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Abstract

As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or 
intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A  large volume of 
literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from 
enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual 
crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzym-
atic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features 
make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and 
heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current ad-
vancements and future research trajectories that are needed to make our cropping systems more resilient to rising 
temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.

Keywords:  Cropping system, gross primary productivity, heat stress, resilience, Rubisco, stomata, vapour pressure deficit.

Introduction

Global land surface temperatures are increasing due to rising 
atmospheric CO2 from anthropogenic emissions that are 
causing climate change, and with this comes the challenge of 
meeting food and fuel supply demands under more stressful 

crop growing conditions. Despite a drop in emissions asso-
ciated with the coronavirus pandemic of 2020 (COVID-19; 
Le Quéré et al., 2020), global emissions are currently tracking 
the worst-case ‘business as usual’ emissions scenario (RCP8.5) 
that will very likely equate to unprecedented warming 
from pre-industrial (1850–1990) levels of 3–5  °C by 2100  
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(IPCC, 2014). A  recent IPCC report indicated, with me-
dium confidence, that crop yields will experience ‘severe and 
widespread impacts’ if global warming exceeds 1.5 °C above 
pre-industrial levels, but that these impacts can be managed 
below this warming threshold (IPCC, 2018). Coupled with 
rising mean global temperature is a projected increase in the 
frequency, intensity, and duration of extreme heatwave events 
that have the potential to cripple crop yields (Battisti and 
Naylor, 2009; Perkins et al., 2012; Hatfield and Prueger, 2015; 
Hoegh-Guldberg et  al., 2018). Additionally, some cropping 
areas, such as temperate, high-latitude regions, will likely 
face even greater warming than tropical regions of the world 
(Hoegh-Guldberg et al., 2018). Therefore, there is an urgent 
need, first and foremost, for mitigation strategies to reduce 
fossil fuel emissions to cap warming at 1.5 °C (IPCC, 2018), 
but also for development of our major cropping systems to 
be more resilient to hotter growing seasons and extreme tem-
perature events that seem inevitable in the coming century.

Global yield losses in key crops, such as maize and wheat, 
have been attributed to higher growing season temperatures 
(Lobell et  al., 2011; Lobell and Gourdji, 2012; Asseng et  al., 
2015). Without crop improvement strategies, including gen-
etic engineering and adaptation under carbon dioxide (CO2) 
fertilization, substantial yield declines per °C of warming have 
been projected for the major cropping systems of maize (7.4%), 
wheat (6.0%), rice (3.2%), and soybean (3.1%) (C. Zhao et al., 
2017). Yet, to keep pace with supplying food and fuel to the 
growing human population, agricultural production will need 
to double (based on average yield in 2005) over this century 
to meet increased caloric demand (Long and Ort, 2010; Ray 
et al., 2013). Additionally, the full theoretical extent of the CO2 
fertilization effect is unlikely to be realized due to the impact 
of rising temperature (Long et al., 2006a; Ainsworth and Long, 
2020). Thus, improving crop resilience to temperature stress 
is a vital step towards ensuring global food and fuel demands 
are met.

Temperature is a critical meteorological determinant of crop 
development and function. Temperature alters enzyme func-
tion within a leaf (Bernacchi et al., 2001; Walker et al., 2013; 
Florian et  al., 2014; Kumarathunge et  al., 2019; Timm et  al., 
2019) and triggers changes in developmental growth stage that 
are tightly coupled with crop yield (Ruiz-Vera et al., 2018; Zhu 
et al., 2018). Furthermore, the amount of water vapour in air 
at saturation increases exponentially with temperature, raising 
the vapour pressure deficit (VPD), and driving more potential 
water loss from plants (Novick et  al., 2016; Grossiord et  al., 
2020). The result of these broad crop physiological responses 
to temperature means that any shifts in long-term mean annual 
temperature and extreme temperature events will be likely to 
have significant impacts on crop production from the key food 
and fuel growing regions of the world.

Improvements in how crops function from the enzyme to 
ecosystem scale are required to maintain historic increases in 
crop yields into the future, whilst ensuring cropping systems 

remain resilient to rising temperatures (Long and Ort, 2010). 
Engineering improvements to photosynthesis, including its 
resilience to perform under hotter temperatures at the leaf, 
plant, and canopy levels, is an emergent strategy that may help 
boost yields (Long et al., 2006b; Ainsworth and Ort, 2010; Ort 
et al., 2015; Betti et al., 2016; Kromdijk and Long, 2016; Kubis 
and Bar-Even, 2019; Posch et al., 2019; Simkin et al., 2019; Wu 
et al., 2019; Furbank et al., 2020). Developing better warning 
systems, such as early detection of crop ecosystem stress, will 
also improve targeted management approaches that reduce re-
source use (i.e. water and pesticides), expenditure, and time 
(Guanter et al., 2014; Chlingaryan et al., 2018; Camino et al., 
2019).

Realizing the full impact of temperature increase on crop 
photosynthesis across scales is an area of ongoing investigation, 
particularly given the complex interactions of water availability, 
increasing atmospheric CO2 concentrations ([CO2]), nutrient 
availability, and the increased frequency and/or intensity of ex-
treme climate events that feed back to alter annual crop photo-
synthesis and productivity. There have been several seminal 
reviews on the effect of rising temperature on crop photosyn-
thetic performance (Ainsworth and Ort, 2010), photosynthetic 
enzyme function (Slattery and Ort, 2019), plant carbon me-
tabolism (Dusenge et al., 2019), and plant development (Wang 
et al., 2012), as well as global assessments of how crop yield is 
likely to change as temperatures rise (Lobell and Gourdji, 2012; 
C. Zhao et al., 2017). Yet, reviews that address all these scales in 
one are limited.

This review focuses on synthesizing current advances in 
understanding the effects of temperature on cropping systems 
from the enzyme to ecosystem scale (Fig. 1) to provide a com-
prehensive assessment of how crop photosynthesis changes as 
temperature increases. Beginning at the enzyme scale, we dis-
cuss (i) within-leaf responses to temperature, followed by (ii) 
stomata and plant transport system responses to heat; (iii) tem-
perature effects on whole plants and their development; and 
(iv) how each of these factors scales to the crop ecosystem to 
impact photosynthesis and annual yield (Fig. 1). Key abbrevi-
ations used throughout the review are listed and expanded in 
Table 1. For each scale discussed, we identify areas for research 
development that are needed to ensure the major crops that 
feed and fuel the world are more resilient to the impacts of 
rising temperature that will occur without implementation of 
climate mitigation strategies.

Temperature response of photosynthesis 
within the leaf: the critical role of enzyme 
function

Temperature regulation is foundational in biological systems, as 
chemical reaction rates are a function of the tissue temperature 
and the energy required to initiate the reaction—the activation 
energy (Ea) (Fig. 2A). Enzymes lower this Ea barrier, enhancing 
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the rate of enzyme-catalysed reactions driving biological me-
tabolism (Wolfenden and Snider, 2001). In theory, reaction 
rates are predicted to increase exponentially with temperature. 
In reality, most biological temperature responses increase expo-
nentially with temperature until reaching a thermal optimum 
(Topt), after which rates decline due to enzyme deactivation 
and denaturation at increasingly high temperatures (Fig. 2B, C).

The photosynthetic machinery within a leaf is a logical 
place to begin when considering the effects of temperature 
on crop photosynthesis, as many component processes of 
photosynthetic metabolism are highly temperature sensitive. 
At a biochemical level, net photosynthetic carbon assimilation 
(A) is largely determined by Rubisco efficiency and activa-
tion, and ribulose bisphosphate (RuBP) regeneration (Table 

Fig. 1. The spatial scale and temporal response time of photosynthetic processes in cropping systems from the enzyme to ecosystem scale.

