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Abstract
The	Midwestern	“Corn-	Belt”	in	the	United	States	is	the	most	productive	agricul-
tural	 region	on	 the	planet	despite	being	predominantly	 rainfed.	 In	 this	 region,	
global	climate	change	is	driving	precipitation	patterns	toward	wetter	springs	and	
drier	mid-		to	late-	summers,	a	trend	that	is	likely	to	intensify	in	the	future.	The	lack	
of	precipitation	can	lead	to	crop	water	limitations	that	ultimately	impact	growth	
and	yields.	Young	plants	exposed	to	water	stress	will	often	invest	more	resources	
into	their	root	systems,	possibly	priming	the	crop	for	any	subsequent	mid-		or	late-	
season	drought.	The	trend	toward	wetter	springs,	however,	suggests	that	oppor-
tunities	for	crop	priming	may	lessen	in	the	future.	Here,	we	test	the	hypothesis	
that	 early	 season	 dry	 conditions	 lead	 to	 drought	 priming	 in	 field-	grown	 crops	
and	 this	 response	will	protect	 crops	against	growth	and	yield	 losses	 from	 late-	
season	droughts.	This	hypothesis	was	tested	for	the	two	major	Midwestern	crop,	
maize	 and	 soybean,	 using	 high-	resolution	 daily	 weather	 data,	 satellite-	derived	
phenological	metrics,	 field	yield	data,	and	ecosystem-	scale	model	(Agricultural	
Production	System	Simulator)	simulations.	The	results	from	this	study	showed	
that	priming	mitigated	yield	losses	from	a	late	season	drought	of	up	to	4.0%	and	
7.0%	for	maize	and	soybean	compared	with	unprimed	crops	experiencing	a	late	
season	drought.	These	results	suggest	that	if	the	trend	toward	wet	springs	with	
drier	 summers	continues,	 the	 relative	 impact	of	droughts	on	crop	productivity	
is	 likely	 to	 worsen.	 Alternatively,	 identifying	 opportunities	 to	 breed	 or	 geneti-
cally	modify	pre-	primed	crop	species	may	provide	improved	resilience	to	future	
climate	change.
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1 	 | 	 INTRODUCTION

Between	1960	and	2018,	the	United	States,	on	average,	ac-
counted	 for	 35%	 of	 global	 maize	 production	 and	 almost	
50%	of	soybean	production	(FAO,	2019)	with	ca.	90%	and	
75%	of	maize	and	soybean,	respectively,	produced	in	the	
Midwest	where	irrigation	is	scarce	(McGrath	et	al.,	2015;	
USDA,	2017).	These	maize	and	soybean	production	levels	
are	partly	ascribed	to	the	steady	increase	in	crop	yield	since	
the	1960s	driven	by	improvements	in	genetics,	agronomy-	
including	 the	 implementation	 of	 soil	 conservation	 mea-
sures,	 and	 favorable	 growing	 conditions	 (Grassini	 et	 al.,	
2013;	Long	et	al.,	2015).	However,	 increase	 in	crop	yield	
over	time	is	a	nonlinear	process	(Ciais	et	al.,	2005)	and	is	
subject	to	stochastic	factors	such	as	pest	and	disease	out-
breaks	and	weather	(Carvajal-	Yepes	et	al.,	2019;	Schlenker	
&	Roberts,	2009).	Among	these	factors,	drought	has	been	
the	major	cause	of	loss	in	the	rainfed	“Corn-	Belt”	over	the	
last	few	decades,	and	water	is	projected	to	become	increas-
ingly	 limiting	 to	 further	potential	yield	 increases	 (Ort	&	
Long,	2014).

Despite	 a	 trend	 toward	 a	 wetter	 Midwest,	 how	 pre-
cipitation	 is	 distributed	 over	 time	 is	 changing	 with	 wet-
ter	 springs	 and	 drier	 summers	 and	 early	 fall	 (Andresen	
et	al.,	2012;	S.	Dai	et	al.,	2016;	Neri	et	al.,	2020).	This	al-
tered	precipitation	pattern	leads	to	drier	conditions	at	the	
peak	of	leaf	area	and	when	crop	water	demand	is	greatest.	
Climate	projections	show	that	this	trend	of	wetter	springs	
and	 drier	 mid-		 to	 late-	season	 conditions	 in	 the	 Midwest	
will	 intensify	with	climate	change	(USGCRP,	2018),	and	
thus	yield	losses	to	drought	will	likely	increase.	Recent	ev-
idence	suggests	that	stressful	growth	environments	during	
early	 vegetative	 growth	 stages	 has	 little	 impact	 on	 crop	
yields;	however,	 stress	during	 reproductive	development	
drives	 reductions	 in	 yields	 (Siebers	 et	 al.,	 2015,	 2017).	
Studies	from	greenhouse	experiments	show	that	a	“prim-
ing	 effect”	 can	 occur	 whereby	 an	 early-	season	 drought	
can	minimize	impacts	on	crop	growth	and	yield	of	a	late-	
season	drought	relative	to	a	late-	season	drought	without	
an	 early-	season	 drought	 (Balmer	 et	 al.,	 2015;	 Martinez-	
Medina	et	al.,	 2016;	Wang	et	al.,	 2017).	Drought	primed	
crops	that	experience	a	second	drought	potentially	show	
a	 loss	of	productivity	but	are	generally	more	resilient	 in	
growth	and	productivity	relative	to	nonprimed	crops	that	
experience	a	drought	later	in	the	growing	season	(Figure	
1).	Drought	primed	crops	therefore	possess	the	capacity	to	
partly	mitigate	yield	losses	relative	to	nondrought	primed	
crops.	 Drought	 priming	 effects	 on	 crops,	 however,	 have	
been	 tested	 predominately	 on	 plants	 grown	 in	 artificial	
growth	environments	at	selective	crop	stages	(Mendanha	
et	al.,	2020;	Wang	et	al.,	2018).	Thus,	it	remains	a	question	
as	to	whether	priming	occurs	under	field	conditions	where	
greater	rooting	volumes	and	other	weather	variables	have	

significant	 impacts	 on	 crop	 yield	 (Chenu	 et	 al.,	 2013;	
Zhao	et	al.,	2017).	If	drought	priming	occurs	under	field	
conditions,	 the	 current	 trend	 toward	 wetter	 early	 grow-
ing	 seasons	 and	 drier	 late	 growing	 seasons,	 minimizing	
the	potential	for	drought	priming,	may	contribute	to	the	
observed	increased	sensitivity	of	crop	growth	to	drought	
in	the	U.S.	Midwest	(Lobell	et	al.,	2014).	As	such,	an	im-
proved	understanding	of	the	priming	effect	on	crops	over	
large	spatial	extent	 is	necessary,	which	may	help	 lead	to	
development	 of	 more	 resilient	 crop	 cultivars	 (Balmer	
et	al.,	2015;	Wang	et	al.,	2018).

Warm-	season	 temperatures	 in	 the	 Midwest	 are	 in-
creasing	 and	 are	 projected	 to	 continue	 rising	 (USGCRP,	
2018).	 Such	 a	 temperature	 rise,	 coupled	 with	 precipita-
tion	change,	can	cause	more	 surface	moisture	 to	be	 lost	
through	 evaporation	 (Wuebbles	 et	 al.,	 2017).	 Since	 in-
creased	temperature	can	also	induce	high	vapor	pressure	
deficit	 (VPD)	 that	can	aggregate	drought	stress	on	crops	
and	lead	to	yield	losses	in	the	Midwest	(Lobell	et	al.,	2014;	
Zhao	et	al.,	2017),	drought	priming	effect	needs	to	be	dif-
ferentiated	from	the	potential	for	a	temperature	priming	
effect.	 This	 differentiation	 would	 further	 help	 under-
stand	 the	 impacts	 of	 temperature	 and	 drought	 on	 crop	
production.

