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Abstract

Photosynthesis is a key target to improve crop production in many species including soybean [Glycine max (L.) Merr.]. A challenge is that
phenotyping photosynthetic traits by traditional approaches is slow and destructive. There is proof-of-concept for leaf hyperspectral reflec-
tance as a rapid method to model photosynthetic traits. However, the crucial step of demonstrating that hyperspectral approaches can be
used to advance understanding of the genetic architecture of photosynthetic traits is untested. To address this challenge, we used full-
range (500–2,400 nm) leaf reflectance spectroscopy to build partial least squares regression models to estimate leaf traits, including the
rate-limiting processes of photosynthesis, maximum Rubisco carboxylation rate, and maximum electron transport. In total, 11 models were
produced from a diverse population of soybean sampled over multiple field seasons to estimate photosynthetic parameters, chlorophyll
content, leaf carbon and leaf nitrogen percentage, and specific leaf area (with R2 from 0.56 to 0.96 and root mean square error approxi-
mately <10% of the range of calibration data). We explore the utility of these models by applying them to the soybean nested association
mapping population, which showed variability in photosynthetic and leaf traits. Genetic mapping provided insights into the underlying ge-
netic architecture of photosynthetic traits and potential improvement in soybean. Notably, the maximum Rubisco carboxylation rate
mapped to a region of chromosome 19 containing genes encoding multiple small subunits of Rubisco. We also mapped the maximum
electron transport rate to a region of chromosome 10 containing a fructose 1,6-bisphosphatase gene, encoding an important enzyme in
the regeneration of ribulose 1,5-bisphosphate and the sucrose biosynthetic pathway. The estimated rate-limiting steps of photosynthesis
were low or negatively correlated with yield suggesting that these traits are not influenced by the same genetic mechanisms and are not
limiting yield in the soybean NAM population. Leaf carbon percentage, leaf nitrogen percentage, and specific leaf area showed strong
correlations with yield and may be of interest in breeding programs as a proxy for yield. This work is among the first to use hyperspectral
reflectance to model and map the genetic architecture of the rate-limiting steps of photosynthesis.

Keywords: photosynthesis; phenotyping; high-throughput; multiparental; SoyNAM; soybean; GWAS; heritability; PLSR

Received: March 20, 2021. Accepted: April 03, 2022

Published by Oxford University Press on behalf of Genetics Society of America 2022. This work is written by US Government employees and is in the public
domain in the US.

GENETICS, 2022, 221(2), iyac065

https://doi.org/10.1093/genetics/iyac065
Advance Access Publication Date: 22 April 2022

Investigation

http://orcid.org/ 0000-0002-7295-3092
http://orcid.org/0000-0002-7754-4618
https://orcid.org/0000-0003-4136-8971
https://orcid.org/0000-0003-4724-489X
https://orcid.org/0000-0003-2411-9287
https://orcid.org/0000-0001-5034-9954
http://orcid.org/0000-0003-1859-4858
http://orcid.org/0000-0002-2397-425X
http://orcid.org/0000-0003-3584-5495
https://orcid.org/0000-0002-3199-8999


Introduction
The capacity to collect meaningful phenotypic data has not kept
pace with increasingly extensive genomic data that are relatively
easy and inexpensive to collect (Furbank and Tester 2011;
Cabrera-Bosquet et al. 2012; Araus and Cairns 2014; Araus et al.
2018). Phenotyping functional traits of interest is often destruc-
tive, time consuming, and costly. Significant investment in devel-
oping high-throughput phenotyping technologies is seen as
critical to screen the vast genetic diversity that is currently being
underutilized in crop breeding (Mikel and Dudley 2006; Lam et al.
2010; Li et al. 2010, 2013; van Heerwaarden et al. 2012; Qiu et al.
2013). The coupling of phenotyping technologies with genetic im-
provement could help accelerate the development of plants
adapted to a changing climate, thereby enhancing the annual
rate of on-farm yield increases that will be necessary to feed a
growing world population (Tester and Langridge 2010; Araus et al.
2018). Given that annual yield gains are projected to be insuffi-
cient to meet future demands (Ainsworth et al. 2008; Raines 2011;
Ray et al. 2012, 2013; Hunter et al. 2017) this integration is espe-
cially important.

Improving photosynthesis has been suggested as a critical target
for increasing crop yields (Long et al. 2006, 2015; von Caemmerer
and Evans 2010; Raines 2011; Ort et al. 2015). One possibility for im-
proving photosynthesis is to take advantage of natural variation in
photosynthetic capacity and breed for genotypes with improved
carbon assimilation (Parry et al. 2011; Raines 2011; Faralli and
Lawson 2020). Photosynthesis is limited primarily by the maximum
rate of carboxylation by Rubisco (Vc,max) or the rate of RuBP regener-
ation (Jmax) (Farquhar et al. 1980; Farquhar and Sharkey 1982). In
efforts to identify genetic variation in photosynthetic capacity, a
means to rapidly screen Vc,max and Jmax in hundreds of different
lines is essential. However, the current best methods for obtaining
accurate estimates of both Vc,max and Jmax use infrared gas analysis,
which is time-consuming. Measuring the response of photosyn-
thetic carbon assimilation (A) to intercellular CO2 concentration (ci)
to then estimate Vc,max and Jmax (Farquhar et al. 1980) takes
30–40 min for 1 sample. Thus, screening germplasm for natural var-
iation of either limiting process of photosynthesis is not realistic
using gas exchange (Lawson et al. 2012; Driever et al. 2014).

A promising alternative to gas exchange is high-throughput
reflectance spectroscopy. Specific regions of the reflectance spec-
trum from 500 to 2,400 nm are known to correspond to different
leaf components and have been used to study plants from the
leaf to the ecosystem scale for decades (Curran 1989; Gamon
et al. 1992; Penuelas et al. 1994; Asner 1998; Penuelas and Filella
1998; Carter and Knapp 2001; Slaton et al. 2001; Sims and Gamon
2002; Asner et al. 2003; Serbin and Townsend 2020). The signal
captured by a spectroradiometer is largely dependent upon 3
components. The first is electromagnetic scatter, which includes
surface reflection (attributable to leaf microstructures and
roughness in our study). The next is the internal reflection of leaf
structural components and diffraction arising from interference
within the leaf. Water and intercellular airspace identify in the
near and shortwave infrared regions of the spectrum (�700–
2,400 nm). The last component of the reflectance signal is driven
by chemical properties in the leaf. These properties include ab-
sorption of light in the visible spectrum (�500–750 nm) by chloro-
phyll and carotenoid pigments and absorption of light in the near
and shortwave infrared regions resulting in molecular vibrations
of functional groups (Walter-Shea and Norman 1991; Sandak
et al. 2016).

Recent studies have demonstrated that leaf reflectance spec-
troscopy together with empirical statistical approaches, including
partial least squares regression (PLSR) modeling, can be used to
accurately predict photosynthetic parameters in C3 and C4
plants and other related leaf chemistry, morphology, water sta-
tus, and isotopic composition traits as well as genetic diversity
(Serbin et al. 2012, 2016; Ainsworth et al. 2014; Heckmann et al.
2017; Yendrek et al. 2017; Silva-Perez et al. 2018; Meacham-
Hensold et al. 2019; Cotrozzi et al. 2020; Meireles et al. 2020). Once
the predictive models are developed, estimates of these leaf phe-
notypes can be obtained in a rapid and nondestructive manner
on large populations. Another major benefit is the derivation of
multiple leaf traits from a single spectrum, further reducing the
time, and costs associated with data collection. When applied to
the correct populations, these predicted phenotypes can be used
for linkage analysis and association mapping to elucidate the ge-
netic architecture of the target traits.

Linkage analysis or quantitative trait locus (QTL) mapping tra-
ditionally relies on creating a mapping population of recombi-
nant inbred lines (RILs) derived from the mating of 2 parental
cultivars that have contrasting phenotypes for a quantitative
trait of interest. QTL mapping identifies chromosomal segments
that likely contain genes controlling the trait, but the degree of
centimorgan (cM) resolution in the length of those segments is a
function of the number of marker-detectable recombination
events in the segregating population. That number can be limited
by a lack of genetic diversity in parental choice and/or by an in-
sufficient number of RILs (Beavis 1994). Aside from the time it
takes to generate the RILs, a lack of sufficient resolution can
make difficult a backcross-mediated introgression of the favor-
able QTL allele into elite cultivars. An alternative method of QTL
identification, known as association mapping (Yu et al. 2006),
involves screening a large population of accessions of a species
for historical recombination events that thereby leads to the de-
tection of linkage disequilibrium (i.e. nonrandom association of
alleles between 2 or more marker loci). After taking into account
population structure, this mapping strategy can provide a finer
resolution of the genetic structure underlying a trait (Li et al.
2011). The correlation between genotype and phenotype in many
unrelated individuals and dense genome-wide marker capabili-
ties has allowed for finer genomic resolution in association map-
ping, but at a loss of power to detect QTL. Association mapping
has also been shown to falsely identify the known location of
causative loci or genes and an inability to detect QTL for which
one of the alleles exists at a very low frequency in the chosen
group of accessions (Korte and Farlow 2013; Vilhjalmsson and
Nordborg 2013). Multiparental or next generation mapping popu-
lations have been proposed as a means of overcoming some of
the shortcomings of linkage analysis and association mapping by
pairing the 2 mapping strategies (Yu et al. 2008; Morrell et al.
2012).

