firstly, plant phenotypic data and weather information were used to 

estimate gs for various types of crops. The plant phenotypic data were extracted from 

images captured by a thermal infrared camera, a multispectral camera, and a visible 

and near-infrared spectrometer integrated on field phenotyping platform. Weather 

information was obtained from a field weather station. The random forest regression 

(RFR) model performed the best with R2 of 0.69 and RMSE of 0.135 mol*m-2*s-1, 

while the model using weather parameters alone had R2 of 0.58 and RMSE of 0.161, 

and the model using phenotypic data alone had R2 values of 0.59 and RMSE of 0.158 



mol*m-2*s-1. The results indicated that there was a complementary relationship 

between plant phenotypic data and weather information in estimating gs. The second 

aspect of the study was to estimate maize and soybean gs directly from near-infrared, 

thermal-infrared and RGB (Red Green Blue) images collected by the same platform. 

The results showed that the convolutional neural network (CNN) model outperformed 

the other models with an R2 of 0.52. In addition, adding soil moisture as a variable to 

the model improved its accuracy, which decreased the RMSE from 0.147 to 0.137 

mol*m-2*s-1. This study highlights the potential of estimating gs from remote sensing 

and field phenotyping platforms to help growers obtain information about the water 

status of crops and plan irrigation more efficiently. 

 

Keywords: remote sensing, plant phenotyping, stomatal conductance, vegetation 

indices, machine learning, deep learning 
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CHAPTER 1 HIGH-THROUGHPUT MEASUREMENT 

OF PLANT LEAF STOMATAL CONDUCTANCE – A 

REVIEW 

1.1 Introduction 

As the global population increases, so does the demand for food, feed, fiber, and 

fuel produced from the agriculture sector. One study points out that the demand for 

cereal will increase by 102% between 2009 and 2050 (Fukase & Martin, 2020). At the 

same time, climate change has brought increasingly more frequent extreme weathers 

that threaten agricultural production. Among them, severe drought events with 

prolonged duration are particularly concerning, as the availability of water is the 

single most important factor in determining crop productivity (Kimm et al., 2020). 

Therefore, water related issues in crop production, ranging from the breeding of 

drought-tolerant varieties, to improved decision-making in irrigation scheduling, have 

been the focus of extensive research in the past few decades. With the development of 

technology, people’s attention is gradually shifting to sustainable smart agriculture 

(Campbell et al., 2014; Lipper et al., 2014).  

It is well known that different genotypes can result in varied physiological and 

morphological traits in plants. The comprehensive evaluation of plant traits related to 

their growth, development, and physiology is called plant phenotyping (Araus & 

Cairns, 2014; Bai et al., 2016; Ge et al., 2019; L. Li et al., 2014; Pandey et al., 2017). 

To better elucidate the interaction between plant genotype and environment, and 
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resultant phenotype, can potentially play a significant role in improving agricultural 

yield. The conventional way of phenotypic data collection requires a great deal of 

repeated efforts by individuals using specialized equipment, which can be expensive, 

time-consuming, and error-prone. In typical plant breeding programs, hundreds to 

thousands of genetic lines need to be screened in a short time window, making 

traditional low-throughput phenotyping infeasible. This throughput problem is 

especially pronounced when target traits are rapidly changing, or a number of 

different traits are to be measured to improve selection or decision-making.  

In the recent years, scientists have developed numerous robotic or automated 

systems for high-throughput phenotyping of plants in controlled environments and in 

the fields, thanks to the advent and democratization of new sensing and imaging 

technologies, as well as software to effectively process and analyze these data (Atefi 

et al., 2021; W. Yang et al., 2020). In a controlled environment or a greenhouse, plants 

are moved by a conveyor belt to imaging stations where the sensor data are recorded. 

Another strategy is to move sensors around the plants to collect data. Greenhouses 

have the benefit of controlled temperature, light intensity and duration, humidity, and 

other environmental variables, as well as reducing the impacts of sunshine, wind, etc. 

on the sensors (Ge et al., 2016). The relationship between plant phenotypic data and 

genotypes in natural habitats must also be investigated, as controlled environments 

can never be identical to the actual field (Basu et al., 2015). Unlike indoor platforms, 

measurements cannot be made in a field environment by moving plants. The research 

can only be conducted by using a stationery or mobile platform. These platforms 
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consist of cable suspension systems, gantry systems, satellite systems, agricultural 

Internet of Things (IoT) systems, unmanned aerial vehicles (UAVs), and ground 

vehicles (Araus & Cairns, 2014; Bao et al., 2021; Shakoor et al., 2017). Cable 

suspension systems are similar to gantry systems in that they use cables or gantries to 

carry several sensors above the canopy for measurements, a facility that enables 

repeatable crop experiments (Bai et al., 2019; Virlet et al., 2016). Satellite systems 

utilize images captured by small satellites in low orbit and have the ability to 

standardize measurements on a global scale (C. Zhang et al., 2020). IoT systems often 

employ field-fixed nodes with several sensors, which offer the advantage of 

continually collecting and transferring data with high spatial and temporal precision 

(Chamara et al., 2022). On the other hand, UAVs and ground vehicles such as tractors 

carry sensors for data collecting via such mobile platforms. The advantage of these 

platforms is their portability, but the battery sustainability of UAVs and the crop and 

soil damage caused by tractors cannot be ignored (R. Xu et al., 2019; G. Yang et al., 

2017). 

Stomata, being a key structure utilized by plants for carbon and water exchange, 

play a crucial function in plant growth and development. Stomata are microscopic 

pores founded in the epidermis of leaves and stems of plants. They are surrounded by 

two guard cells, which control the pore size and the gas exchange rate of the plant by 

changing the shape of the guard cells (Hetherington & Woodward, 2003; Kollist et al., 

2014). The carbon dioxide and water exchange rate of stomata can be used to monitor 

the water use of plants, and this rate is called stomatal conductance (gs). In modern 



4 

 

smart agriculture, gs monitoring can therefore be used to optimize irrigation 

scheduling during crop growth, or to assist researchers in studying and breeding 

drought and heat tolerance of crops. 

This paper reviews a series of high-throughput phenotyping studies on crop 

stomatal conductance performed by researchers in recent years and the techniques 

used. It is hoped that this article will help the readers understand the research gaps and 

potential of phenotyping of crop gs.  

1.2 Factors that Impact Stomatal Conductance 

As an important structure for physiological functions such as transpiration and 

photosynthesis, gs is primarily determined by the size and density of stomata 

(Bertolino et al., 2019). In addition to the differences in stomata morphology among 

species and genotypes (Casson & Gray, 2008), stomata are also regulated by 

environmental signals such as temperature, light intensity, atmospheric CO2 

concentration, relative humidity, and soil moisture content (Chaerle et al., 2005; 

Chaves et al., 2016; Roelfsema & Hedrich, 2005). Researchers have tried to 

understand and model the relationship between gs and these environmental factors 

since several decades ago. Take two widely used gs model as example, the Jarvis 

model (a model of the effect of different environmental factors on gs) (Jarvis, 1976) 

and the Ball-Berry model (a model of the response of gs to photosynthesis) (Ball et 

al., 1987). Table 1 shows the equations of these two models and the variables used in 

them. The next part of this section discusses in detail the reasons for the impact of 
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these variables on gs. 

Table 1: The Jarvis and Ball-Berry models for empirical modeling of plant stomatal 

conductance 

Model Name Function 

Jarvis 
𝑔𝑠 =  𝑓1(𝑄𝑝) ∗ 𝑓2(𝑇) ∗ 𝑓3(𝑉𝑃𝐷) ∗ 𝑓4(Ψ1)

∗ 𝑓5(𝐶𝑎) 

Ball-Berry 
𝑔𝑠 =  𝑓6𝐴

ℎ𝑠

𝐶𝑎
 

Where: Qp is the photon flux density, T is the leaf temperature, VPD is the 

vapor pressure deficit, Ψ1 is the leaf water potential, Ca is ambient CO2 

concentration, A is CO2 assimilation rate, and hs is the relative humidity at the leaf 

surface. 

Stomata are used to maximize photosynthesis and minimize water loss (Buckley 

et al., 2017). Photosynthesis, an essential biological process in plants, uses light 

energy to transform water and inorganic elements such as CO2 into adenosine 

triphosphate (ATP) for plant growth. Consequently, light tensity, temperature, 

humidity, and CO2 concentration influence gs at all times. When leaf detects light, it 

opens stomata to absorb more CO2 (Huang et al., 2021; Q. Zhang et al., 2019) and 

transport the water collected through the root system to the leaf for photosynthesis by 

transpiration. However, transpiration and photosynthesis are often in conflict because 

stomata open for photosynthesis and also promote water loss to the atmosphere 

through transpiration. When the temperature is too high, plants must cool themselves 

by evaporation (Jagadish et al., 2021). Nevertheless, when soil water content is less 

than the amount of water required for plant transpiration, gs will be decreased to 
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prevent desiccation and control water loss (Huang et al., 2021). Hence, stomatal 

closure must be balanced in both open and close stages, which make it difficult to 

simply assess the impacts of these environmental conditions on gs, and there are still 

gaps in our understanding of the physiological mechanisms behind stomatal 

regulation (Damour et al., 2010). Moreover, as some variables in these empirical 

models cannot be measured readily on a wide scale, the use of easily measurable 

variables for gs estimation in agriculture offers considerable promise. 

1.3 Contact Sensing Techniques 

Based on the ecosystem structure of plant stomata and the physiological 

principles, the gs measurements that have been developed can be divided into three 

methods: (1) Gas exchange measurements, (2) Porometry measurements, and (3) Sap 

flow measurements (Gowdy et al., 2022; Toro et al., 2019). In this section, the 

principle of each measurement method is described in detail and its advantages and 

disadvantages are discussed. 

1.3.1 Gas Exchange Measurement 

Gas exchange measurement quantifies the rate of photosynthesis and transpiration 

in real time by measuring the exchange of gases between the atmosphere and the 

interior airspace of the leaf. Today’s commercial gas exchange measurement (Figure 

1) instruments are mainly infrared gas analyzers (IRGA) and termed portable/compact 

photosynthesis systems, such as CIRAS-4 (PP Systems International, Inc. 
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Massachusetts, USA), LI-6800 (LI-COR Inc., Nebraska, USA), and LCi T (ADC 

BioScientific Ltd., Hoddesdon, UK). They are based on the principle that CO2 and 

water vapor are absorbed by specific infrared wavebands  (Barillot et al., 2010; 

Cernusak, 2020; Chieppa et al., 2021; Fayezizadeh et al., 2021; Lavoie-Lamoureux et 

al., 2017; Long & Bernacchi, 2003). These instruments calculate the difference in gas 

concentration between the sample chamber containing the leaf and the atmosphere, 

then combine it with the air flow rate to calculate gs (Busch, 2018; Gaastra, 1959).  

 

Figure 1: Examples of the gas exchange instrument for plant leaf stomatal 

conductance measurement. Left is LI-6800 and right is CIRAS-4. 

1.3.2 Porometry Measurement 

Porometry measurement, on the other hand, calculates gs by measuring the water 

vapor produced by plants during transpiration (Askari et al., 2021). Porometers can be 

divided into two ways according to its measuring principle, dynamic method and 

steady-state method (Bell & Squire, 1981). The common dynamic porometers on the 

market today are AP4 (Delta-T Devices Ltd., Burwell, UK) and LI-600 (LI-COR Inc., 
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Nebraska, USA), which calculates gs by measuring the diffusing rate of water vapor 

from a sensor set under the leaf. By adding a confined space with a humidity sensor 

under the leaf blade, the gs can be determined by measuring how quickly the humidity 

increases in that space. The steady-state porometer (for example SC-1, METER 

Group, Inc., Washington, USA) is relatively simple (Figure 2). Similar to the dynamic 

porometer, the steady-state porometer also measures the water vapor below the leaf 

blade. The difference between the two approaches is that the steady-state porometer 

measures the flow rate of water vapor in the path through two humidity sensors 

connected in series to obtain the gs. Therefore the dynamic porometer is more 

complex than the steady-state porometer (Bell & Squire, 1981; Toro et al., 2019). In 

an early report (Bell & Squire, 1981) the accuracy of these two methods was 

compared and the results showed that the difference between these measurements was 

in the range of 2-20% but with the same random error (15%). 

 

Figure 2: Examples of leaf porometers. Left is AP4 and right is SC-1. 
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1.3.3 Sap Flow Measurements 

Sap flow measurement is commonly used in gs measurement of trees, where the 

sap flow is derived by heating the stem and measuring the temperature at several 

points along the stem wood (Čermák et al., 2004; Ghimire et al., 2018; Motzer et al., 

2005; Vandegehuchte & Steppe, 2012). This is then combined with climate data to 

derive gs using the Penman-Monteith-type equation in the reverse direction (Jones et 

al., 1988; Kučera et al., 2017; Su et al., 2019). The common thermodynamic methods 

include, but are not limited to, the Trunk segment heat balance and Head dissipation. 

But since the focus of this paper is on field crops such as corn and soybeans, we will 

not go into the details of the sap flow sensors. 

1.3.4 Comparison between the Gas Exchange and Porometry 

Instruments 

Compared to the gas exchange and porometry measurement discussed in the 

previous sections, IRGA using the gas exchange method requires longer measurement 

time and a stable environment due to its complex principle (Toro et al., 2019). The 

porometer, on the other hand, is popular among researchers because of its portability. 

It only requires the use of relative humidity sensors compared to IRGA that requires 

the use of infrared light source, a PAR sensor, and a drying column for drying the gas. 

However, unlike the porometer, which can only measure gs, the IRGA can also 

measure sub-stomatal CO2 concentration and CO2 assimilation rate while obtaining gs 

due to its measurement principle. Despite this, it is still not possible to measure gs 
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accurately with today’s technology. One of the reasons is that stomata are not evenly 

distributed on the leaf surface, and even if measurements are made on the same leaf 

the results can still be biased due to differences in position (Dumont et al., 2014). 

Moreover, the instrument used for measurement can only cover a small area of the 

leaf blade, which also makes the measurement difficult. Another reason is that it is 

difficult to measure uniform and accurate gs values between the two measurement 

methods because of their different principles. The result of Lavoie-Lamoureux et al., 

(2017) showed that porometer measurements are significantly higher than those of 

IRGA, and there is evidence that the accuracy decreases when the ambient humidity is 

too high (McDermitt, 1990). The final reason is leaf selection, even the same plant 

under natural conditions can have independent evaporation requirements depending 

on irradiance, wind, and temperature (Richardson et al., 2017), which may make it 

difficult for researchers to design experiments. 

1.4 Remote Sensing Techniques 

Since the 1980s, remote sensing has been utilized as one of the non-destructive 

methods for monitoring crop conditions. The development of remote sensing 

technology has expanded agriculture possibilities (Mulla, 2013; Weiss et al., 2020). 

As an emerging technique, remote sensing directly or indirectly collects plant traits 

such as height, canopy temperature, and vegetation indices by measuring 

electromagnetic energy emitted or reflected by plants at a distance. With the 

development of information and communication technologies, this technology, which 
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can collect data rapidly and on a vast scale, has become widely used in all facets of 

precision agriculture (Khanal et al., 2020; Sishodia et al., 2020). The collection of gs 

in the field is challenging, but due to its importance, modeling employing gs-

associated environmental parameters and plant phenotypic data has become popular. 

This section discusses the parameters used in some modeling as well as forecasting 

studies in recent years. Sensor platforms commonly used for gs monitoring can be 

classified into three types: (1) Satellite platform, (2) Unmanned aerial vehicles 

(UAVs), and (3) stationary platform in the field. The main types of sensors used 

include, RGB (Red Green Blue), multispectral, hyperspectral, and thermal imaging. 