Long-	term	time	series	data	sets	of	crop	yields	coupled	
with	environmental	variables	have	revealed	insights	into	
drivers	 of	 variability	 in	 crop	 yields	 (Lobell	 et	 al.,	 2011;	

F I G U R E  1  Conceptual	illustration	of	positive	response	
in	plants	to	drought	priming	and	stress.	During	the	drought	
priming,	a	plant	reacts	with	altered	levels	of	various	metabolites,	
enzymes,	hormones,	and	other	molecules,	enabling	faster	and	
stronger	response/adaption	(a)	in	a	drought	stress	than	a	plant	
without	priming	(b)	in	a	way	that	can	partly	mitigate	yield	losses	
than	nonprimed	crops.	Altered	levels	of	metabolites,	enzymes,	
hormones,	and	other	molecules	may	also	induce	changes	in	plant	
traits	such	as	root	length,	leaf	area	index,	and	specific	leaf	nitrogen	
as	specific	phenotypes	for	drought	priming
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McGrath	et	al.,	2015).	Reported	drought	conditions	in	the	
United	States,	for	example,	by	the	United	States	Drought	
Monitor	 (USDM),	 provides	 opportunity	 to	 use	 historic	
data	 to	 quantify	 the	 potential	 for	 drought	 priming	 to	
impact	 crop	 yield.	 In	 this	 study,	 satellite	 images,	 high-	
resolution	 daily	 weather	 observations,	 county-	level	 crop	
yield	data,	and	process-	based	crop	modeling	were	used	to	
discern	the	impacts	of	drought,	with	and	without	a	prim-
ing	 response,	 on	 crop	 yield	 losses.	 Specifically,	 satellite	
time	series	images	were	acquired	between	2000	and	2018	
to	derive	four	key	phenological	stages	for	both	maize	and	
soybean	using	a	hybrid	approach	involving	a	pre-	defined	
geometric	 shape	 fitting	 (known	 as	 shape	 model	 fitting,	
SMF)	 (Sakamoto	 et	 al.,	 2010)	 and	 a	 threshold	 method	
(Zhu	et	al.,	2018).	These	phenological	stages	provide	the	
basis	to	quantify	the	drought	to	wet	conditions	using	ei-
ther	 the	 Palmer	 Drought	 Severity	 Index	 (PDSI)	 or	 stan-
dardized	 precipitation	 anomaly	 (SPA).	 Two	 approaches	
were	used	to	identify	whether	the	drought	priming	effect	
impacted	yields,	one	that	relies	on	a	panel	regression	anal-
ysis	of	actual	yield	variability	by	factoring	in	variables	in-
cluding	solar	radiation,	 temperature,	precipitation,	VPD,	
and	crop	phenological	stages,	and	the	other	that	relies	on	
the	 Agricultural	 Production	 System	 sImulator	 (APSIM)	
model	 (Holzworth	 et	 al.,	 2014)	 with	 inputs	 of	 selected	
high-	resolution	 weather	 data.	 The	 same	 data	 were	 also	
utilized	to	identify	the	temperature	priming	effect	follow-
ing	the	approaches	used	to	discern	the	drought	priming	ef-
fect.	The	study	region	consists	of	three	Midwestern	states,	
Illinois,	Indiana,	and	Iowa,	in	which	maize	and	soybean	
production	are	mainly	rainfed.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Identification of crop phenological 
stages

The	 MODIS	 Version	 6	 time	 series	 reflectance	 data	 from	
Terra	 and	 Aqua	 satellite	 platforms,	 that	 is,	 MOD09Q1	
(2000–	2018)	 and	 MYD09Q1	 (2002–	2018),	 were	 used	 to	
identify	 crop	 (soybean	 and	 maize)	 phenological	 stages.	
The	product	provides	8-	day	maximum	composite	surface	
reflectance	at	250 m	for	MODIS	bands	1	(red	band)	and	2	
(near	infrared	band)	that	have	been	corrected	for	atmos-
pheric	conditions	 such	as	aerosols	and	Rayleigh	scatter-
ing.	The	MODIS	images	covering	the	study	area	including	
Illinois,	Indiana,	and	Iowa	were	mosaicked,	re-	projected	
(WGS84	 coordinate	 system),	 and	 then	 downloaded	
through	 the	 Application	 for	 Extracting	 and	 Exploring	
Analysis	 Ready	 Samples	 (AρρEEARS)	 portal.	 A	 hybrid	
approach	 involving	 the	 shape	 model	 fitting	 (Sakamoto	
et	al.,	2010)	and	the	threshold	method	(Zhu	et	al.,	2018)	

was	used	to	identify	four	phenological	stages	for	both	soy-
bean	and	maize	 (as	 illustrated	 in	Figure	2).	Specifically,	
the	four	phenological	stages	identified	for	maize	include	
Emergence	(VE),	Silking	stage	(R1),	Dent	stage	(R5),	and	
Maturity	(R6),	and	for	soybean	include	Emergence	(VE),	
Beginning	seed	(R5),	Full	 seed	(R6),	and	Beginning	ma-
turity	(R7).	The	shape	model	fitting	was	used	to	identify	
R1	 and	 R5	 for	 maize	 and	 R5	 and	 R6	 for	 soybean,	 while	
the	threshold	method	was	applied	to	characterize	VE	and	
R6	 for	maize	and	VE	and	R7	 for	 soybean.	Although	 the	
shape	model	has	the	capacity	to	characterize	all	four	criti-
cal	phenological	stages	for	maize	and	soybean,	it	has	been	
reported	that	the	linear	scaling	of	the	shape	model	cannot	
help	accurately	discern	patterns	and	trends	in	emergence	
and	 maturity	 dates	 (Zeng	 et	 al.,	 2016;	 Zhu	 et	 al.,	 2018).	
Thus,	a	hybrid	approach	was	used	in	this	study.

Both	the	shape	model	fitting	and	the	threshold	method	
were	implemented	with	the	scaled	Wide	Dynamic	Range	
Vegetation	Index	(WDRVI)	(Gitelson,	2004)	computed	in	
equation	1:

where	Refb1	and	Refb2	refer	to	the	MODIS	surface	reflectance	
values	 for	bands	1	and	2,	and	α	 is	a	weighting	coefficient	
set	as	0.1.	The	calculation	of	the	WDRVI	was	on	a	per-	pixel	
basis	 and	 only	 reflectance	 values	 with	 the	 highest	 quality	
flag	were	retained	for	WDRVI	calculation.	Before	the	shape	
model	 fitting	 and	 the	 threshold	 method	 application,	 the	
WDRVI	 curve	 for	 each	 year	 was	 smoothed	 using	 a	 spline	
function	to	remove	any	noise	from	and	fill	the	data	gap	in	

(1)WDRVI =
(

� ∗ Refb2 − Refb1
)

∕
(

� ∗ Refb2 + Refb1
)

F I G U R E  2  Illustration	for	the	identification	of	four	critical	
phenological	stages	using	the	shape	model	fitting	and	threshold	
method.	Data	were	taken	from	a	soybean	pixel.	The	four	stages	
included	emergence	(dot	green	line),	beginning	seed	(light	green	
solid	line),	full	seed	(blue	solid	line),	and	beginning	maturity	(dark	
yellow	dash	dot	line)
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the	original	time	series.	This	smoothing	procedure	also	in-
terpolated	the	original	8-	day	time	series	into	daily	smoothed	
observations.

The	 reference	 shape	 models	 for	 maize	 and	 soybean	
were	defined	by	averaging	smoothed	WDRVI	over	multi-
ple	years	(2001–	2010)	that	were	acquired	over	two	irrigated	
field	sites	at	Mead,	Nebraska	operated	by	the	University	of	
Nebraska	Agricultural	Research	and	Development	Center	
(Sakamoto	 et	 al.,	 2010).	 To	 identify	 crop	 phenological	
stages,	 these	 predefined	 shape	 models	 were	 scaled	 and	
fitted	to	interpolated	daily	time	series	WDRVI	data	using	
equation	2:

where	h(x)	is	the	predefined	shape	model	for	maize	or	soy-
bean,	x	 refers	 to	 the	date,	and	xscale,	 tshift,	and	yscale	are	
variables	that	need	to	be	optimally	determined	so	as	to	min-
imize	 the	difference	between	 f(x)	 and	 the	satellite	derived	
WDRVI	curves.	Here,	the	root	mean	square	error	(RMSE)	
between	 f(x)	 and	 the	 satellite-	derived	 WDRVI	 curves	 was	
used	as	the	loss	function	which	was	iteratively	minimized	
with	 the	 Levenberg-	Marquardt	 algorithm	 (Moré,	 1978).	
The	reference	dates	(Table	1)	of	four	phenological	stages	for	
maize	were	set	at	150,	200,	240,	and	265,	and	for	soybean	at	
170,	225,	240,	and	270,	which	were	empirically	determined	
based	on	in	situ	observations	of	phenological	stages.

The	threshold	values	to	detect	emergence	and	maturity	
dates	for	maize	were	set	at	−0.68	and	−0.68,	and	to	detect	
emergence	and	beginning	maturity	for	soybean	were	set	at	
−0.68	and	−0.55.	These	threshold	values	were	determined	
based	 on	 trial-	and-	error	 comparisons	 between	 identi-
fied	 dates	 and	 United	 States	 Department	 of	 Agriculture	
(USDA)/National	 Agricultural	 Statistics	 Service	 (NASS)	
reported	emergence	and	maturity	dates	for	all	three	states.	
As	USDA/NASS	weekly	Crop	Progress	Report	(CPR)	only	
recorded	critical	phenological	stages	(such	as	emergence	
and	silking)	based	on	area	ratios,	a	sigmoid	function	was	
employed	to	interpolate	the	area	ratio	(Figure	S1).	In	situ	
observations	 of	 phenological	 stages	 were	 then	 set	 at	 the	
date	when	the	interpolated	area	ratio	reached	50%	at	the	
state	level	(Tollenaar	et	al.,	2017).	The	phenological	dates	
determined	from	the	USDA/NASS	CPR	were	also	used	to	

evaluate	the	accuracy	of	the	shape	model	fitting	and	the	
threshold	method	to	identify	the	four	critical	phenological	
stages.