Nested association mapping (NAM) is a mapping approach
that attempts to fuse the best features of association- and
segregation-based QTL mapping in a fashion that will more pow-
erfully identify beneficial alleles possessed by a large number of
elite and exotic germplasm parents (Yu et al. 2008; Stich 2009;
Nice et al. 2016; Bouchet et al. 2017; Sharma et al. 2018; Brock et al.
2020). A NAM population was created in soybean by selecting a
large and diverse number of parental lines that were all crossed
to a common parent (Diers et al. 2018). The soybean NAM
(SoyNAM) population has been a useful resource in the study of
many agronomic traits and their response to the environment.
These traits include grain yield, lodging, seed weight, length of
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the reproductive period, node number, pods per node, internode
length, plant height, canopy closure, disease resistance, steady
state point estimates of A, and water use efficiency (Xavier et al.
2016, 2017, 2018; Diers et al. 2018; Lopez et al. 2019; Scott et al.
2019). The utilization of the SoyNAM population has provided a
better understanding of these traits and how they affect yield,
while also identifying heretofore unknown alleles that may pro-
vide new genetic sources for agronomic improvement. An inher-
ent issue with NAM populations is the sheer number of RILs they
contain. Traditional methods for scoring the leaf photosynthetic,
biochemical, and structural traits are intractable at scale, which
makes rapid leaf reflectance spectroscopy an attractive option to
survey these large mapping populations.

This study is presented in 2 parts. In the first, we explored the
capacity to build models relating leaf reflectance to gas exchange
and other leaf traits using diverse soybean genotypes, including
the NAM founders, with the aim of providing an accurate and
high-throughput estimation of photosynthetic parameters and
leaf biochemistry. In the second part of the study, we show the
utility of these leaf reflectance derived models by applying them
to the SoyNAM population of RILs to identify marker-trait associ-
ations (MTAs) for photosynthetic capacity and leaf-level bio-
chemical traits. These leaf traits were also correlated with yield
from the same plots to determine their relationship. This study
shows the potential of spectroscopy as a high-throughput tool to
not only provide new insights about difficult to measure trait var-
iation in soybean leaves, but also provides novel understandings
of how these traits could be useful in meeting the future
demands on agriculture.

Materials and methods
Part 1: Reflectance spectroscopy and PLSR model
development
Plant material and site description
Data used in the PLSR leaf reflectance model building and cali-
bration component of this experiment were collected from 2011
to 2019 at the SoyFACE Research Facility (40�020N, 88�140W,
https://soyface.illinois.edu/) and South Farms at University of
Illinois, Urbana, IL (Supplementary Table 1). The facility is lo-
cated in the middle of soybean maturity group (MG) zone III
(Mourtzinis and Conley 2017). Best practices for building PLSRs
models with the highest possible predictive power include sam-
pling across the broadest possible trait space (Schweiger 2020;
Burnett et al. 2021). To accomplish this goal, diverse soybean gen-
otypes were planted and sampled to estimate photosynthetic and
biochemical traits in 2015, and additional data collected from
2011 to 2019 were incorporated into the analyses (Supplementary
Table 2). Ultimately, 114 lines including the 40 founder lines, the
common parent of the SoyNAM population (Song et al. 2017), and
several chlorophyll deficient soybean lines (Walker et al. 2018)
were used to build PLSR models (Supplementary Table 2).

A/ci curves and estimates of Vc,max and Jmax

The diverse soybean population was sampled to measure A/ci

curves and obtain estimates of Vc,max and Jmax using established
protocols (Sanz-Sáez et al. 2017). Petioles of the youngest, most
fully expanded leaf located at the top of the canopy were excised
predawn, and quickly placed in water. Petioles were then cut
again under water to maintain turgor. Sampled petioles were
kept in low light conditions until �20 min before gas exchange
measurements, when they were placed in a diffuse light environ-
ment. Then, gas exchange was measured with a LI-COR

LI-6400XT Portable Photosynthesis System (LI-COR, Lincoln, NE)
under high light (1,750 mmol m�2 s�1), ambient leaf temperature,
and relative humidity. Leaves were stabilized at a [CO2] of
400 ppm. The A/ci curves were generated by exposures of a given
leaf to these successive [CO2]: 400, 300, 225, 150, 100, 50, 400, 400,
600, 800, and 1,000 ppm. Each stepwise measurement was limited
to 60–180 s to minimize changes in the activation state of
Rubisco. Measurements were logged once A and stomatal con-
ductance stabilized. Estimates of Vc,max and Jmax were estimated
as described in Ainsworth et al. (2014) and normalized to 25�C us-
ing the model of Farquhar et al. (1980) and temperature parame-
ters from Bernacchi et al. (2001, 2003).

Leaf reflectance data were also collected with simultaneous
estimates of Vc,max obtained from gas exchange from the initial
slope of the A/ci curve from measurements made in the field at
midday (�11–15 h). This was done to take advantage of the 2012
and 2013 plantings of the SoyNAM population at Illinois. Only the
initial slope of the curve was used to quickly survey a subset of
the founder lines for Vc,max. The gas exchange system cuvette
was set to control the ambient temperature and relative humid-
ity. Measurements were made under high light (1,750–2,000 mmol
m�2 s�1). Leaves were stabilized at a [CO2] of 400 ppm before initi-
ating these stepwise gas exchange measurements at 400, 250,
150, 100, and 50 ppm to estimate Vc,max and then normalized to
25�C as outlined above. Additional data of paired leaf reflectance
and A/ci curves from Ainsworth et al. (2014), Walker et al. (2018),
and Kumagai et al. (2022) were also used in the PLSR model devel-
opment portion of this study. This was done to include more trait
variation captured by different growing seasons and experimen-
tal treatments including elevated and ambient ozone concentra-
tions (Ainsworth et al. 2014) and elevated temperature
treatments (Kumagai et al. 2022).

Leaf chemical and morphological sampling
Leaf tissues that were tested for a suite of phenotypes (leaf chem-
istry and morphology) were collected at midday from sunlit, fully
developed leaves, and from the same leaves used for A/ci curves.
Small (�1.4 cm2) leaf punches were taken with a cork borer,
placed in 2 ml screw-cap tubes, and flash frozen in liquid nitro-
gen. One punch was used to determine both chlorophyll concen-
tration and starch content after ethanol extraction in 80% (v/v)
buffered ethanol following the methods described in Koester et al.
(2016). Glucose, fructose, sucrose, and protein were determined
from separate leaf punches using established methods (Jones
et al. 1977; Ainsworth et al. 2007). Three leaf punches were col-
lected for specific leaf area (SLA; g m�2), leaf carbon (Cperc), and
leaf nitrogen percentage (Nperc). These leaf punches were dried
at 60�C for 5 days to determine SLA by dividing the dry mass
weight of the leaf punches by the combined area. SLA (the inverse
of leaf mass per area) is a proxy for leaf thickness and density.
Dried leaf tissue was ground and combusted with oxygen to de-
termine leaf nitrogen and carbon percentage using a Costech
4010 elemental analyzer (Costech Analytical Technologies, Inc.,
Valencia, CA). All leaf nitrogen and leaf carbon percentage were
determined on a mass basis. Leaf temperatures were collected
with an infrared thermometer (62 Max, Fluke, Everett, WA).

Leaf reflectance spectroscopy
Three relative reflectance (simply “reflectance” from herein)
measurements of the soybean leaf were captured on the adaxial
side of the same leaf sampled for gas exchange or leaf punches
using an ASD FieldSpec 4 Standard-Res Spectroradiometer
(Malvern Panalytical, Westborough, MA). The 3 leaf reflectance
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measurements per leaf were processed and averaged using the
FieldSpec R Package (https://doi.org/10.5281/zenodo.6248237)
where built-in functions and default values were used for quality
control (removal of spectra with likely artificial bias) and jump
correction between sensors (maximum threshold for jump
correction¼ 0.02). Reflectance was calculated by the spectroradi-
ometer from leaf radiance divided by the radiance of a white re-
flectance standard (Spectralon, Labsphere Inc., North Dutton,
NH). The spectroradiometer measures reflectance across the
“full-range” (defined as 350–2,500 nm) using a 51-stranded fiber
optic cable split evenly among 3 sensors with one sensor in the
visible and near-infrared (350–1,000 nm) and 2 covering the
shortwave infrared regions (SWIR1, 1,001–1,800 nm and SWIR2,
1,801–2,500 nm). The field of view for the fiber optic cable is 25�.
We used the FieldSpec 4 Plant Probe (Malvern Panalytical) fitted
with the ASD Leaf Clip (Malvern Panalytical) assembly. This sys-
tem maintains a close and consistent distance, angle, and light
intensity between the adaxial side of the leaf and the fiber optic
cable. The plant probe has an offset and self-contained halogen
light source (calibrated, 2900K) to limit light and temperature
stress of the leaf during measurements. The leaf clip allows for
precise reflectance measurements by limiting scattered or errant
light affecting the spectral signal.