This section briefly describes the operating principles of these sensors and their 

related applications. 

1.4.1 Spectral Imaging 

Spectral imaging works by scanning the target in different bands of the 

electromagnetic spectrum and composing the images of different bands into a single 

image set. It can be divided into multispectral imaging and hyperspectral imaging 

according to the number of bands measured. Conventionally, imaging with less than 

20 bands is called multispectral imaging while imaging with more than 20 bands is 

called hyperspectral imaging. In agriculture, plant spectral information gathered by 

satellites, UAVs and other aerial platforms using multispectral or hyperspectral 

information has been utilized extensively to infer plant structure and biochemical 

properties. Normalized Difference Vegetation Index (NDVI), for instance, is 
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computed from the spectral reflectance of a visible red band and a near infrared band. 

A higher NDVI represents a greener vegetation, and it is now proven that vegetation 

indices derived from spectral reflectance, such as the NDVI, are efficient in 

monitoring plant water stress levels (Ballester et al., 2019; Ihuoma & Madramootoo, 

2019). Thus, spectral remote sensing images are also often used for stomatal 

conductance estimation and modeling (Espinoza et al., 2017; J. Li et al., 2022; H. Li 

et al., 2022; Matese et al., 2018; Panda et al., 2014; Sobejano-Paz et al., 2020; Y. 

Zhang et al., 2022; Zhao et al., 2021; Zhu et al., 2020). 

1.4.2 Thermal Imaging 

Thermal imaging technology measures the infrared radiation generated by an 

object in the range of 8-14 µm and converts it into a visual image using an infrared 

detector (Ishimwe et al., 2014). The principle is that any object with a temperature 

above absolute zero emits radiation to the outside world. Due to the fact that it 

measures radiation, thermal imaging technology has a quick response time and high 

accuracy. The technology has been widely used in many fields such as civil 

engineering, aerospace, and medical industry (Vadivambal & Jayas, 2011). Thermal 

imaging is often used in agriculture to estimate the canopy temperature and water 

status of plants (Deery et al., 2016; Zhou et al., 2021; Zia et al., 2013). Although 

thermal infrared remote sensing cannot measure gs directly, it is often used for gs 

estimation based on the close relationship between the canopy temperature and plant 

water potential (Berni et al., 2009; Ellsäßer et al., 2020; Espinoza et al., 2017; J. Li et 
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al., 2022; Matese et al., 2018; Sobejano-Paz et al., 2020; Struthers et al., 2015; Zhao 

et al., 2021; Zhu et al., 2020). 

Table 2: Summary of remotely sensed spectral and thermal imaging for stomatal 

conductance estimation for various crops. 

Reference Crop Spectral 

imaging 

Thermal 

imaging 

R2 

Berni, J. A.J 

(2009) 

Olive  ✓ 0.59 

Ellsäßer, 

Florian (2020) 

Oil palm  ✓ 0.5 

Li, Haojie 

(2022) 

Maize, wheat, 

rice, soybean 

✓  0.86 

Sobejano-Paz, 

Verónica (2020) 

Maize, 

soybean 

✓ ✓ 0.66 

Zhang, Yuan 

(2022) 

Temperate 

species 

✓  0.57 

Zhao, Lin 

(2021) 

Maize, 

soybean, 

sorghum, 

sunflower 

✓ ✓ 0.81 

1.5 Machine Learning Models 

Due to the prevalence of high-performance computing and high-throughput plant 

phenotyping, various types of Machine Learning (ML) methods have been widely 

used in different research areas. ML has been shown to accurately predict barley yield  

(R2=0.84) and leaf area index (LAI) of trees (R2=0.75) (Omer et al., 2016; Sharifi, 

2021). Unlike the various formulations mentioned earlier that focus differently on the 

relationships between variables, ML is more like a black box, which tends to focus 

more on predicting the outcome and ignore the process in between. Although ML 

models have low explanatory power, they tend to provide more accurate estimations 
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(Houshmandfar et al., 2021). ML models can be classified into two categories based 

on their learning methods: supervised learning and unsupervised learning. Supervised 

learning, as its name suggests, labels the data in the training set and then the algorithm 

summarizes the method of deducing conclusions from the labeled answers and applies 

the method to the test set. Therefore, this type of method is mainly used in various 

regression and classification problems. Unsupervised learning, on the other hand, is a 

training method with no defined objective, so it does not require labeling of the data, 

which makes it impossible to evaluate the model’s performance. This type of learning 

method is frequently used for identifying outliers and classification. According to the 

principles of these two methods, supervised learning is the most prevalent technique 

employed in agriculture research, and this section describes several models that have 

been used. 

1.5.1 Random Forest 

The random forest regression algorithm was proposed by Breiman in 2001 

(Breiman, 2001), which is a machine learning algorithm derived from regression 

trees. Similar to decision trees, regression trees provide output values based to input 

qualities. In contrast to decision trees, which provide categorical labels, regression 

trees utilize squared errors to produce regression values. A random forest is called a 

forest because it uses an integrated algorithm to add many trees and average the final 

output. Therefore, random forests would have higher accuracy than simple regression 

trees. With the increased availability of big data, random forests are widely used in the 
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field of spectral remote sensing, for example to predict soil heavy metal concentration 

(Tan et al., 2019), crop yield (Prasad et al., 2021), or leaf nitrogen content (Liang et 

al., 2018) using hyperspectral sensor data. Consequently, this useful machine learning 

model is also frequently employed by researchers with environmental variables and 

plant phenotypic data mentioned in the previous section to create estimations on gs 

(Brewer et al., 2022; Ellsäßer et al., 2020; Houshmandfar et al., 2021c; Saunders et 

al., 2021; Zhao et al., 2021). 

1.5.2 Support Vector Regression 

Support vector regression (SVR) is a machine learning algorithm similar to 

support vector machine (SVM). Unlike SVM, which is often used in classification 

problems, SVR is employed in regression situations. In contrast to RF, it takes an 

entirely different method, which locates the optimal hyperplane in an n-dimensional 

space that meets the objective, and the fitted line that exists in this hyperplane is the 

model. It has the advantage of transforming nonlinear problem into linear ones (Geng 

et al., 2020). Like RF, SVR is often used for yield, plant nitrogen content and gs 

estimation utilizing environmental variables as well as spectral data (Houshmandfar et 

al., 2021; Jarolmasjed et al., 2018, 2018b; Khosla et al., 2020; Minaei et al., 2022; 

Tian et al., 2018; Y. Zhang et al., 2022). 

1.5.3 Partial Least Squares Regression 

Partial Least Squares regression (PLSR) is a common machine learning technique 



16 

 

that is frequently employed for multiple-variable data analysis (Mehmood et al., 

2012). As a dimensionality reduction approach, it can transform highly correlated 

independent variables into a smaller number of uncorrelated variables and improve 

the performance of the model. PLSR is often used in spectral data modeling, by using 

this dimensionality reduction method, a large number of co-linear spectral variables 

can be transformed into uncorrelated variables (Darvishzadeh et al., 2008; Fu et al., 

2014). In fact, PLSR is the de facto standard approach to model hyperspectral data 

and to estimate a large array of soil and crop attributes (Wijewardane et al., 2016, 

2018, 2023), including leaf water content or gs (Rapaport et al., 2015; Y. Zhang et al., 

2022). 

1.5.4 Artificial Neural Network  

Artificial neural network (ANN) is a machine learning algorithm inspired by 

biological neuronal systems. It consists of an input layer, an output layer, and hidden 

layers, with each layer containing a different number of nodes connected to all the 

nodes in the next layer. With a significant amount of training data, different weights 

are assigned to each node to categorize or predict the data. ANN, a modern technique 

for artificial intelligence, has been effectively applied to a variety of applications, 

including plant disease detection, plant phenotypic analysis, etc. (Pathan et al., 2020). 

ANN has also been tested with satisfactory results for gs estimation (Ellsäßer et al., 

2020; H. Li et al., 2022; Vitrack-Tamam et al., 2020; Y. Zhang et al., 2022). 
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1.5.5 Conclusion 

The author reviewed a number of articles that used machine learning methods for 

gs estimation, and RF had the highest relative accuracy among the four machine 

learning methods mentioned previously. Ellsäßer et al. (2020) used weather 

information and plant phenotypic data derived from thermal and RGB images to 

predict the gs of different tree species using multiple linear regression (MLR), RF 

bagging, RF boosting, SVM, and ANN. RF bagging offered the highest accuracy (R2 

around 0.5) among these four approaches, and ANN was the second-best algorithm 

(Ellsäßer et al., 2020). Zhao et al. (2021) utilized data such as relative humidity, vapor 

pressure deficit, air temperature, and canopy temperature to predict gs for a variety of 

field crops. Gradient boosting machine (GBM) exhibited the highest accuracy 

(R2=0.80) among the three machine learning algorithms tested (MLR, RF, and GBM). 

In the meantime, researchers have demonstrated that machine learning models are 

more accurate than classic empirical models. Houshmandfar et al. (2021) and 

Saunders et al. (2021) compared Jarvis model and Ball-Berry model to machine 

leaning techniques. By using the same variables in both the machine learning and 

empirical models, the studies showed that RF increased the R2 value of the Jarvis 

model from 0.76 to 0.97, and the Ball-Berry model from 0.41 to 0.75 (Houshmandfar 

et al., 2021; Saunders et al., 2021). Consequently, we conclude that the application of 

machine learning techniques can complement and further improve the efficacy of 

empirical models. 
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1.6 Challenge and Potential Improvements 

The future of digital agriculture is contingent on the development of cutting-edge 

technologies such as artificial intelligence, IoT, remote sensing technology, etc. 

However, there are still considerable challenges in the process of development. The 

first issue to be considered of gs estimation based on high-throughput phenotypic data 

is the ground truth data collection. As mentioned in the preceding section, the two 

contact-type technologies that are primarily employed for field crops, gas exchange 

measurement and porometry measurement, need researchers to utilize handheld 

equipment to collect data from individual plants. Both of these data collection 

technologies need approximately 30 seconds to record a single data point, but a 

substantial amount of training data is required to allow the modeling of high-

throughput phenotypic data. Therefore, researchers are burdened with a great deal of 

labor due to the vast amount of data necessary. In addition, as pointed out in Section 

1.3, the current accuracy of gs measurements still needs to be improved, and the 

measurement bias of handheld instruments is one of the reasons for the impact on the 

accuracy of gs estimation. Another challenge that needs to be considered is the choice 

of training variables. Through article search, the authors found that the training 

variables at this stage are focused on environmental variables as well as plant 

phenotypic data in the canopy. There is evidence that gs responds differently based on 

the duration of radiation exposure (J. Xu et al., 2021). Hence, in the future, time series 

data or other data that reflect plant water potential, such as soil moisture, might be 
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used to estimate gs. Overall, gs estimation may be achieved efficiently by combining 

high-throughput plant phenotypic data with machine learning. As the need for food 

and crops produced for biofuel rises, good estimation of stomatal conductance can 

significantly boost crop yields and reduce the negative effects of climate change on 

plants. With the constant development of computers and sensors, technological 

developments can improve the accuracy of gs estimation. In the research field, 

accurate and quick collection of gs data can assist researchers in identifying drought-

tolerant genotypes. In production, these tools can help farmers optimize irrigation and 

fertilization schedules to maximize crop yields while minimizing cost. 
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CHAPTER 2 ESTIMATING CROP STOMATAL 

CONDUCTANCE USING PHENOTYPIC TRAITS AND 

WEATHER VARIABLES THROUGH MACHINE 

LEARNING 

2.1 Introduction 

On the epidermis layer of higher plants, two small symmetric guard cells are 

present known as stomata, which play a crucial role in gas exchange between inner air 

space of the leaf and the outer atmosphere (Lawson, 2009). The opening and closing 

of stomata to regulate the flux of carbon dioxide into and water vapor out of the leaf is 

measured by stomata conductance (gs). In addition to carbon dioxide and water vapor, 

stomata also control the exchange of various trace gases.  Determining and 

estimating stomata conductance of plants is therefore imperative for us to monitor and 

understand plant growth, development, and productivity (Otu-Larbi et al., 2021).  

Finding the best model to determine gs has been a key factor for phenotypic studies 

and optimization of crop water use in plants (Thorp et al., 2018). The crop’s estimated 

gs can be used to determine the drought sensitivity (Buckley & Mott, 2013), and also 

formulate decisions for irrigation scheduling (Jones, 1999). Under conditions of high 

temperature, the heat stress response of the plant cools the leaves by increasing their 

gs (Jagadish et al., 2021). Thus, estimating gs can be useful for conducting heat 

tolerance studies on plants and responses to extreme climate conditions.   

Canopy temperature has long been used to make an empirical estimate of plant water 
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stress. Decreased water uptake in plants closes stomata, which cause reduction in 

transpiration rate in plants and increases leaf temperature (Blonquist et al., 2009). 

Therefore, stomatal conductance could be inferred from canopy temperature through 

photosynthesis, respiration and other biophysiological processes (Jones, 2004). 

Stomata creates a strong influence on plant characteristics associated with 

photosynthesis and transpiration, and controls temperature and water use efficiency 

(WUE) which is vital for the survival of plants. During short term water stress, plant 

increases their WUE by reducing stomatal aperture and transpiration rate (Y. Li et al., 

2017). When trees are transplanted from their native environment to a drier one, 

plants would reduce stomatal conductance caused by a reduction of stomata density 

(Gindel, 1969). Similarly, environmental conditions play a significant role in gs. 

Increase in atmospheric CO2 concentration and temperature results in a decrease of 

stomatal density (Franks et al., 2015). Therefore, gs is an important target for crop 

improvement, irrigation management and development of drought-tolerant cultivars 

(Doheny-Adams et al., 2012).  

Due to climate change, precipitation patterns have altered drastically around 

various regions of the world, causing severe and frequent drought stress to many crop 

species (Wehner et al., 2011). WUE can be used to monitor plant growth, 

development and drought stress (Thorp et al., 2018), and knowledge of WUE 

provides an effective understanding of plant water content. Remote sensing and 

precision agriculture has developed precision irrigation technology, which can be used 

to estimate crop evapotranspiration (ET) and estimate drought stress in crop at 
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multiple scales (Maes & Steppe, 2012). Thermal infrared images captured by IR 

cameras mounted on unmanned aerial vehicles (UAVs) provide sub-meter spatial 

resolution, capable of retrieving pure canopy temperature and minimizing soil thermal 

effects. These high-resolution thermal IR images retrieve the energy fluxes from pure 

vegetation on open canopies where most remote sensing-based method are not able to 

perform well (Berni, Zarco-Tejada, Suarez, et al., 2009; Herwitz et al., 2004; Sugiura 

et al., 2005). 

Contact-type gs measurements in the field can be divided into two categories: (1) 

Gas exchange measurements: gs is derived by measuring the gas exchange rate of 

water vapor and CO2 between the leaves and the atmosphere using infrared 

spectroscopy. (2) Porometry measurements: Using several humidity sensors measure 

the diffusion rate of water vapor from the leaves (Toro et al., 2019). Canopy 

temperature is a useful indicator of stomata conductance which can be measured by 

using thermometers in field plots (Takai et al., 2010; Yu et al., 2016), but periodic 

measurement is labor intensive, time consuming and expensive. Improvements in 

remote sensing techniques in the past decades have enabled image acquisition 

technologies such as LANDSAT, SPOT and thermal imaging to estimate stomata 

conductance, surface temperature and various vegetation indices (VIs) (Sadler et al., 

2002). Nowadays, sensors fitted on small, portable, light weight platforms (Bai et al., 

2019) , and field sensors combined with Internet of Things (IoT) (Chamara et al., 

2022) and data transmission networks were designed to acquire thermal infrared 

images. Additionally, the problem of coarse spatial resolution from satellite imagery is 
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alleviated by these IR sensors installed on platforms and UAVs (Colaizzi et al., 2017). 