Fig. 2. Temperature effects on enzyme-driven processes of photosynthesis. (A) Schematic energy profile of an exergonic chemical reaction. Enzymes, 
such as Rubisco, facilitate biochemical reaction progression by lowering the activation energy requirements of the transition state between reactants 
and product formation, though in the case of Rubisco this is simplified as the enzyme facilitates a multistep catalysis (Flamholz et al., 2019). (B) Modelled 
temperature responses of tobacco Rubisco carboxylation catalytic turnover rate (green solid) and specificity for CO2 over O2 (yellow dashed line), using 
parameters from Orr et al. (2016) and temperature responses from Bernacchi et al. (2001). (C) Temperature response of gross photosynthesis (carbon 
assimilation A+mitochondrial respiration Rd, green solid line) and of mitochondrial respiration (Rd, gold dotted line) for an idealized C3 species. Data were 
modelled using the leaf model of photosynthesis (Farquhar et al., 1980) with temperature adjustments (Bernacchi et al., 2001).
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1) (Farquhar et al., 1980). The predominant determinant varies 
with chloroplastic [CO2]; RuBP regeneration limits A at ele-
vated [CO2], but Rubisco performance limits A at ambient 
and subambient [CO2]. Enzyme degradation at elevated tem-
peratures can impede the function of PSII, decrease electron 
transport rates, inhibit Rubisco activase (Rca), and decrease 
chlorophyll content (Salvucci et  al., 2001; Guo et  al., 2006; 
Allakhverdiev et  al., 2008; Prasad and Djanaguiraman, 2011). 
Elevated temperature can also induce membrane permeability, 
leading to direct damage of the chloroplast thylakoid mem-
branes, which further inhibits light harvesting, electron trans-
port rates, and ATP generation (Schrader et  al., 2004; Prasad 
et al., 2008; Djanaguiraman et al., 2013; Pokharel et al., 2020). 
However, thermal lability of enzymes directly involved in A re-
mains the major cause of photosynthetic inhibition of C3 and 
C4 crops grown under elevated temperatures (Crafts-Brandner 
and Salvucci, 2000; Schrader et  al., 2004; Sage and Kubien, 
2007; Perdomo et al., 2016; Slattery and Ort, 2019).

The optimal temperature of RuBP regeneration is gen-
erally higher than that of Rubisco carboxylation (Hikosaka 
et al., 2006); therefore, under current atmospheric [CO2] and 
saturating light, the temperature dependence of photosyn-
thesis is well explained by Rubisco biochemistry (Sage and 
Kubien, 2007). As temperatures increase, the fraction of en-
zyme able to meet or exceed the Ea required for catalysis in-
creases, and so Rubisco carboxylation activity increases (Fig. 
2B). However, Rubisco is a bi-functional enzyme, also cata-
lysing the oxygenation of RuBP (Ogren and Bowes, 1971; 
Tcherkez, 2016; Bathellier et al., 2020; von Caemmerer, 2020). 
The specificity of Rubisco for CO2 versus O2 (SC/O) declines 
as temperatures increase, decreasing the ratio of carboxylation 
to oxygenation in vivo (Fig. 2B). This increased propensity 
for Rubisco oxygenation at elevated temperatures produces 
more 2-phosphoglycolate, which must be cycled through the 
photorespiratory pathway, resulting in a loss of previously fixed 
carbon at an energetic expense (Walker et al., 2016).

In C4 photosynthesis, CO2 is concentrated around Rubisco 
in bundle sheath chloroplasts. Thus, stimulation of photorespir-
ation by elevated temperatures is minimal, and A in C4 plants 
has a higher Topt than in C3 plants (Sage and Kubien, 2007). 
Above the Topt, C4 photosynthesis may also be limited through 
inactivation of Rubisco (Crafts-Brandner and Salvucci, 2002), 
or by rates of other C4 bundle sheath enzymes (Boyd et  al., 
2015), which show species-specific temperature responses 
(Sonawane et al., 2017). This impact is evident in field-grown 
maize, where leaf-level A and yield decline with elevated tem-
perature, even under elevated CO2 conditions (Ruiz-Vera 
et al., 2015).

The duration and intensity of future warming events are both 
projected to change (Hoegh-Guldberg et al., 2018), resulting 
in significant impacts on any potential thermal acclimation of 
A (Kattge and Knorr, 2007; Vico et al., 2019). In sunlit leaves 
near the top of the canopy, photosynthetic acclimation through 
increased electron transport capacity, differential expression of 

Rca isoforms, and heat shock protein expression can occur 
with long-term growth at warmer temperatures (Yamori et al., 
2014). However, short-term temperature increases can increase 
leaf respiration, resulting in lower A compared with those at 
ambient temperature, and a strong and relatively rapid accli-
mation response that reduces the effect as higher temperatures 
persist (Way and Yamori, 2014; Kumarathunge et  al., 2019). 
During heatwaves or acute heat stress, defined by sudden in-
creases in temperature (Smith and Dukes, 2017) with signifi-
cant but reversible effects on photosynthesis (Siebers et  al., 
2015, 2017; Thomey et  al., 2019), the acclimation responses 
may be too slow or small to confer a measurable benefit. In 
these situations, energy balances will shift as rates of photosyn-
thesis decline above the Topt and respiration rates increase (Fig. 
2C). Thus, most opportunities for improving crop productivity 
in a warmer world focus on improving photosynthetic carbon 
gain above Topt.

Recent advances made at the leaf level to improve 
understanding on temperature effects

The response of A to a wide range of environmental conditions 
is well understood based on the leaf model of photosynthesis 
(Farquhar et  al., 1980; Long, 1991). Despite the mechanistic 
understanding of modelled predictions, there remain signifi-
cant uncertainties. For example, the leaf photosynthesis model 
(Farquhar et al., 1980) was recently parameterized using values 
measured from C3 plants grown under field conditions ex-
posed to supplemental heating (Bagley et  al., 2015). The re-
sults demonstrate that growth at higher temperatures does not 
translate to a higher Topt but does lower photosynthetic rates 
at all temperatures. An interaction between warmer tempera-
ture and elevated [CO2] was observed; however, acclimation 
of photosynthetic enzymatic activity to higher temperature 
negatively impacted the benefit of higher CO2 (Fig. 3) (Bagley 
et al., 2015). These results demonstrate the challenges associ-
ated with temperature, namely that short- and long-term re-
sponses of photosynthesis are complex and are complicated by 
other environmental variables.

Despite the complex interaction between temperature and 
photosynthesis, promising strategies have been identified to 
increase photosynthetic A at higher temperatures by either 
enhancing RuBP carboxylation or improving energy efficiency 
of photorespiration. The limitations imposed by Rubisco in-
clude a slow catalytic rate, competitive inhibition by O2, and 
activation requirement via heat-sensitive Rca. Strategies to im-
prove our understanding of Rubisco are needed to overcome 
these temperature impacts.

Rubisco has long been a target for modification to im-
prove its catalytic rate and substrate specificity (Somerville 
and Ogren, 1982; Zhu et al., 2004; Sharwood, 2017). For ex-
ample, an apparent trade-off between catalytic rate and speci-
ficity hinders progress for exploitation (Tcherkez et al., 2006; 
Savir et al., 2010; Flamholz et al., 2019). Recently, a systematic 
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survey of prokaryotic Rubisco has identified the fastest ver-
sion of the enzyme measured to date (22 s–1), but it still dis-
plays characteristically poor substrate specificity (Davidi et al., 
2020). Screening for natural variation in Rubisco performance 
has uncovered kinetic diversity among land plants that would 
confer a predicted benefit to crop A, particularly at elevated 
temperatures (Galmés et al., 2015; Orr et al., 2016; Sharwood 
et  al., 2016). Unique combinations of Rubisco small and 
large subunits from different species also provide an oppor-
tunity to optimize kinetic performance at higher temperatures 
(Lin et al., 2020; Martin-Avila et al., 2020; Sakoda et al., 2020). 
Finally, the newfound ability to assemble plant Rubisco in a 
bacterial host will enable both structure–function comparisons 
and directed evolution studies to identify novel mutations to 
improve Rubisco performance (Aigner et al., 2017; Zhou and 
Whitney, 2019).