The manufacturer’s protocols for the spectroradiometer start-
up and use were followed, including a �30 min “warm-up” period
prior to data collection as well as instrument optimization and
use of the white reflectance standard. A new white reference
measurement was taken every 10–20 min while samples were be-
ing collected to avoid instrument drift. This procedure was used
throughout all reflectance collection in the model calibration
stage of this manuscript and the reflectance measurements
taken in the SoyNAM population.

Development of PLSR models for soybean leaf traits
PLSR modeling was used to estimate the rate limiting steps of
photosynthesis (normalized to 25�C Vc,max25, Jmax25 and at the
measured temperature Vc,max and Jmax), chlorophyll content (to-
tal chlorophyll, chlorophyll a, chlorophyll b, and the chlorophyll
a to chlorophyll b ratio), carbon and nitrogen percentage, protein
content, sucrose content, total nonstructural carbohydrate con-
tent, and leaf temperature. PLSR is a standard chemometric sta-
tistical approach often used to predict a continuous response
variable from highly collinear predictor variables that outnumber
the observations (Wold et al. 1984). This is accomplished by pro-
jecting the response and predictor variables into new orthogonal
subspaces, while simultaneously reducing the dimensionality of
the variables and maximizing the covariance between the sub-
spaces, by latent variables. These new, independent latent varia-
bles are similar to a principal component, i.e. defined as linear
combinations of the original variables (Li et al. 2002). The mea-
sured trait observations (response variable) were paired with leaf
reflectance data (predictor variables) taken at the time of the trait
measurement on fresh leaf tissue prior to processing. The reflec-
tance data were subset to 500–2,400 nm to minimize instrument
noise as was done in previous work (Yendrek et al. 2017).

The PLSR modeling followed the methods and code provided
in Serbin et al. (2014) except for 2 additional preprocessing steps
for potential outlier removal. Briefly, trait values greater than 62
SD from the mean were removed from the PLSR model develop-
ment because they were assumed to be incorrect data (sampling
error, etc.). The remaining measured trait observations and their
paired leaf reflectance spectra for a given trait were randomly
subset into calibration (80%) and validation (20%) datasets. The

validation data were not used in any model calibrations. An ini-
tial PLSR model run used 25 latent variables and a “leave-one-
out” cross validation approach on the calibration dataset.
Calibration data with predicted trait values from the initial PLSR
model with residuals greater than 62.5 SD were removed from
the calibration dataset. The number of removed observations
was �5% of the total observations used in model calibration.

To determine the number of latent variables to retain for a
given PLSR model, an iterative approach with 50 iterations was
used. The resulting plots of the predicted residual error sum of
squares (PRESS) by PLSR latent variable were evaluated to iden-
tify the number of latent variables that produced the lowest
PRESS value, while also weighting model parsimony (i.e. we se-
lected the smallest number of latent variables that resulted in a
low PRESS value). Plots of the root mean square of the cross-
validation (RMSECV), root mean square error of the prediction
(RMSE), and PRESS were used to determine the final number of
latent variables to include in each PLSR model by minimizing er-
ror and maximizing the predictive ability of the validation data.
The number of latent variables for each model varied by trait. A
jack-knife resampling approach (1,000 resamples) was used to
validate the model with the independent validation data, and to
estimate confidence intervals for the modeled validation data
and model bias. We determined a PLSR model successful by the
model diagnostic outputs of the validation data with R2 values
>0.50 and RMSE relative to the range of observed trait values
(�10%) used in the model calibration (Table 1, model coefficients
as Supplementary File 1, other trait diagnostic output as
Supplementary File 2).

A second PLSR model for Chl was built without the chlorophyll
deficient mutants to help determine if these observations were
driving the fit or predictability of the PLSR models following the
procedure outlined above. Chl was selected as a test case because
the trait defined the mutants. Both PSLR models with and with-
out chlorophyll deficient mutants and a commonly used reflec-
tance derived Chl index (Richardson et al. 2002) were compared
(Supplementary File 3). Bland–Altman plots showed little differ-
ence between the 2 PLSR models (data not shown); however, both
PLSR models were more accurate than the Chl index, which over-
estimated Chl content. Because there was little observed differ-
ence between the models with and without the low Chl lines, we
retained all lines in the PLSR models to maintain the broadest
possible trait range (Burnett et al. 2021).

Part 2: Genetic mapping of reflectance derived
leaf traits and yield in the SoyNAM population
SoyNAM population and experimental design
Diers et al. (2018) provide a full description of the SoyNAM popu-
lation and field design of these experiments. Briefly, 40 parental
soybean lines representing contemporary soybean varieties, lines
with diverse ancestry, and plant introductions (PI) that yielded
well under drought conditions were crossed to a common parent,
cultivar IA3023, to create 40 biparental families each consisting
of approximately 140 F5-derived lines (�5,600 total). The lines
from each of the 40 NAM families were subdivided into 4 blocks
of 35 lines. The parents of the family plus 3 checks were added to
each block resulting in 40-entry incomplete blocks. Entries were
randomized within each block and the blocks were randomized
in the field. The entries were grown in 4 m long, 2-row wide plots
with 0.76 m row spacing. Two site-year combinations, the
University of Nebraska (Clay Center, NE, irrigated) in 2012 (NE12)
and the University of Illinois at Urbana-Champaign (Urbana,
rain-fed) in 2013 (IL13), were used in this experiment.
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Genomic information for the SoyNAM founders and RILs
Genetic marker information (Song et al. 2017) was accessed from

the SoyNAM R package [data(soybase, package¼“SoyNAM”)],

where missing and nonsegregating markers within a family were

set to missing values (Diers et al. 2018; Xavier et al. 2018). The pa-

rental lines were deeply sequenced for SNP discovery and all lines

were genotyped using the SoyNAM6K Beadchip (Anderson et al.

2014; Song et al. 2017). The genotypic data had previously been

controlled for quality, which included the removal of lines that

deviated from the expected marker segregation, ineffective

crosses (likely self-pollinations), or segregation of alleles not as-

sociated with either parent allele. Additionally, all lines from

NAM family N46 were removed following Diers et al. (2018) and

Xavier et al. (2018) because of incorrect or failed crosses resulting

in unexpected segregation ratios in the family.
In addition for this project, lines missing more than 50% of

markers were removed from the dataset. Markers missing in

>80% of the remaining lines were removed. Additional quality

control and imputation of missing marker genotypes were per-

formed using the snpQC function in the NAM R package (Xavier

et al. 2015). Arguments in snpQC were set as follows: markers

with minor allele frequencies <0.05 and monomorphic markers

were removed. The default parameters for the other arguments

were used. Missing data were imputed using the expected value.

The final subset used in this analysis included 4,308 SNP

markers, 5,171 F5 derived lines, and 40 founder lines

(Supplementary File 4).

Trait data collection: SoyNAM reflectance spectroscopy and
yield
Reflectance spectra were collected from the SoyNAM lines

planted at the NE12 and IL13 locations. The complete set of lines

were grown at both locations. Leaf reflectance measurements

were taken on three-fourths of the population and respective

checks in 2012 (4,796 plots, 14,338 spectra), and the entire

population in 2013 (6,400 plots, 19,200 spectra). Hyperspectral re-

flectance measurements were captured with a FieldSpec 4

Standard-Res Spectroradiometer as described above. Reflectance

measurements were made during soybean reproductive stages

R4 or R5 (seed fill) with a few exceptions due to the diversity of

the SoyNAM population. Reflectance measurements were

collected from an uppermost, fully expanded, sunlit leaf from 3

randomly sampled plants in each plot during midday (�11–15h)

over �2 weeks. Individual reflectance measurements per leaf

were captured proximally from the adaxial side of the central

leaflet using the ASD Plant Probe and Leaf Clip.

Reflectance measurements from the SoyNAM population
(NE12 and IL13) were processed for quality, jump corrected, and
averaged using the FieldSpec R Package (https://doi.org/10.5281/
zenodo.6248237). The PLSR model coefficients (Supplementary
File 1) for the PLSR models (Table 1; Supplementary File 2) were
then applied to the averaged reflectance spectra (Supplementary
File 5) to obtain the reflectance derived PLSR trait estimates for
each plot from both environments separately (Supplementary
File 6). Visual examination of histograms of the SoyNAM modeled
trait estimates did not reveal significant departures from normal-
ity (Supplementary File 7). The yield data from the NE12 and IL13
SoyNAM lines were accessed from previously published work
(Diers et al. 2018), using the SoyNAM R Package (Xavier et al. 2018),
and subset to match the plots with available reflectance data.

Statistical analyses
Phenotypic models
A stage-wise linear mixed model similar to the method described
in Diers et al. (2018) was used to incorporate the field design and
environmental effects (location and year combination) into final
estimates of the PLSR derived traits and yield. Statistical analyses
used to estimate model parameters were conducted using re-
stricted maximum likelihood (REML) (Patterson and Thompson
1971) implemented using the lme4 package (Bates et al. 2015) in R
version 3.5.2 (R Core Team 2018). Specifically, incomplete blocks
within the 2 environments (NE12 and IL13) were augmented with
the common parent, IA3023, and 3 checks from the following list:
IA2094, U06-100052, LD02-4485, LD04-11056, and LD04-13265,
plus the founder parent of the lines in the block. The first-stage
model used these checks to provide estimates of block effects to
adjust genotypic values in the second-stage model for the leaf re-
flectance traits and yield. Empirical best linear unbiased pre-
dicted values (EBLUPs) of block effects were obtained using a
linear mixed model (1):

y ¼ lþ Cjþ Bpþ e;

p � N 0; Ir2
blk

� �
;

e � N 0; Ir2
e

� �
;

Cov Bp; eð Þ ¼ 0:

For each trait, y is a vector of phenotypes for the check varie-
ties, m is the intercept, C represents an incidence matrix for the
check varieties, j is a vector of fixed effects of the check varieties,

Table 1. Summary of reflectance-based PLSR model builds for leaf traits highlighted in this manuscript.