Therefore, it will be possible to quantify gs across a vast area using remote sensing 

images. 

Three approaches have been used to model gs: empirical model (data-dependent 

statistic model), mechanistic model (models that rely on the biology principle of 

plants), and economic model (describe the water exchange of the plants from cost and 

benefit under a controlled environment). The method presented by Jarvis (1976) was 

an empirical model to include five variables; light, temperature, carbon dioxide, vapor 

presser deficit, and leaf water status; to estimate gs (Buckley & Mott, 2013). 

Environmental variables such as vapor pressure deficit, relative humidity, canopy 

temperature, dew point temperature, air temperature, solar radiation, and soil moisture 

influence gs. In recent years, studies have been focused more on measuring canopy 

temperature using remote sensing, which provides a basis for estimating gs in plants 

(van Dijk et al., 2021; Virnodkar et al., 2020; Zhao et al., 2021). 

In recent years, efforts have been made to find associations between these 

variables from empirical modeling, by leveraging the cutting-edge machine learning 

approach. Some studies combined machine learning with empirical models like Jarvis 

and Ball-Berry. The results of the study showed that machine learning models, such as 

random forests, performed better than traditional statistical models. Machine learning 

can improve the R2 values of two empirical models from 0.76 to 0.97 (Jarvis model) 

and from 0.41 to 0.75 (Ball-Berry model) when using the same variables. 

(Houshmandfar et al., 2021; Saunders et al., 2021). However, it is important to note 
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that most studies have used variables from current empirical models for estimation 

(which include data that are difficult to gather, such as CO2 concentration), whereas 

just a small number of studies have linked remote sensing data to gs. If gs could be 

estimated in real time, it would be feasible to optimize plant irrigation schedules and 

determine plant drought resistance using rapid in situ measurements. (Jones, 1999). 

In this project, two sources of data were used, near real-time high spatial resolution 

plant phenotyping data and weather data collected from a field phenotyping platform 

and an on-site weather station. Three ML models were used including Random Forest 

Regression (RFR), Support Vector Regression (SVR), and Partial Least Squares 

Regression (PLSR). The objectives of this study are three folds: (1) investigate the 

relationship between gs and a series of environmental and plant phenotypic variables 

acquired via automated sensors; (2) build models to estimate gs from these 

environmental and phenotypic variables; and (3) explore the benefit of including plant 

phenotypic data on gs estimation. 

2.2. Materials and Methods 

2.2.1 Site Description and Data Collection 

The research was conducted in a research field (41°08’41.9”N 96°26’20.5”W) at 

the University of Nebraska-Lincoln’s Eastern Nebraska Research, Extension and 

Education Center in 2020 and 2021. This field is dedicated for high throughput plant 

phenotyping research and equipped with a fully autonomous sensor platform 

(Referred to as NU-Spidercam) to acquire plot-scale phenotyping data including 
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thermal-infrared images, multi-spectral images, and canopy reflectance spectra (Bai et 

al., 2019).  

This study involved five crop types: maize, soybean, sunflower, sorghum, and 

winter wheat. All these crops were planted in plots of 2 rows, 3 rows, or 6 rows, with 

a row spacing of 0.76 m and a row length of 6.1 m. The exception was winter wheat 

which was planted as 5 rows in each plot, with a row spacing of 0.19 m and a row 

length of 4.6 m. Detailed information on the crop type, plot size, date of data 

collection, and number of genotypes in each year is given in Table 3 and Figure 3B.  

Handheld leaf porometers (SC-1, METER Group, Pullman, WA) were used to 

measure gs from all experimental plots, The leaf porometer sets up a diffusion 

pathway for water vapor in a chamber with a fixed diameter and length and derives 

leaf gs by two relative humidity sensors along the diffusion pathway. In June, July, 

August, and September 2020, data on soybean, sorghum, sunflower, and corn were 

collected for 18 days. In May, June, July, August, and September of 2021, data on 

winter wheat and maize were collected for a total of 24 days. In 2020, readings from 

three plant leaves per plot were made and the average was taken. In 2021, only one 

reading per plot was made, due to the relatively long time needed for each gs 

measurement. The sensors needed to be kept in equilibrium with the external 

humidity after each measurement. Depending on the weather conditions of the day, 

each measurement took approximately 4 minutes. 

Table 3: Crop type, plot setup, and measurement date of the study 

Crop Plot Setup Measurement Genotypes Number of 
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Type date observations 

Soybean 12 plots, 6-row 

plots 

June 23, 29, July 

6, 22, August 3, 

14, 26, 28 in Year 

2020 

8 116 

Sorghum 12 plots, 6-row 

plots 

June 17, July 2, 6, 

22, August 14, 26, 

28 in Year 2020 

1 99 

Sunflower 12 plots, 3-row 

plots 

July 22, August 3, 

14 in Year 2020 

2 64 

Maize 28 plots (6 rows) 

and 18 subplots 

(2 rows) 

June 25, July 2, 8, 

16, 23, August 11 

in year 2020, and 

August 2,12, 16 in 

Year 2021 

26 299 

Winter 

Wheat 

80 Plots May 7, 12, 13, 26, 

June 1, 3, 7, 9 in 

Year 2021 

20 592 

The variables used in this experiment can be categorized into two groups: plant 

phenotypic data and weather data. The plant phenotypic data were collected from the 

NU-Spidercam platform equipped with a thermal infrared camera, a multispectral 

camera, and a VNIR spectrometer (Figure 3A) to collect canopy temperature, soil 

temperature, plant coverage, and several canopy VIs at five meters above each plot. 

For each plot, the sensor system moved to the above area based on the predetermined 

map coordinates and captured RGB and near-infrared (NIR) images, an IR image, 

point clouds, and incoming and canopy reflectance VNIR spectra using the onboard 

sensors.  

Canopy coverage rate was calculated as a ratio of the canopy pixel counts over 

the image size. A semi-automatic image segmentation algorithm, which utilized RGB 

and NIR images, was applied to segment the canopy pixel from the background (Bai 

et al., 2019). Co-registration of the multispectral images and the IR image was done 
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by an affine transformation, which was possible due to the fixed layout of the two 

cameras. The average canopy temperature was subsequently calculated after carrying 

out the segmentation on the transformed multispectral images. The average 

temperature of the background pixels was computed as the soil temperature (Figure. 

3C).  

 

Figure 3: NU-Spidercam data collection and preprocessing. (A) Spidercam sensing 

platform; (B) Detailed map of the plant planted in 2020 and 2021; (C) Image 

processing from VNIR and TIR images; (D) The calculation protocol of Vegetation 

Indices. 

A dual-head spectrometer-fiber system collected the incoming and reflected solar 

radiation at the visible-NIR region, the VIs are calculated as shown in Figure 3D. 

Wavelength and spectral calibration were done at a seasonal basis using NIST-

certified light sources in the lab and reference targets with known reflectance in the 

field. Seven VIs (Table 4) were calculated from the canopy reflectance, including 
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Normalized Difference Vegetation Index (NDVI), Red-Edge NDVI (NDRE), 

Optimized Soil Adjusted VI (OSAVI), Reflectance-based Solar-Induced Fluorescence 

(SIF), Photochemical Reflectance Index (PRI), Near-infrared Reflectance of 

Vegetation (NIRV), and Transformed Chlorophyll Absorption in Reflectance Index 

(TCARI) (Badgley et al., 2017; Haboudane et al., 2004; Kim et al., 2011; Rondeaux et 

al., 1996). 

Table 4: Equations used to calculate the vegetation indices (VI) used in this study. The 

numbers after R represent the central wavelengths of the spectral bands involved in 

calculating the VI. 

NDVI 𝐑𝟕𝟓𝟎 − 𝐑𝟕𝟎𝟓

𝐑𝟕𝟓𝟎 + 𝐑𝟕𝟎𝟓
 

(1) 

NDRE R770 − R730

R770 + R730
 

(2) 

OSAVI 
(1 + 0.16) ∗

R800 − R670

R800 + R670
 

(3) 

SIF R800 − R740

R800 + R740
 

(4) 

PRI R570 − R531

R570 + R531
 

(5) 

NIRV 
R800 ∗

R800 − R670

R800 + R670
 

(6) 

TCARI 3 ∗ (a − 0.2 ∗ b ∗ c)

(1 + 0.16) ∗
d
e

 

*Where:  a = R700 − R670 

         b = R700 − R550 

         c = R700/R670 

         d = R800 − R670 

         e = R800 + R670 + 0.16 

(7) 

The weather variables used in the estimations were obtained from an on-site 

weather station, which is located approximately 30m west of the field and part of 

Nebraska Mesonet (https://mesonet.unl.edu). All The environmental variables were 
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recorded by the weather station at a 1-minute interval. 

2.2.2 Data Preprocessing  

Air temperature (Ta), dew point temperature (Tdew), relative humidity (RH), 

wind speed, and shortwave solar radiation were used as weather variables. Ta, Tdew, 

and RH were measured 2m above the ground; and wind speed and shortwave solar 

radiation were measured 3 m above the ground. Vapor pressure deficit (VPD) was 

calculated as the difference between saturation vapor pressure and actual vapor 

pressure (Allen et al., 1998). 

 

𝑉𝑃𝐷 = 𝑆𝑉𝑃 − 𝐴𝑉𝑃 

𝑆𝑉𝑃 = 0.6108 ∗ exp (
17.27 ∗ 𝑇𝑎

𝑇𝑎 + 237.3
) 

𝐴𝑉𝑃 = 0.6108 ∗ exp (
17.27 ∗ 𝑇𝑑𝑒𝑤

𝑇𝑑𝑒𝑤 + 237.3
) 

Where: 

 SVP is saturation vapor pressure 

AVP is actual vapor pressure 

 

Since the NU-Spidercam is running continuously, it is necessary to match the gs 

data as well as the variables in time, both plant phenotype data and weather data were 

used closest to the time of gs collection. The weather station in the field records data 

every minute, so the weather data and the gs can be matched perfectly. Spidercam 

sensors took less then 30s to collect data for one plot and had other experiment plots 
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to cover. Therefore, there were differences of the measuring time between NU-

Spidercam and the manual gs data collection. In this study, only data with time 

intervals less than 3 hours were used in the analysis. 

2.2.3 Model Training and Optimization 

Prior to model training, all variables were first standardized to speed up the 

training as well as convergence of ML models. Three ML models were attempted in 

this study, namely, PLSR, RFR, and SVR. PLSR models are generally considered 

linear whereas RFR and SVR models are nonlinear. Because one of our objectives 

was to explore the benefit of phenotyping data in gs estimation,  models were trained 

and compared with three scenarios: (1) only weather data (Ta, Tdew, RH, wind speed, 

solar radiation, and VPD) was used as input variables, (2) only the sensor-based 

phenotypic data (plant coverage, canopy temperature, soil temperature, and seven 

VIs) was used as input variables, and (3) combining weather data and sensor-based 

phenotypic data as input variables. 

The RFR algorithm builds a large number of decision trees by randomly selecting 

variables in the training set, and finally averaging the results of each decision tree to 

obtain the final estimation value (Wang et al., 2016). RFR employs the bagging 

ensemble learning method by dividing the training set into distinct subsets for 

separate training. Multiple models are ultimately combined to enhance performance. 

SVR, on the other hand, fits the data by constructing a hyperplane in a 

multidimensional space (Tian et al., 2018). The final model of SVR is the best-fit line 
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that contains the most data points within a specified range on both sides of the 

hyperplane. PLSR is the algorithm that reduce the estimator variables into several 

uncorrelated inputs then apply the least square regression (Rasooli et al., 2022).   

Optuna (Akiba et al., 2019) was used to perform hyperparameter tuning under 

Python environment for RFR and SVR model, which improves the accuracy of the 

model by sampling and pruning algorithms to continuously reduce the search space of 

hyperparameters. The number of estimators and the depth of the trees for RFR was 

the hyperparameters for turning. Additionally, kernel, C, and Gamma (kernel is the 

function used in the model, C is the regularization parameter, and Gamma is the 

kernel coefficient) were used for SVR. After dividing the dataset into a 75% and 25% 

training and testing set, a 5-fold-cross-validation was performed on the training set to 

determine the best hyperparameters with the lowest mean squared error. These 

hyperparameters were used in the training set to obtain the model, which was 

evaluated using root mean squared error (RMSE) and coefficient of determination 

(R2) obtained from the test set. 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦𝑖̂)

2

∑(𝑦𝑖 − 𝑦𝑖̅)2
 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑛

𝑖
 

Where: 

 𝑦𝑖 is the measured value and 𝑦𝑖̂ is the estimated value. 

 𝑦𝑖̅ is the average value of n samples in the test set. 
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2.3 Results 

The box plot (Figure 4) shows the distribution of measured gs for different crop 

types. The soybean has the largest fluctuation range (0.063 mol m-2 s-1 to 1.855 mol 

m-2 s-1). According to the image, maize has a large number of outliers, which may be 

due to the differences in crop characteristics between genotypes. In addition to maize, 

sunflower and winter wheat also exhibited a small number of outliers. 

 

Figure 4: Boxplot for measured stomatal conductance between all crop types. 

Table 5 shows the performance of three different input variables under five 

different models and six different crop types. Analysis of the model results showed 

that RFR performed best among all five ML models for gs estimation for all crops. For 

the RFR model that makes estimation for all six crops together, combination inputs 

have an R2 value of 0.69, with RMSE of 0.135 mol m-2 s-1, Plant phenotyping data 

estimation has an R2 value of 0.59, RMSE of 0.158 mol m-2 s-1, and weather only 

estimation has an R2 value of 0.58, with RMSE of 0.161 mol m-2 s-1. The result shows 
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that although the Spidercam collection time has an interval ranging from 0-3 hours 

with the gs collection time, the estimation result from plant phenotypic data is still 

better than the result from weather information. The model with the poorest 

performance for the entire crop was PLSR, with estimations of R2 = 0.41, R2 = 0.26, 

and R2 = 0.17 for three sets of variables. In the terms of single species estimation, the 

RFR model for sorghum shows the best performance, with an R2 value of 0.86, 

RMSE of 0.131 mol m-2 s-1. This is consistent with the findings regarding the entire 

crop, but it is unknown if the sorghum result is affected by the validation bias of the 

small data set. 

Table 5: The performance for estimating stomatal conductance with three different 

machine learning models and five crop types. 
 