Another	 data	 set	 used	 in	 identifying	 phenological	
stages	 was	 the	 NASS	 cropland	 data	 layer	 (NASS-	CDL)	
that	 provided	 target	 maize	 and	 soybean	 pixels	 for	 im-
plementing	 the	 shape	 model	 fitting	 and	 the	 threshold	
method	over	the	three	states.	The	spatial	resolution	of	the	
NASS-	CDL	 was	 generally	 30  m	 but	 56  m	 for	 data	 from	
2006	 to	2009	as	different	 satellite	data	 sets	were	used	 to	
generate	 the	 NASS-	CDL.	 Further	 details	 and	 metadata	
regarding	the	CDL	dataset	can	be	found	in	USDA/NASS	
website	(https://www.nass.usda.gov/Resea	rch_and_Scien	
ce/Cropl	and/metad	ata/meta.php).	The	CDL	data	were	ag-
gregated	to	the	same	spatial	resolution	of	MODIS	images	
(i.e.,	 250  m).	The	 shape	 model	 fitting	 and	 the	 threshold	
method	were	applied	only	to	MODIS	pixels	with	at	least	
80%	 maize	 or	 soybean	 fractions	 (Sakamoto	 et	 al.,	 2010;	
Zhu	et	al.,	2018).	This	fraction	threshold	was	to	reduce	the	
impact	of	mixed	pixels	 that	may	contain	signals	of	non-
maize/soybean	information	on	the	identification	of	crop	
phenological	stages.	Finally,	the	crop	phenological	stages	
identified	 from	 satellites	 were	 aggregated	 to	 the	 county	
level	using	the	average	operation	for	subsequent	analysis.	
Here	we	define	 the	durations	between	neighboring	phe-
nological	stages	as	D1,	D2,	and	D3	for	maize,	that	is,	D1	
for	the	duration	between	Emergence	and	Silking,	D2	for	
the	duration	between	Silking	and	Dent,	and	D3	for	the	du-
ration	between	Dent	and	Maturity.	For	soybean,	D1	refers	
to	the	duration	between	Emergence	and	Beginning	Seed,	
D2	 refers	 to	 the	 duration	 between	 Beginning	 Seed	 and	
Full	Seed,	and	D3	refers	to	the	duration	between	Full	Seed	
and	Beginning	Maturity.

2.2	 |	 MODIS LAI data

The	LAI	data	used	 in	the	study	were	extracted	from	the	
8-	day	500 m	LAI	product	(i.e.,	MOD15A2H,	available	at	
https://ladsw	eb.modaps.eosdis.nasa.gov/missi	ons-	and-	
measu	remen	ts/produ	cts/MOD15	A2H/).	 This	 LAI	 prod-
uct	 (2000–	present)	 has	 been	 assessed	 over	 a	 widely	
distributed	set	of	locations	and	time	points	and	proved	to	

(2)f (x) = yscale × h (xscale × (x + tshift))

T A B L E  1 	 Phenological	stages	identified	for	maize	and	soybean	using	the	shape	model	fitting

Stage

Maize Soybean

Vegetative Silking Dent Maturity Vegetative Beginning seed Full seed
Beginning 
maturity

V1 R1 R5 R6 V1 R5 R6 R7

Reference	
date

150 200 240 265 170 225 240 270

Note: The	reference	dates	were	used	to	define	shape	models	that	were	geometrically	scaled	and	fitted	to	time	series	WDRVI	data	on	a	per-	pixel	basis.
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exhibit	a	high	accuracy	compared	with	ground-	truth	data.	
In	this	study,	LAI	data	covering	the	three	states	were	mo-
saicked,	re-	projected,	and	resampled	to	match	the	WDRVI	
data.	These	LAI	data	were	mainly	used	to	reveal	whether	
differences	 in	 LAI	 exist	 among	 different	 crop	 groups	
(nonpriming,	 priming,	 and	 control	 groups	 as	 defined	 in	
the	 section	 Drought priming on crops).	 To	 this	 end,	 LAI	
data	 were	 aggregated	 by	 county	 and	 phenological	 dura-
tions	 (D1-	D3)	 and	 the	 statistical	 characteristics	 of	 LAI	
data	such	as	mean,	median,	and	standard	deviations	were	
reported	for	comparisons.

2.3	 |	 Daily weather data

Daily	 weather	 data	 including	 daily	 maximum	 tempera-
ture,	 minimum	 temperature,	 accumulative	 precipita-
tion,	downward	surface	shortwave	radiation,	mean	VPD,	
and	 10-	day	 PDSI	 from	 2000	 to	 2018	 were	 downloaded	
from	 gridMET	 (available	 through	 the	 USGS	 Geo	 Data	
portal,	 https://cida.usgs.gov/gdp/clien	t/#!catal	og/gdp/
datas	et/54dd5	df2e4	b08de	9379b	38d8).	 gridMET	 provides	
daily	 surface	 meteorological	 data	 for	 the	 Continental	
United	 States	 at	 4  km	 (Abatzoglou,	 2013).	 It	 blends	 the	
high-	resolution	 spatial	 data	 from	 PRISM	 (Daly	 et	 al.,	
2008)	with	 the	National	Land	Data	Assimilation	System	
Phase	2	Reanalysis	data,	resulting	in	a	spatially	and	tem-
porally	continuous	product.	The	product	has	been	exten-
sively	validated	using	weather	station	networks	including	
RAWS,	AgriMet,	AgWeatherNet,	and	USHCN-	2	and	has	
proved	 to	 be	 suitable	 for	 landscape	 ecological	 modeling	
(Abatzoglou,	2013).

To	be	consistent	with	 the	data	analysis	at	 the	county	
level,	the	daily	weather	data	were	aggregated	from	4 km	to	
the	county	level	at	which	mean	values	of	these	meteoro-
logical	variables	were	used.	These	variables	were	further	
aggregated	 to	mean	values	within	 the	 three	periods,	D1,	
D2,	and	D3.

2.4	 |	 Defining drought conditions

We	used	PDSI	and	SPA	to	individually	define	drought	for	
each	 of	 the	 three	 periods	 (D1-	D3)	 bounded	 by	 the	 four	
critical	 phenological	 stages.	 PDSI	 was	 calculated	 based	
on	precipitation	and	 temperature	data	while	accounting	
for	changes	in	soil	water	content	(Alley,	1984;	Dai	et	al.,	
2004).	It	is	a	standardized	index	typically	ranging	from	−4	
(dry)	to	+4	(wet)	albeit	that	more	extreme	values	are	pos-
sible.	Specifically,	PDSI	was	divided	into	several	groups	to	
indicate	meteorological	conditions	from	dry	to	wet:	−4.0	
or	less	(Extreme	Drought),	−3.0	to	−3.9	(Severe	Drought),	
−2.0	 to	 −2.9	 (Moderate	 Drought),	 −1.9	 to	 +1.9	 (Near	

Normal),	+2.0	to	2.9	(Unusual	Moist	Spell),	+3.0	to	+3.9	
(Very	Moist	Spell),	+4.0	and	above	(Extremely	Moist).

The	 SPA,	 as	 calculated	 in	 equation	 (3),	 characterizes	
the	 degree	 to	 which	 accumulative	 precipitation	 deviates	
from	its	mean	state:

where	xy,t	refers	to	the	mean	total	precipitation	at	the	county	
level	within	each	of	the	three	durations	(t)	D1,	D2,	and	D3	
in	a	given	year	y	and	xt 	represents	the	multi-	year	mean	total	
precipitation	 within	 the	 corresponding	 duration	 (t).	 This	
standardized	anomaly	has	been	used	before,	for	example,	in	
Li	et	al.	(2019),	to	quantify	the	impacts	of	excessive	rainfall	
and	extreme	temperature	on	the	crop	yield.	Based	on	this	
standardized	anomaly	approach,	meteorological	dry-	to-	wet	
events	were	defined	in	the	following	order	using	the	x	value:	
−2.0	 or	 less	 (Extreme	 Dry),	 −2.0	 to	 −0.5	 (Moderate	 Dry),	
−0.5	to	+0.5	(Near	Normal),	+0.5	to	+2.5	(Moderate	Wet),	
+2.5	and	above	(Extreme	Wet).	The	x	values	set	for	extreme	
drought	and	rainfall	were	uneven	because	the	precipitation	
distribution	showed	a	longer	tail	toward	high	precipitation	
(Figure	 S2).	 These	 uneven	 values	 ensured	 that	 extreme	
drought	and	rainfall	were	equally	identified	and	represented	
(Li	et	al.,	2019).

We	 also	 followed	 the	 anomaly	 approach	 to	 define	
temperature	 conditions	 (hereafter	 named	 as	 STA)	 from	
extreme	 cold	 to	 extreme	 heat	 (Li	 et	 al.,	 2019).	 Similarly,	
based	 on	 the	 standardized	 anomaly	 approach,	 cold-	to-	
heat	conditions	were	defined	in	the	following	order	using	
the	 x	 value:	 −2.0	 or	 less	 (Extreme	 Cold),	 −2.0	 to	 −0.5	
(Moderate	 Cold),	 −0.5	 to	 +0.5	 (Near	 Normal),	 +0.5	 to	
+2.5	(Moderate	Heat),	+2.5	and	above	(Extreme	Heat).