Trait Factors Cal N Val N Waveband (nm) Train R2 CV R2 RMSECV CV Bias Val R2 RMSE Val bias

Chl 4 288 74 500–2,400 0.82 0.81 0.04 0 0.72 0.04 0.002
Cperc 11 487 126 500–2,400 0.9 0.89 0.54 �0.0019 0.9 0.58 �0.1119
Jmax25 10 248 64 500–2,400 0.77 0.73 16.86 0.0383 0.56 25.32 �1.7283
Nperc 18 479 124 500–2,400 0.87 0.85 0.25 �5.00E�04 0.77 0.35 �0.0455
SLA 12 300 78 500–2,400 0.96 0.95 15.17 0.1546 0.96 15.48 �0.7754
Vc,max25 12 274 70 500–2,400 0.67 0.59 13.52 �0.0162 0.74 12.34 �2.3838

Presented data include the number of latent factors used in the final model build (Factors), the number of observations that were used to build the model (Cal N),
the number of observations that were used to validate the model (Val N), the range of wavebands used for the final model build [Waveband (nm)], the coefficient of
determination for the calibration model (Train R2), the coefficient of determination of the cross validation (CV R2), the RMSECV, the model bias from the cross
validation (CV Bias), the coefficient of determination of the validation data (Val R2), the root mean square error of the validation data (RMSE), and the model bias of
the validation data.
Chl, total chlorophyll content; Cperc, leaf carbon percentage; Jmax25, the maximum rate of RuBP regeneration at 25�C; Nperc, leaf nitrogen percentage; SLA, specific
leaf area; Vc,max25, the maximum rate of the carboxylation of Rubisco at 25�C.
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B is an incidence matrix indicating block, p is the vector of ran-
dom effects of incomplete blocks, I is an identity matrix, r2

blk is
the variance among blocks, e is a vector of residuals, and r2

e is the
variance among the residual values.

The second-stage model (2) was applied to the PLSR derived
trait values and yield for the lines and founders as follows:

y ¼ lþ pbþ Zvþ e;

v � N 0; Ir2
g

� �

e � N 0; Ir2
e

� �
;

Cov Zv; eð Þ ¼ 0;

where y is a vector of the phenotypes for the F5 derived lines and
founder lines for each trait (i.e. the PLSR derived trait values and
yield). The length of y, p, and the dimension of the matrix Z depend
on the number of PLSR derived trait values from averaged reflectance
spectra captured across the 2 years of the experiment. m is the inter-
cept, p is a vector of shrunken EBLUP block effects from (1), consid-
ered a fixed effect covariate. b is the slope and intercept for the block
effect. Z is an incidence matrix for the lines and the founders indicat-
ing which block the measured trait value, y, was obtained. v is the
vector of EBLUPs of genotypic values for the entries (lines and found-
ers). I is the identity matrix, r2

g is the genotypic variance among the
entries, and e is the vector of residuals with variance, r2

e . EBLUPs, the
estimated trait values across years and locations in this experiment,
for the phenotypes are in Supplementary Files 8 and 9. Pearson’s cor-
relations were performed on EBLUPs in a pairwise manner using the
cov.test function in base R.

Variance components and heritability estimates
The estimated genetic variance (r2

g) and model error variance (r2
e Þ

were used to calculate the broad-sense heritability on an entry

mean basis (H2) over the 2 years: H2 ¼ r2
g

r2
gþðr2

e =2Þ (Table 2). Narrow-

sense heritability based on marker data (h2) for each trait was
calculated by a multivariate mixed model approach using the
MGREML function (default arguments used except for –no-inter-
cept and –ignore-collinearity) from the MGREML Python
package (de Vlaming et al. 2021) with a genomic relationship matrix
(GRM) calculated via the –make-grm function in the GCTA software

(Yang et al. 2011). Collinearity between SLA and Jmax25 resulted in a
warning. Because of this collinearity and similar estimates of h2

when random noise was added to the model allowing the MGREML
function to run to completion (data not shown), the –ignore-col-
linearity argument was deemed appropriate and implemented
to obtain the final variance estimates. Genetic correlations using
marker data (GBLUPs) were estimated using the –bivar argument
in GCTA for the traits shown in Table 3. A likelihood-ratio test (LRT)
was used to determine significance (P value <0.05) in GCTA by com-
paring the genetic correlation when set to 0 in the null hypothesis.
An alternative REML algorithm (Fisher scoring approach) option
was used when the null hypothesis would not converge.
Additionally, the complete set of genetic correlation comparisons
and h2 were calculated using the MGREML approach outlined above
and provided in Supplementary File 10.

GWAS analyses of PLSR traits and yield in the SoyNAM
population
GWAS detection followed the methods of Diers et al. (2018).
EBLUPs of genotypic values from model 2 were used in genome
wide associations to identify MTAs. The MTAs were identified as
random effects that were dependent on family background. The
parameter estimates were obtained via the NAM R package
(Xavier et al. 2015) using an empirical Bayes algorithm (Wei and
Xu 2016). The linear mixed model (3) is

v ¼ lþWaþ /þ e;

a � N 0; Ir2
a

� �
;

/ � N 0; Kr2
/

� �
;

e � N 0; Ir2
e

� �
;

Cov /; eð Þ;

where v are the EBLUPs of genotypic values from model (2), m is
the intercept, W is the incidence matrix containing the interac-
tion between marker and family information—the haplotype rep-
resentation of the common and founder parent for each marker.
a is a vector of regression coefficients associated with marker
effects within family (i.e. the BLUP value for allelic substitution),
/ is the polygenic term accounting for the population structure
among entries through the realized GRM K, and e is the vector of
residuals. The regression fitted a was interpreted as an estimate
of marker substitution from each of the founder lines. There
were potentially 40, 39 founders þ 1 common parent, unique alle-
lic substitution effects relative to the background (/) for each
marker loci. The polygene term was estimated with the genomic
relationship K that captures the additive relationship among
individuals accounting for the population structure.

Specifically, the gwas function from the NAM R package (Xavier
et al. 2015) was used for GWAS of all traits with the phenotypes
coming from the PLSR derived traits and yield from model 2
(EBLUPs). The gwas function allows “linkage window” similar to
what was outlined by Xu and Atchley (1995) to reduce the effect of
tightly linked markers. A 5-cM window was used to match methods
in Diers et al. (2018) as well as the significance threshold of –log10 (P
value) �3 to determine significant MTAs. Two additional signifi-
cance threshold estimates were provided for comparison, the

Table 2. Estimates of genetic variance (r2
g) of the entry (RILs), the

model error variance (r2
e ), and the broad-sense heritability (H2)

with 95% confidence intervals (CI), where H2 ¼ r2
g

r2
gþ

r2
e
2

for the

EBLUPs of reflectance traits and yield in the SoyNAM population
from data generated in Nebraska (2012) and Illinois (2013).

Trait r2
g r2

e H2 (95% CI)

Chl 1.492E�04 4.347E�04 0.407 (0.386,0.429)
Cperc 0.0214 0.0905 0.321 (0.304, 0.338)
Jmax25 37.93 116.16 0.395 (0.375, 0.416)
Nperc 0.0133 0.057 0.320 (0.304, 0.337)
SLA 269.2 941 0.364 (0.345, 0.383)
Vc,max25 7.628 45.035 0.253 (0.240, 0.267)
Yield 95,044 365,325 0.342 (0.324, 0.361)

Chl, total chlorophyll content; Cperc, leaf carbon percentage; Jmax25, the
maximum rate of RuBP regeneration at 25�C; Nperc, leaf nitrogen percentage;
SLA, specific leaf area; Vc,max25, the maximum rate of the carboxylation of
Rubisco at 25�C.
P-value significance: ns, not significant; *<0.05; **<0.01; ***<0.001.
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Bonferroni adjusted P value [a¼ 0.05, 4,308 markers, –log10 (P value)
�4.93], and a trait specific P value outlined by Kaler and Purcell
(2019) proposed as an alternative and less conservative approach
based on marker heritability estimates (Supplementary File 11). The
time required to perform a GWAS for a single trait was �5 h (Intel
Core i7-8650U CPU—1.90GHz—16 GB of memory), so permutation
was not considered because of the computational requirement. The
GWAS was also performed without a linkage window. Similar MTAs
were mapped using either method with the significance of the asso-
ciations generally being greater without a linkage window (example
in Supplementary File 12); but the 5-cM linkage window results are
shown in alignment with Diers et al. (2018).