Rca regulates Rubisco activity by displacing inhibitory 
sugar phosphates from the catalytic site of Rubisco. Although 
Rubisco remains active up to 50  °C in vitro, Rca activity 
declines well below this temperature (Salvucci and Crafts-
Brandner, 2004; Galmés et  al., 2016), and thus can limit 
photosynthesis at high temperatures. The production of in-
hibitory catalytic misfire products increases with tempera-
ture, implying that the role of Rca also becomes increasingly 
important. However, when measured in vitro, the rate of 
spontaneous release of these inhibitors also increases at ele-
vated temperatures, resulting in less inhibition of Rubisco 
activity, which contradicts this assumption (Schrader et  al., 
2006; Carmo-Silva et al., 2015; Bracher et al., 2017). Despite 
this, manipulating Rca thermostability has improved photo-
synthetic thermotolerance in Arabidopsis (Kurek et al., 2007; 

Kumar et al., 2009) and rice (Wang et al., 2010; Scafaro et al., 
2016, 2018; Shivhare and Mueller-Cajar, 2017), motivating 
research efforts to enhance the thermotolerance of Rca in 
other crops. Exploiting temperature-induced differential 
expression of Rca is a potential strategy to accomplish this 
objective. In many crops, Rca consists of multiple protein 
isoforms with differing heat sensitivity (Crafts-Brandner 
et al., 1997; Law et al., 2001; Law and Crafts-Brandner, 2001; 
Carmo-Silva et al., 2015; Scafaro et al., 2019; Kim et al., 2020). 
In bread wheat, altered thermal tolerance between Rca 
isoforms is conferred by a single amino acid substitution that 
acts as a thermal and regulatory switch, providing a compel-
ling target for future genome editing efforts (Scafaro et  al., 
2019; Degen et al., 2020).

The photorespiratory pathway recycles the inhibitory 
by-products of Rubisco oxygenation, which releases previ-
ously fixed carbon and ammonium that is energetically costly 
to re-fix. Photorespiratory CO2 loss limits productivity in C3 
plants, reducing crop yields by >20% in soy and wheat (Walker 
et  al., 2016). Engineering carbon-concentrating mechanisms 
(CCMs) to directly increase the [CO2] at the site of Rubisco 
represents one strategy for stimulating carboxylation over oxy-
genation (Long et  al., 2018; Atkinson et  al., 2020). This can 
be accomplished via the introduction of a biophysical CCM, 
such as those found in cyanobacteria and algae (Hennacy and 
Jonikas, 2020), or via the conversion of C3 photosynthesis to 
C4 or C2 types. Researchers have recently established a func-
tioning C4 pathway in rice by transformation with a single con-
struct harbouring coding sequences for five enzymes, although 
expression will require optimization before any benefit is real-
ized (Ermakova et al., 2020). Engineering C2 photosynthesis, 
a simple CCM that captures, concentrates, and re-assimilates 
photorespired CO2, is a promising approach currently in its 
infancy. An advantage of C2 photosynthesis is the ability to ex-
ploit native genes and alter only their regulation and expression, 
as all required genes are present in C3 species (Lundgren, 2020). 
Finally, direct manipulations of the photorespiratory pathway 
can lower the cost of photorespiration. Overexpression of native 
photorespiratory genes can enhance A and growth, probably 
altering the balance between photosynthesis and photorespir-
ation (Timm et al., 2012, 2015, 2018; Flügel et al., 2017; López-
Calcagno et al., 2019). Synthetic glycolate metabolic pathways 
using enzymes from other organisms in combination with 
RNAi to limit glycolate flux through the native pathway in-
crease tobacco biomass under field-grown conditions (South 
et al., 2019). Similarly, an alternative photorespiratory pathway 
introduced into rice using three rice enzymes improved A, 
leading to increased aboveground biomass, but displayed in-
consistent improvements in yield (Shen et al., 2019). Further 
carbon-conserving glycolate metabolic pathways have also 
been designed and tested in vitro (Trudeau et  al., 2018; Ross 
et al., 2020). While these and the previous strategies to enhance 
photosynthetic performance above the Topt hold potential to 
improve crop performance, testing in food and fuel crops over 

Fig. 3. Temperature response of C3 leaf photosynthesis (μmol m–2 s–1) 
modelled at atmospheric [CO2] of 400 (solid lines), 600 (dotted lined), 
and 800 (dashed lines) μmol mol-–1. Model parameters were taken 
from Bernacchi et al. (2001, 2003, black circles) and Long (1991, 
green triangles), with the symbol location on the curve representing the 
temperature optimum for each photosynthetic response curve. The figure 
has been redrawn from Bagley et al. (2015), with permission.
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diverse environmental ranges will provide the key validation of 
their efficacy.

Temperature impacts on stomata and plant 
transport systems

Scaling the response of plant photosynthesis, from the chloro-
plast to leaf or whole plant, involves CO2 diffusion to the site 
of the chloroplast, as well as subsequent photosynthate trans-
port throughout the plant. To reach the site of carboxylation 
within chloroplasts, CO2 must first diffuse from the atmos-
phere to the substomatal cavities, then through the intercellular 
airspaces to the chloroplast. This gaseous diffusion imposes a 
restriction on CO2 availability in the chloroplast that depends 
on the CO2 conductance through the leaf boundary layer, sto-
mata, and intercellular environment (i.e. mesophyll conduct-
ance). The temperature response of mesophyll conductance 
varies between species, and can impose a limitation on carbon 
fixation, which has been well reviewed (Niinemets et al., 2009; 
Flexas et al., 2012, 2014; von Caemmerer and Evans, 2015). In 
this section, we discuss temperature impacts on stomata, as well 
as the plant transport systems that move photosynthate from 
leaves to other parts of the plant for growth, maintenance, and 
storage.

How stomatal function links leaf to whole-plant 
photosynthesis

Stomata control the majority of gaseous exchange between the 
atmosphere and the leaf interior. Therefore, stomatal behav-
iour is critically important for CO2 uptake to meet photosyn-
thetic demand and for controlling leaf water loss that impacts 
evaporative cooling, nutrient uptake, and plant water status 
(Lawson et  al., 2010; Matthews and Lawson, 2019; Lawson 
and Matthews, 2020). Stomata open and close in response to 
various environmental signals and internal leaf conditions. In 
general, conditions of high or increasing light intensity, low 
(internal) [CO2], and low VPD open stomata, whilst closure is 
observed under opposite conditions (Matthews and Lawson, 
2019). Stomatal conductance (gs) provides a measure of the 
capacity for gaseous exchange of water vapour leaving the leaf 
(Table 1), and is determined by the number of stomata per unit 
leaf area and the size of the pore aperture. Thus, alterations in 
both leaf morphological features and leaf functional responses 
to external meteorological forcing can influence gs, which in 
turn can impact photosynthesis and overall crop performance.

According to the optimization hypothesis, plants coord-
inate gs and A to maximize A whilst minimizing water loss 
(Cowan and Farquhar, 1977; Lawson et al., 2010; Buckley et al., 
2017). However, this is not always the case, as a decoupling 
between gs and A has been reported (von Caemmerer and 
Evans, 2015; Urban et al., 2017), whereby stomata open to in-
crease leaf cooling despite the suppression of A (Drake et al., 

2018). A positive correlation between steady-state gs and yield 
has been observed in the field (Fischer et  al., 1998; Fischer 
and Rebetzke, 2018), reflecting the control stomata exert on 
CO2 uptake for photosynthesis and on evaporative cooling. 
Temperature can severely limit stomatal performance and con-
sequently yield, especially in temperature-sensitive crops such 
as wheat, where evaporative cooling to maintain Topt can be 
more important than removal of diffusional constraints for 
photosynthesis (Fischer et al., 1998; Lu et al., 1998). The same 
environmental cues that stimulate changes in stomatal aper-
ture can also induce alterations to the stomatal density (SD) 
per unit leaf area and their distribution across the leaf (Weyers 
et al., 1997; Weyers and Lawson, 1997), which impacts gs with 
implications for A. Changes in one anatomical trait (i.e. SD) 
are often compensated for by modifications in another (i.e. sto-
matal size), with many studies reporting a strong negative cor-
relation between SD and size (e.g. Drake et al., 2013). However, 
while this relationship appears in closely related species (Faralli 
et  al., 2019), it does not hold across multiple diverse species 
(McAusland et al., 2016).

