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Abstract—Motivated by the ever-increasing concerns on per-
sonal data privacy and the rapidly growing data volume at local
clients, federated learning (FL) has emerged as a new machine
learning setting. An FL system is comprised of a central parame-
ter server and multiple local clients. It keeps data at local clients
and learns a centralized model by sharing the model parameters
learned locally. No local data needs to be shared, and privacy can
be well protected. Nevertheless, since it is the model instead of the
raw data that is shared, the system can be exposed to the poisoning
model attacks launched by malicious clients. Furthermore, it is
challenging to identify malicious clients since no local client data
is available on the server. Besides, membership inference attacks
can still be performed by using the uploaded model to estimate the
client’s local data, leading to privacy disclosure. In this work, we
first propose a model update based federated averaging algorithm
to defend against Byzantine attacks such as additive noise attacks
and sign-flipping attacks. The individual client model initialization
method is presented to provide further privacy protections from
the membership inference attacks by hiding the individual local
machine learning model. When combining these two schemes,
privacy and security can be both effectively enhanced. The
proposed schemes are proved to converge experimentally under
non-IID data distribution when there are no attacks. Under
Byzantine attacks, the proposed schemes perform much better
than the classical model based FedAvg algorithm.

Index Terms—Federated Learning, Privacy, Security, Byzantine
attack, Membership inference attack

I. INTRODUCTION

Federated learning (FL) [1] aims to build a robust machine

learning (ML) model where local clients (LCs) distributively

train their ML model using their locally collected data. In a

typical FL setting, a central parameter server (PS) is connected

to multiple clients and aggregates the models uploaded by the

LCs. User privacy can be greatly protected since no local data

is shared. However, it could be more harmful to the system

when the malicious LCs launch Byzantine attacks by sending

the poisoning model to the PS, which can directly degrade the

overall learning performance. Furthermore, privacy is protected

but not guaranteed in FL since attackers can still infer the

private data and some key parameters such as gradients from

the model in a membership inference attack [2].

The Byzantine attack launched by the malicious LCs aims to

degrade the learning performance. The model poisoning attacks

can directly reduce the local task execution accuracy at LCs.

Furthermore, the individual model of a single LC is invisible

over the air or at the server due to the secure aggregation

or other encoding methods. Only the aggregated model is

available. Therefore, it is very difficult to identify malicious

LCs in such a scenario. There have been extensive works to

defend against Byzantine attacks in the distributed ML and FL.

Most works aim to accommodate the attacks and mitigate the

adverse effects, such as Krum aggregation [3] and geometric

median aggregation [4]. Krum aggregation is based on majority

and squared distance to select some representative clients as the

benign and trusted clients and estimate the true center using

their updates. This may result in a biased model, especially

when the data among LCs is not independent and identically

distributed (non-IID). Unlike the classical arithmetic averaging,

the geometric median considers the compounding that occurs

from time to time and mitigates the impacts of poisoning

attacks. But this scheme needs to obtain an individual model,

which may cause privacy disclosure in membership inference

attacks. In [5], rather than accommodating the attacks as

mentioned above, the work identified the attackers and removed

the model updates coming from the attackers. However, it

could be challenging to select the dynamic threshold used to

determine the attackers.

Another method to provide enhanced privacy protection in

FL is differential privacy (DP) [6]. A typical approach of

DP is to add random noise to the model and hide the real

model from the eavesdroppers. It does not affect the system

performance since the Gaussian noise can be averaged out

due to aggregation. Another way for privacy protection is to

hide the individual model from the eavesdroppers, i.e., only

the aggregated model is accessible. This can be achieved with

the Secure Aggregation protocol (SecAgg) [7] or over-the-air

computation (AirComp) [8] in wireless communications. Since

the PS only needs to know the aggregated model, hiding the

individual model does not impact the system performance.

In this work, we propose to use model update based (MUB)

aggregation to defend against Byzantine attacks and enhance

security. The individual client model initialization (ICMI)

scheme is further used to enhance privacy protection. By com-

bining the two techniques as MUB-ICMI, privacy and security

are enhanced. To the best of our knowledge, this is the first

paper to provide both security and privacy protection without

changing the fundamental structure of the classical federated

averaging algorithm FedAvg [9]. The critical contributions of

http://arxiv.org/abs/2208.01826v1


the paper are summarized as follows.