Random Forest 

Regression 

Support Vector 

Regression 

Partial Least 

Squares Regression 

All Spide

r 

only 

Weat

her 

only 

All Spide

r 

only 

Weat

her 

only 

All Spide

r 

only 

Weat

her 

only 

Total R2 0.69 0.59 0.58 0.66 0.61 0.53 0.41 0.26 0.17 

RM

SE 

0.14 0.16 0.20 0.15 0.16 0.21 0.20 0.22 0.23 

Maize R2 0.62 0.61 0.35 0.67 0.30 0.32 0.48 0.35 0.10 

RM

SE 

0.12 0.12 0.16 0.11 0.17 0.16 0.15 0.16 0.19 

Sorgh

um 

R2 0.86 0.80 0.78 0.71 0.49 0.58 0.69 0.46 0.55 

RM

SE 

0.13 0.16 0.15 0.17 0.24 0.21 0.18 0.23 0.21 

Soybe

an 

R2 0.79 0.49 0.67 0.62 0.35 0.58 0.53 0.36 0.53 

RM

SE 

0.18 0.17 0.26 0.24 0.30 0.19 0.28 0.31 0.23 

Sunfl

ower 

R2 0.83 0.60 0.86 0.74 0.62 0.77 0.77 0.53 0.81 

RM

SE 

0.10 0.15 0.09 0.12 0.14 0.11 0.11 0.15 0.10 

Winte R2 0.31 0.22 0.20 0.21 0.13 0.21 0.20 0.13 0.21 
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r 

wheat 

RM

SE 

0.14 0.14 0.14 0.15 0.15 0.14 0.15 0.15 0.14 

Figures 5, 6, and 7 show the estimation results based on all data, Spidercam data, 

and weather information in RFR model, respectively. The best performing model is all 

data model of sorghum, while the worst performing model is the weather information 

model of winter wheat, with an R2 value of only 0.20. Sunflower and soybean’s 

weather information models outperformed their phenotype data models. The plant 

phenotype models for winter wheat, sorghum, maize, and the entire crop set 

performed better than the weather information models. The images indicate that the 

combined model is closer to the measured values than either the model of plant 

phenotype data or the model of the weather information alone. In general, the 

performance of the plant phenotype data model is slightly superior to that of the 

weather information model. In conclusion, the results indicate that by merging 

weather information with plant phenotyping data, the accuracy of results’ estimation 

can be significantly enhanced.  

 

Figure 5: gs estimated based on all data using the random forest model. (A) All crop 



35 

 

types. (B) Maize. (C) Sorghum. (D) Soybean. (E) Sunflower. (F) Winter wheat. 

 

Figure 6: gs estimated based on Spidercam data. (A) All crop types. (B) Maize. (C) 

Sorghum. (D) Soybean. (E) Sunflower. (F) Winter wheat. 

 

Figure 7: Stomatal conductance estimated based on weather information. (A) All crop 

types. (B) Maize. (C) Sorghum. (D) Soybean. (E) Sunflower. (F) Winter wheat. 
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2.4 Discussion 

2.4.1 Demonstrated the Potential of Estimating Stomatal Conductance 

Based on Plant Phenotyping Information 

Compared to estimate gs using weather information alone, the estimation using 

plant phenotypic data and the combination of both data as estimator variables 

improved the R2 values 17% (0.10) and 19% (0.11), respectively. The temperature of 

the canopy is affected by environmental factors such as air temperature, wind speed, 

etc. (Rebetzke et al., 2012), so canopy temperature can represent weather data to some 

extent. In our study, we also discovered that plant phenotypic data generally made 

more accurate estimations than weather data. Since stomata is mainly used for water 

and CO2 exchange between plants and atmosphere, the water status of the plant and 

the atmosphere CO2 concentration are two influential factors (Buckley, 2017). Plants 

subjected to water stress and elevated CO2 levels will close their stomata to reduce the 

transpiration water loss. Therefore, numerous models incorporate these two crucial 

variables to improve their accuracy. Take Jarvis model as an example, the variables 

are light intensity, leaf temperature, VPD, atmospheric CO2 concentration, and leaf 

water potential. Among them, leaf water potential as well as leaf temperature belong 

to leaf phenotypic information, the NDVI and OSACI/TCARI used in this experiment 

can be used for plant water status assessment by showing the change in chlorophyll 

content of the crop (Baluja et al., 2012). Other VIs included in this study have 

likewise been shown to quantify the state of crop under biotic as well as abiotic 
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stresses (Khan et al., 2018; Motohka et al., 2010; Rutkoski et al., 2016). However, 

dueto the fact that each species or genotype responds differently to environmental 

changes (Mathe-Gaspar et al., 2005), using weather information alone might not 

adequately capture the state of the crop compared to plant phenotypic information. 

This is likely the reason why the ML models using weather information had overall 

lower accuracy than those using plant phenotypic information only. Meanwhile, the 

ability of plants to regulate the opening and closing of stomata varies among different 

crops and genotypes (Banerjee et al., 2020; Lopes et al., 2011). This represents an 

additional source of variation in the results when plant traits are used in an attempt to 

make a unifying estimation of gs for different genotypes of crops. There is also a study 

demonstrated that canopy temperature and gs differed between different wheat 

varieties in sunny and cloudy conditions (Takai et al., 2010). This argument is also 

supported by the estimation results for a single genotype crop, sorghum, in this study. 

When using RFR for sorghum estimation, it has the highest accuracy among all crop 

types with an R2 value of 0.86. Our study shows that the use of plant phenotype data 

can be used for gs estimation and reduces the need for handheld instruments when 

collecting data in the field. 

2.4.2 Performance of Machine Learning Models 

In this study, three ML models were used to estimate crop gs from sensor-based 

plant phenotypic data and weather data. Where RFR demonstrated the best estimation 

performance, the results show that the model can be used for gs estimation for a wide 
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range of crops. This suggests that decision tree-like machine learning algorithms 

perform better on similar problems, a conclusion that is also supported by other paper 

(Houshmandfar et al., 2021; Saunders et al., 2021), which tend to have better 

performance of RFR models when estimating stomatal conductance This class of 

algorithms can also cope with complex interrelationships among variables. Since the 

effect of weather information on crops is nonlinear, the PLSR model does not perform 

as well as other models (Cai et al., 2019). In other words, the nonlinear model is more 

suitable than the linear model for gs estimation. From the experimental results, it can 

be observed that RFR can estimate up to R2 = 0.69 for all crops while PLSR is only 

R2 = 0.41.  

Figure 8 shows the importance of the variables in the RFR, SVR, and PLSR 

model, for the RFR model, it shows that Tdew occupies the most important role in the 

model, followed by SIF, RH and NDRE in order of importance. It is noteworthy that 

all weather variables except Tdew as well as RH have low importance. However, for 

SVR and PLSR, the most important variables were NDRE and RH, respectively. 

Although the feature importance varies for each machine learning model, it can be 

observed that the RH and several VIs plays an important role in estimation. The first 

six important variables in all three models included NDRE, relative humidity, and SIF, 

which covered several important factors affecting gs, i.e., chlorophyll content, 

environmental water content, and photosynthetic efficiency. 
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Figure 8: Feature importance of all variables used in RFR, SVR, and PLSR 

In contrast to conventional empirical formulas like Jarvis model, ML models are 

primarily concerned with estimating outcomes rather than discovering the relationship 

between individual variables. Empirical formulae based on scientific theory tend to be 

more explanatory and have less risk and uncertainty, and with the addition of 

computer technology the accuracy of the model can be further improved 

(Houshmandfar et al., 2021). These ML models are not generalizable because they 

only apply to data generated under similar conditions. During the model training, it is 

also important to consider the amount of data for each crop in the dataset, and the 

quality of the dataset will directly impact the results (Saunders et al., 2021). Indicators 

of the dataset’s quality include accuracy and the representative of ground truth data, 

among others (He & Garcia, 2009). The proportion of each data type in the dataset 

will have a direct impact on the performance of the model, including but not limited 

to crop species and their growth stages. Theoretically, the better the data set, the better 

the model performs (R2 value for the all-species data set is 0.70 in our study). It is 

worth noting that the sunflower model with only 64 observations (R2 = 0.83) and the 

sorghum model with 99 observations (R2 = 0.86) still perform very well, this might 
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because of the fewer genotypes included in the data set. Similarly, expanding the 

scope of the data to include additional regions, data collection devices and species 

would increase the generalizability of the model. Consequently, the performance of 

the ML models could be further improved with a comprehensive data set comprising 

samples from different times, weather conditions, and field conditions.  

2.4.3 Challenges and Future Improvements 

In our study, we took three measurements per plot in 2020 and calculated the 

average value, whereas in 2021, only one measurement per plot was taken for all 

crops. Since stomata are induced by light, measurements performed in the same plot 

can also differ depending on the leaf orientation to sunlight (Bagley et al., 2015). So a 

single measurement does not accurately represent the average gs of each plot (winter 

wheat has the lowest accuracy). In the future, data will be gathered by randomly 

measuring more readings per plot and averaging the result. In addition, noise 

reduction is one of the primary focuses of the data processing in the field (van Dijk et 

al., 2021). Data collection in the field will inevitably be affected by environmental 

factors such as wind, so how to make the collected data more stable is also a key point 

to consider. Although gs can be measured quickly using a leaf porometer, the accuracy 

of the measurement is still affected by the dependence on environmental factors such 

as temperature and relative humidity due to the technical limitations (Fanourakis et 

al., 2016; Toro et al., 2019). Van Dijk et al. (2021) also mentioned the results from the 

end-to-end learning model, so we can also consider skipping the explicit feature 
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extraction from raw sensor data, such as extracting canopy temperature and VIs, and 

using multispectral and NIR images directly for gs estimation. Another limitation is 

the quality of the data set, as stated in the preceding section, the diversity of the data 

has an effect on the model results. Therefore, determining how to filter the existing 

data and expand the size of the dataset should be a top priority for the future research. 

It has been demonstrated that weakly associated estimator variables reduce the 

accuracy of regression models (Boulesteix et al., 2015), so the selection of variables 

also needs to be considered according to their relevance to gs. In the future, a 

comparison between end-to-end models and variable filtered models could be 

considered in order to evaluate their performance differences. 

Numerous models based on the Jarvis model incorporate soil water status to 

determine the impact of water stress on gs (Damour et al., 2010). Therefore, one 

missing component in this study was the soil data – mainly soil water content but 

could also include soil textures, organic matter, and others. Currently we treat all 

measurements in the model as independent samples. In other words, our models do 

not have the ability to account for the time dependence among these variables. On the 

other hand, photosynthetic acclimation is one of the ways in which plants adapt to 

environmental changes (Bagley et al., 2015). It has been reported that the interaction 

between CO2 levels and water stress has a positive effect on gs over time (Thruppoyil 

& Ksiksi, 2020). So we speculate that the dynamics of stomata opening and closing 

are not only dependent on the current state, but also the past state of the weather 

variables. Therefore, we will investigate more advanced approaches (such as recurrent 
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neural network) to accommodate the time-series weather data in the modeling. 

2.5 Conclusion 

The study employed three ML algorithms to estimate the leaf gs of five crops 

using near real-time, sensor-based plant phenotypic data and weather data. Combining 

the plant phenotypic data with weather data significantly improved the predication 

accuracy of gs, with the model testing R2 value of 0.69 (increased from testing R2 of 

0.58 and 0.59 for each data set alone). This result indicated the usefulness of sensor-

based plant phenotypic data in boosting the accuracy of plant gs modeling and 

estimation. Because these sensor-based plant phenotypic data could be acquired 

rapidly and relatively inexpensively, thanks to the advancement in high-throughput 

plant phenotyping, this study provides a rapid method to quantify leaf gs more 

accurate than relying on weather data alone. In terms of ML algorithms, nonlinear 

RFR and SVR models outperformed the linear PLSR models, suggesting intrinsic 

nonlinear relationships between leaf gs and the estimator variables, as well as the 

complex control and feedback mechanisms among these variables. The plant 

phenotypic data in our study was collected from the NU-Spidercam platform. 

However, the approach described in this study could also be readily used for UAVs or 

other ground platforms with similar sensors mounted. Rapid and accurate estimation 

of plant leaf gs, as demonstrated in this study, have implications on applications such 

as screening for drought-tolerant genotypes and precision irrigation management. 
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CHAPTER 3 ESTIMATING MAIZE STOMATAL 

CONDUCTANCE FROM RGB, NIR, AND THERMAL 

INFRARED IMAGE 

3.1 Introduction 

As the global population increases, so does the demand for food production. By 

2050, the demand for food will double compared to what it was in 2009 (Fukase & 

Martin, 2020). Hence, increasing food production has been a subject of growing 

concern. Corn, for instance, is the third most-consumed cereal in the world and is 

utilized for food, feed, and biofuel production (Erenstein et al., 2022). Another widely 

grown field crop is soybean, which is used as one of the largest sources of vegetable 

oil and animal feed due to its high content of vegetable protein and oil (Pagano & 

Miransari, 2016). In order to increase the corn and soybean yield, the factors affecting 

yield have been widely explored. It has been demonstrated that the yield of maize and 

soybean is directly related to its drought index during the grain filling and 

reproductive growth periods (Mishra & Cherkauer, 2010). Hence, it would be 

advantageous to increase yield if the water status of crops could be accurately 

measured. 

The stomata are one of the primary channels for water and gas exchange between 

the plant and the atmosphere (Lawson, 2009). The stomata consist of two guard cells 

in the epidermis of higher plants, which are regulated to control the opening and 

closing of the stomata. In photosynthesis, the plant uses light energy to transform 
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water and CO2 absorbed through the stomata into energy for plant growth. However, 

the opening of stomata also leads to accelerated loss of water into the atmosphere due 

to transpiration. Therefore, when the crop is under water stress, stomata are closed to 

conserve water. Stomatal conductance (gs), which indicates the rate of gas exchange 

between the crop and the atmosphere per unit area, is frequently used to determine the 

degree of stomatal closure. Hence, if stomatal conductance can be measured 

effectively and precisely, it can aid in understanding the crop's current water status 

and improve the irrigation planning. 

However, accurate gs measurement requires contact-type instruments to be 

clamped on the leaf blade, which is a time-consuming and labor-intensive 

measurement approach. Gas exchange measurement and porometry measuring are 

two frequent ways of measurement. Using an infrared spectrometer and relative 

humidity sensors, respectively, these two methods of measurement determine the gas 

exchange rate between the leaf and the atmosphere (Toro et al., 2019). In order to 

estimate gs rapidly, researchers have attempted to model gs using empirical models. 

Using environmental variables including light intensity, leaf temperature, vapor 

pressure deficit, leaf water content, and atmospheric CO2 concentration, the Jarvis 

model (1976) has produced accurate estimations of gs (Jarvis, 1976). As the model 

relies solely on environmental factors for assessment, it greatly simplifies the 

estimation of gs. 

Along with the rise in popularity of machine learning, it has been discovered that 

the estimation accuracy of models is greatly enhanced when machine learning 
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models are combined with conventional empirical models (Houshmandfar et al., 

2021). With the advancement of remote sensing technology, platforms such as 

satellites and Unmanned Aerial Vehicles (UAVs) have increased the potential for 

rapid, large-scale data collection. Thermal infrared cameras fitted into these platforms 

enable large-scale crop canopy temperature observations. As a fundamental way to 

regulate transpiration, there is a significant relationship between gs and canopy 

temperature (Dai et al., 2004). If gs can be monitored by these remote sensing 

platforms, growers will have a better understanding of the current crop status and 

would be able to plan accordingly. 

In this study, we evaluated the estimation accuracy of multiple linear regression 

(MLR), support vector regression (SVR), and convolutional neural network (CNN) 

for maize and soybean gs employing near-infrared, thermal-infrared, and RGB images 

gathered from a remote sensing platform in the field. We also evaluated whether 

omitting soil moisture from the model has a substantial impact. 

3.2 Material and methods 

In 2022, the research was done at the University of Nebraska-Lincoln's Eastern 

Nebraska Research, Extension and Education Center (41°08'41.9"N 96°26'20.5"W). 

The total experimental field was 60 by 67 meters and was divided into 128 plots, each 

plot of 4.6 by 6.1 meters. The two crops in this experiment were maize and soybean, 

with 18 maize plots and 12 soybean plots (Figure. 9). Throughout the months of 

August and September, a total of five days were devoted to the collection of data. 
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Table 6 lists the crop types, plot situation and dates of collection. 