In	this	study,	we	did	not	use	VPD	to	define	drought	as	
it	 is	quite	difficult	 to	know	the	category	of	drought	con-
dition,	for	example,	extreme	or	moderate	drought	condi-
tions,	based	on	VPD.	However,	VPD	was	used	in	the	panel	
data	analysis	as	it	regulated	the	behavior	of	crop	stomata	
and	may	show	impacts	of	atmospheric	conditions	on	crop	
yield.	The	 separate	 quantification	 of	 drought	 conditions	
using	 PDSI	 and	 SPA	 provided	 independent	 estimates	 of	
the	impacts	of	drought	priming	on	crop	yield	losses.

2.5	 |	 Crop yield anomaly

The	 crop	 grain	 yield	 data	 between	 2000	 and	 2018	 at	
county	 level	 for	 the	 three	 states	 were	 downloaded	 from	
the	USDA/NASS	Quick	Stats	2.0	database	and	yield	trend	
over	years	for	each	county	is	summarized	in	Figure	S3.	The	
unit	for	the	crop	yield	data	is	metric	ton	per	hectare	(Mg/
Ha).	To	identify	drought	priming	effects,	yield	variations	

(3)x =

(

xy,t − xt
)

�
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induced	 by	 weather	 conditions	 including	 the	 minimum	
temperature	 (Tmin),	 maximum	 temperature	 (Tmax),	 solar	
radiation	(Srad),	precipitation	(Precp),	and	VPD,	as	well	
as	 the	general	 trend	 in	maize	and	soybean	yield	 (Figure	
S3)	were	removed.	Thus,	crop	yield	anomaly	was	defined	
after	weather-	induce	yield	variation	was	removed.	Here,	
crop	yield	anomaly	for	each	county	for	a	given	year	was	
computed	in	three	equations.

First,	a	panel	analysis	model,	as	outlined	in	equation	4,	
was	used	to	remove	yield	variations	induced	by	tempera-
ture,	solar	radiation,	and	VPD:

where	Yieldi,t	refers	to	the	crop	yield	data	(either	maize	or	
soybean)	for	county	i	in	a	given	year	t,	α0t	characterizes	the	
yield	trend	ascribed	to	cultivar	development	and	improved	
agronomic	practices,	 j	 represents	 the	 three	durations	 (D1-	
D3),	αj,	βj,	γj	and	μj	defines	 the	sensitivity	of	crop	yield	 to	
Tmax,	Tmin,	Srad,	and	VPD,	respectively,	within	each	of	the	
three	 periods,	 Countyi	 allows	 for	 a	 separate	 intercept	 for	
each	county,	which	accounts	for	variation	in	soil	type	and	
agronomic	practices	in	different	regions,	and	εi,t	is	the	error	
term.	The	computation	strategy	 is	noted	as	C1.	We	define	
the	difference	between	the	crop	yield	data	(Yieldi,t)	and	the	
crop	yield	data	(Yieldp,i,t)	provided	by	equation	4	as	the	crop	
yield	anomaly	(Yieldano,	equation	5).

Second,	the	panel	model	analysis	was	still	used	but	with-
out	meteorological	variables	and	county	intercepts	as	shown	
in	 equation	 6.	 This	 computation	 strategy	 is	 noted	 as	 C2.	
Equation	6	suggested	that	only	the	general	trend	in	crop	yield	
over	years	for	each	county	was	removed.	Crop	yield	anomaly	
was	 then	defined	as	 the	difference	between	 the	crop	yield	
data	and	the	expected	yield	trend	(noted	as	YieldanoTr).

We	made	a	comparison	between	the	magnitudes	of	the	
drought	priming	effect	using	yield	anomalies	derived	from	
C1	and	C2	to	reveal	whether	variability	 in	climate	condi-
tions	would	apparently	obscure	the	drought	priming	effect.	
Note	that	the	APSIM	simulations	were	driven	by	weather	
inputs	such	as	temperature,	precipitation,	solar	radiation,	
and	VPD	(similar	 to	 the	C2	strategy).	Thus,	 the	compari-
son	 between	 C1	 and	 C2	 would	 help	 understand	 whether	
APSIM	simulated	yield	data	can	be	directly	used	(without	
anomaly	calculation	as	shown	in	equations	5	and	6)	for	dis-
cerning	the	drought	priming	effect.

Third,	to	check	if	the	temperature	(or	heat	stress)	prim-
ing	 effect	 exists,	 the	 panel	 analysis	 model	 (as	 shown	 in	
equation	4)	was	adjusted	with	slightly	different	variables.	
We	repeated	analysis	steps	for	the	drought	priming	effect	
with	the	temperature	data.

(4)
Yieldi,t =

�0t +
∑3

j=1

�

�jTmaxj
i,t

+ � jTminj
i,t

�

+ � jSrad
j
i,t
+ �jVPD

j
i,t
+ Countyi

Yieldp,i,t
+ �i,t

(5)Yieldano = Yieldi,t − Yieldp,i,t

(6)
Yieldi,t = Yieldp,i,t �0t

⏟⏟⏟
+ �i,t

(7)
Yieldi,t =

�0t +
∑3

j=1

�

� jTminj
i,t

+ � jSrad
j
i,t
+ �jVPD

j
i,t
+ �jPrecp

j

�

+ Countyi

Yieldp,i,t
+ �i,t

T A B L E  2 	 Delineation	of	different	groups,	that	is,	drought/temperature	priming,	drought/temperature	nonpriming,	and	control	group	
based	on	PDSI/STA/SPA	values	within	each	phenological	duration	(D1-	D3)

Group D1 D2 D3

Drought	priming PDSI	<−2 −2<PDSI<2 PDSI<−2

Drought	nonpriming −2<PDSI<2 −2<PDSI<2 PDSI<−2

Control	group	(no	drought	stress) −2<PDSI<2 −2<PDSI<2 −2<PDSI<2

Temperature	priming −0.5<STA<+2.0 −0.5<STA<0.5 −0.5<STA<+2.0

Temperature	nonpriming −0.5<STA<0.5 −0.5<STA<0.5 −0.5<STA<+2.0

Control	group	(no	high	temperature	stress) −0.5<STA<0.5 −0.5<STA<0.5 −0.5<STA<0.5

Drought	priming −2.0<SPA<−0.5 −0.5<SPA<+0.5 −2.0<SPA<−0.5

Drought	nonpriming −0.5<SPA<+0.5 −0.5<SPA<+0.5 −2.0<SPA<−0.5

Control	group	(no	drought	stress) −0.5<SPA<+0.5 −0.5<SPA<+0.5 −0.5<SPA<+0.5

Note: Both	PDSI	and	SPA	values	were	used	to	delineate	drought	priming,	nonpriming,	and	control	groups.

 20483694, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fes3.332, W

iley O
nline L

ibrary on [25/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 7 of 16FU et al.

In	this	case,	the	difference	between	crop	yield	data	and	
the	yield	data	modeled	from	equation	7	was	used	as	crop	
yield	anomaly	and	noted	as.YieldanoTem

2.6	 |	 Analysis of drought and 
temperature priming effects

If	 the	 drought	 priming	 effect	 exists,	 it	 can	 be	 expected	
that	maize/soybean	plants	experiencing	mild	to	moderate	
droughts	(as	defined	by	PDSI)	in	both	D1	and	D3	but	not	
in	D2	would	have	relatively	higher	yield	than	those	expe-
riencing	droughts	only	in	D3.	Similar	to	the	drought	prim-
ing	effect,	if	the	temperature	priming	effect	exists,	it	can	
be	expected	that	maize/soybean	plants	experiencing	mild	
to	moderate	temperature	extremes	in	both	D1	and	D3	but	
not	 in	 D2	 would	 have	 relatively	 higher	 yield	 than	 those	
experiencing	 temperature	 extremes	 only	 in	 D3.	 Table	 2	
shows	 the	delineation	of	different	groups	 for	 identifying	
priming	 effects	 on	 crop	 yields.	 To	 explore	 the	 drought	
priming	 effect,	 we	 selected	 only	 a	 county-	year	 in	 which	
D3	had	a	PDSI	value	less	than	−2.0	(experiencing	moder-
ate	or	extreme	drought	in	the	later	stage	of	growth)	and	
D2	had	a	PDSI	value	larger	than	−2.0	but	less	than	+2.0	
(near	 normal	 condition).	 The	 crop	 yield	 anomaly	 data	
were	 then	grouped	by	D1	PDSI	values	 in	 two	categories	
(PDSI<−2	and	0<PDSI<2).	The	two	groups	were	referred	
to	as	priming	and	no	priming	groups.	The	comparison	be-
tween	the	two	groups	would	help	show	the	priming	effect	
(if	it	exists).	The	two-	sample	t-	test	was	used	to	identify	if	
differences	 in	crop	yield	anomaly	or	 crop	yield	between	
the	two	groups	were	statistically	significant.

The	 same	 procedure	 was	 also	 performed	 using	 SPA	
while	satisfying	the	following	requirements:	for	a	county-	
year	 being	 selected,	 D3	 had	 a	 SPA	 value	 less	 than	 −0.5	
and	 D2	 had	 a	 near	 normal	 rainfall	 condition	 (−0.5	 to	
+0.5).	For	a	selected	county-	year,	the	corresponding	yield	
anomaly	 was	 grouped	 by	 SPA	 in	 D1	 in	 two	 categories	
(−0.5<SPA<+0.5	and	−2.0<SPA<−0.5)	and	then	checked	
if	differences	in	crop	yield	anomaly	between	groups	were	
statistically	 significant	 using	 the	 two-	sample	 t-	test.	 The	
two	groups	were	referred	to	as	priming	and	nonpriming	
groups.