One of the most well-studied impacts of environment 
on stomatal numbers is atmospheric [CO2], which has been 
demonstrated to decrease SD with increasing [CO2] in a 
number of different species (Hetherington and Woodward, 
2003), including several major cropping systems (Ainsworth 
and Rogers, 2007). Global warming associated with rising 
[CO2] has been shown to increase SD in several crop spe-
cies (Rodrigues et al., 2016; Caine et al., 2019) including soy-
bean (Jumrani et al., 2017), tobacco (Hu et al., 2014), and grape 
(Rogiers et al., 2011), often with concurrent decreases in sto-
matal size (Rodrigues et al., 2016), although no effect was re-
ported for maize (Zheng et al., 2013). However, such changes 
in anatomy (i.e. SD or guard cell length) do not necessarily 
translate into differences in gs, and vice versa (Rodrigues et al., 
2016; Kapadiya et al., 2017), illustrating the importance of con-
sidering both functional responses and anatomical alterations 
with growth temperature.

Stomatal behavioural responses to elevated 
temperature

Whilst higher temperatures can disrupt a number of metabolic 
processes, including those that take place in the guard cells, 
stomatal response to high temperatures is often complicated by 
the fact that temperature also affects photosynthesis, VPD, tran-
spiration, and plant water status, which all feed back on sto-
matal behaviour (Urban et al., 2017). Changes in temperature 
alter VPD (see Scaling from plants to ecosystem), which sub-
sequently alters transpiration as stomata respond to the change 
in atmospheric dryness (e.g. Brodribb and McAdam, 2011; 
Merilo et  al., 2018). Higher VPD increases the leaf–atmos-
phere diffusion gradient, driving greater water loss and trig-
gering stomatal closure to maintain plant water status (Mott 
and Peak, 2013). The actual mechanisms for stomatal response 
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to VPD are still not fully elucidated, except for a broad classi-
fication into two hydraulic responses: active and passive (Xie 
et al., 2006; Chater et al., 2011; Bauer et al., 2013; Franks, 2013; 
McAdam and Brodribb, 2014).

Studies examining stomatal responses specifically to tem-
perature have received less attention than those focusing on 
other environmental factors (Way, 2011; Teskey et  al., 2015), 
and the findings are highly variable between species (Sage and 
Kubien, 2007; Matthews and Lawson, 2019). gs has a mixed 
response with rising temperature across crop species (Schulze 
et al., 1975; Lu et al., 2000; von Caemmerer and Evans, 2015; 
Urban et al., 2017), with an increase in gs of 163% observed in 
maize (Zheng et al., 2013), yet a decrease (Sage and Sharkey, 
1987; Raven et al., 2005) or no effect on gs at all with increased 
temperature reported in other crops (Sage and Sharkey, 1987; 
Aphalo and Jarvis, 1991; von Caemmerer and Evans, 2015). 
Generalizing stomatal response to changes in leaf temperature 
is complicated by interactions between temperature and VPD, 
but also by the non-linearity in responses, often described as 
bell shaped (Fig. 4) (Way, 2011; Matthews and Lawson, 2019). 
gs tends to increase with temperature up to a tipping point 
(Way, 2011; Tricker et  al., 2018) before rapidly decreasing at 
greater temperatures (Šantrůcek and Sage, 1996), and can in-
crease again if stomata reopen at very high temperatures (Fig. 
4). The temperature where stomata commence closure in the 
bell-shaped response is species specific and dependent on the 
growth temperature conditions (Sage and Sharkey, 1987). It 
is likely that this variation can be explained by differences in 
hydraulic conductance and temperature effects on viscosity 
(Cochard et  al., 2000), as well as photosynthetic demand 
(Šantrůcek and Sage, 1996).

Heat stress induces responses in gs that vary genotypically 
(Zhou et al., 2017; Ferguson et al., 2020); however, whether this 
variation in gs can be linked to heat sensitivity levels remains 
unclear. Plants can also acclimate to different growth temper-
atures, resulting in lower stomatal sensitivity to short-term (i.e. 
minutes) changes in ambient temperature (e.g. Šantrůcek and 
Sage, 1996). Under different growth temperatures, the gs re-
sponse that plants exhibit can be a similar shape, though the 
magnitude can vary greatly (Yamori et al., 2006; Way, 2011).

Increased gs values at higher temperatures will benefit plant 
performance by removing diffusional constraints on CO2 dif-
fusion into the leaf, and the resulting increase in intercellular 
CO2 will help to reduce the negative impact of increased photo-
respiration at higher leaf temperatures (see previous section). 
Additionally, higher gs will facilitate enhanced transpiration 
and evaporative cooling, which will support the maintenance 
of leaf temperature closer to the Topt for photosynthesis, fur-
ther reducing photorespiratory processes (Urban et al., 2017). 
However, the increased water loss through higher gs can com-
promise plant water status (Matthews and Lawson, 2019) 
which, depending on the degree of water stress, could be det-
rimental to plant performance and growth. Furthermore, high 

atmospheric temperatures often occur in conjunction with re-
duced water availability, so stomatal temperature responses are 
linked closely not only with VPD but also with drought and 
water potential (Urban et al., 2017). Stomata close when water 
becomes limiting to avoid catastrophic water loss, even when 
demands for photosynthesis are high, demonstrating the hier-
archal response of one signal over-riding others. As gs decreases 
with rising temperature and/or limited water availability, leaf 
temperature will further increase due to reduced evaporative 
cooling, leading to metabolic disruptions (Tezara et al., 1999; 
Perdomo et al., 2017), and lower photosynthesis from restricted 
CO2 diffusion (Chaves et al., 2003).

Advancements needed to improve stomatal resilience 
to heat stress

Manipulation of stomatal anatomy and metabolism has been 
suggested as a potential mechanism for crop improvement 
under adverse environmental conditions. SD has been altered 
via manipulating the stomatal development pathway, which 
can be achieved by focusing on the epidermal patterning 
factor family of transcription factors (EPFs). Many studies sug-
gest that decreasing SD will reduce water loss and improve 
water use efficiency (Hughes et al., 2017; Caine et al., 2019), 
but this could also increase leaf temperatures. However, rice 
with reduced SD (due to increased expression of osEPF1) 
showed reduced water use that resulted in lower leaf tempera-
ture relative to wild-type controls under drought stress (Caine 
et al., 2019). Conversely, overexpression of EPF9/Stomagen re-
sults in increased gs and A, but at the expense of water use ef-
ficiency (Tanaka et al., 2013). Masle et al. (2005) demonstrated 
in Arabidopsis that the ERECTA gene not only influenced 
SD (and subsequently gs), but also the coordination between A 
and gs, which offers the potential to manipulate transpiration 
efficiency. Thus, it would be interesting to explore the potential 
of these mutants under different water, temperature, and VPD 
stress conditions (Lawson et al., 2014).