 

Figure 9: Location and detailed map for plots 

Table 6: Crop type, plot setup, and measurement date of the study 

Crop 

Type 

Plot situation Measurement 

date 

Number of 

observations 

Soybean 12 plots (6 

irrigated plot, 6 

non-irrigated 

plots) 

August 8, 10, 17, 

22, September 4 in 

Year 2022 

60 

Maize 18 plots (9 

irrigated plot, 9 

non-irrigated 

plots) 

August 8, 10, 17, 

22, September 4 in 

Year 2022 

86 

 

Handheld leaf porometers were used to collect all ground truth data (SC-1, 

METER Group, Pullman, WA). The gs was calculated using two humidity sensors to 

measure the diffusion rate of water vapor on the abaxial surface of the leaf. For each 

measurement, the uppermost fully developed leaf of three randomly selected plants 

was measured and averaged for each plot. To prevent the effect of shadows on 

photosynthetic efficiency, only leaves that were totally exposed to sunlight were 

selected. 

The images as well as the data used for estimation came from a fully autonomous 
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sensor platform (NU-Spidercam) in the experimental field. The platform is equipped 

with a thermal infrared camera, an RGB camera, and a near-infrared camera (Figure. 

10A). The images captured by these cameras are used in the CNN model, while the 

variables utilized by the MLR and SVR models must be computed. These variables 

include canopy coverage rate, canopy temperature, and soil temperature. By 

importing the RGB and NIR images into a semi-automatic image segmentation 

algorithm, the canopy pixels are segmented from the background to calculate the 

canopy coverage rate. The segmented canopy mask is then merged with the IR image 

to obtain canopy and soil temperatures (Figure. 10B) (Bai et al., 2019b). Soil moisture 

data for comparing model performance were obtained from soil moisture sensors 

(TEROS 10, METER Group, Pullman, WA) installed at the center of each plot 

(Figure. 10C). These sensors continuously collected soil moisture readings at 15-

minute intervals, and we selected the subset of soil moisture measurements that 

corresponded most closely to the collection time of the ground truth data. 

 

Figure 10: NU-Spidercam data collection and preprocessing. (A) Spidercam sensing 
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platform; (B) Example image and image processing procedure for calculating canopy 

coverage rate, canopy temperature and soil temperature; (C) Data logger and soil 

moisture sensor. 

In this study, three machine learning models were evaluated: MLR, SVR, and 

CNN. MLR fits all the observations to a line by finding the relationship between the 

independent and dependent variables. SVR is similar to MLR, except it seeks the 

best-fit hyperplane in the n-dimensional space of all independent variables, making it 

a nonlinear model as opposed to MLR. CNN is an artificial neural network algorithm 

inspired by the visual neuron system that obtains the required output by downscaling 

the image while keeping the image's important features. Figure 11 shows the 

architecture of two CNN models for comparing the inclusion or exclusion of soil 

moisture data. Figure 11A, for example, illustrates the architecture without soil 

moisture. The TIR, NIR, and RGB images captured by the cameras are scaled to 

256*256 pixels and input into the model, where they are subjected to a convolution 

layer and a max-pooling layer, before being connected by a concatenate layer. The 

connected data is then sent through a convolution layer and a max-pooling layer, and 

after feature extraction and dimensionality reduction, the final output is acquired 

through the dense layer. Figure 11B shows the architecture with soil moisture, which 

is similar to Figure 11A with the addition of soil moisture as an additional input 

variable in the final dense layer. 
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Figure 11: Architecture for CNN models. (A) Without soil moisture; (B) With soil 

moisture. 

The whole data set is divided into training and test sets in the ratio of 80% and 

20%. During the training process, the grid search method was used to perform 

hyperparameter tuning on the SVR, and the hyperparameters involved in the tuning 

were regularization parameter: C, and kernel coefficient: Gamma. In the study, the 

performance of these three models was evaluated for maize and soybean crops with 

and without soil moisture by using coefficient of determination (R2) and root mean 

squared error (RMSE). 

3.3 Results and Discussion 

Figure 12 shows the distribution of maize and soybean at different measurement 

dates. As indicated in the figure, the mean gs values of soybean are greater than those 

of maize on the same day of measurement. It is noteworthy that both maize and 
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soybean exhibit short-term seasonal variation in gs, with soybean showing the most 

significant variation. It increased abruptly from a low of 0.4 mol/(m2*s) on August 8th 

to 0.81 mol/(m2*s) on August 10th and then decreased gradually to reach 0.27 

mol/(m2*s) on September 4th. The performance of Maize showed the same trend 

although it was not obvious. We also found that the gs of both crops under irrigation 

was significantly higher than that of the non-irrigated crop during the same period, so 

we can conclude that the decrease in soil water potential leads to a decrease in gs. In 

other words, under drought stress, stomata will close to reduce water loss by 

transpiration to increase the water use efficiency. This behavior could also cause 

irreversible wilting of leaves due to water deficiency (Blackman et al., 2009). With 

the closure of stomata, the developmental process will inevitably lead to a reduction 

in photosynthetic efficiency in the reproductive stage and failure to develop more 

biomass (Onyemaobi et al., 2021). The result from two other studies also showed that 

crops experienced the yield reductions due to the decrease in gs caused by the 

decrease in water availability during water shortage conditions (Gleason et al., 2021; 

Liao et al., 2022). 
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Figure 12: Boxplot for measured gs  

Table 7 gives the results of three models for both crops under conditions 

including and excluding soil moisture. All models for maize performed poorly, while 

SVR performed the best of all models with an R2 value of 0.16 and an RMSE of 0.112 

mol/(m2*s). The accuracy of the SVR and CNN models for soybean was comparable, 

however the CNN model performed better when soil moisture was not considered, 

with a R2 value of 0.40 and an RMSE of 0.137 mol/(m2*s). The SVR model 

performed best with an R2 value of 0.62 and an RMSE of 0.116 mol/(m2*s) when soil 

moisture was included. The CNN model is much superior to the other two models 

when both crops are used together for estimating purposes. The R2 value was the 

same whether soil moisture was included or not, but the RMSE increased from 0.147 

mol/(m2*s) to 0.137 mol/(m2*s) when soil moisture was included in the variables. 
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Table 7: The performance for estimating stomatal conductance with three different 

machine learning models. 

 Mazie Soybean Both Crops 

 

W/O 

moisture 

W/ 

moisture 

W/O 

moisture 

W/ 

moisture 

W/O 

moisture 

W/ 

moisture 

 R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

MLR 0.07 0.111 0.07 0.112 0.32 0.177 0.35 0.172 0.20 0.167 0.20 0.167 

SVR 0.13 0.114 0.16 0.112 0.35 0.163 0.62 0.116 0.25 0.153 0.30 0.148 

CNN 0.10 0.114 0.14 0.110 0.40 0.177 0.52 0.137 0.52 0.147 0.52 0.137 

Figure 13, on the other hand, shows the performance results when estimating gs 

for both crops at the same time. As seen in the graph, the MLR model performs the 

worst, the R2 value is 0.20 and an RMSE of 0.167 mol/(m2*s) for with or without the 

inclusion of soil moisture. Although the non-linear relationship between 

photosynthesis and gs (Barnard & Bauerle, 2013; Lamour et al., 2022) makes the SVR 

model slightly better than MLR, it is still not comparable to the accuracy of the CNN 

model. This may be because the CNN model with image input can determine the 

species of the crop according to those images, whereas the MLR and SVR models 

cannot determine the species using the plant coverage rate, canopy temperature, and 

soil temperature. Nonetheless, because the water use efficiency and 

light response vary among species (Y. Zhang et al., 2022), it is not possible to reliably 

estimate gs if the species is not included in the model. In the case of the C3 species 

soybean and C4 species maize used in this experiment, the transpiration rate and gs 
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were higher in soybean than in maize due to their lower water use efficiency under the 

same weather conditions (Knapp, 1993; Ye et al., 2020). Therefore, it is essential to 

use an image input model similar to CNN or to add species information when using 

SVR models if a gs estimation model with multiple crops is needed. Also, such as 

other additional factor that not included in the MLR and SVR models, Normalized 

difference vegetation index (NDVI), was positively correlated with gs. Hence, CNN 

models utilizing images as input will always contain more predictive information than 

MLR and SVR models. This is a possible explanation for why the CNN model 

performs better than the other two models. 

 

 

Figure 13: gs estimated for both maize and soybean. (A) MLR without soil moisture. 

(B) SVR without soil moisture. (C) CNN without soil moisture. (D) MLR with soil 

moisture. (E) SVR with soil moisture. (F) CNN with soil moisture. 

As mentioned previously for the differences in gs caused by these two crop 

species under different irrigation conditions, are also apparent in the model estimation 

results. As shown in Table 1, estimation results that include soil moisture as a variable 
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are often more accurate than those that do not include soil moisture (e.g., for the CNN 

model with the two crop combinations, the RMSE is increased by 0.01 mol/(m2*s)).  

Consequently, despite the fact that remote sensing images may currently provide 

relatively accurate estimates of gs, other factors can be added to the model if further 

efficiency gains are required. In addition to the soil moisture already incorporated into 

the model, vapor pressure deficit (VPD) can also be considered for inclusion. In other 

words, even when the soil moisture is low, the crop may still undergo transpiration 

because of the low VPD (Kimm et al., 2020; Liao et al., 2022; J. Zhang et al., 2021). 

Therefore, we can further expand the size of the dataset in the future, while trying to 

see if adding VPD as a variable will also improve the efficiency of the model. 

3.4 Conclusion 

In this study, three machine learning approaches were employed to estimate gs by 

merging data from RGB, NIR, and TIR cameras. The results indicate that adding soil 

moisture as a variable to the estimated model can enhance the model performance. 

The best performing model for both crops had an R2 value of 0.52 and an RMSE of 

0.137 mol/(m2*s). Therefore, this study provides a possibility to quantify leaf-level gs 

rapidly by using remote sensing images collected from platforms such as UAVs or 

satellites to help growers or researchers collect gs information over large areas. 
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CHAPTER 4 OVERALL CONCLUSION AND FUTURE 

PROSPECT 

With the growth of the global population and the decrease of non-renewable 

fossil fuels, the demand for the crops to support the food and energy needs increases 

accordingly. Thus, how to increase the crop yield has also become the focus of 

researchers and growers. One of the factors that affects crop yield is water availability. 

Therefore, how to ensure the healthy growth of crops has become a top priority in 

today’s water scarce world. Two effective ways to overcome this challenge are (1) to 

develop drought-tolerant species, and (2) to improve the efficiency of water 

management in crop production. Both of these potential ways required the 

understanding of current water potential of the crops. Because of the principle of 

photosynthesis and transpiration, gs represents the water and gas exchange between 

the crop and the atmosphere can be used to monitor the crop’s current water status. 

The traditional contact-type sensing techniques such as IRGA or porometer requires 

long measurement time in the field for the data collection, which brings several 

difficulties in quantifying and understanding the water status of the crop.  

Over the past few decades, rapid advancements have been archived in remote 

sensing and now it is widely used in agricultural research. Compared with the 

traditional data collection methods, the application of the remote sensing technology 

brings more possibilities for gs collection. Along with the development of various 

sensor platforms such as satellites or UAVs, this method, which combines automation 

and data analysis, also offers a greater potential for high-throughput plant 



56 

 

phenotyping. This remote sensing-based approach for gs estimation has several 

advantages: Large-scale and rapid data collection, and low labor involvement. 

In both studies we conducted in this research, we tried to estimate gs with 

machine learning models using different types of remote sensing data. For example, in 

the first study we used the weather information collected from an on-site weather 

station and plant phenotypic data gathered from the spectrometer, multispectral 

camera and thermal infrared camera. The result showed that gs estimation was more 

accurate when combining the two types of data than when only using a single type of 

data. The random forest model had higher estimation accuracy than the other two 

machine learning models, for the five crop types investigated, maize, sorghum, 

soybean, sunflower, and winter wheat. The estimation result was able to reach about 

the R2 of 0.69. 

However, instruments such as spectrometers are difficult to install on UAVs and 

other mobile platforms because of their high price and non-portability. So, we decided 

to only use the sensors that are frequently used on those platforms. In the second 

study, we used only RGB, NIR, and thermal infrared images to estimate gs. Also, in 

order to reduce the difficulties of transmitting real-time data like weather information, 

we used soil moisture to instead. The results showed that, after including the soil 

moisture, the estimation accuracy using these three kinds of images with the CNN 

model has a R2 of 0.52. 

From the results of these two studies we can infer the feasibility of using those 

remote sensing data to estimate gs. Although there is still potential for the 
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improvement in estimation accuracy, the data from the high-throughput plant 

phenotyping platform demonstrated the success of this estimation approach. 

Compared with the empirical model proposed previously, we added various spectral 

indices in study one, including SIF, NDRE, and PRI, which have important 

relationships with gs. We also included soil moisture as an additional variable in study 

two. Both of the studies showed that these crop and soil information were conducive 

to estimating gs. 

Admittedly, these two studies had some limitations that could be addressed in 

future studies For example, the amount of data used for model training is still 

relatively small. Another point is that although the second study is proposed based on 

the first one, there is no strong connection between them. The study two explored the 

estimation of gs using images and soil moisture, but it ignored the influence of 

weather information. Therefore, the direction of the research in the future can be 

discussed in three points. First, expand the size of the dataset, which includes 

expanding the research to other crops and continuing to collect more data to train the 

model. Second, conduct variable selection in model training. Since each variable has 

different degrees of correlation with gs, certain variables that have low correlation 

with gs will be removed. Third, consider estimate gs using timer series data that are 

continuously collected by the fixed sensor stations in the field, which can study the 

response of stomata under prolonged drought. 

With the further development of various sensors and automation platforms, the 

estimation accuracy of gs from the remote sensing data can be further improved. 
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Imagine if there is an integrated system that could collect weather, soil and crop 

information at the same time, it has a potential to effectively estimate the gs. In this 

way, the water status of the crop is monitored and can be used to understand water use 

efficiency and the drought conditions of the crop. This information allows to 

accomplish the objectives mentioned previously, i.e., screening for the drought-

tolerant species or improving the efficiency of irrigation in agriculture production. 

  



59 

 

REFERENCES 

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. Proceedings of the ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining, 

2623–2631. https://doi.org/10.1145/3292500.3330701 

Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage 

paper No. 56. Rome: Food and Agriculture Organization of the United Nations, 

56, 26–40. 

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop 

breeding frontier. Trends in Plant Science, 19(1), 52–61. 

https://doi.org/10.1016/J.TPLANTS.2013.09.008 

Askari, S. H., De-Ville, S., Hathway, E. A., & Stovin, V. (2021). Estimating 

evapotranspiration from commonly occurring urban plant species using 

porometry and canopy stomatal conductance. Water, 13(16), 2262. 

https://doi.org/10.3390/W13162262 

Atefi, A., Ge, Y., Pitla, S., & Schnable, J. (2021). Robotic technologies for high-

throughput plant phenotyping: Contemporary reviews and future perspectives. 

Frontiers in Plant Science, 12, 1082. 

https://www.frontiersin.org/article/10.3389/fpls.2021.611940 

Badgley, G., Field, C. B., & Berry, J. A. (2017). Canopy near-infrared reflectance and 

terrestrial photosynthesis. Science Advances, 3(3), e1602244. 

https://doi.org/10.1126/sciadv.1602244 



60 

 

Bagley, J., Rosenthal, D. M., Ruiz-Vera, U. M., Siebers, M. H., Kumar, P., Ort, D. R., 

& Bernacchi, C. J. (2015). The influence of photosynthetic acclimation to rising 

CO2 and warmer temperatures on leaf and canopy photosynthesis models. 