The	 same	 procedure	 was	 also	 applied	 to	 group	 yield	
anomalies	 using	 STA	 while	 satisfying	 the	 following	 re-
quirements:	 for	 a	 county-	year	 being	 selected,	 D3  had	 a	
STA	value	greater	than	0.5	but	less	than	2.0	and	D2	had	a	
near	normal	temperature	condition	(−0.5	to	+0.5).	For	se-
lected	county-	year,	the	corresponding	yield	anomaly	was	
grouped	by	STA	in	D1	in	two	categories	(−0.5<STA<+0.5	
and	 0.5<STA<2.0)	 and	 then	 checked	 if	 differences	 in	
crop	 yield	 anomaly	 between	 groups	 were	 statistically	

significant	 using	 the	 two-	sample	 t-	test.	 The	 two	 groups	
were	referred	to	as	priming	and	nonpriming	groups.

As	crop	yield	anomaly	resulted	 from	different	mod-
eling	 results	 (one	 of	 the	 three	 Yieldano,	 YieldanoTr,	
YieldanoTem),	 analysis	 of	 the	 priming	 effect	 was	 per-
formed	 for	all	 the	yield	anomaly	data	sets	 (either	 tem-
perature	or	drought).	We	also	define	a	normal	group	(or	
control	 group)	 within	 which	 crops	 do	 not	 experience	
either	drought	or	temperature	stress	over	the	three	du-
rations	(D1-	D3).	The	yield	or	yield	anomalies	from	this	
group	 is	considered	 the	attainable	nondrought	or	non-
temperature	stress	yield.

2.7	 |	 APSIM modeling

A	 process-	based	 crop	 model	 provides	 an	 alternative	 ap-
proach	 to	explore	 the	drought	and	 temperature	priming	
effects	and	whether	the	model-	based	observations	are	con-
sistent	with	satellite-	based	observations.	Here,	the	APSIM	
version	 7.10	 (Holzworth	 et	 al.,	 2014)	 was	 used	 to	 simu-
late	 crop	 yield.	 Specifically,	 we	 used	 the	 APSIM-	Maize	
and	 APSIM-	Soybean	 modules	 to	 simulate	 crop	 yield	 for	
maize	and	soybean,	respectively.	The	model	simulations	
were	forced	with	the	gridMet	weather	data	that	were	se-
lected	for	exploring	priming	effects	on	maize	or	soybean	
using	PDSI,	SPA,	or	STA.	For	maize	simulations,	a	generic	
maize	 hybrid	 “B_110”	 provided	 by	 APSIM	 version	 7.10	
was	used,	while	for	soybean	simulations,	a	soybean	variety	
“Pioneer	93M42”	was	used.	Only	the	county-	year	that	was	
previously	 selected	 for	 analyzing	 drought	 and	 tempera-
ture	 priming	 effect	 (as	 suggested	 by	 the	 section	 drought 
imprints on crops)	 was	 simulated	 in	 the	 APSIM	 model.	
The	 soil-	associated	variables	 such	as	 soil	organic	matter	
fractions	were	set	as	a	constant	for	all	county-	year	simula-
tions.	Specifically,	the	Clarion	soil	series	determined	from	
the	Iowa	State	University	Experimental	farm	available	in	
the	 APSIM	 was	 used.	 The	 use	 of	 a	 constant	 soil	 profile	
for	all	the	simulations	thus	can	help	remove	variations	in	
crop	yield	induced	by	soil	characteristics.	Sowing	dates	for	
both	maize	and	soybean	were	determined	using	a	variable	
rule	with	the	sowing	window	set	between	1	May	and	15	
May	 based	 on	 the	 model	 predefined	 cumulative	 rainfall	
and	soil	water.	Sowing	density	and	spacing	for	maize	were	
set	as	10	plants/m2	and	0.8 m	while	for	soybean	were	set	as	
20	plants/m2	and	0.6 m.	As	the	crop	cultivar	(either	maize	
or	soybean)	used	in	simulations	was	the	same	over	years,	
the	differences	in	crop	yield	between	groups	as	defined	by	
D1	 PDSI,	 SPA,	 or	 STA	 would	 help	 identify	 whether	 the	
APSIM	 model	 captures	 the	 priming	 effect	 and	 whether	
the	 quantified	 effect	 are	 similar	 to	 that	 from	 statistical	
analysis.
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3 	 | 	 RESULTS

3.1	 |	 Accuracy for satellite- derived 
phenological dates

Phenological	 dates	 for	 both	 maize	 and	 soybean	 were	
identified	 using	 a	 hybrid	 approach	 integrating	 the	 SMF	
and	 the	 threshold	 method.	 The	 validations	 at	 the	 state	
level	showed	that	MODIS-	derived	dates	for	phenological	
stages	of	maize	and	soybean	(Table	3)	were	in	good	agree-
ment	 with	 those	 provided	 by	 the	 NASS.	 Table	 3	 shows	
that	the	RMSE	of	the	four	phenological	dates	among	the	
three	 states	 (Illinois,	 Indiana,	 and	 Iowa)	 ranged	 from	
2.5	 (Silking)	 to	 4.6  days	 (Dent)	 for	 maize,	 and	 from	 1.4	
(Beginning	 Maturity)	 to	 5.5  days	 (Emergence)	 for	 soy-
bean.	These	findings	were	consistent	with	previous	stud-
ies	in	estimating	phenological	dates	for	maize	and	soybean	
(Sakamoto	et	al.,	2010;	Zeng	et	al.,	2016;	Zhu	et	al.,	2018),	
providing	a	basis	 to	understand	whether	priming	effects	
exist	in	maize	and	soybean.

3.2	 |	 Drought and temperature 
priming effects

The	 frequency	 of	 a	 county	 experiencing	 the	 priming	
event,	either	drought	or	temperature,	for	maize	and	soy-
bean,	is	shown	in	Figure	3.	We	did	not	observe	a	south	or	
north	cluster	 for	both	temperature	and	drought	priming	
events	although	most	of	the	temperature	priming	events	
occurred	in	Illinois	and	Indiana.	Maize	and	soybean	yields	
from	 counties	 experiencing	 a	 priming	 event	 were	 com-
pared	with	those	from	counties	without	a	priming	event	
to	determine	if	priming	effect	could	mitigate	yield	loss.

Differences	 were	 observed	 in	 yield	 anomalies	 based	
on	whether	crops	in	a	county	were	exposed	to	no	drought	
(normal	conditions),	one	drought	without	priming,	or	two	
droughts	with	a	priming	event	(Figure	4).	When	the	linear	

trend	in	yield	was	removed	(Figure	4a),	difference	in	the	
mean	 yield	 anomaly	 between	 the	 drought	 priming	 and	
nonpriming	groups	was	0.37 Mg/Ha	for	maize,	equivalent	
to	3.8%	of	the	mean	maize	yield	(9.77 Mg/Ha)	across	all	
counties	in	the	three	states	from	2000	to	2018.	The	yield	
anomaly	for	maize	in	the	control	group	was	0.44 Mg/Ha,	
higher	than	that	in	the	priming	group	(0.26 Mg/Ha).	This	
suggested	that	the	drought	priming	effect	in	maize	helped	
mitigate	yield	 loss	by	67.3%.	For	 soybean,	 the	difference	
in	yield	anomaly	between	the	drought	priming	and	non-
priming	groups	was	0.11 Mg/Ha,	equivalent	to	3.2%	of	the	
mean	soybean	yield	(3.41 Mg/Ha)	across	all	counties	in	the	
three	states	from	2000	to	2018.	The	control	group	in	which	
no	drought	stress	was	observed	across	the	three	durations	
(D1-	D3)	showed	a	yield	anomaly	of	0.14 Mg/Ha,	resulting	
in	a	difference	of	0.52 Mg/Ha	compared	with	the	no	prim-
ing	group	and	of	0.41 Mg/Ha	compared	with	the	priming	
group.	 These	 numbers	 indicated	 that	 the	 priming	 effect	
mitigated	 the	 yield	 loss	 by	 21.2%.	When	 both	 crop	 yield	
trend	and	yield	variations	induced	by	solar	radiation	and	
temperature	were	removed,	the	drought	priming	was	still	
observed	but	with	a	slightly	different	magnitude	(Figure	
4b).	For	maize,	 the	difference	 in	yield	anomaly	between	
the	control	group	and	the	priming	group	was	0.21 Mg/Ha	
and	between	the	control	group	and	the	no	priming	group	
was	0.61 Mg/Ha.	Thus,	the	priming	effect	mitigated	yield	
loss	by	0.37 Mg/Ha	(or	65.6%).	For	soybean,	the	priming	
group	 reduced	 the	 yield	 loss	 by	 0.25  Mg/Ha	 (or	 53.2%)	
while	the	yield	loss	due	to	drought	was	0.47 Mg/Ha	(i.e.,	
the	difference	between	the	control	group	and	the	no	prim-
ing	group	as	shown	in	Figure	4b).	This	yield	 loss	reduc-
tion	amounted	to	7.3%	of	the	mean	soybean	yield	across	
all	three	states	from	2000	to	2018.	Furthermore,	the	stan-
dard	deviation	associated	with	each	group	decreased	from	
Figure	4a,b.	Specifically,	standard	deviation	(unit:	Mg/Ha)	
in	the	no	priming	group	for	maize	decreased	from	0.94	to	
0.24,	in	the	priming	group	fell	from	0.66	to	0.28,	and	in	the	
normal	group	declined	from	0.88	to	0.26.	Soybean	showed	

Illinois Indiana Iowa

Maize Emergence 4.2 4.5 4.4

Silking 2.5 3.2 3.9

Dent 3.7 4.6 4.2

Maturity 4.3 3.5 4.3

Soybean Emergence 5.5 5.0 4.8

Beginning	seed 4.1 5.0 3.0

Full	seed NA NA NA

Beginning	maturity 1.4 2.2 2.6

Note: Ground-	truth	dates	for	Full	Seed	are	not	available	(NA).	The	numbers	indicate	the	root	mean	
square	error	(RMSE)	between	MODIS-	derived	phenological	dates	and	NASS	reported	mean	dates	at	the	
state	level.