Manipulating guard cell metabolism or signalling pathways 
is an alternative and mostly unexplored avenue for future con-
sideration (Lawson and Blatt, 2014; Lawson et al., 2014). For 
example, Hettenhausen et al. (2012) manipulated a mitogen-
activated protein kinase, MPK4, in tobacco that results in in-
creased gs, whilst overexpression of aquaporins in rice and 
grapevine increases gs and A under both stress and non-stress 
conditions (Hanba et  al., 2004; Sade et  al., 2010). There are 
many other examples where components of guard cell osmo-
regulation and/or mesophyll metabolism have altered stomatal 
function (see table 1 in Matthews and Lawson, 2019) that pro-
vide a mostly unexploited genetic reservoir of material to ex-
plore for manipulating stomatal behaviour to cope with global 
warming. Altogether, these studies suggest that manipulation of 
stomatal anatomy and function could be a promising path to 
increase evaporative cooling as a strategy to cope with future 
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climate conditions, but this may increase water requirements as 
a consequence.

The detrimental effect of elevated temperature is often as-
sociated with impacts on leaf biochemistry; however, for some 
crops, the main cause of decreased yield is due to high tem-
perature during the reproductive stage of growth (Akter and 

Islam, 2017). Therefore, manipulating SD and stomatal function 
in non-foliar tissue may also be an important and overlooked 
route for reducing temperature stress at key times (Simkin 
et al., 2020). Furthermore, the function of stomata in both fo-
liar and non-foliar tissue and the role they play in translocation 
of photosynthate from source to sink tissues, including grain 

Fig. 4. Impact of temperature on changes in stomatal conductance and response in major cropping systems. Highlighted is a generic response of 
stomatal conductance (gs) across a temperature range (red line); optimal temperature ranges for major global crop types (two-headed arrows), including 
critical temperatures when biomass and yield are significantly reduced (dots). Reproduced with permission from Matthews and Lawson (2019).
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yield, is often ignored, as bulk flow within the phloem requires 
bulk flow of water in the xylem, which is a direct result of 
transpirational water loss that is ultimately controlled by sto-
mata. Additionally, coordination between SD and minor vein 
density, which is a principle determinant of leaf hydraulic cap-
acity (Brodribb et al., 2007), has been observed in many species 
contributing to the balance between leaf water supply and de-
mand (W.-L. Zhao et al., 2017). The effect of rising tempera-
ture on this relationship requires further investigation, since 
trends differ across species (Hu et al., 2014; Yang et al., 2020).

Temperature impacts on source to sink allocation and 
phloem transport

Carbohydrate translocation from photosynthetic source tis-
sues (sources) to non-photosynthetic sink tissues (sinks) via the 
phloem is critical for vegetative and reproductive development, 
and ultimately crop yield. Alterations in plant source–sink 
balances, often induced by environmental stress such as high 
temperature, can impair carbohydrate allocation and nega-
tively impact photosynthetic capacity and yield. Generally, heat 
stress decreases photosynthetic efficiency while increasing res-
piration and photorespiration rates (see earlier) and can affect 
reproductive development (Prasad et al., 2017; Ferguson et al., 
2021), which shifts the dynamics between sources and sinks. 
Thus, a better understanding of these mechanisms is crucial to 
maintain crop productivity in a warmer world.

Alongside reduced photosynthesis, declines in leaf non-
structural carbohydrate (NSC) contents have been reported 
in several crop species (including soybean, chickpea, castor 
bean, and maize) with short-term (≤7 d) exposure to heat 
stress (Kaushal et al., 2013; Ribeiro et al., 2014; Sun et al., 2016; 
Thomey et al., 2019). In tomato, maintained or higher levels 
of NSC in mature leaves were associated with heat tolerance 
under short-term heat stress (Zhou et al., 2017), which could 
help fuel increased respiration (Ferguson et al., 2021). However, 
under longer term heat stress, NSC accumulation in leaves and 
stems (tomato and rice, Zhang et al., 2012; Zhang et al., 2018) 
decreases root to shoot biomass ratio (castor bean, Ribeiro et al., 
2014), and the reduced carbon export rate from leaves suggests 
a reduction in carbohydrate export towards sinks (maize, Suwa 
et al., 2010). Carbohydrate accumulation in mesophyll cells has 
been linked to down-regulation of photosynthetic capacity via 
negative feedback on Rubisco content and activity (Moore 
et al., 1999; Long et al., 2004). Yet any potential regulatory role 
for leaf carbohydrate accumulation observed during long-term 
heat stress remains unclear, due to the direct impact of tem-
perature on Rubisco (see earlier).

Remobilization of NSCs stored in intermediate sinks, such as 
stems, contributes to grain allocation especially in cereal crops, 
and could help compensate for reduced A when heat stress oc-
curs at certain development stages (Fig. 5) (Blum et al., 1994; 
Morita and Nakano, 2011; Zamani et al., 2014; Xu et al., 2020; 
Zhen et al., 2020; Ferguson et al., 2021). However, heat stress 

can also reduce stem NSC translocation efficiency decreasing 
yield further (Zamani et al., 2014; Zhen et al., 2020). Together, 
these studies suggest a negative impact of heat stress on carbo-
hydrate translocation, especially towards the reproductive sinks, 
which highlights the importance of maintaining these func-
tions to preserve yield in resilient crop cultivars.

Various modifications in phloem structure and function, 
which may affect carbohydrate transport and allocation in re-
sponse to elevated temperature and heat stress, have been de-
scribed in several crop species (Fig. 5). At a biochemical level, 
intraspecific variation in rice shows that maintained or in-
creased expression of sucrose transporters in leaves, stems, and 
grains is related to heat tolerance (Miyazaki et al., 2013; Phan 
et  al., 2013; Zhang et  al., 2018; Yaliang et  al., 2020), particu-
larly for transporters thought to be involved in phloem loading 
and apoplastic sucrose retrieval along the transport pathway 
(Scofield et al., 2007; Julius et al., 2017). These findings suggest 
that sucrose transporters are promising targets to develop heat-
resilient crop cultivars. Invertases and sucrose synthases may 
also be interesting targets for crop improvement under heat 
stress (Julius et  al., 2017; Xu et  al., 2020). By catalysing su-
crose degradation in sinks, they increase the amount of sucrose 
being unloaded from the phloem into these sinks. Increased 
or maintained expression and/or activity of invertases and su-
crose synthases in reproductive sinks has been linked to heat 

Fig. 5. Structural and functional attributes that make a crop plant more 
susceptible (left) or tolerant (right) to heat stress. Numbers indicate the 
following: (1) higher invertase activity in spike/grain to maintain or increase 
carbohydrate import; (ii) remobilization of non-structural carbohydrates 
from the stems towards the spike/grain; (iii) short/erect flag leaf avoids 
direct light penetration and scorching, and has higher sucrose transporter 
expression to help maintain phloem loading and carbohydrate allocation 
to non-photosynthetic tissues; (iv) short/erect leaves avoid direct heat 
exposure, with angled leaves allowing light penetration lower into the 
canopy to help keep all leaves closer to temperature optimum; waxy 
leaves also help reduce water loss; (5) extra tillers and leaves to help 
maintain green leaf area and delay senescence; (6) more roots that reach 
deeper to access more soil moisture; (7) concentrated chlorophyll in the 
‘sweet spot’ (i.e. not all in the top leaves) to improve leaf temperature 
optima; and (8) increased leaf stomatal density to improve CO2 entry into 
the leaves.
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tolerance in several crop species including rice, tomato, and 
chickpea (Pressman et al., 2006; Li et al., 2012; Kaushal et al., 
2013; Phan et al., 2013; Li et al., 2015; Bahuguna et al., 2017; 
Rezaul et al., 2019; Yaliang et al., 2020). With photosynthetic 
improvements to heat stress, the enzymes involved in sucrose 
transport and metabolism may become increasingly important 
for ensuring increased photosynthates reach vegetative and 
reproductive sinks.