Global Biogeochemical Cycles, 29(2), 194–206. 

https://doi.org/10.1002/2014GB004848 

Bai, G., Ge, Y., Hussain, W., Baenziger, P. S., & Graef, G. (2016). A multi-sensor 

system for high throughput field phenotyping in soybean and wheat breeding. 

Computers and Electronics in Agriculture, 128, 181–192. 

https://doi.org/10.1016/j.compag.2016.08.021 

Bai, G., Ge, Y., Scoby, D., Leavitt, B., Stoerger, V., Kirchgessner, N., Irmak, S., Graef, 

G., Schnable, J., & Awada, T. (2019). NU-Spidercam: A large-scale, cable-

driven, integrated sensing and robotic system for advanced phenotyping, remote 

sensing, and agronomic research. Computers and Electronics in Agriculture, 160, 

71–81. https://doi.org/10.1016/j.compag.2019.03.009 

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting stomatal 

conductance and its contribution to the control of photosynthesis under different 

environmental conditions. Progress in Photosynthesis Research, 221–224. 

https://doi.org/10.1007/978-94-017-0519-6_48 

Ballester, C., Brinkhoff, J., Quayle, W. C., & Hornbuckle, J. (2019). Monitoring the 

effects of water stress in cotton using the green red vegetation index and red edge 

ratio. Remote Sensing 2019, 11(7), 873. https://doi.org/10.3390/RS11070873 

Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. 



61 

 

(2012). Assessment of vineyard water status variability by thermal and 

multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation 

Science, 30(6), 511–522. https://doi.org/10.1007/s00271-012-0382-9 

Banerjee, K., Krishnan, P., & Das, B. (2020). Thermal imaging and multivariate 

techniques for characterizing and screening wheat genotypes under water stress 

condition. Ecological Indicators, 119, 106829. 

https://doi.org/10.1016/j.ecolind.2020.106829 

Bao, Y., Gai, J., Xiang, L., Tang, L., Gai, J., Xiang, · L, Tang, · L, & Bao, Y. (2021). 

Field robotic systems for high-throughput plant phenotyping: A review and a 

case study. High-Throughput Crop Phenotyping. 13–38. 

https://doi.org/10.1007/978-3-030-73734-4_2 

Barillot, R., Frak, E., Combes, D., Durand, J. L., & Escobar-Gutiérrez, A. J. (2010). 

What determines the complex kinetics of stomatal conductance under blueless 

PAR in Festuca arundinacea? Subsequent effects on leaf transpiration. Journal of 

Experimental Botany, 61(10), 2795–2806. https://doi.org/10.1093/JXB/ERQ115 

Barnard, D. M., & Bauerle, W. L. (2013). The implications of minimum stomatal 

conductance on modeling water flux in forest canopies. Journal of Geophysical 

Research: Biogeosciences, 118(3), 1322–1333. 

https://doi.org/10.1002/JGRG.20112 

Basu, P. S., Srivastava, M., Singh, P., Porwal, P., Singh, J., & Kant, R. (2015). High-

precision phenotyping under controlled versus natural environments. Phenomics 

in Crop Plants: Trends, Options and Limitations, 27–40. 



62 

 

https://doi.org/10.1007/978-81-322-2226-2_3 

Bell, C. J., & Squire, G. R. (1981). Comparative measurements with two water vapour 

diffusion porometers (dynamic and steady-State). Journal of Experimental 

Botany, 32(6), 1143–1156. https://doi.org/10.1093/JXB/32.6.1143 

Berni, J. A. J., Zarco-Tejada, P. J., Sepulcre-Cantó, G., Fereres, E., & Villalobos, F. 

(2009). Mapping canopy conductance and CWSI in olive orchards using high 

resolution thermal remote sensing imagery. Remote Sensing of Environment, 

113(11), 2380–2388. https://doi.org/10.1016/J.RSE.2009.06.018 

Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., & Fereres, E. (2009). Thermal and 

narrowband multispectral remote wensing for vegetation monitoring from an 

unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 

47(3), 722–738. https://doi.org/10.1109/TGRS.2008.2010457 

Bertolino, L. T., Caine, R. S., & Gray, J. E. (2019). Impact of stomatal density and 

morphology on water-use efficiency in a changing world. Frontiers in Plant 

Science, 10, 225. https://doi.org/10.3389/FPLS.2019.00225 

Blackman, C. J., Brodribb, T. J., & Jordan, G. J. (2009). Leaf hydraulics and drought 

stress: response, recovery and survivorship in four woody temperate plant 

species. Plant, Cell & Environment, 32(11), 1584–1595. 

https://doi.org/10.1111/J.1365-3040.2009.02023.X 

Blonquist, J. M., Norman, J. M., & Bugbee, B. (2009). Automated measurement of 

canopy stomatal conductance based on infrared temperature. Agricultural and 

Forest Meteorology, 149(11), 1931–1945. 



63 

 

https://doi.org/https://doi.org/10.1016/j.agrformet.2009.06.021 

Boulesteix, A.-L., Janitza, S., Hapfelmeier, A., Van Steen, K., & Strobl, C. (2015). 

Letter to the Editor: On the term ‘interaction’ and related phrases in the literature 

on Random Forests. Briefings in Bioinformatics, 16(2), 338–345. 

https://doi.org/10.1093/bib/bbu012 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Brewer, K., Clulow, A., Sibanda, M., Gokool, S., Odindi, J., Mutanga, O., Naiken, V., 

Chimonyo, V. G. P., & Mabhaudhi, T. (2022). Estimation of maize foliar 

temperature and stomatal conductance as indicators of water stress based on 

optical and thermal imagery acquired using an unmanned aerial vehicle (UAV) 

Platform. Drones 2022, 6(7), 169. https://doi.org/10.3390/DRONES6070169 

Buckley, T. N. (2017). Modeling stomatal conductance. Plant Physiology, 174(2), 

572–582. https://doi.org/10.1104/pp.16.01772 

Buckley, T. N., & Mott, K. A. (2013). Modelling stomatal conductance in response to 

environmental factors. Plant, Cell & Environment, 36(9), 1691–1699. 

https://doi.org/https://doi.org/10.1111/pce.12140 

Buckley, T. N., Sack, L., & Farquhar, G. D. (2017). Optimal plant water economy. 

Plant, Cell & Environment, 40(6), 881–896. https://doi.org/10.1111/PCE.12823 

Busch, F. A. (2018). Photosynthetic gas exchange in land plants at the leaf level. 

Methods in Molecular Biology, 1770, 25–44. https://doi.org/10.1007/978-1-

4939-7786-4_2 



64 

 

Cai, Y., Guan, K., Lobell, D., Potgieter, A. B., Wang, S., Peng, J., Xu, T., Asseng, S., 

Zhang, Y., You, L., & Peng, B. (2019). Integrating satellite and climate data to 

predict wheat yield in Australia using machine learning approaches. Agricultural 

and Forest Meteorology, 274, 144–159. 

https://doi.org/10.1016/j.agrformet.2019.03.010 

Campbell, B. M., Thornton, P., Zougmoré, R., van Asten, P., & Lipper, L. (2014). 

Sustainable intensification: What is its role in climate smart agriculture? Current 

Opinion in Environmental Sustainability, 8, 39–43. 

https://doi.org/10.1016/J.COSUST.2014.07.002 

Casson, S., & Gray, J. E. (2008). Influence of environmental factors on stomatal 

development. New Phytologist, 178(1), 9–23. https://doi.org/10.1111/J.1469-

8137.2007.02351.X 

Čermák, J., Kučera, J., & Nadezhdina, N. (2004). Sap flow measurements with some 

thermodynamic methods, flow integration within trees and scaling up from 

sample trees to entire forest stands. Trees - Structure and Function, 18(5), 529–

546. https://doi.org/10.1007/S00468-004-0339-6 

Cernusak, L. A. (2020). Gas exchange and water-use efficiency in plant canopies. 

Plant Biology, 22(S1), 52–67. https://doi.org/10.1111/PLB.12939 

Chaerle, L., Saibo, N., & van der Straeten, D. (2005). Tuning the pores: towards 

engineering plants for improved water use efficiency. Trends in Biotechnology, 

23(6), 308–315. https://doi.org/10.1016/J.TIBTECH.2005.04.005 

Chamara, N., Islam, M. D., Bai, G. (Frank), Shi, Y., & Ge, Y. (2022). Ag-IoT for crop 



65 

 

and environment monitoring: Past, present, and future. Agricultural Systems, 

203, 103497. https://doi.org/10.1016/J.AGSY.2022.103497 

Chaves, M. M., Costa, J. M., Zarrouk, O., Pinheiro, C., Lopes, C. M., & Pereira, J. S. 

(2016). Controlling stomatal aperture in semi-arid regions—The dilemma of 

saving water or being cool? Plant Science, 251, 54–64. 

https://doi.org/10.1016/J.PLANTSCI.2016.06.015 

Chieppa, J., Brown, T., Giresi, P., Juenger, T. E., Resco de Dios, V., Tissue, D. T., & 

Aspinwall, M. J. (2021). Climate and stomatal traits drive covariation in 

nighttime stomatal conductance and daytime gas exchange rates in a widespread 

C4 grass. New Phytologist, 229(4), 2020–2034. 

https://doi.org/10.1111/NPH.16987 

Colaizzi, P. D., O’Shaughnessy, S. A., Evett, S. R., & Mounce, R. B. (2017). Crop 

evapotranspiration calculation using infrared thermometers aboard center pivots. 

Agricultural Water Management, 187, 173–189. 

https://doi.org/https://doi.org/10.1016/j.agwat.2017.03.016 

Dai, Y., Dickinson, R. E., & Wang, Y.-P. (2004). A two-big-leaf model for canopy 

temperature, photosynthesis, and stomatal conductance. Journal of Climate, 

17(12), 2281–2299. https://doi.org/10.1175/1520-

0442(2004)017<2281:ATMFCT>2.0.CO;2 

Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview of models 

of stomatal conductance at the leaf level. Plant, Cell & Environment, 33(9), 

1419–1438. https://doi.org/10.1111/J.1365-3040.2010.02181.X 



66 

 

Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., & Cho, M. 

(2008). LAI and chlorophyll estimation for a heterogeneous grassland using 

hyperspectral measurements. ISPRS Journal of Photogrammetry and Remote 

Sensing, 63(4), 409–426. https://doi.org/10.1016/J.ISPRSJPRS.2008.01.001 

Deery, D. M., Rebetzke, G. J., Jimenez-Berni, J. A., James, R. A., Condon, A. G., 

Bovill, W. D., Hutchinson, P., Scarrow, J., Davy, R., & Furbank, R. T. (2016). 

Methodology for high-throughput field phenotyping of canopy temperature using 

airborne thermography. Frontiers in Plant Science, 7(1808), 

https://doi.org/10.3389/FPLS.2016.01808 

Doheny-Adams, T., Hunt, L., Franks, P. J., Beerling, D. J., & Gray, J. E. (2012). 

Genetic manipulation of stomatal density influences stomatal size, plant growth 

and tolerance to restricted water supply across a growth carbon dioxide gradient. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 

367(1588), 547–555. https://doi.org/10.1098/rstb.2011.0272 

Dumont, J., Cohen, D., Gérard, J., Jolivet, Y., Dizengremel, P., & le Thiec, D. (2014). 

Distinct responses to ozone of abaxial and adaxial stomata in three Euramerican 

poplar genotypes. Plant, Cell and Environment, 37(9), 2064–2076. 

https://doi.org/10.1111/PCE.12293 

Ellsäßer, F., Röll, A., Ahongshangbam, J., Waite, P. A., Hendrayanto, Schuldt, B., & 

Hölscher, D. (2020). Predicting tree sap flux and stomatal conductance from 

drone-recorded surface temperatures in a mixed agroforestry system—A machine 

learning approach. Remote Sensing 2020, 12(24), 4070. 



67 

 

https://doi.org/10.3390/RS12244070 

Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global 

maize production, consumption and trade: trends and R&D implications. Food 

Security 2022, 14(5), 1295–1319. https://doi.org/10.1007/S12571-022-01288-7 

Espinoza, C. Z., Khot, L. R., Sankaran, S., & Jacoby, P. W. (2017). High resolution 

multispectral and thermal remote sensing-based water stress assessment in 

subsurface irrigated grapevines. Remote Sensing 2017, 9(9), 961. 

https://doi.org/10.3390/RS9090961 

Fanourakis, D., Bouranis, D., Giday, H., Carvalho, D. R. A., Rezaei Nejad, A., & 

Ottosen, C. O. (2016). Improving stomatal functioning at elevated growth air 

humidity: A review. Journal of Plant Physiology, 207, 51–60. 

https://doi.org/10.1016/J.JPLPH.2016.10.003 

Fayezizadeh, M. R., Ansari, N. A. Z., Albaji, M., & Khaleghi, E. (2021). Effects of 

hydroponic systems on yield, water productivity and stomatal gas exchange of 

greenhouse tomato cultivars. Agricultural Water Management, 258, 107171. 

https://doi.org/10.1016/J.AGWAT.2021.107171 

Franks, P. J., W. Doheny-Adams, T., Britton-Harper, Z. J., & Gray, J. E. (2015). 

Increasing water-use efficiency directly through genetic manipulation of stomatal 

density. New Phytologist, 207(1), 188–195. https://doi.org/10.1111/nph.13347 

Fu, Y., Yang, G., Wang, J., Song, X., & Feng, H. (2014). Winter wheat biomass 

estimation based on spectral indices, band depth analysis and partial least squares 

regression using hyperspectral measurements. Computers and Electronics in 



68 

 

Agriculture, 100, 51–59. https://doi.org/10.1016/J.COMPAG.2013.10.010 

Fukase, E., & Martin, W. (2020). Economic growth, convergence, and world food 

demand and supply. World Development, 132, 104954. 

https://doi.org/10.1016/J.WORLDDEV.2020.104954 

Gaastra, P. (1959). Photosynthesis of crop plants as influenced by light, carbon 

dioxide, temperature, and stomatal diffusion resistance. [internal PhD, WU, 

Wageningen University]. Veenman. https://edepot.wur.nl/183268 

Ge, Y., Atefi, A., Zhang, H., Miao, C., Ramamurthy, R. K., Sigmon, B., Yang, J., & 

Schnable, J. C. (2019). High-throughput analysis of leaf physiological and 

chemical traits with VIS-NIR-SWIR spectroscopy: A case study with a maize 

diversity panel. Plant Methods, 15(1), 1–12. https://doi.org/10.1186/S13007-019-

0450-8 

Ge, Y., Bai, G., Stoerger, V., & Schnable, J. C. (2016). Temporal dynamics of maize 

plant growth, water use, and leaf water content using automated high throughput 

RGB and hyperspectral imaging. Computers and Electronics in Agriculture, 127, 

625–632. https://doi.org/10.1016/j.compag.2016.07.028 

Geng, J., Gan, W., Xu, J., Yang, R., & Wang, S. (2020). Support vector machine 

regression (SVR)-based nonlinear modeling of radiometric transforming relation 

for the coarse-resolution data-referenced relative radiometric normalization 

(RRN). Geo-spatial Information Science, 23:3, 237-247 

https://doi.org/10.1080/10095020.2020.1785958 

Ghimire, C. P., Bruijnzeel, L. A., Lubczynski, M. W., Zwartendijk, B. W., Odongo, V. 