Multiple MTAs were assigned for a trait on a given chromosome
(Chr) if the respective significant marker SNPs were at least 10 cM
distant from each other, using map distances inferred by the physi-
cal position of the SNP on to the Williams 82 � G. soja PI 479752 (W
� P) linkage map (Song et al. 2016). The most significant SNP in any
given interval was assigned the MTA and its map position was de-
termined by the W � P linkage map (Supplementary File 11).
Summary information for significant SNP markers include the
SoyNAM6K BeadChip SNP ID and the Wm82.a2.v1 position (Chr,
base pair position), the reference and alternate allele for the SNP,
the associated soybean gene models, and Arabidopsis annotation
(Supplementary File 13). Gene models with “photosynthesis” GO
Terms within 6 1.5 Mbp of the reported MTA interval for leaf traits
were considered candidate genes and reported in Table 4 (Grant
et al. 2010). SnpViz Version 2.0 (Langewisch et al. 2014) was used to
view potential haplotypes across the Rubisco-small subunits (rbcS)
identified by the GO Term on Chr 19 (Supplementary File 14).
SnpViz settings were as follows (Data version: Wm82.a1.v1.1,
Chromosome: Gm19, Range Type: Range Window, Starting point:
721600, Ending point: 731000, Clustering method: UPGMA, and
Show Indel was marked). The mapping distance (cM) of the MTA
intervals was estimated using the composite SoyNAM linkage map
(Song et al. 2017) (Table 4).

For simplicity, tables and figures only present data for Chl,
Cperc, Jmax25, Nperc, SLA, and Vc,max25. Additional data of interest
for these traits (i.e. confidence intervals for trait correlations
from Fig. 4 are provided in Supplementary File 15), and related
data for other traits (Chl a, Chl b, Chl a:b, Jmax, and Vc,max) can be
found in supplemental files.

Results
Part 1—Development of leaf reflectance models
for soybean leaf traits
The soybean genotypes used for PSLR model-building showed varia-
tion in the measured leaf traits (Fig. 1; Supplementary Fig. 1).

Multiple traits were accurately predicted (R2 > 0.50, RMSE �10% of
the range of the calibration data) from PLSR models (Fig. 1;
Supplementary File 2) using the full-range (500–2,400nm) of leaf re-
flectance data (Table 1; Supplementary Fig. 1). These traits included
the rate-limiting steps of photosynthesis at the measured leaf tem-
perature, Vc,max and Jmax, and at a normalized leaf temperature of
25�C, Vc,max25 and Jmax25. The leaf reflectance data were also able to
predict SLA, Chl, Chl a, Chl b, Chl a:b, Cperc, and Nperc. We deter-
mined that the leaf reflectance derived PLSR models did not accu-
rately predict leaf protein content, leaf sucrose content, total leaf
nonstructural carbohydrate content, or leaf temperature because of
low R2 values and high RMSE values relative to the range of the cali-
bration data (Supplementary Fig. 1). Because of this limitation,
these particular trait models were not used to estimate leaf re-
flectance derived traits in the SoyNAM population. The number
of latent variables (or factors) used in the final PLSR models
ranged from 4 for Chl to 18 for Nperc (Table 1; Supplementary
File 2). The predictability of the different models varied when
applied to the independent validation data. The best performing
model was SLA (R2 ¼ 0.96, RMSE¼ 15.48), whereas the weakest
model was Jmax25 (R2 ¼ 0.56, RMSE¼ 25.32), of all acceptable
PLSR models (Fig. 1; Supplementary Fig. 1). VIP plots identified
different spectral regions of importance for different physiologi-
cal and biochemical traits. VIP plots showed that Chl was pre-
dominately influenced by the visible spectrum (defined from
500 to �750 nm for this experiment), while all the other models
showed the importance of wavelengths in the near infrared and
shortwave infrared regions (Supplementary Fig. 2). These leaf
reflectance-based models were then used to predict leaf traits
across the entire SoyNAM population.

Part 2—Application of soybean leaf reflectance
models to the SoyNAM population
Variation in photosynthesis, leaf N, and SLA
Variation was observed in photosynthetic capacity within the
SoyNAM population. The range of PLSR modeled trait values
across the 2 years was 80 mmol CO2 m�2 s�1 for Vc,max25 and
134 mmol e m�2 s�1 for Jmax25 (Supplementary Files 6 and 7).
Distributions of Jmax25 and Vc,max25 EBLUPs by NAM family across
both growing seasons also showed variation (Fig. 2). LD02-4485
was the founder parent with the greatest Jmax25 and Vc,max25 val-
ues and NAM12, the family developed from a cross of common
parent IA3023 with this line, had the highest median values for
both traits across all NAM families (Fig. 2). Seven founder parents
representing each background (elite, diverse ancestry, and PI)
had greater Jmax25 values than IA3023 (Fig. 2). There were 12
founders that had a greater Vc,max25 than IA3023, with 6 in the
elite group, 5 in diverse ancestry, and 1 from the PI group (Fig. 2).

Table 3. Pairwise genetic correlations estimated from an REML approximated genetic relatedness matrix for a subset of modeled traits
and the SE (in parenthesis) estimated by the bivar function in in GCTA software (Yang et al. 2011).

Chl Cperc Jmax25 Nperc SLA Vc,max25 h2

Chl 0.24 (0.028)
Cperc 0.45 (0.09)** 0.36 (0.028)
Jmax25 0.34 (0.09)** �0.80 (0.04)*** 0.44 (0.028)
Nperc 0.45 (0.10)*** 0.74 (0.05)*** �0.53 (0.08)*** 0.28 (0.027)
SLA �0.22 (0.10)ns 0.78 (0.05)*** �0.98 (0.004)*** 0.56 (0.08)*** 0.36 (0.028)
Vc,max25 0.11 (0.12)ns �0.51 (0.09)*** 0.36 (0.10)* 0.28 (0.12)* �0.30 (0.09)* 0.19 (0.025)
Yield 0.45 (0.08)** 0.66 (0.06)*** �0.62 (0.06)*** 0.83 (0.04)*** 0.72 (0.05)*** �0.09 (0.10)ns 0.43 (0.030)

Significance testing used for log likelihood-ratio test (LRT) for each pairwise comparison was performed in GCTA with the genetic correlation of the null model fixed
at 0. Multivariate genomic REML analysis (MGREML) (de Vlaming et al. 2021), was used for marker-based estimates and SEs of narrow-sense heritability (h2).
Chl, total chlorophyll content; Cperc, leaf carbon percentage; Jmax25, the maximum rate of RuBP regeneration at 25�C; Nperc, leaf nitrogen percentage; SLA, specific
leaf area; Vc,max25, the maximum rate of the carboxylation of Rubisco at 25�C.

C. M. Montes et al. | 7

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data
https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyac065#supplementary-data


Ten founders, including LD02-4485 (NAM12), had greater leaf N

content than the common parent with no founders from the PI

drought tolerant group included (Fig. 3, top). Only 6 founders, in-

cluding the NAM12 parent, were predicted to have a lower SLA

(i.e. a thicker leaf) than IA3023 (Fig. 3, bottom).

Phenotypic and genetic correlations and trait heritability
Phenotypic correlations of EBLUPs between seed yield and all leaf

traits were significant (P values <0.01), but with low correlation

coefficients (r) (Fig. 4; Supplementary File 15). The strongest

phenotypic correlation involving yield was with Chl (r¼ 0.255,
CIs¼ 0.229, 0.280), with Vc,max25, Jmax25, and Chl all exhibiting
moderate r values amongst themselves (0.492–0.517; see
Supplementary File 15 for CIs). The strongest relationship be-
tween any 2 traits was Jmax25 and SLA (r¼�0.88, CIs¼�0.882,
�0.870). The broad-sense heritability estimates (H2) on an entry
mean basis were relatively low for most modeled leaf traits rang-
ing from a low H2 ¼ 0.253 (CIs¼ 0.240, 0.267) for Vc,max25 to 0.407
(CIs¼ 0.386, 0.429) for Chl (Table 2). The marker-based genetic
correlations among traits were generally higher than the

Table 4. List of gene models with GO term “photosynthesis” (GO:0015979) that have positions within 6 1.5 Mbp of SNP-based physical
position of intervals containing PLSR modeled traits.