At a structural level, deposition of callose (a polysaccharide) 
and protein conformational change were observed in broad 
bean phloem following heat shock, resulting in blocked phloem 
transport (Furch et al., 2007). Heat-triggered callose deposition 
was also found in rice leaf and sheath plasmodesmata, espe-
cially in a heat-sensitive mutant with impaired carbohydrate 
translocation, potentially blocking phloem loading and/or un-
loading (Zhang et  al., 2018). The underlying mechanisms of 
callose deposition in phloem under heat stress still need further 
investigation. Additionally, phloem anatomical features, such as 
the number and cross-sectional area of phloem cells, are correl-
ated with photosynthetic capacity and environmental condi-
tions (Cohu et al., 2014; Muller et al., 2014; Adams et al., 2016; 
Stewart et al., 2016). Elevated temperature decreased phloem 
cell number and area in an Arabidopsis ecotype from a cool cli-
mate, correlating with reduced photosynthetic capacity com-
pared with growth at lower temperature (Adams et al., 2016; 
Stewart et al., 2016). This highlights the need for comparative 
studies in major food and fuel crops to inform acclimation 
potential to elevated temperatures, and identify anatomical fea-
tures to select for future crop varieties.

Adding complexity: leaf interactions 
influence whole-plant responses to 
temperature

Scaling from enzymes functioning within a single leaf to a 
collective of leaves that make up a single plant adds a layer 
of complexity to the relationship between temperature and 
photosynthesis. The interaction of individual leaves within 
and among plants modifies the microclimate or phylloclimate 
(Chelle, 2005), causing variation in individual leaf temperat-
ures within a crop plant. Leaf temperature depends on the leaf 
energy balance, including radiation, convection, and transpir-
ation processes (Jones, 1993; Lambers et al., 1998). Shading of 
lower leaves by leaves higher in the canopy drives exponential 
declines in light availability in crop canopies (Monteith, 1965), 
while leaves and stems present physical barriers to wind, redu-
cing wind speed with canopy depth (Jacobs et al., 1995). Air 
temperature, VPD, and [CO2] profiles influence gas exchange 
between the plant and the atmosphere. Thus, the interactions 
among all of these variables influence leaf temperature profiles 
with canopy depth.

Improving whole-plant photosynthesis has focused on the 
plant ‘ideotype’ that best intercepts light for optimal photon 

capture and utilization by light-harvesting complexes (Long 
et al., 2006b; Ort and Melis, 2011). While temperature effects 
are usually secondary to optimal photon capture, work to im-
prove light distribution within plant canopies may alleviate 
some of the limitations posed by plant temperature gradients 
(Fig. 5). Modelling suggests that less light absorption by upper 
canopy leaves could result in cooler leaf temperatures at the 
top of the plant (Drewry et al., 2014), allowing those leaves to 
operate nearer Topt, which would be especially beneficial under 
heat stress conditions when gs is limited. Shifting a greater pro-
portion of photosynthesis to the lower canopy where wind 
speeds are lower and humidity is higher could also increase 
water use efficiency (Drewry et al., 2014). However, the effects 
on leaf temperature remain uncertain.

How a crop plant develops under heat stress and what 
this means for photosynthesis and yield

While leaf temperatures higher than Topt directly affect whole-
plant photosynthesis, they also have indirect impacts at plant 
and canopy scales across all stages of a plant’s life cycle. During 
the vegetative stage, deviation from a Topt alters plant devel-
opment and subsequently limits A for biomass accumulation. 
Heat stress reduces germination, seedling vigour, and establish-
ment in soybean and cowpea (Covell et al., 1986), and radicle 
elongation in rice (Han et al., 2009). In maize, extreme heat 
reduces, and can completely halt, coleoptile growth (Weaich 
et  al., 1996). After plant establishment, heat stress can pre-
vent leaf development (i.e. cassava, Burns et al., 2010), thereby 
preventing leaf area accumulation for photosynthetic gain to 
the plant canopy (Fig. 5). For example, daytime temperatures 
>33 °C and high night-time temperatures reduce leaf emer-
gence and tillering in rice, thereby reducing plant biomass 
(Chaudhary and Ghildyal, 1970; Fahad et al., 2016a).

Heat damage to leaf photosynthetic pigments reduces photo-
synthetic efficiency during vegetative growth, which impacts 
biomass accumulation and development to reduce crop yield. 
For example, temperatures >35  °C negatively impact maize 
biomass accumulation due to degradation of chlorophyll, con-
sequently reducing photosynthetic light absorption (Hatfield 
et al., 2011; Hussain et al., 2019). Premature loss of leaf chloro-
phyll due to heat stress accelerates mobilization of photosyn-
thate to newer leaves and triggers early maturity of the whole 
plant (Nooden, 1986). This drives a shorter plant life cycle and 
reduces the grain-filling window—a critical yield determinant 
period for cereal plants. Heat-induced reductions in life cycle 
length have caused grain yield reduction in wheat (Camp et al., 
1982; Nicolas et al., 1984; Reynolds et al., 1994; Benbella and 
Paulsen, 1998), rice (Fahad et al., 2016b), and maize (Ruiz-Vera 
et al., 2015).

Photosynthate availability and transport capacity from source 
tissues to reproductive tissues may also affect reproductive de-
velopment (see above). For example, in some maize hybrids, 
kernel number and kernel weight correspond to source 
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capacity during grain filling, suggesting that these yield com-
ponents may be limited by photosynthate supply even under 
non-stressed conditions (Cerrudo et al., 2013). Therefore, det-
rimental effects of heat stress on leaf photosynthesis probably 
further impair grain development and yield where grain sink 
strength is high (Fig. 5). As discussed above, heat stress may also 
impair photosynthate transport between crop source and sink 
tissues (Suwa et  al., 2010; Bagley et  al., 2015). These studies 
emphasize the need for sufficient production of sugars through 
photosynthesis and maintenance of their transport, especially 
during heat stress. Although beyond the scope of this review, 
direct impacts of high temperature on reproductive structures 
also play a critical role in determining crop yields and will 
require engineering for greater tolerance to heat stress to en-
sure sufficient sink size for enhanced photosynthate produc-
tion and transport (Barnabás et al., 2008; Ruiz-Vera et al., 2015; 
Ferguson et al., 2021).

Recent advances made at the plant level to improve 
understanding of temperature effects

Developing plant mechanisms to cope with heat stress is 
complicated by interacting climate factors and the geograph-
ical variability forecast for temperature (Long and Ort, 2010; 
Hoegh-Guldberg et al., 2018), with heat stress responses greatly 
influenced by region and environmental conditions. Further, 
a combination of traits and agronomic manipulations deter-
mine heat stress tolerance. The determination of heat-tolerant 
crop ‘ideotypes’ is a challenge for plant breeders, and has driven 
a push to locate quantitative trait loci (QTLs) and genetic 
markers for photosynthetic heat tolerance (Azam et al., 2014; 
Sharma et al., 2017). While progress has been made, searching 
for QTLs is a substantial task, given the combination of chan-
ging variables throughout a plant life cycle and the challenges 
in genotyping and phenotyping large germplasm sets at dif-
ferent growth stages.

Plant phenotyping may provide a quicker means of 
detecting plant heat stress responses given recent technological 
advances (Furbank et al., 2019; Furbank and Tester, 2011; Gao 
et al., 2020). For example, plant temperature stress causes sto-
matal responses detectable with thermal imaging (Stoll and 
Jones, 2007; Prashar and Jones, 2014) and visible scorching 
and damage detectable with red–green–blue imaging (Elazab 
et al., 2016). Photosynthetic responses are also detectable with 
chlorophyll fluorescence (Sharma et al., 2012; Jedmowski and 
Brüggemann, 2015) and hyperspectral analysis (Dobrowski 
et al., 2005). At the plant scale, recent advancements in field 
phenotyping have seen hyperspectral analysis used to pre-
dict photosynthetic capacity in field trials (Serbin et al., 2012; 
Yendrek et al., 2017; Silva-Perez et al., 2018; Fu et al., 2019, 
2020; Furbank et  al., 2019; Meacham-Hensold et  al., 2019, 
2020). Using these phenotyping tools to screen genetically 
targeted germplasm is required to target heat-tolerant traits 
for breeders.