T A B L E  3 	 Accuracy	assessment	of	the	
four	phenological	dates	identified	using	
the	shape	model	fitting	and	the	threshold	
method
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similar	decreases	in	standard	deviation	from	0.42	to	0.24,	
from	0.38	to	0.28,	and	from	0.28	to	0.22	in	the	no	priming,	
priming,	and	normal	groups,	respectively.

Yield	anomalies	were	also	grouped	per	drought	condi-
tions	outlined	by	a	SPA	approach	(Figure	S2).	We	repeated	
the	analysis	of	the	drought	priming	effect	using	PDSI	with	
using	SPA	since	previous	work	showed	that	PDSI	may	not	
always	be	a	good	proxy	for	crop	water	stress	(Woli	et	al.,	
2012).	Based	on	Figure	S4,	the	drought	priming	effect	on	
maize	and	soybean	was	still	observed	with	a	similar	mag-
nitude	compared	with	that	identified	using	PDSI.	For	ex-
ample,	the	difference	in	maize	yield	anomaly	between	the	
control	group	and	the	priming	group	was	0.21 Mg/Ha	and	
between	the	control	group	and	the	no	priming	group	was	
0.62 Mg/Ha	when	only	yield	trend	was	removed	(Figure	
S4a).	 These	 numbers	 suggested	 that	 the	 drought	 prim-
ing	effect	mitigated	the	crop	yield	loss	by	0.41 Mg/Ha	(or	
66.1%),	similar	to	the	magnitude	derived	using	the	PDSI	

(67.3%).	For	soybean,	when	both	yield	trend	and	variations	
due	 to	 temperature	and	solar	 radiation	were	 removed,	a	
relatively	lower	magnitude	of	the	drought	priming	effect	
was	observed.	More	specifically,	as	shown	in	Figure	S4b,	
the	difference	in	yield	anomaly	between	the	priming	and	
no	priming	groups	was	0.21 Mg/Ha,	equivalent	to	42.0%	of	
the	difference	in	yield	anomaly	between	the	normal	group	
and	 the	 no	 priming	 group.	 This	 mitigation	 of	 soybean	
yield	 loss	 by	 42.0%	 identified	 using	 the	 SPA	 approach-	
based	groups	was	comparable	to	the	53.2%	loss	observed	
using	the	PDSI-	based	groups.

Following	 the	 same	 approach	 for	 precipitation,	 yield	
anomalies	were	further	grouped	by	temperatures	to	reveal	
whether	 temperature	 priming	 effects	 on	 maize	 and	 soy-
bean	 exist	 in	 field	 conditions.	 The	 temperature	 priming	
effects	 for	 both	 maize	 and	 soybean	 were	 identified,	 evi-
denced	by	Figure	4c,d.	When	only	crop	yield	trend	was	re-
moved	from	the	original	yield	data,	the	difference	in	yield	

F I G U R E  3  The	frequency	for	a	county	experiencing	a	priming	event,	either	drought	or	temperature,	on	corn	(a,	c)	and	soybean	(b,	d)	
from	2000	to	2018.	These	colored	counties	are	selected	using	PDSI	and	STA	for	exploring	whether	the	priming	effect	exists
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anomaly	between	the	priming	and	no	priming	groups	was	
0.24 Mg/Ha	 for	maize	and	was	0.06 Mg/Ha	 for	 soybean	
(Figure	4c).	An	even	higher	magnitude	for	the	difference	
in	 yield	 anomaly	 between	 the	 priming	 and	 no	 priming	
groups	was	observed	for	maize	(0.44 Mg/Ha)	but	not	for	
soybean	 (0.05 Mg/Ha)	when	both	yield	 trend	and	varia-
tions	due	 to	precipitation	and	VPD	were	 removed	using	
the	 panel	 model	 (Figure	 4d).	 These	 findings	 suggested	
that	 yield	 loss	 mitigated	 by	 the	 temperature	 priming	 ef-
fect	for	maize	amounted	to	2.5%	−4.5%	of	the	mean	yield	
across	all	three	states	from	2000	to	2018	and	for	soybean	it	
reached	1.4%	−1.8%	of	the	mean	soybean	yield	across	all	
three	states	from	2000	to	2018.	Using	yield	anomaly	in	the	
control	group	as	 the	 reference,	 the	 temperature	priming	

effect	abated	yield	loss	by	44.4%	(Figure	4c)–	66.7%	(Figure	
4d)	for	maize	and	reduced	yield	loss	by	18.5%	(Figure	4d)–	
19.4%	(Figure	4c)	for	soybean.

3.3	 |	 APSIM simulated differences in 
yield and selected crop traits

Limited	in	situ	and	satellite	observations	are	available	to	
reveal	differences	in	plant	traits	associated	with	the	prim-
ing	effect	at	county	and	state	levels.	As	such,	the	APSIM	
model	is	used	first	to	simulate	whether	the	priming	effect	
exists	in	field	conditions	which	are	different	from	green-
house	conditions,	and	then	to	detect	differences	in	plant	

F I G U R E  4  Yield	anomalies	for	maize	and	soybean	without	priming,	with	priming,	and	in	the	control	group	for	drought	(a	and	b)	and	
temperature	(c	and	d)	conditions.	Yield	anomalies	over	time	for	each	county	were	derived	after	removing	a	linear	trend	from	the	original	
yield	data	(i.e.,	observed	yield	minus	trend)	as	shown	in	(a	and	c)	or	after	removing	the	panel	analysis	modeled	yield	from	the	original	
yield	data	(i.e.,	observed	yield	minus	the	panel	analysis	modeled	yield)	as	shown	in	(b	and	d).	Statistically	significant	differences	between	
the	means	of	the	treatments	(no	priming,	with	priming,	and	control	group)	for	(a)	to	(d)	are	observed	at	a	significance	level	of	0.05	(p-	value	
<0.05)	using	the	ANOVA	analysis.	Numbers	close	to	the	bars	indicate	mean	values	while	the	vertical	lines	with	ends	represent	standard	
deviations.	Drought	conditions	were	determined	using	the	Palmer	Drought	Severity	Index	(PDSI)	and	temperature	conditions	were	
determined	using	the	standard	temperature	anomaly	approach.	Under	normal	conditions	(also	called	control	group	in	this	study),	there	is	
no	drought/temperature	stress	over	D1,	D2,	and	D3	and	crop	yield	in	this	case	was	considered	the	attainable	nondrought/temperature	stress	
yield
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traits	including	LAI,	specific	leaf	nitrogen,	and	root	depth	
by	phenological	stages	 for	both	maize	and	soybean.	The	
use	of	the	APSIM	model	is	not	to	accurately	simulate	crop	
yield	and	plant	traits	but	to	provide	a	further	evaluation	
of	what	changes	in	plant	traits	can	be	expected.	The	vari-
ation	in	yield	and	plant	traits,	if	any,	is	only	driven	by	the	
inputs	of	weather	variables	as	other	parameterizations	are	
set	as	constant	variables.	The	selection	of	the	plant	traits	
including	 LAI,	 specific	 leaf	 nitrogen,	 and	 root	 depth	 for	
analysis	in	this	study	is	attributable	to	their	importance	to	
explain	the	fraction	of	absorbed	photosynthetically	active	
radiation,	photosynthetic	capacity,	and	accessibility	to	soil	
moisture	(Adams	et	al.,	2016;	Fan	et	al.,	2017;	Weiss	et	al.,	
2004)	that	are	critical	to	crop	yield.