Interval Chr Left Mbp Right Mbp cM interval Gene ID Arabidopsis annotations Traits in interval

2 10 43.2 46.7 3.6 Glyma.10g205500 Phosphoenolpyruvate carboxylase 4 Cperc, Nperc,
Vc,max25

Glyma.10g208900 Photosystem I subunit I Chl, Chl a, Chl b
Glyma.10g225400 Inositol monophosphatase family protein Jmax, Jmax25, SLA,

Yield
Glyma.10g226400 Plastid-encoded CLP P

3 10 47.1 50.1 10.6 Glyma.10g243800 Chlorophyll a–b binding family protein Jmax, Jmax25

Glyma.10g249000 Photosystem I subunit D-2 SLA
Glyma.10g256000 Photosystem I reaction center subunit N Chl
Glyma.10g263000 Stress-enhanced protein 1 Nperc

4 12 34.2 37.2 6.7 Glyma.12g193800 Aconitase 3 Chl a: b
Glyma.12g200200 Photosystem II reaction center PSB29 protein
Glyma.12g210600 Phosphoenolpyruvate carboxylase 2

5 13 29.5 32.5 3.1 Glyma.13g206700 Glucose-6-phosphate/phosphate
translocator 2

Nperc

6 13 34.7 38.7 10.3 Glyma.13g270400 Phosphoenolpyruvate carboxylase 3 Chl, Chl a, Chl b,
Chl a: b

Glyma.13g282000 Light-harvesting chlorophyll b-binding
protein 3

Cperc

Glyma.13g286500 PsbQ-like 1
7 13 37.4 40.4 8.7 Glyma.13g282000 Light-harvesting chlorophyll b-binding

protein 3
Chl, Chl a, Chl b,

Chl a: b Cperc
Glyma.13g286500 PsbQ-like 1 Vc,max

Glyma.13g290700 Phosphoenolpyruvate carboxylase 1
Glyma.13g302100 Photosystem II reaction center PSB29 protein
Glyma.13g308700 Aconitase 3

8 13 39.9 42.9 11.9 Glyma.13g302100 Photosystem II reaction center PSB29 protein Chl, Chl a, Chl b,
Chl a: b Cperc,
Vc,max

Glyma.13g308700 Aconitase 3
9 13 41.3 44.3 10.7 – – Jmax25

10 15 3.0 6.0 6.2 Glyma.15g050100 Inositol monophosphatase family protein Jmax

Glyma.15g052400 light harvesting complex photosystem II
subunit 6

13 18 0.2 3.6 4.1 Glyma.18g004600 Ferritin 4 Cperc
Glyma.18g011800 Photosystem II BY Nperc
Glyma.18g024600 Ferritin 4 Yield
Glyma.18g028400 Light harvesting complex photosystem II
Glyma.18g035300 Tetratricopeptide repeat (TPR)-like

superfamily protein
14 18 54.5 57.5 4.7 Glyma.18g262700 NAD(P)H dehydrogenase subunit H Chl a

Glyma.18g286500 PsbP-like protein 1 Jmax, Jmax25

Glyma.18g296900 Ribulose bisphosphate carboxylase small
chain 1A

SLA

16 19 6.8 13.3 6.2 Glyma.19g046600 Ribulose bisphosphate carboxylase (small
chain) family protein

Vc,max25

Glyma.19g046800 Ribulose bisphosphate carboxylase (small
chain) family protein

Yield

Glyma.19g046900 Ribulose bisphosphate carboxylase (small
chain) family protein

Glyma.19g047000 Ribulose bisphosphate carboxylase (small
chain) family protein

Glyma.19g051900 Ribosomal protein L2
Glyma.19g053400 Ribosomal protein L16
Glyma.19g054200 ATPase F0 complex subunit A protein

Gene ID is given as the gene models described in Glyma.Wm82.a2.v1. Table shows the interval (provided in Supplementary File 11), chromosome, approximate
range searched for gene models and the genetic distance (cM) of the interval, gene ID, the Arabidopsis annotation, and PLSR traits that mapped to the interval.
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phenotypic correlations (Table 3). Unlike the phenotypic correla-
tions that were relatively weak, yield showed significant (P value
<0.001) positive genetic correlations with strong relationships
with Cperc (0.66 6 0.06), Nperc (0.83 6 0.04), and SLA (0.72 6 0.05).
The genetic correlation of yield with Vc,max25 (�0.09 6 0.10) was
not significant, but was significantly negative with Jmax25

(�0.62 6 0.06). Interestingly, the negative genetic correlation of
SLA with Jmax25 was nearly unity (�0.98 6 0.004), but was much
less so with Vc,max25 (�0.30 6 0.09). The narrow-sense heritability
based on marker data (h2) of these traits also increased relative to
the H2 estimates for most PLSR traits, with the lowest being
Vc,max25 (h2 ¼ 0.19 6 0.025) and the highest being Jmax25 (h2 ¼
0.44 6 0.028) (Table 3).

MTAs for photosynthetic traits and yield in soybean
GWAS identified a total of 49 significant MTAs (�log10 P> 3), lo-
cated on 8 of the 20 Chrs. On 3 of those 8 Chrs, a single MTA was
detected (i.e. yield on Chr 3 and Chr 16, and Chl a:b ratio on Chr
12). Of the other 46 MTAs spread over 5 Chrs, 41 were specific for
PLSR modeled traits, while 5 were for yield (Supplementary File
11). Multiple traits shared significant MTAs at a specific SNP
marker or adjacent SNP markers, and most of these colocated
MTAs were located on Chrs 10, 13, and 18. Notably, 10 traits were
mapped to a small interval between 108.8 and 109.29 cM on Chr
10 (Table 4; Supplementary File 11). The MTAs for Jmax, Jmax25,

and SLA were all highly significant (�log10 P> 25) in this inter-
val. Yield, Nperc, and Cperc MTAs were also colocated on Chr 18
(interval 13), and yield and Vc,max25 MTAs were colocated on Chr
19 (interval 16). The MTA on Chr 19 for yield occupied a position
ca. 1.3 cM (ca. 3.5 Mbp) on the distal side of the Vc,max25 MTA.
Positive effects for both traits (þ/þ haplotype sign phase) were
observed in the IA3023 parent. In the 12 founder families where
effects were estimated for both traits (Supplementary File 11),
the complementary phases of þ/þ and �/� phase were evident
in 6, whereas the cross-over phase types of þ/� and �/þ were
evident in the other 6. On no other Chr was there a close linkage
of a MTA for yield and a MTA for Vc,max25. Both findings are con-
sistent with a lack of correlation between the 2 traits (Tables 2 &
3). Four MTAs each were mapped for Jmax and Jmax25. Three of
the 4 were colocated on Chr 10 and Chr 18. The common parent
(IA3023) allelic effect was negative for these MTAs
(Supplementary File 11). Most of the founder lines also had a
negative allelic effect for the MTAs for Jmax traits, but there were
exceptions (Supplementary File 11). Only 2 MTAs were identified
for Vc,max25, both of which were previously mentioned on Chr 10
and Chr 19 (Table 4). The common parent allelic effect was neg-
ative for the MTA on Chr 10 and positive for the MTA on Chr 19,
with 16 and 8 founder parents with higher values for Vc,max25, re-
spectively (Supplementary File 11). The non-normalized maxi-
mum rate of carboxylation, Vc,max, also had 2 MTAs, both

Fig. 1. PLSR model validations of (a) the maximum rate of the carboxylation of Rubisco at 25�C—Vc,max25; b) the maximum rate of RuBP regeneration at
25�C—Jmax25; c) total chlorophyll content—Chl; d) leaf carbon percentage (Cperc)—Leaf % C; e) leaf nitrogen percentage (Nperc)—Leaf % N; and f)
specific leaf area—SLA. Red diamonds represent the data used in the calibration model. The y-axes represent measured values derived from A/ci curves
or standard laboratory procedures and the x-axes show the PLSR model predicted values. Light gray points represent validation data predicted by the
PLSR model, with error bars representing the jack–knife confidence intervals of the predicted value, with both axes scaled in the specified PLSR unit of
measurement. The 1:1 null hypothesis line is dashed, the linear regression line and its curved 95% confidence intervals for the observed values are solid
gray, whereas the slightly curved 95% confidence intervals for the regression-predicted values are solid black curves.
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located on Chr 13. The common allelic effect was positive for

both with only a small number of founder lines providing a

larger positive allelic effect (Supplementary File 11). A GO term

analysis of all gene models within 61.5 Mbp of the MTAs associ-

ated with the rate-limiting steps of photosynthesis, Vc,max25 and

Jmax25 identified at least 1 gene model associated with the GO

term “photosynthesis” (Table 4).

Discussion
Improving photosynthesis is proposed as a next step toward in-

creasing crop yield to meet the growing demands for feed, food,

and fuel (Zhu et al. 2010; Ort et al. 2015). Developing high-

throughput ways to effectively measure photosynthetic and

other leaf traits in large populations would allow researchers to

better understand not only the natural genetic variation and ar-

chitecture of these traits, essential for improvement (van Bezouw

et al. 2019), but also the relationships between leaf traits and

yield. The goals of this work were (1) to develop a nondestructive,

high-throughput method to quickly screen soybean germplasm

to estimate the rate-limiting steps of photosynthesis and other

leaf traits; (2) to determine if there was natural variation for these

traits in soybean; and (3) to map these traits in the SoyNAM pop-

ulation thereby ultimately expanding the phenotypic toolbox

available to researchers and soybean breeders.

High-throughput modeling of photosynthetic
traits
To develop robust models of photosynthetic capacity and leaf
traits, a deliberate effort was made to incorporate genotypic and
phenotypic variation in the calibration dataset used to build the
PLSR models (Fig. 1; Supplementary Table 2). This is recom-
mended practice to capture as much of the expected trait space
as possible (Burnett et al. 2021). We used diverse germplasm
grown over several seasons to integrate differences in weather
and genetics. Observations from different experiments at the
SoyFACE Research Facility including variable ozone pollution
(Ainsworth et al. 2014) and temperature treatments (Kumagai
et al. 2022) were also used to expand the inference environment
(Supplementary Table 1). In total, we developed 11 reflectance-
based trait models (Table 1; Supplementary Files 1 and 2), which
can be used to screen soybeans for the rate-limiting steps of pho-
tosynthesis, Vc,max and Jmax (including their 25�C normalized
derivatives), chlorophyll traits (total chlorophyll content, chloro-
phyll a, chlorophyll b, and the chlorophyll a to chlorophyll b ra-
tio), SLA, and leaf C and N percentages. Although the VIP scores
indicate the predictive strength of different spectral regions for
individual traits (Supplementary Fig. 2), limited mechanistic in-
terpretation of the PLSR models is suggested (Tobias 1995).