• Since model update distribution has a much smaller de-

viation than the model distribution in federated learning,

model based (MB) aggregation in the classical FedAvg

is replaced by the MUB aggregation in FL. MUB-FL

is robust to Byzantine attacks such as additive noise

attacks and sign-flipping attacks while still achieving good

learning performance.

• By initializing the individual models at LCs rather than

initializing the model at the server and uploading the local

models using SecAgg or AirComp, the ICMI scheme can

effectively hide the LC models. This protects LCs from

membership inference attacks.

• The MUB scheme and the ICMI scheme can be combined

as MUB-ICMI to enhance both security and privacy.

Local learning models are well protected during the entire

learning process by performing model initialization at

each LC and uploading LC model updates instead of

uploading LC models directly.

• The simulation results show that MUB, ICMI, and MUB-

ICMI can achieve a similar level of performance to the

classical MB FedAvg without any attacks. While under

Byzantine attack scenarios, both MUB and MUB-ICMI

schemes are robust against attacks while still achieving

good performance.

The rest of the paper is organized as follows. Section II

introduces the classical MB FedAvg algorithm. It also gives the

motivations to apply MUB, ICMI, and MUB-ICMI schemes in

FL. Section III presents the detailed algorithms for the three

proposed schemes. Simulation results are given in Section IV.

Finally, section V concludes the paper.

II. SYSTEM MODEL

A. FL System Model

FL aims to learn a central ML model without data sharing.

This is achieved by sharing the local ML models trained at each

LC. The system is normally comprised of a central parameter

server (PS) connected by K LCs. Each LC has its dataset,

and the data can be non-IID across different LCs. Considering

bandwidth restrictions, especially in a wireless setting, only a

fraction C of total clients are selected to participate in the FL

process in each round. In the classical MB FedAvg algorithm,

the selected clients perform local learning based on their local

dataset. Each LC then uploads the updated local model to the

server for aggregation. The server employs the updated local

models to get the latest global model via arithmetic averaging

and then sends it back to all the LCs. The process repeats until

the model converges.

The objective function of the FL system can be defined as

min
w∈Rd

f(w), (1)

where f(w) = 1

|D|

∑n

i=1
fi(w), |D| is the size of the dataset

D. fi(w) = ℓ(xi, yi;w) is the loss function used to capture

the error between the data sample (xi, yi) and the mapping

made by model parameters w. Since data is distributed among

K clients, the objective (1) can be rewritten as

f(w) =

K∑

k=1

|Dk|

|D|
Fk(w), (2)

where, Fk(w) = 1

|Dk|

∑
i∈Dk

fi(w), Dk is the dataset on

client k. In each FL round, the client updates the local model

based on the local data and the recently received global model,

that is,

wk

t
= wt − η∇Fk(wt). (3)

Here ∇Fk(wt) is the gradient of Fk(wt), η is the stochastic

gradient descent (SGD) step size or learning rate, wt is the

received global model at round t, wk
t is the local model at

round t on client k.

At round t+ 1, the server updates the global model as

wt+1 =

K∑

k=1

|Dk|

|D|
wk

t . (4)

The FL learning repeats till the global model converges. A brief

illustration of the FL model update is shown in Fig. 1 left side.

θ in Fig. 1 represents the model parameter w in the classical

MB FedAvg algorithm. The FL learning process is shown on

the right side. Each learning round consists of two parts. The

first part (shaded area) is for model aggregation at the server,

followed by local learning at each LC. Note the global model

wt at t is the aggregation of the locally trained models at t−1.