Scaling from the leaf to the whole-plant level in translation 
of heat stress traits at a higher resolution remains an additional 
challenge. At the plant level, temperature responses are closely 
linked with irradiance profiles. Recent advances in functional 
and structural plant modelling (FSPM) (Vos et al., 2010; Evers 
et al., 2018) offer scope for deconstructing the relationship be-
tween irradiance gradients on whole-plant temperature pro-
files to pinpoint Topt for leaves at different plant canopy layers. 
The greater challenge in creating heat-resistant crops is pairing 
whole-plant FSPM, which considers leaf-level physiology to 
suggest heat-tolerant plant ideotypes, with tools to phenotype 
for genetic heat-tolerant markers across a range of species and 
environmental conditions.

Scaling from plants to ecosystem 
reinforces the complex relationship 
between temperature and photosynthesis

The effects of temperature on enzyme, leaf, and plant scales 
compound to impact crop photosynthesis and productivity at 
the ecosystem scale. This is due to the additive responses to 
the microclimate of all leaves and plants that make up a crop 
ecosystem (Bagley et al., 2015). The microclimate impacts crop 
productivity through the effects of atmospheric turbulence 
and wind changing the temperature, humidity, and light envir-
onment experienced by leaves at different heights within the 
canopy (Cleugh, 1998). While the speed at which a cropping 
system can respond to changes in light can reduce ecosystem 
photosynthesis (Kromdijk et  al., 2016; Morales and Kaiser, 
2020), increases in temperature are a crucial driver reducing 
photosynthesis and yields across the major cropping varieties 
(Lobell et al., 2014; Asseng et al., 2015; Liu et al., 2016; C. Zhao 
et al., 2017), and will be the focus of this section.

A key mechanism controlling the reduction in ecosystem 
photosynthesis at higher temperature is the link with atmos-
pheric VPD (Bernacchi and VanLoocke, 2015). The amount of 
water vapour which air can hold at saturation (es) increases 
with temperature, while the actual water vapour of air at any 
given time (ea) remains relatively constant, resulting in in-
creased atmospheric VPD—the difference between es and ea 
(Bernacchi and VanLoocke, 2015; Ficklin and Novick, 2017). 
Increasing atmospheric VPD has a feedback effect on plants, 
particularly on the stomata, whereby a drier atmosphere exerts 
a stronger pull on water from within leaves during photosyn-
thesis (Lawson and Vialet-Chabrand, 2019). As discussed earlier, 
crops can close their stomata to conserve water, but this comes 
at the cost of photosynthesis, which reduces yield at the eco-
system scale if relied upon too often during the growing season.

Early lessons from FACE (Table 1) studies suggest that crop 
photosynthesis would be enhanced with higher [CO2], and 
water loss would decline with lower gs (Leakey et  al., 2009). 
A recent update of the literature has confirmed that these con-
clusions hold for C3 and C4 crops (Ainsworth and Long, 2020). 
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However, when FACE systems were coupled with increased 
temperature (T-FACE), canopy warming and periodic heat 
stress caused an acceleration in maize and soybean crop devel-
opment and often decreased yield (Siebers et al., 2015; Ruiz-
Vera et al., 2018), particularly when higher temperatures were 
coupled with water deficit (Gray et al., 2016). Even without 
supplemental heating through experimentation, hotter and 
drier growing seasons reduced wheat yield grown under FACE 
relative to FACE-grown plants under ‘typical’ growing sea-
sons (Fitzgerald et al., 2016; Macabuhay et al., 2018). However, 
mixed results have been reported for rice grown at elevated 
temperature, probably due to latitudinal differences in average 
temperature maxima impacting rice grown in the tropics more 
than at higher latitudes (Lesk et al., 2016; Usui et al., 2016).

Crops grown under well-watered conditions can afford to 
maintain high A under elevated temperature for longer than 
crops grown under water stress (Fitzgerald et al., 2016). In re-
gions of the world where increasing temperature is coupled 
with increasing rainfall, drought and heat stress impacts on crop 
photosynthesis and productivity may be minimized (Tesfaye 
et  al., 2018). However, the timing and duration of rainfall 
events will be critical for determining the effectiveness of in-
creased moisture as a buffer to hotter temperatures. For ex-
ample, in the currently rain-fed and highly productive region 
of the Midwest United States, DeLucia et  al. (2019) project 
that a water limit will be reached for maize productivity due to 
increased atmospheric VPD that will be driven by rising global 
temperature. Lobell et al. (2014) have shown that while maize 
yields have historically been increasing, the crop is very suscep-
tible to drought and VPD stress. This impact on maize yield was 
evident in the 2012 drought experienced by the Midwest US 
during the growing season (Fig. 6). For cropping systems al-
ready reliant on irrigation, changes in mean annual rainfall as-
sociated with a warming world could be catastrophic for future 
yields if water resources become scarce. Shifting cropping sys-
tems that are primarily rain-fed to an irrigation-reliant system 
will place increased pressure on existing hydrological reserves 
to deliver water for agriculture in addition to metropolitan and 
natural systems (DeLucia et al., 2019).

Changes to the by-products of photosynthesis 
associated with rising temperature

Rising temperature at the ecosystem scale also affects carbon 
consumption processes that can impact short-term annual 
yield of cropping systems and their long-term ecological sus-
tainability. For ecosystem-scale carbon cycle concepts, photo-
synthesis is referred to as gross primary productivity (GPP; 
Table 1) (Chapin et  al., 2006). Changes to ecosystem auto-
trophic respiration (RA) and GPP as global temperature in-
creases will be likely to mirror that of the processes described 
earlier, in that photosynthesis has a clear Topt and peak thermal 
response, and RA increases exponentially with rising tempera-
ture until acclimation occurs. However, what is less certain is 

the rate at which heterotrophic respiration (RH) will change 
as temperatures rise, particularly that of soil microbes (Bond-
Lamberty and Thomson, 2010; von Haden et al., 2019). It is 
commonly accepted that ecosystem respiration (ER; combined 
RA and RH) increases with temperature (Lloyd and Taylor, 
1994), and can acclimate under prolonged heat exposure (Way 
and Yamori, 2014). A recent synthesis has suggested that this 
has predictably responded to global warming, though there still 
remains large uncertainty surrounding the RH contribution in 
particular (Bond-Lamberty et al., 2018).

Recent advancements and prospects for monitoring 
crop canopies and improving management responses 
with rising temperature

There is an inherent need for the development of strategies to 
ensure crop productivity with global warming. Current agro-
nomic practices rely on weather and climate forecasts to pre-
dict when cropping systems are likely to require irrigation or 
nutrient application. However, these meteorological services 
lack information on real-time carbon uptake and water loss 
from the cropping system of interest. Such information could 
advance understanding of crop responses to the environment 
and, where possible, lead to informed management decisions 
to minimize losses.

Eddy covariance flux towers monitor ecosystem photosyn-
thesis, along with water use and a suite of common meteoro-
logical measurements including air temperature, solar radiation, 
wind, soil moisture/temperature, and humidity (Baldocchi 
et  al., 2001). Yet, the data require large amounts of post-
processing to generate complete time series for each meas-
ured variable (Isaac et al., 2017; Pastorello et al., 2020). Further, 
GPP is estimated (not measured) as the difference between 
the comparatively smaller net ecosystem exchange (NEE) of 
CO2 as the measured variable and ER estimated using noc-
turnal (Lloyd and Taylor, 1994) or diurnal (Lasslop et al., 2010) 
temperature response functions. While this approach is imper-
fect in many ways, it provides the most reliable and accurate 
means of quantifying, with high temporal precision, the rates 
of photosynthesis and respiration from cropping systems at the 
ecosystem scale.