69 

 

O., Ravelona, M., & van Meerveld, H. J. I. (2018). Transpiration and stomatal 

conductance in a young secondary tropical montane forest: contrasts between 

native trees and invasive understorey shrubs. Tree Physiology, 38(7), 1053–1070. 

https://doi.org/10.1093/TREEPHYS/TPY004 

Gindel, I. (1969). Stomatal number and size as related to soil moisture in tree 

Xerophytes in Israel. Ecology, 50(2), 263–267. https://doi.org/10.2307/1934854 

Gleason, S. M., Nalezny, L., Hunter, C., Bensen, R., Chintamanani, S., & Comas, L. 

H. (2021). Growth and grain yield of eight maize hybrids are aligned with water 

transport, stomatal conductance, and photosynthesis in a semi-arid irrigated 

system. Physiologia Plantarum, 172(4), 1941–1949. 

https://doi.org/10.1111/PPL.13400 

Gowdy, M., Pieri, P., Suter, B., Marguerit, E., Destrac-Irvine, A., Gambetta, G., & van 

Leeuwen, C. (2022). Estimating bulk stomatal conductance in grapevine 

canopies. Frontiers in Plant Science, 13.839378 

https://doi.org/10.3389/FPLS.2022.839378 

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). 

Hyperspectral vegetation indices and novel algorithms for predicting green LAI 

of crop canopies: Modeling and validation in the context of precision agriculture. 

Remote Sensing of Environment, 90(3), 337–352. 

https://doi.org/10.1016/j.rse.2003.12.013 

He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions 

on Knowledge and Data Engineering, 21(9), 1263–1284. 



70 

 

https://doi.org/10.1109/TKDE.2008.239 

Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V, Zheng, 

J., Lobitz, B. M., Leung, J. G., Gallmeyer, B. A., Aoyagi, M., Slye, R. E., & 

Brass, J. A. (2004). Imaging from an unmanned aerial vehicle: agricultural 

surveillance and decision support. Computers and Electronics in Agriculture, 

44(1), 49–61. https://doi.org/10.1016/j.compag.2004.02.006 

Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and 

driving environmental change. Nature 2003, 424(6951), 901–908. 

https://doi.org/10.1038/nature01843 

Houshmandfar, A., O’Leary, G., Fitzgerald, G. J., Chen, Y., Tausz-Posch, S., Benke, 

K., Uddin, S., & Tausz, M. (2021). Machine learning produces higher prediction 

accuracy than the Jarvis-type model of climatic control on stomatal conductance 

in a dryland wheat agro-ecosystem. Agricultural and Forest Meteorology, 304–

305, 108423. https://doi.org/10.1016/j.agrformet.2021.108423 

Huang, G., Yang, Y., Zhu, L., Peng, S., & Li, Y. (2021). Temperature responses of 

photosynthesis and stomatal conductance in rice and wheat plants. Agricultural 

and Forest Meteorology, 300, 108322. 

https://doi.org/10.1016/J.AGRFORMET.2021.108322 

Ihuoma, S. O., & Madramootoo, C. A. (2019). Sensitivity of spectral vegetation 

indices for monitoring water stress in tomato plants. Computers and Electronics 

in Agriculture, 163, 104860. https://doi.org/10.1016/J.COMPAG.2019.104860 

Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of thermal imaging in 



71 

 

agriculture—A review. Advances in Remote Sensing, 3(3), 128–140. 

https://doi.org/10.4236/ARS.2014.33011 

Sadler, E. J., Camp, C. R., Evans, D. E., & Millen, J. A. (2002). Corn canopy 

temperatures measured with a moving infrared thermometer array. Transactions 

of the ASAE, 45(3), 581-591. https://doi.org/10.13031/2013.8855 

Jagadish, S. V. K., Way, D. A., & Sharkey, T. D. (2021). Plant heat stress: Concepts 

directing future research. Plant, Cell & Environment, 44(7), 1992–2005. 

https://doi.org/10.1111/pce.14050 

Jarolmasjed, S., Sankaran, S., Kalcsits, L., & Khot, L. R. (2018). Proximal 

hyperspectral sensing of stomatal conductance to monitor the efficacy of 

exogenous abscisic acid applications in apple trees. Crop Protection, 109, 42–50. 

https://doi.org/10.1016/J.CROPRO.2018.02.022 

Jarvis, P. G. (1976). The interpretation of the variations in leaf water potential and 

stomatal conductance found in canopies in the field. Philosophical Transactions 

of the Royal Society of London. B, Biological Sciences, 273(927), 593–610. 

https://doi.org/10.1098/RSTB.1976.0035 

Jones, H. G. (1999a). Use of infrared thermometry for estimation of stomatal 

conductance as a possible aid to irrigation scheduling. Agricultural and Forest 

Meteorology, 95(3), 139–149. https://doi.org/10.1016/S0168-1923(99)00030-1 

Jones, H. G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based 

methods. Journal of Experimental Botany, 55(407), 2427–2436. 

https://doi.org/10.1093/jxb/erh213 



72 

 

Jones, H. G., Hamer, P. J. C., & Higgs, K. H. (1988). Evaluation of various heat-pulse 

methods for estimation of sap flow in orchard trees: comparison with 

micrometeorological estimates of evaporation. Trees, 2(4), 250–260. 

https://doi.org/10.1007/BF00202380 

Khan, Z., Rahimi-Eichi, V., Haefele, S., Garnett, T., & Miklavcic, S. J. (2018). 

Estimation of vegetation indices for high-throughput phenotyping of wheat using 

aerial imaging. Plant Methods, 14(1), 1–11. https://doi.org/10.1186/S13007-018-

0287-6 

Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S., & Ozkan, E. (2020). Remote 

sensing in agriculture—accomplishments, limitations, and opportunities. Remote 

Sensing 2020, 12(22), 3783. https://doi.org/10.3390/RS12223783 

Khosla, E., Dharavath, R., & Priya, R. (2020). Crop yield prediction using aggregated 

rainfall-based modular artificial neural networks and support vector regression. 

Environment, Development and Sustainability, 22(6), 5687–5708. 

https://doi.org/10.1007/S10668-019-00445-X 

Kim, Y., Glenn, D. M., Park, J., Ngugi, H. K., & Lehman, B. L. (2011). Hyperspectral 

image analysis for water stress detection of apple trees. Computers and 

Electronics in Agriculture, 77(2), 155–160. 

https://doi.org/10.1016/j.compag.2011.04.008 

Kimm, H., Guan, K., Gentine, P., Wu, J., Bernacchi, C. J., Sulman, B. N., Griffis, T. 

J., & Lin, C. (2020). Redefining droughts for the U.S. corn belt: The dominant 

role of atmospheric vapor pressure deficit over soil moisture in regulating 



73 

 

stomatal behavior of Maize and Soybean. Agricultural and Forest Meteorology, 

287, 107930. https://doi.org/10.1016/J.AGRFORMET.2020.107930 

Knapp, A. K. (1993). Gas exchange dynamics in C3 and C4 grasses: consequences of 

differences in stomatal conductance. Ecology, 74(1), 113–123. 

https://doi.org/10.2307/1939506 

Kollist, H., Nuhkat, M., & Roelfsema, M. R. G. (2014). Closing gaps: linking 

elements that control stomatal movement. New Phytologist, 203(1), 44–62. 

https://doi.org/10.1111/NPH.12832 

Kučera, J., Brito, P., Jiménez, M. S., & Urban, J. (2017). Direct Penman–Monteith 

parameterization for estimating stomatal conductance and modeling sap flow. 

Trees - Structure and Function, 31(3), 873–885. https://doi.org/10.1007/S00468-

016-1513-3 

Lamour, J., Davidson, K. J., Ely, K. S., Le Moguédec, G., Leakey, A. D. B., Li, Q., 

Serbin, S. P., & Rogers, A. (2022). An improved representation of the 

relationship between photosynthesis and stomatal conductance leads to more 

stable estimation of conductance parameters and improves the goodness-of-fit 

across diverse data sets. Global Change Biology, 28(11), 3537–3556. 

https://doi.org/10.1111/GCB.16103 

Lavoie-Lamoureux, A., Sacco, D., Risse, P. A., & Lovisolo, C. (2017). Factors 

influencing stomatal conductance in response to water availability in grapevine: 

a meta-analysis. Physiologia Plantarum, 159(4), 468–482. 

https://doi.org/10.1111/PPL.12530 



74 

 

Lawson, T. (2009). Guard cell photosynthesis and stomatal function. New Phytologist, 

181(1), 13–34. https://doi.org/10.1111/j.1469-8137.2008.02685.x 

Li, H., Zhang, J., Zhang, S., & Bai, Y. (2022). Machine learning and remote sensing-

based modeling of the optimal stomatal behavior of crops. Computers and 

Electronics in Agriculture, 200, 107261. 

https://doi.org/10.1016/J.COMPAG.2022.107261 

Li, J., Schachtman, D. P., Creech, C. F., Wang, L., Ge, Y., & Shi, Y. (2022). Evaluation 

of UAV-derived multimodal remote sensing data for biomass prediction and 

drought tolerance assessment in bioenergy sorghum. The Crop Journal, 10(5), 

1363-1375. https://doi.org/10.1016/j.cj.2022.04.005 

Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant 

phenotyping. Sensors 2014, 14(11), 20078–20111. 

https://doi.org/10.3390/S141120078 

Li, Y., Li, H., Li, Y., & Zhang, S. (2017). Improving water-use efficiency by 

decreasing stomatal conductance and transpiration rate to maintain higher ear 

photosynthetic rate in drought-resistant wheat. The Crop Journal, 5(3), 231–239. 

https://doi.org/10.1016/J.CJ.2017.01.001 

Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., & Yang, M. (2018). 

Estimation of leaf nitrogen content in wheat using new hyperspectral indices and 

a random forest regression Algorithm. Remote Sensing 2018, 10(12), 1940. 

https://doi.org/10.3390/RS10121940 

Liao, Q., Ding, R., Du, T., Kang, S., Tong, L., & Li, S. (2022). Stomatal conductance 



75 

 

drives variations of yield and water use of maize under water and nitrogen stress. 

Agricultural Water Management, 268, 107651. 

https://doi.org/10.1016/J.AGWAT.2022.107651 

Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., 

Caron, P., Cattaneo, A., Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis, A., 

Kossam, F., Mann, W., McCarthy, N., Meybeck, A., Neufeldt, H., Remington, 

T., … Torquebiau, E. F. (2014). Climate-smart agriculture for food security. 

Nature Climate Change 2014 4:12, 4(12), 1068–1072. 

https://doi.org/10.1038/nclimate2437 

Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they 

tell us about the underlying limitations to photosynthesis? Procedures and 

sources of error. Journal of Experimental Botany, 54(392), 2393–2401. 

https://doi.org/10.1093/JXB/ERG262 

Lopes, M. S., Araus, J. L., van Heerden, P. D. R., & Foyer, C. H. (2011). Enhancing 

drought tolerance in C4 crops. Journal of Experimental Botany, 62(9), 3135–

3153. https://doi.org/10.1093/jxb/err105 

Maes, W. H., & Steppe, K. (2012). Estimating evapotranspiration and drought stress 

with ground-based thermal remote sensing in agriculture: a review. Journal of 

Experimental Botany, 63(13), 4671–4712. https://doi.org/10.1093/jxb/ers165 

Matese, A., Baraldi, R., Berton, A., Cesaraccio, C., Di Gennaro, S. F., Duce, P., 

Facini, O., Mameli, M. G., Piga, A., & Zaldei, A. (2018). Estimation of water 

stress in grapevines using proximal and remote sensing methods. Remote Sensing 



76 

 

2018, 10(1), 114. https://doi.org/10.3390/RS10010114 

Mathe-Gaspar, G., Fodor, N., Pokovai, K., & Kovacs, G. J. (2005). Crop modelling as 

a tool to separate the influence of the soil and weather on crop yields. Physics 

and Chemistry of the Earth, Parts A/B/C, 30(1–3), 165–169. 

https://doi.org/10.1016/J.PCE.2004.08.024 

McDermitt, D. K. (1990). Sources of error in the estimation of stomatal conductance 

and transpiration from porometer data. HortScience, 25(12), 1538–1548. 

https://doi.org/10.21273/HORTSCI.25.12.1538 

Mehmood, T., Liland, K. H., Snipen, L., & Sæbø, S. (2012). A review of variable 

selection methods in Partial Least Squares Regression. Chemometrics and 

Intelligent Laboratory Systems, 118, 62–69. 

https://doi.org/10.1016/J.CHEMOLAB.2012.07.010 

Minaei, S., Soltanikazemi, M., Shafizadeh-Moghadam, H., & Mahdavian, A. (2022). 

Field-scale estimation of sugarcane leaf nitrogen content using vegetation indices 

and spectral bands of Sentinel-2: Application of random forest and support 

vector regression. Computers and Electronics in Agriculture, 200, 107130. 

https://doi.org/10.1016/J.COMPAG.2022.107130 

Mishra, V., & Cherkauer, K. A. (2010). Retrospective droughts in the crop growing 

season: Implications to corn and soybean yield in the Midwestern United States. 

Agricultural and Forest Meteorology, 150(7–8), 1030–1045. 

https://doi.org/10.1016/J.AGRFORMET.2010.04.002 

Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of 



77 

 

green-red vegetation index for remote sensing of vegetation phenology. Remote 

Sensing 2010, 2(10), 2369–2387. https://doi.org/10.3390/RS2102369 

Motzer, T., Munz, N., Küppers, M., Schmitt, D., & Anhuf, D. (2005). Stomatal 

conductance, transpiration and sap flow of tropical montane rain forest trees in 

the southern Ecuadorian Andes. Tree Physiology, 25(10), 1283–1293. 

https://doi.org/10.1093/TREEPHYS/25.10.1283 

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key 

advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358–

371. https://doi.org/10.1016/J.BIOSYSTEMSENG.2012.08.009 

Omer, G., Mutanga, O., Abdel-Rahman, E. M., Adam, E., Waser, L. T., Roy, S., & 

Thenkabail, P. S. (2016). Empirical prediction of leaf area index (LAI) of 

endangered tree species in intact and fragmented indigenous forests ecosystems 

using WorldView-2 Data and two robust machine learning algorithms. Remote 

Sensing 2016, 8(4), 324. https://doi.org/10.3390/RS8040324 

Onyemaobi, O., Sangma, H., Garg, G., Wallace, X., Kleven, S., Suwanchaikasem, P., 

Roessner, U., & Dolferus, R. (2021). Reproductive stage drought tolerance in 

wheat: Importance of stomatal conductance and plant growth regulators. Genes, 

12(11), 1742. https://doi.org/10.3390/GENES12111742/S1 

Otu-Larbi, F., Conte, A., Fares, S., Wild, O., & Ashworth, K. (2021). FORCAsT-gs: 

Importance of stomatal conductance parameterization to estimated ozone 

deposition velocity. Journal of Advances in Modeling Earth Systems, 13(9), 

e2021MS002581. https://doi.org/https://doi.org/10.1029/2021MS002581 



78 

 

Pagano, M. C., & Miransari, M. (2016). The importance of soybean production 

worldwide. Abiotic and Biotic Stresses in Soybean Production: Soybean 

Production: Volume 1, 5, 1–26. https://doi.org/10.1016/B978-0-12-801536-

0.00001-3 

Panda, S., Amatya, D. M., & Hoogenboom, G. (2014). Stomatal conductance, canopy 

temperature, and leaf area index estimation using remote sensing and OBIA 

techniques. Journal of Spatial Hydrology, 12(1): 24 p. 

https://www.fs.usda.gov/research/treesearch/49339 

Pandey, P., Ge, Y., Stoerger, V., & Schnable, J. C. (2017). High throughput in vivo 

analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers 

in Plant Science, 8, 1348. 

https://www.frontiersin.org/articles/10.3389/fpls.2017.01348 

Pathan, M., Patel, N., Yagnik, H., & Shah, M. (2020). Artificial cognition for 

applications in smart agriculture: A comprehensive review. Artificial Intelligence 

in Agriculture, 4, 81–95. https://doi.org/10.1016/J.AIIA.2020.06.001 

Prasad, N. R., Patel, N. R., & Danodia, A. (2021). Crop yield prediction in cotton for 

regional level using random forest approach. Spatial Information Research, 

29(2), 195–206. https://doi.org/10.1007/S41324-020-00346-6 

Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., & Rachmilevitch, S. (2015). 