The server initializes the global model in the first round.
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Fig. 1: FL Model & FL Round

B. Distribution of Model Update

The simple arithmetic averaging algorithm (4) in the classi-

cal MB FedAvg is easy to implement. However, the classical

MB FedAvg is not robust under Byzantine attacks. Motivated

by the difference between model distribution and model update

distribution, we propose the MUB FedAvg algorithm in which

each LC uploads the model update instead of the model itself

to the server. The local model update is defined as the local

model difference, i.e.,

uk

t
= wk

t
− wk

′

t
, (5)

where wk
t

is defined in (3), i.e., the local model after the local

learning process; wk
′

t is the local model before local learning,

which will be defined later in (7). The global model update is

defined as



ut+1 =

K∑

k=1

|Dk|

|D|
uk

t
. (6)

The local ML model before local learning wk
′

t
is calculated

based on the local model wk
t−1 and the most recently received

global model update ut,

wk
′

t = wk

t−1 + ut. (7)

At t = 1, the server initializes the global model w1 as in

the classical MB FedAvg and selects an initial global model

update u1 = 0. These two initial parameters are broadcasted to

LCs. For convenience, w1 in MUB-FL is referred to wk
0 . And

explicitly, wk
0 is the same for all LCs. Please note that θ in Fig.

1 represents the model update u in MUB FedAvg algorithm.

To understand the difference between MB and MUB, we

first derive the distributions of model and model update,

respectively, in the non-IID data case. In Fig. 2, the distribution

of model update in Fig. 2(a) shows much less deviation than

the model distribution in Fig. 2(b). Further, in Fig. 2(a), the

distribution of local model update uk
t

is similar to the distri-

bution of global model update ut. Similarly, in Fig. 2(b), the

distribution of local model wk
t is also close to the distribution

of global model wt. Thus the distribution of the local model

and local model update is very close to its corresponding global

distribution although the data is non-IID.
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Fig. 2: Distribution of Model Update and Distribution of Model

with Non-IID data in FL

In [10], the author proposed the update norm clipping

approach to ensure the norm of each model update is small

enough so that the server is less susceptible to the poisoning

models on backdoor attacks. This is proved to be a valid

defense method for backdoor attacks without much impact on

the performance of the main task. From the distributions of

model and model update in Fig. 2, the l2−norm of the model

update distribution is much smaller than that of the model

distribution. So the model update can naturally work like the

norm-clipped model. And it should also apply to Byzantine

attacks such as additive noise attacks and sign-flipping attacks.

C. Initial Client Model Initialization

In the classical MB FedAvg, the global model is first

initialized by the server and then sent to LCs. Thus, each

client has the same learning initialization point. Besides, the

model of each client is accessible to the eavesdroppers during

uploading. Thus the eavesdroppers have a chance to perform

membership inference attacks to infer the private data at LCs.

To address that, ICMI is introduced as a new model initializa-

tion scheme. ICMI lets LC initialize its own model rather than

using a common initial model sent by the server. SecAgg or

AirComp can be further used to hide each LC’s model from

others, including the server and possible eavesdroppers, during

the uploading stage. The eavesdroppers can only obtain the

aggregated model, which effectively prevents the membership

inference attacks.

D. Combined Scheme

In the MUB scheme, since the model update rather than the

model itself is shared by each client, the local model and the

global model are effectively hidden from the eavesdroppers.

However, due to the fact that the model initialization is done at

the server and then is sent to each client, the eavesdroppers may

still be able to calculate the local model and the global model

based on the initial global model and subsequent local model

updates. To avoid that, MUB can be combined with ICMI

to form the MUB-ICMI scheme, providing further privacy

protection. With MUB-ICMI, no model information is made

accessible to the eavesdroppers. Therefore, there is no need

to use SecAgg or AirComp to hide the individual models.

This simplifies the design of ICMI scheme by avoiding extra

computation or communication overhead.

III. PROPOSED SCHEME FOR FL PRIVACY & SECURITY

ENHANCEMENT

In the previous section, the motivation to apply the MUB

scheme and ICMI scheme is articulated. In this section, the

details of the proposed schemes are presented.

A. MUB FL

Aggregation

Round 1 Round 2

Local model calculation

Local learning

Local model update calculation

...