Figure	 5	 shows	 simulated	 yield	 variation	 for	 differ-
ent	 groups	 as	 revealed	 by	 the	 APSIM	 model.	 Both	 tem-
perature	and	drought	priming	effects	were	explored.	For	
maize,	the	difference	in	yield	between	the	drought	prim-
ing	 and	 nonpriming	 groups	 was	 1.13  Mg/Ha	 (Figure	 5a	
Left	Panel),	much	larger	than	that	(0.37 Mg/Ha)	derived	
using	the	panel	regression	analysis	approach	while	the	dif-
ference	in	yield	between	the	drought	priming	and	control	
groups	was	relatively	smaller	(0.04 Mg/Ha,	Figure	5a	Left	
Panel,	 p-	value	 >0.05)	 compared	 with	 that	 (0.18  Mg/Ha)	
using	the	panel	analysis	approach	as	shown	in	Figure	4a.	
With	temperature	priming,	the	maize	yield	was	10.48 Mg/
Ha,	 0.25  Mg/Ha	 higher	 than	 that	 in	 the	 nonpriming	
group	 (10.23  Mg/Ha,	 Figure	 5a	 right	 panel).	 This	 yield	
difference	between	temperature	priming	and	nonpriming	
groups	 accounts	 for	 26.6%	 of	 the	 difference	 in	 yield	 be-
tween	nonpriming	and	control	groups.	The	 temperature	
priming	effect	on	maize	revealed	by	the	APSIM	was	sim-
ilar	to	that	(0.24 Mg/Ha)	derived	using	the	panel	analysis	
regression-	based	 approach	 (Figure	 4c,d).	 For	 soybean,	 it	

was	observed	that	the	drought	priming	effect	would	help	
mitigate	yield	loss	by	0.20 Mg/Ha,	accounting	for	27.4%	of	
the	yield	loss	(i.e.,	the	control	group	showing	a	higher	yield	
of	0.73 Mg/Ha	compared	with	the	nonpriming	group)	and	
roughly	2.0%	of	 the	mean	yield	over	all	 the	groups.	The	
temperature	priming	effect	on	soybean	yield	exhibited	an	
even	 higher	 magnitude	 than	 the	 drought	 priming	 effect	
as	suggested	by	 the	APSIM	simulations.	Specifically,	 the	
difference	in	soybean	yield	between	the	temperature	con-
trol	and	nonpriming	groups	was	1.00 Mg/Ha,	higher	than	
the	difference	in	yield	(0.60 Mg/Ha)	between	the	control	
and	 priming	 groups.	 These	 priming	 effects	 on	 soybean	
were	close	to	 those	 identified	using	the	panel	regression	
analysis-	based	approach.

We	 also	 compared	 the	 satellite-	derived	 LAI	 (MODIS	
data,	Figure	S5)	and	that	(Figure	6)	provided	by	the	APSIM	
model	(comparisons	were	made	for	LAI	aggregated	over	
each	phenological	duration	from	D1	to	D3).	The	absolute	
LAI	values	from	the	APSIM	model	differed	from	the	sat-
ellite	data.	However,	the	difference	in	LAI	values	among	
groups	as	aggregated	by	phenological	durations	 (D1-	D3)	
shared	a	similar	pattern.	For	example,	 for	maize	growth	
during	D2,	LAI	in	the	priming	group	was	larger	than	that	
in	the	other	two	groups	(nonpriming	and	control	groups)	
as	 revealed	both	by	 the	APSIM	model	 (Figure	6a,b)	and	
satellite	 data	 (Figure	 S5a,b).	 For	 soybean	 growth	 during	
D2,	LAI	in	the	priming	group	(drought	and	temperature	
groups)	was	generally	smaller	than	that	in	the	other	two	
groups	 as	 revealed	 both	 by	 the	 APSIM	 model	 (Figure	
6c,d)	and	satellite	data	(Figure	S5c,d).	Satellite	data	gen-
erally	indicated	that	LAI	did	not	vary	much	among	groups	
during	D1	and	D3	for	both	soybean	and	maize	(Figure	S5)	
although	results	from	the	APSIM	model	differed	slightly	
from	 these	 observations.	 Further	 analysis	 of	 the	 APSIM	

F I G U R E  5  Differences	in	yield	among	varying	groups	(i.e.,	no	priming,	with	priming,	and	control)	as	revealed	by	the	APSIM	
simulations	for	maize	(a)	and	soybean	(b).	Results	related	to	both	drought	and	temperature	priming	effects	are	provided	(separated	by	the	
red	dash	line).	Differences	among	groups	are	statistically	significant	at	p < 0.05	level
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model	 results	 showed	 that	 only	 root	 depth	 exhibited	 a	
statistically	significant	difference	(p-	value=0.01)	between	
the	 drought	 priming	 group	 and	 the	 other	 two	 groups	
(i.e.,	 nonpriming,	 priming,	 and	 control	 groups)	 for	 both	
soybean	 and	 maize	 (Figure	 S6).	 Specifically,	 the	 APSIM	
model	suggested	that	the	drought	priming	effect	induced	
the	 increase	of	 root	depth	by	0.18 m	for	maize	 (as	com-
pared	to	 the	maize	nonpriming	and	control	groups)	and	
the	increase	of	root	depth	by	0.08 m	for	soybean	(as	com-
pared	with	the	soybean	nonpriming	and	control	groups).

4 	 | 	 DISCUSSION AND 
CONCLUSIONS

Drought	is	and	will	continue	to	be	a	main	factor	contrib-
uting	to	yield	loss	(Lobell	et	al.,	2014).	It	is	imperative	to	
adopt	strategies	to	help	crops	develop	enhanced	resistance	

to	drought	to	ensure	global	food	security	for	an	increasing	
population	 while	 conserving	 water	 resources.	 However,	
climate	change	has	already	aggravated	drought	intensity	
and	is	projected	to	lead	to	more	frequent	extreme	weather	
conditions	(e.g.,	much	shorter	but	intense	rainfall	events)	
associated	with	droughts	(Cook	et	al.,	2018).	In	this	study,	
observational	 evidence	 of	 a	 drought	 priming	 effect	 was	
observed	on	two	major	Midwestern	U.S.	crops,	maize	and	
soybean.	When	a	late-	season	drought	was	experienced	for	
maize,	 maize	 yield	 losses	 were	 0.37–	0.40  Mg/Ha	 higher	
(equivalent	 to	 $50/Ha–	$55/Ha),	 or	 roughly	 3.8%–	4.1%	
of	 mean	 annual	 yields	 in	 the	 three	 states	 (i.e.,	 Illinois,	
Indiana,	 Iowa)	 in	 the	 Midwest,	 compared	 with	 those	
when	the	crops	also	experienced	an	early	season	drought,	
supporting	 the	 drought	 priming	 hypothesis.	 Similarly,	
evidence	also	supported	a	drought	priming	effect	for	soy-
bean	to	the	benefit	of	0.11–	0.25 Mg/Ha	(equivalent	to	$56/
Ha–	$128/Ha),	or	3.2%–	7.3%	of	mean	annual	yields	in	the	

F I G U R E  6  Differences	in	LAI	among	groups	(i.e.,	no	priming,	with	priming,	and	normal)	over	different	crop	phenological	durations	
D1,	D2,	and	D3	for	both	maize	(a,	b)	and	soybean	(c,	d)	as	revealed	by	the	APSIM	model.	For	maize,	D1,	D2,	and	D3	refer	to	the	duration	
between	emergence	and	silking,	silking	and	dent,	and	dent	and	maturity,	respectively.	For	soybean,	D1,	D2,	and	D3	refer	to	the	duration	
between	emergence	and	beginning	seed,	beginning	seed	and	full	seed,	full	seed	and	beginning	maturity,	respectively.	*indicates	the	
difference	in	LAI	among	groups	are	statistically	significant	at	p < 0.05	level
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three	 states	 in	 the	 Midwest.	 This	 finding	 indicates	 that	
maize/soybean	experiencing	a	mild	to	moderate	drought	
at	its	early	growth	stage	can	have	a	better	capacity	to	deal	
with	 moderate	 and	 extreme	 droughts	 experienced	 at	 its	
later	 growth	 stage.	 These	 results	 are	 independent	 of	 ex-
perimental	studies	in	greenhouses	where	meteorological/
agricultural	drought	conditions	occurring	in	the	fields	are	
not	 easily	 replicated.	 The	 two	 approaches,	 the	 panel	 re-
gression	analysis	of	actual	yield	variability	and	the	APSIM	
simulations,	used	in	this	study	to	discern	priming	effects,	
both	 suggest	 a	 similar	 magnitude	 of	 priming	 effects	 in	
temperature	 and	 drought	 on	 maize	 and	 soybean.	 Thus,	
results	from	both	approaches	corroborate	with	each	other	
and	together	point	out	firmly	a	promising	strategy	that	can	
be	taken	in	the	future	as	a	supplement	to	existing	methods	
such	as	genetic	engineering	and	plant	breeding	to	develop	
drought-	resistance	cultivars	(Hu	&	Xiong,	2014).	This	sup-
plement	to	existing	methods	can	be	achieved	by	dissecting	
changes	in	plant	traits	at	individual	plants	and	gene	lev-
els	that	underlie	the	drought	priming	effect	(Balmer	et	al.,	
2015).