With >900 sites registered as part of the FLUXNET com-
munity, there still remains a paucity of flux towers providing 
openly available long-term monitoring data (i.e. >5  years) 
from agricultural systems (Baldocchi et al., 2018; Cleverly et al., 
2020; Pastorello et  al., 2020). Increasing the number of flux 
towers operating in cropping systems in key climatic regions of 
the world, and making these data immediately and freely avail-
able through open-access licensing, will be an important step 
for improving current understanding of the wide-scale impact 
of rising temperature on crop ecosystem photosynthesis. The 
capacity to provide measurements of carbon and water fluxes in 
real-time is building (i.e. FluxSuite & SmartFlux from LICOR 
Biosciences, Lincoln, NE, USA or EasyFlux from Campbell 
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Scientific, Logan, UT, USA), but delivering these data in real-
time to land managers, as with weather forecasting, is lacking. 
While FLUXNET data require significant post-processing and 
data corrections, the end result is generally research related. 
Real-time output of fluxes with minimal processing may be 
suitable for land managers to make informed decisions. Given 
the link between ecosystem carbon and water fluxes, and crop 
photosynthetic efficiency and water stress, supplying these data 

in real-time would make a substantial contribution towards 
faster crop stress detection.

Flux tower networks also deliver important ground-truth 
data to validate satellite information that can be used to infer 
crop photosynthesis over landscape, regional, and global scales, 
which flux towers are incapable of completely capturing (i.e. 
measurement region of interest is usually between 200 m2 
and 2000 m2). Satellite data products have typically relied 

Fig. 6. The difference in gross primary productivity (GPP) and annual yield for maize across different climatic years, as indicated by air temperature and 
rainfall. (A–D) were produced using data from Ameriflux site Ui-C using processing protocols from Moore et al. (2020). The years 2013 and 2016 are 
omitted from (D) as these years were under a soybean rotation at the site.
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on the calculation of vegetation indices from surface reflect-
ance information, such as the normalized difference vegeta-
tion index (NDVI; Tucker, 1979), enhanced vegetation index 
(EVI; Huete et al., 2002), and photochemical reflectance index 
(PRI; Gamon et al., 1997) to provide indications of vegetation 
stress. However, these indices depend on changes in vegetation 
greenness to show variation in the index value, after which it 
can be too late to remedy vegetation stress. In addition, the in-
dices typically measure top-of-canopy responses, so changes at 
lower canopy layers are missed.

Improvements in spectral sensing technology have led to the 
development of passive remote sensing of sun-induced chloro-
phyll fluorescence (SIF) as a proxy for real-time monitoring of 
photosynthesis (Meroni et al., 2009; Sun et al., 2017; Frankenberg 
and Berry, 2018). Chlorophyll fluorescence represents one of 
three fates of light energy absorbed by light-harvesting com-
plexes within leaves; the other two being photochemistry and 
heat dissipation (Baker, 2008). Active measurement of chloro-
phyll fluorescence is a commonly used tool in plant physi-
ology research, as these three light use pathways do not operate 
in isolation from each other. Chlorophyll fluorescence yield 
provides useful information on photosynthetic quantum effi-
ciency and heat dissipation, which leads to its use in inferring 
A and in imaging to screen for genetic trait expression in plants 
(Murchie and Lawson, 2013). At scales from the ecosystem to 
globe, passive measurement of chlorophyll fluorescence as SIF 
relies on the spectral emission of SIF surrounding oxygen ab-
sorption bands (O2-A and O2-B) within a narrow spectral 
range (Meroni et al., 2009; Frankenberg and Berry, 2018).

Advancements in SIF monitoring in recent years have rap-
idly expanded, with studies demonstrating a strong correl-
ation between crop GPP at the ecosystem (Miao et al., 2018; 
Wu et al., 2020), regional (Guan et al., 2016), and global scales 
(Guanter et  al., 2014). The relationship between SIF and 
crop GPP has led to the use of SIF in detecting crop stress, 
as the two signals are inherently linked (Zarco-Tejada et  al., 
2012; Camino et al., 2019; Peng et al., 2020). Additional sat-
ellite sensing of land surface evapotranspiration (ET)—the 
ECOsystem Spaceborne Thermal Radiometer Experiment 
on Space Station (ECOSTRESS)—is also being used to as-
sess ecosystem stress on daily time scales (Fisher et al., 2020). 
The combination of SIF and ECOSTRESS satellite products 
has the potential to greatly advance our understanding of eco-
system GPP in relation to ET, and how environmental stresses, 
such as increased temperature and heatwaves, are likely to im-
pact crop productivity at regional to global scales. Granted, 
there still remain several unanswered questions surrounding the 
quantity of information provided by SIF, whether the signal is 
primarily affected by changes in canopy architecture or if it 
is a direct product of biochemistry (Magney et al., 2020). As 
these fundamental questions are answered, and with the add-
ition of new satellite remote-sensing platforms to monitor SIF 
globally at high temporal resolution (i.e. TROPOMI, OCO-
2, and GOME), SIF will certainly continue to advance as an 

important real-time tool for monitoring crop photosynthesis 
and productivity as global temperature rises.

Conclusion and future directions

This review provides a comprehensive evaluation of current 
understanding on how crop photosynthesis responds to tem-
perature from the enzyme to ecosystem scale. The key conclu-
sions for each scale are summarized as follows.

(i) Direct impacts of elevated temperature on photosynthetic 
enzymes involved in carbon assimilation are particularly 
damaging to C3 crops. Enzyme rates increase with tem-
perature, but substrate specificity declines in the carbon-
fixing enzyme Rubisco, which deactivates past optimal 
temperatures.

(ii)   Stomata typically respond to temperature through the 
complex effects of heat on photosynthesis, VPD, transpi-
ration, and plant water status. Stomatal conductance can 
change under temperature stress, and stomatal density 
and size can be altered if a plant develops under hotter 
conditions.

(iii) Photosynthate allocation from sources to sinks is impacted 
by heat stress through differential expression and activity 
of enzymes involved in sucrose transport and metabolism, 
as well as phloem structural changes.

(iv)  At the whole-plant scale, leaf interactions create temper-
ature gradients, and heat stress impairs plant development 
processes.

(v)   The factors identified in (i)–(iv) act together to impact 
crop ecosystem photosynthesis and its response to tem-
perature, the effects of which are typically seen as a cu-
mulative response through the growing season and lead 
to reduced yield.

Ensuring our cropping systems remain resilient to rising tem-
peratures will require integration of knowledge and informa-
tion across scales. For each scale discussed, the areas of research 
needed to improve resiliency of cropping systems to rising 
temperature and heat stress are as follows.

(i) At the biochemical scale, most strategies for improving 
carbon fixation in a warmer climate involve enhancing 
Rubisco performance or minimizing the energy expended 
in photorespiration, but many remain to be tested in crop 
species or replicated field trials.

(ii)   Altering stomatal anatomy and metabolism may help to 
reduce water loss from crops whilst maintaining photo-
synthetic rates to ensure high crop yields are maintained. 
However, the relationship between stomata and leaf hy-
draulic capacity should also be considered to maintain a 
balance between leaf water supply and demand.

(iii) At the transport system level, strategies need to be tested 
to help maintain photosynthate allocation from sources to 
sinks by increasing sucrose phloem loading in sources (e.g. 
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increasing expression of leaf sucrose transporters) and su-
crose phloem unloading in sinks (e.g. increasing invertase 
activity in reproductive sinks), as well as increasing remo-
bilization of sugars stored in intermediate sinks.

(iv) Coupling whole-plant modelling of temperature gradi-
ents with phenotyping resources will allow identification 
and breeding of heat-resistant crop ideotypes.

(v)   At the ecosystem scale, the implementation of faster crop 
stress detection systems will be critical for applying man-
agement strategies to combat temperature-related stress. 
These strategies may include combining ground-based 
measurements, such as those from flux towers, with satel-
lite remote-sensing information, to provide closer to real-
time monitoring of crop systems.
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