Fig. 3: Model Update Based FL Round

As mentioned above, there are two stages for each FL round

in classical MB-FL. The first stage is for model aggregation at

the server, and the second stage is for the local learning at the

LCs. For the MUB scheme, the aggregation stage aggregates

model update rather than model, but the aggregation algorithm

remains the same as the MB scheme. For the local learning

part, there are three sub-stages taking place at each LC,

i.e., local model calculation, local learning, and local model

update, as shown in Fig. (3). The process in each substage is

summarized as follows.



• Local model calculation. When an LC receives the ag-

gregated model update ut, it first calculates the current

local model wk
′

t based on the previous local model wk
t−1.

The calculated local model, is wk
′

t = wk
t−1 + ut. In the

classical MB-FL, the local model before local learning is

the same as the received global model wt.

• Local learning. The local learning is performed based on

the local data to get the updated local model wk
t

, i.e.,

wk
t = wk

′

t − η∇Fk(w
k
′

t ).
• Local model update calculation. The local model update

is calculated as uk
t
= wk

t
− wk

′

t
.

The three substages can be summarized as:

wk
′

t
= wk

t−1 + ut, (8a)

wk

t
= wk

′

t
− η∇Fk(w

k
′

t
), (8b)

uk

t
= wk

t
− wk

′

t
. (8c)

In ML, the gradient is usually defined as g = ∇F (w), so

the local gradient in FL is gkt = ∇Fk(wt), and the global

gradient is gt =
∑

K

k=1

|Dk|
|D| g

k
t

. Since wk
t
= wk

′

t
− ηFk(wt)

or wk
t = wk

′

t − ηgkt , we can rewrite uk
t = −ηgkt , i.e., the

model update is related to the gradient. This can also be

proved in equation (3), the model before local learning is

wt, so uk
t = −η∇Fk(wt) = −ηgkt . Specifically, this is for

the scenario when only one local iteration is performed in

one FL round on the local data. However, in FL, multiple

local iterations might be performed to save communication

bandwidth. When multiple iterations are executed, equation

(8b) can be rewritten as

wk

t (0) = wk
′

t , (9a)

wk

t
(j + 1) = wk

t
(j)− η∇Fk(w

k

t
(j)). (9b)

The calculated local model wk
′

t
is set as the initial local

learning point as in equation (9a). The local learning can

iterate multiple times in one FL round. The learned model

serves as the learning starting point in the next iteration, as

shown in equation (9b). When a total of N (N > 1) iterations

are performed, the local model becomes wk
t
(N). From this

perspective, the MUB-FL is different from the existing gradient

based FL (N = 1) [11].

In the classical MB FedAvg, an LC only needs to perform

local learning in each FL round. In MUB-FL, a client needs

to execute the three substages, as shown in Fig. 3. This

might result in different local models and different convergence

behavior. When the model is initialized from the server and sent

to LCs, the initial global model w1 in the classical MB-FL is

the same for all the clients. The local model after learning is

wk
1 = w1 − η∇Fk(w1). For MUB-FL, with the initial local

model wk
0 = w1 and the initial global model update u1 = 0,

the local model in the first round is wk
1 = wk

′

1 − η∇Fk(w
k
′

1 ),
where wk

′

1 = wk
0 + u1. The local model after the first-round

learning is the same as in the classical MB FedAvg. However,

starting from the second FL round, the local model before

learning wt for the classical MB-FL is the same for all LCs.

The global model update ut for each LC in MUB-FL is still the

same. However, since the local model wk
t−1 from the previous

round differs among different clients, the local model before

learning wk
′

t also differs across various clients. This is the main

difference between classical MB-FL and MUB-FL. Although

the local model before learning for clients is different in MUB-

FL, the learning accuracy still converges to the same level as

in classical MB-FL with no attacks. This is verified in the

simulation results.

B. ICMI FL

ICMI aims to provide further privacy protection by hiding

the individual model of each client. It initializes the model at

each client rather than initializing the model at the server. So

the initial models are different across different clients. Further-

more, SecAgg or AirComp can be used for model aggregation

to further hide the individual client model. Several SecAgg

protocols were proposed in [7], e.g., masking with one-time

pads, dropped user recovery using secret sharing, exchanging

secrets efficiently, and minimizing thrust in practice. As the

aggregated model is hidden from eavesdroppers and other third

parties, the membership inference attacks can not be executed.