Combining leaf physiology, hyperspectral imaging and partial least squares-

regression (PLS-R) for grapevine water status assessment. ISPRS Journal of 

Photogrammetry and Remote Sensing, 109, 88–97. 



79 

 

https://doi.org/10.1016/J.ISPRSJPRS.2015.09.003 

Rasooli, S. V., Soltani Nazarloo, A., Taghinezahd, E., Veza, I., Szumny, A., & Figiel, 

A. (2022). Prediction of winter wheat leaf chlorophyll content based on VIS/NIR 

spectroscopy using ANN and PLSR. Food Science & Nutrition. 2022, 1 

https://doi.org/10.1002/FSN3.3071 

Rebetzke, G. J., Rattey, A. R., Farquhar, G. D., Richards, R. A., & Condon, A. (Tony) 

G. (2012). Genomic regions for canopy temperature and their genetic association 

with stomatal conductance and grain yield in wheat. Functional Plant Biology, 

40(1), 14–33. https://doi.org/10.1071/FP12184 

Richardson, F., Brodribb, T. J., & Jordan, G. J. (2017). Amphistomatic leaf surfaces 

independently regulate gas exchange in response to variations in evaporative 

demand. Tree Physiology, 37(7), 869–878. 

https://doi.org/10.1093/TREEPHYS/TPX073 

Roelfsema, M. R. G., & Hedrich, R. (2005). In the light of stomatal opening: new 

insights into ‘the Watergate.’ New Phytologist, 167(3), 665–691. 

https://doi.org/10.1111/J.1469-8137.2005.01460.X 

Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted 

vegetation indices. Remote Sensing of Environment, 55(2), 95–107. 

https://doi.org/https://doi.org/10.1016/0034-4257(95)00186-7 

Rutkoski, J., Poland, J., Mondal, S., Autrique, E., Pérez, L. G., Crossa, J., Reynolds, 

M., & Singh, R. (2016). Canopy temperature and vegetation indices from high-

throughput phenotyping improve accuracy of pedigree and genomic selection for 



80 

 

grain yield in wheat. G3: Genes, Genomes, Genetics, 6(9), 2799–2808. 

https://doi.org/10.1534/G3.116.032888/-/DC1 

Saunders, A., Drew, D. M., & Brink, W. (2021). Machine learning models perform 

better than traditional empirical models for stomatal conductance when applied 

to multiple tree species across different forest biomes. Trees, Forests and People, 

6, 100139. https://doi.org/10.1016/j.tfp.2021.100139 

Shakoor, N., Lee, S., & Mockler, T. C. (2017). High throughput phenotyping to 

accelerate crop breeding and monitoring of diseases in the field. Current Opinion 

in Plant Biology, 38, 184–192. https://doi.org/10.1016/J.PBI.2017.05.006 

Sharifi, A. (2021). Yield prediction with machine learning algorithms and satellite 

images. Journal of the Science of Food and Agriculture, 101(3), 891–896. 

https://doi.org/10.1002/JSFA.10696 

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in 

precision agriculture: A review. Remote Sensing 2020, 12(19), 3136. 

https://doi.org/10.3390/RS12193136 

Sobejano-Paz, V., Mikkelsen, T. N., Baum, A., Mo, X., Liu, S., Köppl, C. J., Johnson, 

M. S., Gulyas, L., & García, M. (2020). Hyperspectral and thermal sensing of 

stomatal conductance, transpiration, and photosynthesis for soybean and maize 

under drought. Remote Sensing 2020, 12(19), 3182. 

https://doi.org/10.3390/RS12193182 

Struthers, R., Ivanova, A., Tits, L., Swennen, R., & Coppin, P. (2015). Thermal 

infrared imaging of the temporal variability in stomatal conductance for fruit 



81 

 

trees. International Journal of Applied Earth Observation and Geoinformation, 

39, 9–17. https://doi.org/10.1016/J.JAG.2015.02.006 

Su, Y., Shao, W., Vlček, L., & Langhammer, J. (2019). Ecohydrological behaviour of 

mountain beech forest: Quantification of stomatal conductance using sap flow 

measurements. Geosciences 2019, 9(5), 243. 

https://doi.org/10.3390/GEOSCIENCES9050243 

Sugiura, R., Noguchi, N., & Ishii, K. (2005). Remote-sensing technology for 

vegetation monitoring using an unmanned helicopter. Biosystems Engineering, 

90(4), 369–379. https://doi.org/10.1016/j.biosystemseng.2004.12.011 

Takai, T., Yano, M., & Yamamoto, T. (2010). Canopy temperature on clear and cloudy 

days can be used to estimate varietal differences in stomatal conductance in rice. 

Field Crops Research, 115(2), 165–170. 

https://doi.org/10.1016/j.fcr.2009.10.019 

Tan, K., Ma, W., Wu, F., & Du, Q. (2019). Random forest–based estimation of heavy 

metal concentration in agricultural soils with hyperspectral sensor data. 

Environmental Monitoring and Assessment, 191(7), 1–14. 

https://doi.org/10.1007/S10661-019-7510-4/FIGURES/6 

Thorp, K. R., Thompson, A. L., Harders, S. J., French, A. N., & Ward, R. W. (2018). 

High-throughput phenotyping of crop water use efficiency via multispectral 

drone imagery and a daily soil water balance model. Remote Sensing 10(11), 

1682 https://doi.org/10.3390/rs10111682 

Thruppoyil, S. B., & Ksiksi, T. (2020). Time-dependent stomatal conductance and 



82 

 

growth responses of tabernaemontana divaricata to short-term elevated CO2 and 

water stress at higher than optimal growing temperature. Current Plant Biology, 

22, 100127. https://doi.org/10.1016/j.cpb.2019.100127 

Tian, Y., Xu, Y. P., & Wang, G. (2018). Agricultural drought prediction using climate 

indices based on Support Vector Regression in Xiangjiang River basin. Science 

of The Total Environment, 622–623, 710–720. 

https://doi.org/10.1016/J.SCITOTENV.2017.12.025 

Toro, G., Flexas, J., & Escalona, J. M. (2019). Contrasting leaf porometer and infra-

red gas analyser methodologies: an old paradigm about the stomatal conductance 

measurement. Theoretical and Experimental Plant Physiology, 31(4), 483–492. 

https://doi.org/10.1007/S40626-019-00161-X 

Vadivambal, R., & Jayas, D. S. (2011). Applications of thermal imaging in agriculture 

and food industry-A review. Food and Bioprocess Technology, 4(2), 186–199. 

https://doi.org/10.1007/S11947-010-0333-5 

van Dijk, A. D. J., Kootstra, G., Kruijer, W., & de Ridder, D. (2021). Machine 

learning in plant science and plant breeding. IScience, 24(1), 101890. 

https://doi.org/https://doi.org/10.1016/j.isci.2020.101890 

Vandegehuchte, M. W., & Steppe, K. (2012). Interpreting the Heat Field Deformation 

method: Erroneous use of thermal diffusivity and improved correlation between 

temperature ratio and sap flux density. Agricultural and Forest Meteorology, 

162–163, 91–97. https://doi.org/10.1016/J.AGRFORMET.2012.04.013 

Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., Hawkesford, M. J., (2016). Field 



83 

 

Scanalyzer: An automated robotic field phenotyping platform for detailed crop 

monitoring. Functional Plant Biology, 44(1), 143–153. 

https://doi.org/10.1071/FP16163 

Virnodkar, S. S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2020). Remote sensing 

and machine learning for crop water stress determination in various crops: a 

critical review. Precision Agriculture, 21(5), 1121–1155. 

https://doi.org/10.1007/S11119-020-09711-9 

Vitrack-Tamam, S., Holtzman, L., Dagan, R., Levi, S., Tadmor, Y., Azizi, T., 

Rabinovitz, O., Naor, A., & Liran, O. (2020). Random forest algorithm improves 

detection of physiological activity embedded within reflectance spectra using 

stomatal conductance as a test case. Remote Sensing 2020, 12(14), 2213. 

https://doi.org/10.3390/RS12142213 

Wang, L., Zhou, X., Zhu, X., Dong, Z., & Guo, W. (2016). Estimation of biomass in 

wheat using random forest regression algorithm and remote sensing data. The 

Crop Journal, 4(3), 212–219. https://doi.org/10.1016/J.CJ.2016.01.008 

Wehner, M., Easterling, D. R., Lawrimore, J. H., Heim, R. R., Vose, R. S., & Santer, 

B. D. (2011). Projections of future drought in the continental United States and 

Mexico. Journal of Hydrometeorology, 12(6), 1359–1377. 

https://doi.org/10.1175/2011JHM1351.1 

Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural 

applications: A meta-review. Remote Sensing of Environment, 236, 111402. 

https://doi.org/10.1016/J.RSE.2019.111402 



84 

 

Wijewardane, N. K., Ge, Y., Wills, S., & Libohova, Z. (2018). Predicting physical and 

chemical properties of US soils with a mid-infrared reflectance spectral library. 

Soil Science Society of America Journal, 82(3), 722–731. 

https://doi.org/10.2136/sssaj2017.10.0361 

Wijewardane, N. K., Ge, Y., Wills, S., & Loecke, T. (2016). Prediction of soil carbon 

in the conterminous United States: visible and near infrared reflectance 

spectroscopy analysis of the rapid carbon assessment project. Soil Science 

Society of America Journal, 80(4), 973–982. 

https://doi.org/10.2136/sssaj2016.02.0052 

Wijewardane, N. K., Zhang, H., Yang, J., Schnable, J. C., Schachtman, D. P., & Ge, Y. 

(2023). A leaf-level spectral library to support high throughput plant 

phenotyping: Predictive accuracy and model transfer. Journal of Experimental 

Botany, erad129. https://doi.org/10.1093/jxb/erad129 

Xu, J., Wu, B., Ryu, D., Yan, N., Zhu, W., & Ma, Z. (2021). A canopy conductance 

model with temporal physiological and environmental factors. Science of The 

Total Environment, 791, 148283. 

https://doi.org/10.1016/J.SCITOTENV.2021.148283 

Xu, R., Li, C., & Paterson, A. H. (2019). Multispectral imaging and unmanned aerial 

systems for cotton plant phenotyping. PLOS ONE, 14(2), e0205083. 

https://doi.org/10.1371/JOURNAL.PONE.0205083 

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., 

Zhang, X., Zhang, R., Feng, H., Zhao, X., Li, Z., Li, H., & Yang, H. (2017). 



85 

 

Unmanned aerial vehicle remote sensing for field-based crop phenotyping: 

Current status and perspectives. Frontiers in Plant Science, 8, 1111. 

https://doi.org/10.3389/FPLS.2017.01111/BIBTEX 

Yang, W., Feng, H., Zhang, X., Zhang, J., Doonan, J. H., Batchelor, W. D., Xiong, L., 

& Yan, J. (2020). Crop phenomics and high-throughput phenotyping: Past 

decades, current challenges, and future perspectives. Molecular Plant, 13(2), 

187–214. https://doi.org/10.1016/J.MOLP.2020.01.008 

Ye, Z. P., Ling, Y., Yu, Q., Duan, H. L., Kang, H. J., Huang, G. M., Duan, S. H., Chen, 

X. M., Liu, Y. G., & Zhou, S. X. (2020). Quantifying light response of leaf-scale 

water-use efficiency and its interrelationships with photosynthesis and stomatal 

conductance in C3 and C4 species. Frontiers in Plant Science, 11, 374. 

https://doi.org/10.3389/FPLS.2020.00374 

Yu, L., Wang, W., Zhang, X., & Zheng, W. (2016). Review on leaf temperature 

sensor: Measurement methods and application. IFIP Advances in Information 

and Communication Technology, 478, 216–230. https://doi.org/10.1007/978-3-

319-48357-3_21 

Zhang, C., Marzougui, A., & Sankaran, S. (2020). High-resolution satellite imagery 

applications in crop phenotyping: An overview. Computers and Electronics in 

Agriculture, 175, 105584. https://doi.org/10.1016/J.COMPAG.2020.105584 

Zhang, J., Guan, K., Peng, B., Pan, M., Zhou, W., Jiang, C., Kimm, H., Franz, T. E., 

Grant, R. F., Yang, Y., Rudnick, D. R., Heeren, D. M., Suyker, A. E., Bauerle, W. 

L., & Miner, G. L. (2021). Sustainable irrigation based on co-regulation of soil 



86 

 

water supply and atmospheric evaporative demand. Nature Communications 

2021, 12(1), 1–10. https://doi.org/10.1038/s41467-021-25254-7 

Zhang, Q., Peng, S., & Li, Y. (2019). Increase rate of light-induced stomatal 

conductance is related to stomatal size in the genus Oryza. Journal of 

Experimental Botany, 70(19), 5259–5269. https://doi.org/10.1093/JXB/ERZ267 

Zhang, Y., Wu, J., & Wang, A. (2022). Comparison of various approaches for 

estimating leaf water content and stomatal conductance in different plant species 

using hyperspectral data. Ecological Indicators, 142, 109278. 

https://doi.org/10.1016/J.ECOLIND.2022.109278 

Zhao, L., Wang, L., Li, J., Bai, G., Shi, Y., & Ge, Y. (2021). Toward accurate 

estimating of crop leaf stomatal conductance combining thermal IR imaging, 

weather variables, and machine learning. Proc. SPIE 11747, Autonomous Air and 

Ground Sensing Systems for Agricultural Optimization and Phenotyping VI, 

117470L (12 April 2021); https://doi.org/10.1117/12.2587577 

Zhou, Z., Majeed, Y., Diverres Naranjo, G., & Gambacorta, E. M. T. (2021). 

Assessment for crop water stress with infrared thermal imagery in precision 

agriculture: A review and future prospects for deep learning applications. 

Computers and Electronics in Agriculture, 182, 106019. 

https://doi.org/10.1016/J.COMPAG.2021.106019 

Zhu, K., Sun, Z., Zhao, F., Yang, T., Tian, Z., Lai, J., Long, B., & Li, S. (2020). 

Remotely sensed canopy resistance model for analyzing the stomatal behavior of 

environmentally-stressed winter wheat. ISPRS Journal of Photogrammetry and 



87 

 

Remote Sensing, 168, 197–207. 

https://doi.org/10.1016/J.ISPRSJPRS.2020.08.012 

Zia, S., Romano, G., Spreer, W., Sanchez, C., Cairns, J., Araus, J. L., & Müller, J. 

(2013). Infrared Thermal Imaging as a Rapid Tool for Identifying Water-Stress 

Tolerant Maize Genotypes of Different Phenology. Journal of Agronomy and 

Crop Science, 199(2), 75–84. https://doi.org/10.1111/J.1439-037X.2012.00537.X 

  


	Estimating Crop Stomatal Conductance Through High-Throughput Plant Phenotyping
	

	tmp.1682706727.pdf.qxP2M