The reflectance technique outlined in this manuscript takes
�30 s to collect an average leaf reflectance spectrum from a
soybean plot (3 separate leaves in this study). For comparison,

Fig. 2. Boxplots of EBLUPs for the maximum rate of carboxylation of Rubisco, Vc,max25 (top) and the maximum rate of RuBP regeneration, Jmax25 (bottom)
for the SoyNAM families. Elite families (2-23), Diverse ancestry families (24-39), and PI families (40-64) are presented. The value for the common parent
(IA3023) is shown in upward triangles. The founder parents for a given family are shown with downward triangles. Median values are the black
horizontal bar, and outliers are indicated by open points.
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a standard A/Ci curve using a portable photosynthesis gas ex-
change system to estimate the rate limiting steps of photosynthe-
sis takes �30 min per leaf. The use of leaf reflectance to estimate
these traits represents a 60� increase in the rate of data collec-
tion, enabling measurement of more than 5,000 plots at “midday”
(11–15 h) over �2 weeks with a single spectroradiometer. For com-
parison, it would take more than 100 continuous, 24-h days using
a single gas exchange system to measure that number of plants.
While this leaf-level reflectance approach may not be as high-
throughput as aerial-based platforms (gantries, drones, satellites,
etc.); there is much greater complexity and uncertainty in esti-
mating photosynthetic traits remotely (Serbin et al. 2015;
Meacham-Hensold et al. 2020). Leaf reflectance models provide
an important benefit over traditional gas exchange approaches
enabling investigation into the genetics of photosynthetic traits,
albeit, with a tradeoff of accuracy as with virtually all high-
throughput phenotyping (van Bezouw et al. 2019).

Natural variation of photosynthetic and leaf traits
and their correlations in the SoyNAM population
Although the domestication bottleneck within US soybean germ-
plasm has narrowed available genetic diversity for selection
(Sedivy et al. 2017), significant variation in photosynthetic capac-
ity was still evident within the NAM founder families (Fig. 2). This
result was in agreement with previous research, which has also
documented the existence of genetic variation in photosynthetic
traits in soybean germplasm, but in a dramatically smaller

number of genotypes (Betzelberger et al. 2010; Gilbert et al. 2011;
Koester et al. 2016; Sakoda et al. 2016; Soleh et al. 2017; Tomeo and
Rosenthal 2017; Lopez et al. 2019; Wang et al. 2020b). Some recent
studies have specifically concentrated on gas exchange traits
within the SoyNAM population permitting a general comparison
with our results. Soleh et al. (2017) found significant variation in
photosynthetic induction, the gradual increase to maximum pho-
tosynthesis when transitioning from low to high light, in the
founder lines. This variation was attributed to Rubisco activation.
NAM founder line 12 (LD02-4485) had the slowest rate of photo-
synthetic induction, while NAM founder line 23 (U03-100612) had
the fastest rate of induction. Notably rates of induction were not
correlated with steady-state rates of CO2 fixation (Soleh et al.
2017). Intrinsic water use efficiency (iWUE) and A were previously
measured using gas exchange in a subset of RILs from the
SoyNAM families, and the NAM12 family had a relatively high
median rate of A in 2 of 3 environments (Lopez et al. 2019). In our
study, the NAM12 family had higher Vc,max25 and Jmax25, and the
NAM23 family had higher Jmax25 compared with other families
(Fig. 2). The agreement between our results and the previous
study provides additional confidence in our high-throughput ap-
proach for estimating photosynthetic capacity, including the
identification of families of interest for future study.

Phenotypic correlations between photosynthetic capacity
(Vc,max25, Jmax25) and yield were significant, but weak, across the
NAM population (Fig. 4); however, the genetic correlations be-
tween these traits are likely to be of more interest to soybean

Fig. 3. Boxplots of EBLUPs for leaf nitrogen percentage (Nperc, N %) and specific leaf area (SLA) for the SoyNAM families. Elite families (2-23), Diverse
ancestry families (24-39), and PI families (40-64) are presented. The value for the common parent (IA3023) is shown in upward triangles. The founder
parents for a given family are shown with downward triangles. Median values are the black horizontal bar, and outliers are indicated by open points.
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breeders (Falconer and Mackay 1996; Cheverud 2001) (Table 3).

Notably, Jmax25 was moderately correlated with yield

(�0.62 6 0.06, P value <0.001), whereas Vc,max25 was not

(�0.09 6 0.10, P value > 0.05). The latter result implies that the ge-

netic basis of phenotypic variation in Vc,max25 and yield are not

congruently concordant (i.e. direct selection for one is unlikely to

result in any correlated change in the other). Direct selection tar-

geting Jmax25 as a means of attaining an indirect correlated in-

crease in yield is theoretically achievable; however, given their

negative genetic correlation (Table 3), one must select for lower

(not higher) Jmax25 values, and notably, selection for lower Jmax25

would also likely lead to lower Vc,max25 values due to their positive

genetic correlation (þ0.36 6 0.10, P value <0.05). This finding is

surprising and runs counter to the thesis that increased photo-

synthesis will result in increased yields (Long et al. 2006; Ort et al.

2015), as well as the results from a crop modeling simulation

study performed by Wu et al. (2019). These authors showed that a

20% increase in Jmax25 would likely lead to respective 7% and 8%

increases in the yields of the monocot C3 wheat and C4 sorghum

crop species, whereas a 20% increase in Vc,max25 would likely lead

to just a negligible 0.4% increase in sorghum yield, and zero

change in wheat yield. The authors also showed that synchro-

nous 20% increases in both Vc,max25 and Jmax25 would likely lead

to somewhat greater increases of a respective 10.6% and 9.2% in

wheat and sorghum yields, respectively. These model simulation

results suggested that selection targeting Jmax25 alone was likely

to be very effective in generating correlated yield improvement,

but ultimately, targeted selection of both rate-limiting steps of

photosynthesis was expected to be ultimately needed to enable

the interactive synergism of both traits relative to monocot yield

improvement. However, this thesis does not seem to be the case

with respect to the dicot C3 soybean as shown in our results.
Other strong genetic and phenotypic correlations were identi-

fied (Table 3 and Fig. 4), and the �0.98 6 0.004 (P value <0.001)

Fig. 4. Scatterplots of EBLUPs for yield and modeled PLSR traits are shown in the lower diagonal. The upper diagonal shows the Pearson correlation
coefficient (r) and P values for phenotypic correlations. All pairwise trait comparisons were significant (P value <0.01, see Supplementary File 15 for 95%
confidence intervals and t-test statistics). Orange, gray, and blue dots represent RILs from Elite, Diverse Ancestry, and PI founders, respectfully. Trait
abbreviations: the maximum rate of the carboxylation of Rubisco at 25�C (Vc,max25), the maximum rate of RuBP regeneration at 25�C (Jmax25), total
chlorophyll content (Chl), leaf carbon percentage (Cperc), leaf nitrogen percentage (Nperc), and specific leaf area (SLA).
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genetic correlation between SLA and Jmax25 was the strongest.
This correlation suggests that if one is interested in increasing
Jmax25, then SLA (a trait accurately modeled by PLSR and easily
measured with rudimentary equipment—a leaf punch) may
serve as a proxy indicator to quickly select/identify breeding lines
with contrasts in Jmax25. Those lines could then be made available
for more detailed physiological characterization. The traits Nperc
and Cperc were also of interest, not because of their high genetic
correlation (þ0.74 6 0.05, P value <0.001), but because of their re-
spective high correlations with yield (þ0.83 6 0.04 and
þ0.66 6 0.06, P values <0.001) (Table 3). These high values may
attract soybean breeders to use leaf reflectance derived estimates
of Nperc and Cperc as potential proxy targets of direct selection
that may bring about a correlated yield response. These findings
correspond with the leaf economic spectrum, which describes
the global relationship between leaf nitrogen, leaf thickness
(SLA), and photosynthesis, and highlights the ability of the PLSR
models to accurately estimate established trait relationships
(Wright et al. 2004). However, the negative relationship between
Jmax25 and Nperc was not an expected result. This result may be
driven by Nperc being estimated on a leaf mass basis instead of a
leaf area basis, whereas Jmax25 is measured on an area basis
(Lloyd et al. 2013). Alternatively, the trait relationships outlined in
the leaf economic spectrum are derived from very diverse species
and may be less stable within a specific species.