Since only the initial model w1 is different across LCs while

the rest part keeps the same as in the classical MB FedAvg,

ICMI should also converge to a similar level as in classical

MB-FL. This is verified in the simulation.

C. MUB-ICMI FL

To enhance both security and privacy in FL, MUB and

ICMI can be combined to form MUB-ICMI, where the model

initialization is taken place at LCs, and only the model update

(not the model itself) is uploaded. The MUB-ICMI algorithm

is summarized in Algorithm 1.

Algorithm 1 MUB-ICMI FedAvg

1: Each client initializes wk
0 , server initializes u1 = 0

2: Server executes:

3: for each round t=1,2,... do

4: m← max(C ·K, 1)
5: St ← (random set of m clients)

6: for each client k ∈ St in parallel do

7: uk
t ← ClientUpdate(k, ut)

8: end for

9: ut+1 ←
∑K

k=1

|Dk|
|D| u

k
t

10: end for

11: ClientUpdate(k, ut): // Run on client k

12: B ← (split Pk into batches of size B)

13: wk
′

t
← wk

t−1 + ut

14: wk
t
(0)← wk

′

t

15: for each local iteration j from 0 to N − 1 do

16: for batch b ∈ B do

17: wk
t
(j + 1)← wk

′

t
(j)− η∇Fk(w

k
′

t
)(j)

18: end for

19: end for

20: uk
t ← wk

t (N)− wk
′

t

21: return uk
t to server



IV. SIMULATION RESULTS

In this section, we first show the convergence of the proposed

three schemes as well as the classical MB FedAvg algorithm

by using image classification tasks under no attacks. Then the

testing results of four different schemes under two different

Byzantine attacks, i.e., additive noise attacks and sign-flipping

attacks are presented. Compared with the classical MB-FL

scheme, MUB-ICMI scheme is effective in defending against

Byzantine attacks while still achieving good performance.

We consider a typical FL setting in the simulation where

multiple clients are connected to the PS. Here, we use K = 100
and C = 100%, that is, 100 clients connected to the PS. And

all of them participate in the ML tasks in each FL round. The

image classification tasks are explored, and MNIST dataset is

used. To present a convincing case, both multi-layer perception

(MLP) and convolutional neural network (CNN) ML models

are considered. Different data distributions (both IID and non-

IID) are exploited in the experiment. The MNIST dataset is a

large dataset consisting of handwritten digits with digits 0− 9.

It contains 60, 000 images for training and 10, 000 images for

testing. Each image is formatted as 28×28 pixels. For the MLP

model, only one hidden layer is used. For the CNN model,

two convolutional layers are followed by the pooling layer

with two fully-connected layers at the end. Since the common

features of the images are in the same square or rectangular

blocks, CNN usually achieves better performance than the

MLP model. With IID data distribution, images are selected

randomly and are allocated equally to each client. Non-IID

data distribution allocates the images to the clients based on

their labels. Each client is assigned two labels or digits. And

each client is assigned around 600 images for training. The

testing is performed using the global model after aggregation

in each round on the whole testing dataset. In the MUB-FL, the

global model is calculated by accumulating the global model

update starting from the initial global model. The learning

model hyperparameters are learning rate size η = 0.01, batch

size B = 5, local iteration count N = 2.

First, the convergence of the classical MB-FL and the

proposed MUB-FL and ICMI-FL are demonstrated using MLP

or CNN model under IID or non-IID data distributions without

any attacks. Fig. 4 shows the testing accuracy of MNIST under

a non-IID data distribution with the CNN model. All four algo-

rithms converge after 200 training rounds and also converge to

the levels that are very close to each other. The MUB algorithm

even achieves slightly better performance than the classical

MB-FL during the learning process. The heterogeneity of data

distribution has less impact when the model update rather than

the model is aggregated. Under IID data distribution, MUB-

FL achieves similar performance compared with the classical

MB-FL. The MUB-ICMI algorithm performs slightly worse

than the other three algorithms.