Since	 increasing	 warm	 season	 temperatures	 in	 the	
Midwest	can	lead	to	surface	moisture	loss	through	evapo-
ration	(Wuebbles	et	al.,	2017)	and	then	further	aggravate	
drought	stress	on	crops,	 the	temperature	priming	effects	
on	maize	and	soybean	were	also	evaluated	in	this	study.	
Temperature	priming	effects	were	revealed	on	both	maize	
and	 soybean	 whereby	 the	 impacts	 of	 late-	season	 high	
temperatures	were	 less	 severe	when	crops	were	exposed	
to	high	temperatures	early	in	the	season.	The	temperature	
priming	effect	helped	mitigate	yield	loss	by	0.24–	0.44 Mg/
Ha	(equivalent	to	$33/Ha–	$60/Ha)	for	maize	and	by	0.05–	
0.06 Mg/Ha	(equivalent	to	$25/Ha–	$30/Ha)	for	soybean,	
accounting	 for	 2.5%–	4.5%	 of	 the	 mean	 maize	 yield	 and	
1.4%–	1.8%	of	the	mean	soybean	yield	over	the	Midwestern	
states.	This	reduction	in	yield	losses	by	temperature	prim-
ing	events	 is	comparable	 to	 the	worldwide	average	yield	
loss	caused	by	increased	temperatures	(Zhao	et	al.,	2017).	
Thus,	the	observational	evidence	presented	in	this	study	
also	 corroborates	 the	 initial	 hypothesis	 that	 maize/soy-
bean	experiencing	moderate	 temperature	extremes	at	 its	
early	stage	of	growth	would	have	a	better	capacity	to	deal	
with	extreme	and	moderate	temperatures	experienced	at	
its	 later	stage	of	growth.	Moreover,	 this	study	moves	be-
yond	 the	 current	 frontier	 in	 understanding	 the	 impacts	
of	 climate	 change	 (e.g.,	 temperature	 and	 precipitation	
change)	on	crop	yield	by	highlighting	the	importance	of	
understanding	the	role	of	increased	climate	variability	on	
crop	resilience.

The	 APSIM	 model,	 despite	 its	 general	 success	 in	 re-
producing	the	priming	effect	on	maize	and	soybean	yield,	
provides	slightly	different	results	from	those	of	the	panel	
regression-	based	 approach	 as	 seen	 from	 yield	 and	 LAI	

variations.	 For	 example,	 the	 difference	 in	 maize	 yield	
between	 the	 drought	 priming	 and	 control	 groups	 is	 not	
statistically	significant	(p-	value	<0.05)	as	revealed	by	the	
APSIM	model	simulations	(but	statistically	significant	as	
revealed	 by	 the	 panel	 regression-	based	 approach	 using	
PDSI	 or	 SPA).	 For	 soybean,	 simulation	 results	 suggest	
that	 the	 temperature	 priming	 effect	 can	 help	 overcome	
crop	yield	loss	by	0.4 Mg/Ha,	much	larger	than	that	(0.05–	
0.06 Mg/Ha)	derived	from	the	panel	regression	analysis-	
based	approach	(Figure	4c,d).	These	differences	between	
magnitudes	of	the	priming	effect	derived	using	the	panel	
regression	analysis	and	the	APSIM	simulations	are	poten-
tially	explained	by	APSIM	model	parameterization	using	
constant	 variables	 (e.g.,	 soil	 conditions	 were	 set	 as	 con-
stant	for	all	simulations)	other	than	meteorological	drivers	
that	determine	nonpriming,	priming,	and	control	groups.	
The	 means	 by	 which	 the	 APSIM	 model	 reproduces	 the	
temperature	and	drought	priming	effects	is	likely	through	
stimulation	 of	 root	 growth	 (Dodd	 et	 al.,	 2008).	 This	 ef-
fect	of	the	model	results	in	maize	and	soybean	accessing	
deeper	water	in	the	soil	profile	under	stressed	conditions,	
which	can	have	a	direct	effect	on	biomass	accumulation	
(Hammer	et	al.,	2009).	It	is	believed	that	this	direct	effect	
on	 biomass	 allocation,	 along	 with	 the	 canopy	 structure	
change	represented	by	LAI,	may	lead	to	mitigation	of	yield	
loss	 during	 a	 priming	 event.	 Other	 process-	based	 crop	
models	such	as	those	involved	in	the	Agricultural	Model	
Intercomparison	and	Improvement	Project	(AgMIP)	may	
also	be	able	 to	capture	 this	priming	effect	 since	most	of	
them	 have	 modules	 to	 represent	 responses	 of	 plants	 to	
weather	 and	 soil	 conditions	 (Rosenzweig	 et	 al.,	 2014).	
Additionally,	 it	 is	 found	 that	 the	APSIM	model	can	rep-
licate	 the	 difference	 in	 LAI	 among	 groups	 during	 D2	 as	
compared	with	satellite-	based	LAI.	Another	possible	ex-
planation	for	the	model	to	reproduce	the	priming	effect,	
LAI	differences,	and	root	depth	differences	would	be	the	
inherent	ability	of	the	model	to	respond	to	changes	in	me-
teorological	variables	and	divert	resources	to	optimize	the	
agricultural	productivity	(Holzworth	et	al.,	2014).	Further	
studies	are	needed	to	improve	understanding	of	how	the	
process-	based	models	such	as	APSIM	can	account	for	the	
priming	effect	or	how	to	explicitly	include	a	mechanism	or	
module	to	explain	the	priming	effect.

Despite	 general	 wetter	 conditions	 projected	 for	 the	
Midwestern	United	States	(Neri	et	al.,	2020),	such	a	varia-
tion	in	precipitation	patterns	may	not	alleviate	drought	fre-
quency	and	intensity	for	crop	growth.	Spring	precipitation	
is	increasing	while	precipitation	in	mid-		and	late-	summer	
is	decreasing,	which	is	likely	to	lead	to	fewer	opportunities	
for	drought	priming	making	crops	more	vulnerable	to	fu-
ture	climate	change	(Lobell	et	al.,	2014).	Because	drought	
priming,	as	shown	in	this	study,	can	help	lower	crop	yield	
loss	 from	 late-	season	 droughts,	 further	 understanding	

 20483694, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fes3.332, W

iley O
nline L

ibrary on [25/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 16 |   FU et al.

of	 the	mechanistic	or	physiological	basis	of	 the	drought	
priming	effect	is	needed.	Once	these	mechanisms	are	elu-
cidated,	the	potential	may	exist	to	use	advanced	breeding	
methods	 (Hu	 &	Xiong,	 2014;	 Kerchev	 et	 al.,	 2020;	 Pinto	
et	 al.,	 2010)	 to	 identify	 and	 incorporate	 key	 functional	
genes	 into	 crops,	 potentially	 to	 create	 “drought	 primed”	
cultivars.

Further	refinements	of	 this	study	may	be	possible	by	
considering	the	following	two	aspects.	First,	although	the	
panel	regression	analysis	reveals	drought	and	temperature	
priming	 effects,	 the	 magnitude	 of	 mitigating	 crop	 yield	
loss	 exhibits	 variability	 due	 to	 factors	 such	 as	 soil	 con-
ditions,	 irrigation,	 cultivars,	 and	 errors	 propagated	 from	
the	 satellite-	derived	 phenological	 metrics.	 For	 example,	
as	the	Midwest	region	is	predominately	rainfed	although	
rapid	irrigation	expansion	has	occurred	over	the	past	few	
years	(Xie	&	Lark,	2021),	thus	future	refinements	of	this	
study	 can	 be	 made	 to	 exclude	 a	 county-	year	 with	 large	
amounts	of	 irrigation	over	 the	growing	season.	As	such,	
the	process-	based	modeling	approach	such	as	APSIM,	as	a	
virtual	farm	platform,	would	be	an	alternative	approach	to	
understanding	the	priming	effect	by	setting	some	variables	
as	constant.	However,	in	this	study,	despite	successful	sim-
ulations	of	the	temperature	and	drought	priming	effects,	
the	 APSIM	 model	 cannot	 reproduce	 all	 the	 changes	 in	
the	 plant	 traits	 such	 as	 LAI	 over	 the	 three	 phenological	
durations	as	compared	with	satellite	observations.	This	is	
expected	as	only	one	genotype	is	used	in	the	APSIM	model	
and	 parameters	 such	 as	 soil	 conditions	 are	 set	 as	 con-
stants.	Thus,	studies	are	warranted	to	further	understand	
the	 priming	 effects	 through	 process-	based	 crop	 growth	
models	 such	 as	 APSIM.	 Second,	 the	 current	 priming	 ef-
fect	is	evaluated	based	on	phenological	metrics	(four	key	
phenological	stages	for	both	maize	and	soybean)	derived	
from	8-	day	MODIS	composite	reflectance	images.	Thus,	it	
is	not	possible	using	current	phenological	metrics	to	know	
precisely	when	crop	priming	 initiates	as	conceptually	 il-
lustrated	 in	 Figure	 1.	 It	 is	 also	 difficult	 to	 know	 exactly	
the	amount	of	drought	and	temperature	stress	needed	to	
induce	 a	 priming	 event.	 Therefore,	 a	 precise	 character-
ization	 of	 when	 and	 how	 the	 priming	 effect	 can	 be	 in-
duced	may	need	to	combine	the	greenhouse	experimental	
studies,	 model	 simulations,	 and	 large-	scale	 phenotyping	
of	plant	traits,	biomass,	and	yield	in	field	conditions,	for	
which	further	research	is	required.
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