Genetic mapping of modeled photosynthesis and
leaf traits
Many of the MTAs for multiple traits were colocated to narrow
intervals on Chrs 10, 13, and 18 (Table 4; Supplementary File 11).
More specifically, all traits except for Vc,max and Chl a:b mapped
to an interval on Chr 10 adjacent to the soybean maturity gene E2
(Glyma.10G221500) (Watanabe et al. 2011). The late maturity E2
allele was shown to be segregating in 7 of the NAM families; all
other families were homozygous for the early maturity e2 allele
(Langewisch et al. 2014; Diers et al. 2018). The E2/e2 locus influ-
enced all of the measured yield and agronomic traits in Diers
et al. (2018) as well as canopy coverage (Xavier et al. 2017) in the
SoyNAM population. Variation in the traits modeled in this study
was likely influenced by effects of this maturity gene that influ-
ences both plant development and leaf age (Kerstetter and
Poethig 1998; Bielczynski et al. 2017). Throughout leaf develop-
ment, the capacity of leaves to perform photosynthesis varies, as
does the leaf size, thickness, pigment content from a host of dif-
ferent environmental cues (nutrient availability, water, light, and
temperature) in response to feedback mechanisms within the
plant. However, segregation at the E2/e2 locus certainly exerted
pleiotropic control of at least some of the total variation mea-
sured for these traits (Falconer and Mackay 1996; Cheverud
2001). E2 is an ortholog of the Arabidopsis gene GIGANTEA, which
is a known circadian clock gene associated with flowering and
maturity (Watanabe et al. 2011). A growing body of research
shows that GIGANTEA functions beyond flowing and maturity
(Mishra and Panigrahi 2015) likely having roles in sink capacity
via maintenance of the inflorescence architecture and limiting
floral abortion (Brandoli et al. 2020), chlorophyll content, sucrose
sensitivity (Dalchau et al. 2011; Mora-Garcia et al. 2017), stress tol-
erance (Riboni et al. 2013), carbon metabolism (Mugford et al.
2014; Krahmer et al. 2019), photosynthetic capacity, and plant
growth (Dodd et al. 2005, 2015).

Because soybeans preferentially reproduce through self-
pollination, the extended linkage disequilibrium found in both
domesticated and wild soybean, and the relatively small number

of SNPs used in this analysis relative to other GWAS (Chung et al.
2014; Xavier et al. 2016), the specific marker SNPs and gene mod-
els directly associated with the MTAs identified for these PLSR
traits should be viewed as putative targets for further study (i.e.
this study lacks resolution) (Supplementary File 13). Given paren-
tal lines were deeply sequenced for SNP discovery, one strategy
to overcome the lack of resolution in future work is parent–prog-
eny genotype imputation (Technow and Gerke 2017; Gonen et al.
2021). Searching the adjacent regions of the genome identified
some candidate genes that were more plausible controls of the
PLSR modeled variation in photosynthetic traits (Table 4), but
these should also be considered putative until additional re-
search is performed.

A significant MTA for Vc,max25 was identified on Chr 19 (inter-
val 16) within which there are 7 annotated gene models associ-
ated with “photosynthesis.” Most notably, 4 of these gene models
(Glyma.19g046600 with Glyma.19g046800, Glyma.19g046900, and
Glyma.19g04700 in tandem array within 50 kb, soybase.org) were
identified as the rbcS (Table 4) and appear to have 2 haplotypes
within the founder lines (Supplementary File 14). Rubisco is the
initial site of carbon fixation for C3 plants. The rate at which
Rubisco is able to effectively fix CO2 (Vc,max25) is a major limita-
tion of photosynthesis and has been proposed as a target for im-
provement (Spreitzer and Salvucci 2002; Cavanagh and Kubien
2014; Ort et al. 2015; Niinemets et al. 2017). The exact role of the
rbcS is “enigmatic” with several proposed functions making the
rbcS an active area of research (Cavanagh 2020). The rbcS genes
in tandem array may result in greater transcript abundance or
provide some novel mutation and function (Rosloski et al. 2010;
Panchy et al. 2016; Das and Bansal 2019) ultimately leading to the
modeled variation in Vc,max25.

Four significant MTAs were mapped for Jmax25, the maximum
rate of electron transport leading to the regeneration of RuBP, on
Chrs 10, 13, and 18. Intervals for the MTAs on Chrs 10 and 18 con-
tain gene models with GO terms for “photosynthesis” (Table 4).
The most intriguing candidate gene is Glyma.10g225400, which
encodes a fructose-1,6-bisphosphatase (FBPase). FBPase has been
proposed as a target to improve photosynthesis (Tamoi et al.
2006; Zhu et al. 2008), and transgenic soybean overexpressing a
cyanobacterial FBPase showed increased rates of Jmax (and Vc,max)
and improved yield at elevated temperature (Köhler et al. 2017).
While this was the most significant MTA for Jmax25, the proximity
(�300 kilobase pair) of this MTA for Jmax25 to the soybean matu-
rity gene E2 may be problematic from a breeding perspective. The
positive allelic effects of this MTA were predominately in the
NAM families with the later maturity E2 allele (Supplementary
File 11), in contrast to most adapted north central, USA germ-
plasm which possesses the earlier maturity e2 allele. The other
candidate genes for Jmax25 were specific to chlorophyll a–b bind-
ing and the photosystems associated with the light reactions.
These candidate genes likely have some role in light capture, lin-
ear electron flow, and ultimately the differences modeled for
Jmax25 in soybean (Yamori and Shikanai 2016; Nikkanen et al.
2018).

Most genetic mapping studies of photosynthetic traits are fo-
cused on pigments associated with photosynthetic efficiency
(Dhanapal et al. 2016; Herritt et al. 2016). This is likely because of
the difficulty in phenotyping photosynthetic efficiency and other
gas exchange traits. With so few groups having mapped gas ex-
changed derived photosynthetic traits in soybean (Li et al. 2016;
Lü et al. 2018; Lopez et al. 2019; Wang et al. 2020a), there are few, if
any, direct comparisons that can be made between the MTAs for
photosynthesis mapped in this study. Lopez et al. (2019) mapped
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MTAs using a subset of 383 RILs and founder lines from the
SoyNAM population for A and instantaneous water use efficiency
(A divided by stomatal conductance). No significant MTAs identi-
fied in our research project colocated to intervals identified by
Lopez et al. (2019) (Table 4; Supplementary File 11). The traits
mapped between the 2 studies are related but different, so this is
understandable. The MTAs identified in both studies provide a
better understanding of the genetic controls of photosynthesis,
multiple targets for improving photosynthetic traits, and oppor-
tunities for future analyses in soybean. Both studies also show
low phenotypic correlations between the measured photosynthe-
sis traits and final yield, and slightly stronger genetic correlations
between these traits. This finding suggests that there may be a
shared genetic component, albeit minor, and only for some pho-
tosynthetic traits and yield (Table 3). Because of the limited or
negative genetic correlations between yield and photosynthetic
traits identified in this study, multiple trait selection, and im-
provement is unlikely; however, other leaf traits may be better
suited for concordant improvement (Neyhart et al. 2019). The her-
itability of photosynthetic traits in both studies are considered
moderate to low (Holland et al. 2010) (Tables 2 and 3). This is
likely because photosynthetic traits are complex, polygenic traits
that are strongly influenced by changes in the phenology of the
plant and the environment including air temperature, light, and
water availability (Bernacchi et al. 2013; van Bezouw et al. 2019).

Conclusion
This work demonstrated the development and use of a high-
throughput approach leveraging leaf reflectance data to deter-
mine photosynthetic and other leaf traits in soybean. We then
used these high-throughput models to estimate leaf traits includ-
ing the rate limiting steps of photosynthesis, a proposed means
of improving crop yields, to the SoyNAM population gaining
knowledge of the genetic architecture, natural variation, and po-
tential targets for improvement. SoyNAM families with high pho-
tosynthetic capacity were identified. The respective low and
negative correlations of Vc,max25 and Jmax25 with yield suggests
that these rate-limiting steps of photosynthesis are not currently
limiting soybean yield potential. We also showed that 3 modeled
leaf traits: leaf carbon percentage, leaf nitrogen percentage, and
SLA had positive genetic correlations with yield. While these rela-
tionships may not be entirely novel, the ability to estimate these
traits in a high-throughput manner using leaf reflectance could
be incorporated in a large breeding program as a proxy for yield.
MTAs were mapped for all of the modeled leaf traits, and we
identified some that co-located for photosynthetic capacity and
yield. Additionally, some MTAs for the photosynthetic traits
mapped to reasonable candidate genes, most notably Vc,max25

and the rbcS. This provided some additional confidence that the
modeled traits are indeed predicting the measured traits. While
we are quite enthusiastic about the approach outlined here, we
were unable to address if we lose power or have differences in
QTL effect size by mapping with the modeled traits over the mea-
sured traits. This will certainly need to be addressed in future re-
search to establish confidence in the community that the
mapped associations are in fact real and not simply error intro-
duced by the high-throughput technique; however, the strides
made in rapidly phenotyping these difficult to measure photo-
synthetic traits as well as multiple other leaf traits at once may
outweigh, if even only temporarily, the tradeoff in loss of predic-
tion accuracy.

Data availability
All of the genetic and yield data underlying this article are pub-
licly available from the SoyNAM R package (Xavier et al. 2018;
Diers et al. 2018) accessed from the Soybase.org website.
Supplemental Files 1-18 are available at Figshare: https://doi.org/
10.25386/genetics.19394693, including all other measured pheno-
type and leaf reflectance data (Supplementary Files 16 and 17)
and a complete dataset to perform all of the genetic mapping and
analyses (Supplementary File 18). The majority of lines and
accessions used in this manuscript are available via GRIN
(https://www.ars-grin.gov/) or by request from Soybase.org for
the NAM lines (https://soybase.org/SoyNAM/SoyNAM_RIL_re
quest.htm).

Supplemental material is available at GENETICS online.
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