To demonstrate the effectiveness of the proposed algorithms

in defending against Byzantine attacks, we evaluate the pro-

posed algorithms in several scenarios. First, we assume that

20%, 30%, or 40% of the clients are attackers. Two types of
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Fig. 4: Test accuracy of Non-IID data with CNN model without

any attacks

attacks are considered, additive noise attacks and sign-flipping

attacks. In the additive noise attack, malicious clients add

Gaussian noise to their local model updates and send them

to PS. The malicious clients have the desire to add the noise

with significant power. However, it is easy to detect it by

computing the l2-norm of the model update. In a sign-flipping

attack, the malicious client flips the signs of the model updates

while keeping the magnitude unchanged. So this attack is more

brutal to be identified and thus more harmful to the system

performance.

0 20 40 60 80 100

Round

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
e
s
t
A
c
c
u
r
a
c
y

o Attac

Additive Noise Attack (20%)

Additive Noise Attack (30%)

Additive Noise Attack (40%)

(a) IID data with Additive noise
attacks

0 20 40 60 80 100

Round

0.2

0.4

0.6

0.8

1.0

T
e
s
t
A
c
c
u
r
a
c
y

No Attack

Sign-flipping Attack (20%)

Sign-flipping Attack (30%)

Sign-flipping Attack (40%)

(b) Non-IID data with Sign-
flipping attacks
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Fig. 5 presents the results of classical MB-FL with IID data

under additive noise attacks as well as with non-IID data under

sign-flipping attacks in the CNN model. When more malicious

clients participate in model sharing, the performance becomes

worse. The IID data distribution makes the test accuracy

smoother under Byzantine attacks shown in Fig. 5(a). Due to

the non-IID data distribution, the test accuracy results in Fig.

5(b) experience fluctuation during the learning. Compared with

the additive noise attacks, sign-flipping attacks suffers much

worse performance. When 40% of the clients are malicious

clients, the model almost learns nothing under the sign-flipping

attacks. As shown in Fig. 5, the non-IID data distribution is

more vulnerable to sign-flipping attacks. So in the following

result, only the testing result of non-IID data distribution



under sign-flipping attacks will be presented to demonstrate

the effectiveness of the proposed schemes.
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Fig. 6: Test accuracy of Non-IID data with MLP model using

MUB scheme
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Fig. 7: Test accuracy of Non-IID data with MLP model using

ICMI scheme

Fig. 6 provides the results of non-IID data with MLP model

using MUB scheme under sign-flipping attacks, and Fig. 7

presents the results of ICMI scheme under sign-flipping attacks.

From Fig. 6, we know MUB-FL can significantly defend

against the sign-flipping attacks. After 100 learning rounds,

even in the worst case with 40% malicious clients, the testing

accuracy is still very close to the result without any attacks

when it converges. Since the ICMI scheme is designed to

enhance privacy, it does not help to defend the Byzantine

attacks. Thus the testing results in Fig. 7 are similar to the

results with the classical MB-FL algorithm shown in Fig. 5(b).

Finally, the MUB-ICMI scheme is applied to non-IID data

distribution with the CNN model under sign-flipping attacks.

To demonstrate the effectiveness of the algorithm, 200 training

rounds are executed. In Fig. 8, the scenarios with 20% and

30% malicious clients achieve similar results to the “No

Attack” case after 200 training rounds. For the attack with 40%
malicious clients, although the performance is worse than the

“no attack” scenario as expected, it is still much better than

the classical MB-FL shown in Fig. 5(b).
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Fig. 8: Test accuracy of Non-IID data with CNN model using

MUB-ICMI scheme

V. CONCLUSIONS

In this paper, we proposed a new method using the MUB

scheme in FL to defend against Byzantine attacks and the ICMI

scheme to enhance privacy. The combined new MUB-ICMI can

effectively improve both privacy and security in FL. Two types

of Byzantine attacks were used to demonstrate the effectiveness

of the proposed schemes. The convergence and effectiveness of

the methods were presented using the MNIST dataset with both

IID and non-IID data distributions. The theoretical analysis of

the proposed algorithms and more simulation results on other

datasets will be provided in the future.
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